
DePaul University DePaul University

Via Sapientiae Via Sapientiae

College of Computing and Digital Media
Dissertations College of Computing and Digital Media

Spring 6-13-2014

Preserving the Quality of Architectural Tactics in Source Code Preserving the Quality of Architectural Tactics in Source Code

Mehdi Mirakhorli
mirakhorli@gmail.com

Follow this and additional works at: https://via.library.depaul.edu/cdm_etd

 Part of the Other Computer Engineering Commons

Recommended Citation Recommended Citation
Mirakhorli, Mehdi, "Preserving the Quality of Architectural Tactics in Source Code" (2014). College of
Computing and Digital Media Dissertations. 11.
https://via.library.depaul.edu/cdm_etd/11

This Dissertation is brought to you for free and open access by the College of Computing and Digital Media at Via
Sapientiae. It has been accepted for inclusion in College of Computing and Digital Media Dissertations by an
authorized administrator of Via Sapientiae. For more information, please contact digitalservices@depaul.edu.

https://via.library.depaul.edu/
https://via.library.depaul.edu/cdm_etd
https://via.library.depaul.edu/cdm_etd
https://via.library.depaul.edu/cdm
https://via.library.depaul.edu/cdm_etd?utm_source=via.library.depaul.edu%2Fcdm_etd%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=via.library.depaul.edu%2Fcdm_etd%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
https://via.library.depaul.edu/cdm_etd/11?utm_source=via.library.depaul.edu%2Fcdm_etd%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalservices@depaul.edu

DEPAUL UNIVERSITY

Preserving the Quality of Architectural
Tactics in Source Code

by

Mehdi Mirakhorli

Dissertation Thesis submitted in partial fulfillment for
the degree of Doctor of Philosophy

in the
School of Computing

College of Computing and Digital Media

Advisor:
Jane Cleland-Huang, PhD

June 2014

http://www.depaul.edu/
http://re.cs.depaul.edu/mehdi
http://www.cdm.depaul.edu
http://www.cdm.depaul.edu
http://facweb.cs.depaul.edu/jhuang/

DEPAUL UNIVERSITY
School of Computing

College of Computing and Digital Media

Abstract
Preserving the Quality of Architectural

Tactics in Source Code

by Mehdi Mirakhorli

In any complex software system, strong interdependencies exist between requirements and software
architecture. Requirements drive architectural choices while also being constrained by the existing
architecture and by what is economically feasible. This makes it advisable to concurrently specify
the requirements, to devise and compare alternative architectural design solutions, and ultimately
to make a series of design decisions in order to satisfy each of the quality concerns.

Unfortunately, anecdotal evidence has shown that architectural knowledge tends to be tacit in
nature, stored in the heads of people, and lost over time. Therefore, developers often lack com-
prehensive knowledge of underlying architectural design decisions and inadvertently degrade the
quality of the architecture while performing maintenance activities. In practice, this problem can
be addressed through preserving the relationships between the requirements, architectural design
decisions and their implementations in the source code, and then using this information to keep
developers aware of critical architectural aspects of the code.

This dissertation presents a novel approach that utilizes machine learning techniques to recover and
preserve the relationships between architecturally significant requirements, architectural decisions
and their realizations in the implemented code.

Our approach for recovering architectural decisions includes the two primary stages of training and
classification. In the first stage, the classifier is trained using code snippets of different architectural
decisions collected from various software systems. During this phase, the classifier learns the terms
that developers typically use to implement each architectural decision. These “indicator terms”
represent method names, variable names, comments, or the development APIs that developers
inevitably use to implement various architectural decisions. A probabilistic weight is then computed
for each potential indicator term with respect to each type of architectural decision. The weight
estimates how strongly an indicator term represents a specific architectural tactics/decisions. For

http://www.depaul.edu/
http://www.cdm.depaul.edu
http://www.cdm.depaul.edu
http://re.cs.depaul.edu/mehdi

example, a term such as pulse is highly representative of the heartbeat tactic but occurs infrequently
in the authentication. After learning the indicator terms, the classifier can compute the likelihood
that any given source file implements a specific architectural decision.

The classifier was evaluated through several different experiments including classical cross-validation
over code snippets of 50 open source projects and on the entire source code of a large scale software
system. Results showed that classifier can reliably recognize a wide range of architectural decisions.

The technique introduced in this dissertation is used to develop the Archie tool suite. Archie is
a plug-in for Eclipse and is designed to detect wide range of architectural design decisions in the
code and to protect them from potential degradation during maintenance activities. It has several
features for performing change impact analysis of architectural concerns at both the code and
design level and proactively keep developers informed of underlying architectural decisions during
maintenance activities.

Archie is at the stage of technology transfer at the US Department of Homeland Security where it
is purely used to detect and monitor security choices. Furthermore, this outcome is integrated into
the Department of Homeland Security’s Software Assurance Market Place (SWAMP) to advance
research and development of secure software systems.

“This Thesis is dedicated to the memory of my parents”

Acknowledgements

My advisor, Professor Jane Cleland-Huang, has had the most profound influence on me as a re-
searcher. She gave me the freedom to explore on my own while never ceasing to challenge me. I
have found working with Professor Jane Cleland-Huang very rewarding, and I believe I have learned
the research styles, manners and ethics from the best. Her inspiration and confidence in me have
afforded me many opportunities to interact with the most accomplished researchers in our field on
an equal footing. Jane is truly more than an advisor, and I could not have asked for a better role
model. I am sure I will miss walk into her office to talk and receive priceless advice.

I also gratefully acknowledge the constructive feedback and excellent input that I received from Dr.
Bamshad Mobasher and Dr. Xiaoping Jia on an earlier version of this thesis. Their advice helped
me to improve the quality of my work.

During last two years, I established a great working relationship with Dr. Mark Grechanik. He has
always been ready to engage in long research discussions and to provide his unique insight. I hope
this relationship continues in future.

I would also like to show my gratitude to my friends and collaborators, Dr. Roshanak Roshandel,
Dr. Patrick Maeder and Dr. Sam Malek, who helped me countless times to sort through things
both professional and personal.

I owe my deepest gratitude to my parents, for teaching me the value of education and encouraging
me to follow my dreams.

The work in this thesis has been partially funded by the National Science Foundation
(NSF) (Num: 1218303) and the US Department of Homeland Security (DHS).

v

Contents

Abstract ii

Acknowledgements v

List of Figures x

List of Tables xii

Abbreviations xiv

I Problem Statement and Background 1

1 Introduction 3
1.1 Contributions . 7
1.2 Overview of the Methodology . 9
1.3 Scope . 10
1.4 Published Work . 10
1.5 Organization . 12

2 Background and Definitions 15
2.1 Software Architecture . 15

2.1.1 Definitions of Software Architecture . 16
2.2 Architectural Tactics . 18

2.2.1 Availability Tactics . 19
2.2.2 Performance Tactics . 22
2.2.3 Security Tactics . 24

2.3 Tactics in Action . 27
2.4 Architecture Erosion . 27

2.4.1 Definition . 28
2.4.2 Causes of Erosion . 28
2.4.3 Strategies to Prevent Erosion . 30
2.4.4 Strategies to Repair Erosion . 31

vi

Contents vii

2.5 Summary . 33

3 Traceability Fundamentals 35
3.0.1 Definition of Software Traceability . 35
3.0.2 Traceability information model (TIM) . 36
3.0.3 Tracing and Related Concepts . 36
3.0.4 Automated Traceability . 37
3.0.5 Event-Based Traceability . 39

3.1 Tracing Architectural Concerns . 39
3.1.1 Software Architecture Practices that capture NFR traces 39
3.1.2 Custom Processes and Techniques for Tracing NFRs 42

3.2 Summary . 46

II Creating Architecture Traceability 47

4 Decision Centric Traceability 49
4.1 Introduction . 50
4.2 Identified Challenges . 51
4.3 Decision-Centric Traceability Meta-Model . 54
4.4 Tactic Traceability Patterns . 57
4.5 Examining the Research Questions . 61

4.5.1 Examining RQ1. Reducing Cost and Effort 62
4.5.2 Evaluation RQ2. Usefulness of tTPs in Maintenance Scenarios 65

4.6 Summary . 68

5 Automated Trace Generation 70
5.1 Proposed Approach . 71
5.2 Tactic Level Link Reconstruction . 74

5.2.1 Experiment 1: Training with tactic descriptions 75
5.2.2 Experiment 2: Training with code snippets 77

5.3 Role Level Link Reconstruction . 82
5.3.1 Light Weight Structural Analysis . 82
5.3.2 Role-Level Trace Reconstruction in a Real Case Study 84

5.4 Examining the Research Questions . 86
5.5 Summary . 88

6 Off-the-Shelf Classifiers for Detecting Architectural Tactics 90
6.1 Datasets for Architectural Code Snippets . 91
6.2 Classification Methods . 91

6.2.1 Tactic Detector . 92
6.2.2 Support Vector Machine . 92
6.2.3 Classification by Decision Tree (J.48) . 93
6.2.4 Bayesian Logistic Regressions (BLR) . 93
6.2.5 AdaBoost . 95

Contents viii

6.2.6 Ensembled Rule Learning: SLIPPER . 95
6.2.7 Bagging . 96

6.3 Tuning Classifiers through N-Fold Cross-Validation 96
6.4 Ranking the Classifiers based on Hadoop Case Study 98

6.4.1 Audit Trail Tactic . 99
6.4.2 Authentication Tactic . 99
6.4.3 HeartBeat Tactic . 100
6.4.4 Resource Pooling Tactic . 100
6.4.5 Resource Scheduling Tactic . 100
6.4.6 Asynchronous Method Invocation Tactic . 101
6.4.7 Hash Based Method Authentication . 102
6.4.8 RBAC Tactic . 102
6.4.9 Secure Session Management . 103
6.4.10 CheckPoint Architectural Tactic . 103

6.5 Examining Research Questions . 103
6.6 Summary . 106

III Traceability for Architecture Erosion 107

7 Notifications and Visualization 109
7.1 Usage of Event Based Traceability . 110
7.2 Two Notification Scenarios . 111

7.2.1 Illustrative Example at Model Level using tTP 112
7.2.2 Illustrative Example at the Code Level using Tactic Detector 113

7.3 Examining Research Questions . 115
7.4 Summary . 117

IV Design for Change 118

8 Variability Points and Design Pattern Usage in Architectural Tactics 120
8.1 Implementation Issues of Architectural Tactics . 121
8.2 Mining Tactic Implementations . 124
8.3 Scheduling Tactic: Forces and Solutions . 130
8.4 Resource Pooling Tactic: Forces and Solutions . 131
8.5 Heartbeat Tactic: Forces and Solutions . 133
8.6 a Tactic Reference Model . 135
8.7 Examining Research Questions . 139
8.8 Summary . 139

V Conclusion and Summary 140

9 Conclusions 142

Contents ix

9.1 Summary of Results . 143
9.1.1 Development of a Decision Centric Traceability Method 144
9.1.2 Automating the Construction of the Traceability Links 146
9.1.3 Comparing Off the Shelf Classifiers with Tactic Detector 147
9.1.4 Trace Link Usage . 148
9.1.5 Design Patterns to Implement Architectural Tactics 149
9.1.6 Archie: A Smart IDE . 150

9.2 Threats to Validity . 150
9.2.1 Tactic Traceability Patterns . 151
9.2.2 Automated Study . 151
9.2.3 Off-the-Shelf Classifiers . 152
9.2.4 Design for Change . 153

9.3 Future Work . 154
9.3.1 Extensions . 154
9.3.2 New Direction . 155

A Case Studies 157
A.1 Case Study of NASA Crew Exploration Vehicle (CEV) 157
A.2 Case Study of NASA Lunar Robot . 160
A.3 Case Study of Hadoop Framework . 165

A.3.1 HDFS Architecture . 166
A.3.2 Hadoop Map-Reduce Architecture . 168
A.3.3 Combined Architectural View . 169
A.3.4 HDFS Architectural Issues . 170

A.3.4.1 Availability . 171
A.3.4.2 Security . 172
A.3.4.3 Performance . 173

Bibliography 176

List of Figures

4.1 Components from Ramesh’s Metamodel - Rationale SubModel [104] 50
4.2 Decision-Centric Traceability (DCT) Meta-Model . 55
4.3 An example of tracing and visualizing the redundancy tactic using DCT meta-model 56
4.4 Traceability Pattern for Heartbeat Tactic . 58
4.5 Tactic Traceability Pattern for Redundancy with Voting 59
4.6 Tactic Traceability Pattern for Semantic Based Scheduling 59
4.7 Tactic Traceability Pattern for Partitioning/Layers 60
4.8 Design rationale displayed to user when they modify the heartbeat emitter component 61

5.1 An Overview of the Tactic-Related Trace Reconstruction Process 72
5.2 Experiment 1: Trained using Tactic Descriptions . 77
5.3 Experiment 2: Trained using Code Snippets from Tactics implemented in Open

Source Systems . 79
5.4 Results for Coarse-Grained Tactic Traceability in Hadoop 80
5.5 Results for Fine-Grained Tactic Traceability in Hadoop 84
5.6 Reverse Engineered Role-Grained Traces for a Heartbeat Tactic in Hadoop 85
5.7 Trace Reconstruction through Mapping Classified Classes at both Tactic and Role

Granularities to a tactic Traceability Pattern . 86

6.1 Decision Tree Built to Detect HeartBeat Tactic . 94

7.1 Monitoring Critical Architectural Element during Maintenance 111
7.2 Visualizing architectural tactics within Enterprise Architect 113
7.3 A Screen Shot of the Archie Tool showing Traceability Established from Implemented

Code via the Architectural Decisions to use the Blackboard Pattern to Quality Con-
cerns related to Performance and Usability . 114

7.4 Utilizing Traces to Generate Maintenance Notifications 115

8.1 Developers seek help in online forums to implement architectural tactics 121
8.2 Heartbeat tactic in different systems . 123
8.3 An Overview of our semi-automated process for mining open source repositories to

retrieve samples of tactic/pattern code, identifying tactic-specific variability points,
and generating reference models . 125

8.4 Overlaps produced automatically and reported prior to human evaluation 127
8.6 Decision tree for the scheduler tactic . 132
8.7 Decision tree for Resource Pooling . 133

x

List of Figures xi

8.8 Decision tree for Heartbeat . 134
8.9 A reference model for the scheduler tactic. Variability points are marked as stereo-

types. These stereotypes are used to reduce the model to deliver only the functionality
specified by the user. 136

8.10 The high level architecture of the Parallel Computing Infrastructure used in our Case
Study . 136

8.11 Desired variability points selected by the developers for the PCI system 137
8.12 The reference model modified to retain only desired variability points 137

A.1 Tactical Decisions, Rationales, and Driving Requirements in CEV 158
A.2 Crew Exploration Vehicle (CEV) system from NASA’s Constellation System of Systems159
A.3 Lunar Robot: High Level Component and Connector View 161
A.4 Lunar Robot: Composite Structure Navigation Domain 162
A.5 Lunar Robot: Deployment View . 163
A.6 Hadoop Distributed File System: Module View . 166
A.7 Writing-Files-to-HDFS . 167
A.8 Hadoop Framework: Module View1 . 168
A.9 A Combined View: Server Roles in Hadoop . 170
A.10 HDFS Reverse Engineered Code Structure2 . 170
A.11 Synchronization between Primary NameNode and Secondary NameNode 173

1footnote
2footnote2

List of Tables

2.1 An Analysis of Tactics Across Several Performance-centric and/or Safety-critical Sys-
tems . 27

4.1 An Analysis of Tactics Across Several Performance-centric and/or Safety-critical Sys-
tems . 57

4.2 Trace Link Counts per Tactic in the Lunar Robot . 64
4.3 Maintenance Scenarios . 67

5.1 Indicator terms learned during training method 1 . 76
5.2 Indicator terms learned during training . 78
5.3 A Summary of the Highest Scoring Results . 87

6.1 5-Fold Cross-Validation for Audit Tactic . 97
6.2 5-Fold Cross-Validation for Authenticate Tactic . 97
6.3 5-Fold Cross-Validation for HeartBeat Tactic . 97
6.4 5-Fold Cross-Validation for Pooling Tactic . 97
6.5 5-Fold Cross-Validation for Scheduler Tactic . 97
6.6 5-Fold Cross-Validation for Asynch Tactic . 97
6.7 5-Fold Cross-Validation for HMAC Tactic . 98
6.8 5-Fold Cross-Validation for RBAC Tactic . 98
6.9 5-Fold Cross-Validation for Session Tactic . 98
6.10 5-Fold Cross-Validation for CheckPoint Tactic . 98
6.11 Classifiers Comparison: Audit Trail Architectural Tactic in Hadoop 99
6.12 Classifiers Comparison: Authenticate Architectural Tactic in Hadoop 100
6.13 Classifiers Comparison: HeartBeat Architectural Tactic in Hadoop 100
6.14 Classifiers Comparison: Resource Pooling Architectural Tactic in Hadoop 101
6.15 Classifiers Comparison: Scheduling Architectural Tactic in Hadoop 101
6.16 Classifiers Comparison: Asynch Architectural Tactic in Hadoop 101
6.17 Classifiers Comparison: HMAC Architectural Tactic in Hadoop 102
6.18 Classifiers Comparison: RBAC Architectural Tactic in Hadoop 102
6.19 Classifiers Comparison: Secure Session Architectural Tactic in Hadoop 103
6.20 Classifiers Comparison: CheckPoint Session Architectural Tactic in Hadoop 103
6.21 F-Measure Reported for Different Classifiers in Hadoop Case Study 104
6.22 Descriptive Statistics for F-Measure of Different Classification Techniques 105
6.23 Testing Statistically Significance in Medians of Classifiers Performance 105

xii

List of Tables xiii

6.24 Pairwise Comparison of Classifiers with Tactic Detector 106

7.1 Accuracy of Generated Notification Messages during Simulated Modifications to
Hadoop . 116

8.1 Studied Projects: Size, identified tactics, detected design patterns and observed overlaps126

A.1 Lunar Robot: A Sub-set of High-level Requirements 163
A.2 Lunar Robot: Primary Architectural Decisions . 164
A.3 Instances of Architectural Tactics in Apache Hadoop 175

Abbreviations

ASR Architecturally Significant Requirements

ATAM Architecture Trade-off Analysis Method

CMMI Capability Maturity Model Integration

FAA Federal Aviation Administration

FDA Food and Drug Administration

DOD Department Of Defence

DCT Decision Centric Traceability

EBT Event Based Traceability

TIM Traceability Information Model

tTP tactic Traceability Pattern

NFR Non-Functional Requirements

IDE Integrated Development Environment

IRB Internal Review Board

SAREC Software and Requirements Engineering Center

COEST Center of Excellent for Software Traceability

xiv

Part I

Problem Statement and Background

1

“It takes a lot of courage to show your dreams to someone else.”

Erma Bombeck

Chapter 1

Introduction

Nowadays, a successful software production is increasingly dependent on how the final deployed

system addresses customers’ and users’ quality concerns such as security, reliability, availability,

interoperability and performance. Failure to address these qualities in a best case scenario, could

result in a significant drop in the number of users, negatively impact the market value of an enterprise

which uses the software, consequently result in the loss of value in stock price. In more extreme

cases it could even lead to catastrophic and systematic failures threatening public safety. The media

is full of reports of the impact of software failure. For example a software failure interrupted the

New York Mercantile Exchange and telephone service to several East Coast cities in February 1998.

In another recent example, one Illinois hospital jointly managed by the Departments of Veterans

Affairs (“VA”) and Defense (“DOD”) failed to achieve interoperability between the Departments’

EHR systems, costing the hospital at least $700,000 annually. This is despite the fact that the DOD

and VA had already spent $100 million to achieve this quality.

In order to satisfy such quality concerns, software architects are accountable for devising and com-

paring various alternate solutions, assessing the trade-offs, and finally adopting strategic design

decisions which optimize the degree to which each of the quality concerns is satisfied. The adopted

decisions are often based on well known architectural tactics, defined as re-usable techniques for

achieving specific quality concerns [81]. Bachman et al. provide a more formal definition for an

architectural tactic as “a means of satisfying a quality-attribute-response measure by manipulating

some aspects of a quality attribute model through architectural design decisions” [7]. Architectural

3

Chapter 1. Introduction 4

tactics come in many different shapes and forms and describe solutions for a wide range of quality

concerns [64, 81]. For instance, reliability tactics provide solutions for fault detection, prevention

and recovery; performance tactics provide solutions for resource contention in order to optimize

response time and throughput, and security tactics provide solutions for authorization, authentica-

tion, non-repudiation and other such factors [64]. Chapter 2 provides a comprehensive overview of

some common architectural tactics.

Traditionally, software architecture has been seen as the “structure or structures of the system”.

From this perspective an architecture is defined as a set of software components, their externally

visible properties, and their interconnections [81]. However this view, addresses only the physical

infrastructure of a system, and fails to capture the importance of other architectural decisions.

As a result, the more modern definition by Bosch [19, 72], Kruchten [78], Perry [100] and others

emphasizes software architecture as a set of interrelated design decisions. These decisions can be

technology related, structural for shaping the skeleton of the system, process related, or they could

be related to governance issues. From this perspective, architectural quality is achieved not only

through traditional engineering practices such as module decomposition, information hiding and

abstraction [48, 119], but also through managing and preserving a broad set of tactical architectural

decisions.

Despite the tremendous effort that goes into designing and delivering a robust architectural solution,

architectural qualities are often eroded over time as a result of ongoing maintenance activities, which

are inevitably undertaken to correct faults, improve performance or other quality concerns, and to

adapt the system in response to changing requirements [71, 127]. In such a scenario, when the

software product evolves in subsequent releases, maintainability of the system decreases, making it

difficult to understand and modify. In the best case, changes accumulate and become obstacles for

further releases, while in a severe case the architecture degradation can lead to catastrophic failure.

This phenomenon has been referred to as Architecture Erosion [87][86][127][100][125]. Netscape

browser is a good example of architecture erosion [127]. In early 1997, Netscape and Microsoft

were in a browser war, where Netscape released Netscape Communicator version 4.0 and at the

same time Microsoft sent out its version 4.0 of Internet Explorer. A year later, for various reasons

Netscape was losing the competition. Therefore they urgently decided to move toward an improved

version of their Netscape Communicator to beat Microsoft. However, they could not deliver it. The

Chapter 1. Introduction 5

architecture of the old version 4 was eroded and the source code was hard to modify. Finally in late

1998, Netscape, in a desperate attempt to regain its lost market share, decided to release its browser

as open source. After a few months, the old source code was discarded entirely and development of

a new browser (known as Mozilla) was started.

This is a challenging problem of software development recognized by both academics and practition-

ers. Perry and Wolf first drew attention to the problem in 1992 [100]. They defined architectural

erosion as ‘violations of the architecture’ and architectural drift as an ‘insensitivity to the archi-

tecture’ which occurs when the underlying rules are not clear to the developers and maintainers.

The problem is far from a theoretical one and unfortunately has not been addressed properly. Most

popular software engineering tools and environments fail to make underlying design decisions visible

to software engineers, and as a result maintainers are not kept fully informed of relevant underlying

design patterns, tactics, and constraints as they construct, maintain, and refactor a software system

[18][127].

In practice, the architecture of a system and its qualities can be maintained using traceability

methods that help developers fully understand the impact of design or implementation changes on

architecturally significant requirements [127].

In related work, Kruchten [78], Burge [23], and others have proposed a proactive approach to

preventing design degradation through using design rationales to document architectural decisions.

They argue that explicitly recording design decisions, justifications, alternatives, and conflicting

perspectives, is necessary in order to preserve architectural qualities. Several researchers have

attempted to address this problem through developing techniques for documenting or modeling

architectural decisions. The Architecture Design Decision Support System (ADDSS) [25], Process

based Architecture Knowledge Management Environment (PAKME)[13], and Architecture Ratio-

nale and Element Linkage (AREL)[118] are examples of these. However, these approaches fail to

address the scalability issues of managing potentially large numbers of architectural decisions. They

also fail to connect design decisions to code, and/or provide little support for actually utilizing this

knowledge during software maintenance.

Moreover, architecture erosion is very likely to occur if developers are ‘insensitive to the archi-

tecture’ [100] and the architecturally implied decisions/rules are not clear to them, or when the

developers lack experience and therefore misunderstand the key architectural decisions or do not

Chapter 1. Introduction 6

have enough knowledge to implement/modify architectural decisions in a robust and optimum way

[127]. Although there have been numerous books, materials and tutorials on architectural tactics,

most of these are at a high level of design and provide insufficient guidance for how to implement

these tactics.

This dissertation, primarily suggests using Software Traceability, defined as the “the ability to

interrelate any uniquely identifiable software engineering artifact to any other, maintain required

links over time, and use the resulting network to answer questions of both the software product

and its development process” [33] and to establish links between uniquely identifiable and related

software engineering artifacts, as a means of preventing erosion. It proposes the new notion of

decision-centric-traceability which can potentially address the aforementioned problems through

explicitly documenting relationships between quality concerns, rationales, architectural decisions,

and source code. This technique puts architectural decisions (such as tactics) as the focus of the

tracing activity. In fact, in this approach the driving requirements, design rationale and constraints

are first traced to their corresponding architectural tactics, and tactics are then used to link the

requirements knowledge to the implementation artifacts. Such links can then be used to support

change impact analysis and program comprehension during the maintenance process by revealing

underlying design decisions. In order to trace each architectural tactic in an economical way, this

dissertation introduces the concept of tactic traceability information models, designed to guide the

creation of sufficient traceability links.

Secondly, this dissertation, proposes automated reconstruction of traceability links between quality

concerns and source code through using machine learning techniques to detect architectural tactics

in the code. Considering the acceptable level of accuracy achieved by this technique, it would

significantly minimize the cost of establishing and maintaining traceability links by dynamically

creating the links upon demand by developers.

Finally the third part of the dissertation, provides guidelines for developers, presumably less ex-

perienced ones, on how to implement architectural tactics by utilizing robust and effective design

patterns which tend to be more maintainable. These guidelines are extracted through observations

of various tactic implementations. First the tactical code was detected in a large number of software

systems, then various design patterns were detected in the software systems. Overlap analysis was

performed to find evidence of design patterns being used to implement a tactic. The results of this

Chapter 1. Introduction 7

analysis are provided though a reference model for each tactic. This reference model allows the

developers to select one or more appropriate design patterns to implement a tactic based on the

context of their projects.

1.1 Contributions

This dissertation makes the following primary contributions:

• Identify Traceability Challenges of Architectural Decisions

Before proposing any specific guidelines for tracing quality concerns, it is necessary to understand

the issues that must drive any effective architecture traceability solution. The first part of this

dissertation presents the results of an extensive study conducted on tactical architectural decisions

implemented in highly dependable and complex avionic systems such as AirBus and Boeing family,

NASA Robotics, NASA Crew Exploration Vehicle (CEV), Hadoop Framework and various other

performance centric systems. This study first identifies the key challenges of tracing architecturally

significant requirements and then provides the foundations and motivation for a new traceability

meta-model describing a traceability infrastructure for efficiently tracing individual quality concerns.

• Identifying Traceability Patterns for Tactics

The previously designed meta-model is extended in the form of the potentially transformative

notion of a Tactic Traceability Pattern (tTP), defined as an instantiable and reusable tactic-centric

traceability model. A tTP can reduce traceability effort by providing a reusable infrastructure

for tracing, detecting, managing, and preserving tactics throughout the maintenance phase of the

software system. Chapter 4 provides a more detailed description of the tTP concept and describes

a set of tTPs developed for this dissertation.

• Automating Trace Generation

Manually creating trace links is a difficult and expensive task. Therefore we have developed a novel

approach for automating the generation of trace links between tactics and the design and code

elements in which they are implemented. Chapter 5 describes this approach and presents the results

of its evaluation. The developed approach uses and trains a classifier to detect architectural tactics in

Chapter 1. Introduction 8

the source code and to subsequently establish trace links to the tTPs. Trace links are established at

two levels of granularity, Tactic-Level and Role-Level. The classifier is trained through two different

training methods which either use a data set of tactical code-snippets or tactic-descriptions to build

the classifier. Furthermore, in order to create trace links at the Role-Level we have developed a

hybrid approach which utilizes a light-weight structural analysis technique to create fine-grained

trace links to the tactics’ roles in a tTP. Although the results are not as good as those obtained for

Tactic-Level link reconstruction, the output can still be used to help developers create links.

The major contribution of this work to the existing body of knowledge is the focus on architectural

tactics. This can be viewed from two perspectives. All the bulk of existing research on software

architecture discovery, recovery and reconstruction from source code has primarily focused on mod-

ularization and structure of software. The novel part of our work is taking into account tactical

architectural decisions which are pervasive types of decisions in various systems. Also from the per-

spective of software traceability this is the first work that has focused on automating the traceability

of architectural tactics into the source code.

•Informed Notification and Visualization of Design Rationale

In an IEEE Software article entitled “Draw me a picture”, Grady Booch [18] challenged the soft-

ware engineering community to develop new visualization tools capable of providing greater insights

into underlying frictions, design decisions, and social factors of a software system. Our traceability

approach makes an initial and partial contribution to addressing this challenge through notifying

the developer of underling decision and showing how different parts of the system work together to

achieve various quality goals. This can help reduce the risk of design erosion by keeping developers

informed of tactical architectural decisions behind the code and notifying them which architec-

tural tactics and related software qualities can be affected by the changes they implement. This

would address one of the key causes of architectural erosion known as insensitivity to design. The

notification mechanism is built primarily on top of our automated trace reconstruction technique.

• Presenting Reference Models for Implementing Tactics

Once a decision is made to utilize a tactic, the developer must generate a concrete plan for realizing

the tactic in the code. Unfortunately, there is not a single way to implement an architectural tactic.

From one system to another system a tactic can be implemented entirely differently and this is

Chapter 1. Introduction 9

according the context and constraints of each project. The variability points found in individual

tactics can make this a challenging task, especially for less experienced developers. This is a typical

knowledge gap that exists between high level architecture design and low level programming as

the scope of concerns are different. To address this knowledge gap, we conducted an extensive

study of 50 open source systems to investigate how design patterns were used to implement various

tactics. Data mining techniques were used to identify potential pattern instances within tactic

implementations. This was followed by a manual analysis of the retrieved data to identify a distinct

set of variability points for each tactic, as well as evidence of corresponding design patterns used to

address them.

The output of this observation resulted in the construction of tactic-level decision trees depict-

ing variability points of a tactic and generating a reference model which provides implementation

guidance for the developers.

This perspective, recognizes Parnas’ notion of “design for change” [98][97]. In this perspective,

architectural erosion is tackled by providing guidance to help developers implement or modify

tactical decisions through the use of known design patterns. The use of design patterns is considered

more robust and maintainable way for low level implementation and tend to be more flexible for

evolution while at the same time are harder to erode [67][129][52].

1.2 Overview of the Methodology

In order to achieve each goal identified in the previous section, we apply a research methodology

which has three phase of problem analysis, solution design and solution validation.

In problem analysis we explore various challenges for addressing each of the research goals. The

problem analysis includes extensive studies of key challenges in the real systems from various do-

mains of Avionics, Business and Financial platforms, Distributed Computing Frameworks, Internet

Based Applications and etc. This has provided a realistic foundation for understanding the problem.

In the next phase, the gained insight in the problem analysis is used to drive an appropriate solu-

tion. In the validation phase we examine the proposed solution and rigorously validate it through

several experiments.

Chapter 1. Introduction 10

1.3 Scope

As the scope of architectural qualities and their implementation is vast, we limit the scope of the

thesis to a subset of architectural decisions and primarily those known as tactics. The goal of this

dissertation is to demonstrate that solutions for preventing architectural erosion exist however it is

not intended as a survey of all known architectural design decisions. That is left for future research.

As part of this work, a set of information retrieval and data mining techniques have been applied,

however the purpose of the experiments in this dissertation is not to find the best available algorithm,

compare existing ones, or improve known methods. Instead, this dissertations investigates areas

in software architecture development in which such methods can be used as tools to help provide

useful support to cope with the problem of erosion.

Although we have proposed a catalogue of tTPs, the contribution of this dissertation, is not in

providing a fully validated set of tTPs, but rather in showing how a tTP can be used to support

effective software maintenance while reducing the likelihood of architectural degradation.

While the scope of the thesis was limited to what is mentioned above, any results that were poten-

tially applicable to a wider scope are indicated throughout the work.

1.4 Published Work

This dissertation includes work published in the following international peer-review workshops,

conferences and journals:

• Kouroshfar, E.; Mirakhorli, M.; Bagheri, H.; Xiao, L.; Malek, S.; Cai, Y.; “A Study on the

Role of Software Architecture in the Evolution and Quality of Software”, Submitted to the

ACM SIGSOFT 22th International Symposium on the Foundations of Software Engineering,

2014,ACM.

• Cleland Huang, M.; Ali Babar, M.; Mirakhorli, M.; “An Inverted Classroom Experience:

Engaging Students in Architectural Thinking for Agile Projects”, Software Engineering Edu-

cation and Training (SEET) Track, IEEE International Conference on Software Engineering

(ICSE’14).

Chapter 1. Introduction 11

• Cleland Huang, M.; Czauderna, A.; Mirakhorli, M.; “Driving Architectural Design and Preser-

vation from a Persona Perspective in Agile Projects”, Agile Software Architecture, edited by

Muhammad Ali Babar, Ivan Mistrik, and Alan Brown, 2014.

• Mirakhorli, M.; “Preventing Erosion of Architectural Tactics through Their Strategic Imple-

mentation, Preservation, and Visualization”, 28th IEEE/ACM International Conference on

Automated Software Engineering (ASE), 2013.

• Mirakhorli, M.; Carvalho, J.; Cleland-Huang, J.; Maeder, P.; “A Domain-centric Approach

for Recommending Architectural Tactics to Satisfy Quality Concerns”, Third International

Workshop on the Twin Peaks of Requirements and Architecture, 21st IEEE International Re-

quirements Engineering Conference (RE’13), 2013.

• Mirakhorli, M.; Cleland-Huang, J.; “Traversing the Twin Peaks”, IEEE Software,vol.30, no.2,

March-April 2013.

• Mirakhorli, M.; Maeder, P.; Cleland-Huang, J.; “Variability points and design pattern usage

in architectural tactics”, Proceedings of the ACM SIGSOFT 20th International Symposium

on the Foundations of Software Engineering, 52,2012,ACM.

• Mirakhorli, M.; Shin, Y.; Cleland-Huang, J.; Cinar, M.; “A tactic-centric approach for au-

tomating traceability of quality concerns”, Proceedings of the 2012 International Conference

on Software Engineering, 639-649,2012,IEEE Press. ACM SIGSOFT Distinguished Pa-

per Award

• Cleland-Huang, J.; Mirakhorli, M.; Czauderna, A.; Wieloch, M.; “Decision-Centric Traceabil-

ity of Architectural Concerns”, The 7th International Workshop on Traceability in Emerging

Forms of Software Engineering (TEFSE 2013).

• Mirakhorli, M.; Cleland-Huang, J.; “Using tactic traceability information models to reduce the

risk of architectural degradation during system maintenance”, Software Maintenance (ICSM),

2011 27th IEEE International Conference on Software Maintenance, 123-132,2011,IEEE.

• Mirakhorli, M.; Cleland-Huang, J.; “A pattern system for tracing architectural concerns”,

Proc. of the Pattern Languages of Programming Languages (PLOP), 2011.

Chapter 1. Introduction 12

• Mirakhorli, M.; Cleland-Huang, J.; “Tracing Non-Functional Requirements”, Software and

Systems Traceability, 299-320,2012,Springer

• Mirakhorli, M.; “Tracing architecturally significant requirements: a decision-centric approach”,

33rd International Conference on Software Engineering, 1126-1127,2011,IEEE.

• Mirakhorli, M.; Cleland-Huang, J.; “Tracing architectural concerns in high assurance systems

(NIER track)”,Proceedings of the 33rd International Conference on Software Engineering,908-

911,2011,ACM.

• Mirakhorli, M.; Cleland-Huang, J.; “A decision-centric approach for tracing reliability con-

cerns in embedded software systems”,Proceedings of the Workshop on Embedded Software

Reliability (ESR), held at ISSRE10, 2010.

• Mirakhorli, M.; Cleland-Huang, J.; “Transforming trace information in architectural docu-

ments into re-usable and effective traceability links”, Proceedings of the 6th International

Workshop on SHAring and Reusing Architectural Knowledge, 45-52,2011,ACM.

1.5 Organization

This dissertation is organized as follows: The Part I includes the literature review presented in

Chapters 2 and 3. Part II of this dissertation focuses on creating architecture traceability. In

Chapter 4 we present the traceability challenges of architectural decisions that we have identified

as a result of studying various real systems; Also illustrates the idea and utilization of Traceability

Patterns for Tactics. Chapter 5 presents the approach and results for automating the generation of

trace links from architectural tactics to source code. Chapter 6 presents a ranking comparison of

our tactic detector approach with a number of Off-The-Shelf text categorization methods as well as

a voting approach including all the classification methods. In Part III we will show how to use the

previously developed approach to help reduce the risk of design erosion by keeping the developers

informed of tactical architectural decisions behind the code.

Part IV presents our tactic reference models developed to support tactic’s implementation and

modification.

Chapter 1. Introduction 13

Finally, Part V and chapter 9 presents the conclusions of the thesis, the main threats to validity,

as well as future work that can be done to augment it. All the case studies used through this

dissertation are presented in Appendix A.

“All the world’s a stage,

And all the men and women merely players:

They have their exits and their entrances;

And one man in his time plays many parts;”

William Shakespeare

Chapter 2

Background and Definitions

In our work, we utilize concepts and techniques from various areas of software engineering and

computer science such as software architecture, requirements engineering, software traceability, and

data mining and information retrieval. In this chapter, we provide background information on these

areas and introduce a set of definitions used throughout the thesis.

The first section of this chapter presents various definitions for the concept of Software Architecture

followed by a description of Architectural Tactics as common approaches to design an architecture

in section 2.2. In Section 2.3, a set of real systems implementing architectural tactics are discussed.

Section 2.4 describes the phenomena of architecture erosion which makes software qualities degrade

over time. This section presents the common causes of such phenomena and describes the state of

art and practice for dealing with such problems.

2.1 Software Architecture

Every software development process or life-cycle is structured around a set of classical disciplines

represented as Requirements Engineering, Software Design, Implementation,Testing and Mainte-

nance. Following the principles and practices in each of these disciplines results in the creation of a

robust working product from an initial customer request. While the requirements engineering dis-

cipline helps analysts to elicit, analyse and understand the customers concerns and users needs, the

design discipline leads to the development of abstract solutions to transit from such requirements

15

Chapter 2. Background and Definitions 16

to implementations and a working product. In this process, Software Architecture Design occurs

at the overlap of the two aforementioned disciplines. It includes, principles and practices of both

requirements engineering and software design. Over the last decade, software architecture design

has increasingly been considered as a key activity to influence software qualities such as security,

reliability, performance and so on. Therefore it has been the focus of a wide range of research and

practice.

2.1.1 Definitions of Software Architecture

There are various definitions for architecture of a software system. Traditional definitions consider

software architecture as the structure or skeleton of a system. In this definition, architecture is a

collection of components building a software system. For example, Len Bass [81] defines software

architecture as

“The software architecture of a program or computing system is the structure or struc-

tures of the system, which comprise software elements, the externally visible properties

of those elements, and the relationships among them”.

Similarly Mary Shaw and David Garlan [55] describe software architecture as:

“...a level of design concerned with issues beyond the algorithms and data structures

of the computation; designing and specifying the overall system structure emerges as

a new kind of problem. Structural issues include gross organization and global control

structure; protocols for communication, synchronization, and data access; assignment of

functionality to design elements; physical distribution; composition of design elements;

scaling and performance; and selection among design alternatives”.

The IEEE 1471-2000 standard [60] has defined the term Architecture as:

“The fundamental organization of a system embodied in its components, their relation-

ships to each other, and to the environment, and the principles guiding its design and

evolution”

Chapter 2. Background and Definitions 17

Additionally, this standard provides a description for each of the terminologies used in this definition

of architecture. A system is a collection of components organized to implement a specific set of

functions. The term system is very broad and can include individual applications, subsystems,

systems of systems, products and product families, whole enterprises, and other such interests.

The environment, is in fact the context and determines the setting for developmental, operational,

political, and other factors influencing the system [60].

A stakeholder in this definition is an individual, team, or organization with interests in a system [60].

A key criticism to all the above definitions is that they address only the physical infrastructure of

a system, and fail to capture the importance of other architectural decisions. The proponents of

alternative definitions Bosch [8], Kruchten [9], Perry [10] and others refer to software architecture

as a set of interrelated design decisions which work together to shape the structure, behavior,

properties, processes, and governance of the delivered solution. Among these, Bosch argues that,

“we define software architecture as the composition of a set of architectural design

decisions. This reduces the knowledge vaporization of design decision information, since

design decisions have become an explicit part of the architecture”.

Kruchten in The Rational Unified Process 1999, defines architecture as:

“An architecture is the set of significant decisions about the organization of a software

system, the selection of the structural elements and their interfaces by which the sys-

tem is composed, together with their behavior as specified in the collaborations among

those elements, the composition of these structural and behavioral elements into progres-

sively larger subsystems, and the architectural style that guides this organization—these

elements and their interfaces, their collaborations, and their composition”.

From this perspective, architectural quality is achieved not only through traditional engineering

practices such as partitioning and abstraction [119][48], but also through managing and preserving

a broad set of architectural decisions.

Analysis of different architectural decisions indicate that these decisions appear in different shapes

and forms. Sometimes architects select an architectural pattern or style to shape the structural

Chapter 2. Background and Definitions 18

organization of a software system, sometimes they prefer architectural tactics focusing on how to

achieve a specific level of quality and finally in many cases architects make process related decisions

affecting development and organizational issues in a team.

Primarily this dissertation focuses on tactical architectural decisions, therefore in the next section

we only cover architectural tactics as a category of decisions made by architects.

2.2 Architectural Tactics

Architectural tactics are fundamental design decisions. They have been extensively used in a wide

range of software systems, from avionic domains to e-commerce, web-based solutions and even game

industries. Architectural tactics are known as reusable solutions for satisfying quality concerns such

as security, performance, reliability, and so on.

Bachman et al. [7] define a tactic as

“A means of satisfying a quality-attribute-response measure by manipulating some as-

pects of a quality attribute model through architectural design decisions”.

In a simpler definition, an architect uses a set of techniques to achieve the required quality attributes,

these techniques are called tactics. A tactic is a design decision that influences the achievement of

a quality attribute response; tactics directly affect the system’s response to some stimulus.

Len Bass [81] claims that the focus of a tactic is on a single quality attribute response and it has a

single facet. Within a tactic, there is no consideration of trade-offs. He argues that this is the main

difference between tactics and architectural patterns (e,g layering, pipe and filter) that trade-offs

are built into architectural patterns. Patterns are multi-faceted, they are a bundle of decisions

addressing multiple issues at the same time, therefore exposing trade-offs.

The Software Engineering Institute (SEI) [112] has identified a catalogue of existing architectural

tactics. In this section we introduce a few categories of this catalogue including those we have used

throughout the rest of this dissertation.

Chapter 2. Background and Definitions 19

2.2.1 Availability Tactics

Availability tactics are critical approaches for mitigating the faults in a system and either preventing

them from leading to system failure or at least bounding the effect of the faults by making system

repairs possible with acceptable cost. All known approaches for maintaining system availability

depend on some sort of replication, health monitoring to detect a component or system failure and

finally recovery mechanisms after a failure is detected. This can be fully automated or involve inter-

vention of system administrators. Therefore there are three strategies to handle system availability,

(i) fault detection, (ii) fault recovery and finally, (iii) fault prevention.

Fault detection. The most commonly used tactics for detecting software faults are heartbeat,

ping-echo and exceptions.

• Heartbeat (dead man timer). One component emits a heartbeat message periodically indicat-

ing that it is alive while a second component monitors the health of the heartbeat sender by

listening to the heartbeat message. If the heartbeat receiver does not receive the the heartbeat

message then it assumes that heartbeat sender component has failed, therefore it notifies the

user/correction component.

The heartbeat tactic can be implemented by a piggy backing mechanism. In this case the

heartbeat message is carried by the communicated data.

• Ping/echo. Monitoring component emits a ping message and expects to receive back an echo

within a predefined time slot from the component under scrutiny.

• Exceptions. This is one of the most commonly used programming techniques for recognizing

faults. An exception is thrown when a fault is recognized. This requires an exception handler

to deal with the occurred fault.

Fault recovery. The fault recovery process has two steps, preparation and recovery. In preparation

the logistics, data and synchronizations for a recovery act is done while in recovery phase the actual

fault recovery happens. In the following we discuss few different fault recovery tactics.

Chapter 2. Background and Definitions 20

• Voting. Redundant components performing functionally equivalent tasks send their output

to a voter component which is responsible for selecting the most accurate results. The ar-

chitect needs to make decisions about the number of redundant processes (triple or more),

and to select a voting algorithm: “majority rules”, “preferred component”, “NSelf Checking

Programming” or some other algorithm. This architectural tactic is used to correct faulty

operation of algorithms or failure of a processor (if components are deployed on different pro-

cessors). Redundancy can be physical-redundancy or logical redundancy. Processes could have

the identical redundancy (replication), functional redundancy or analytical redundancy. This

tactic can be implemented along side N-Version Programming so that the software for each

redundant component is developed by different teams, in different programming languages

and is executed on dissimilar platforms or operating systems. However there is a spectrum

for the dissimilarity level, and the less extreme case is to develop a single software component

on dissimilar platforms.

• Active redundancy (hot restart). As the name implies, redundancy is the key factor in this

architectural tactic. There are redundant components, which all respond to events in parallel.

These components are running all in the same state. The system uses the response from one

of these components, and the rest are discarded. In case of a fault in the primary component,

the system uses results from the secondary replica. The downtime of systems using active

redundancy tactic is usually very low around a few milliseconds since the secondary replica is

in the same state as the primary replica and the recovery time is equivalent to the switching

time from primary to secondary replica.

Implementation of this tactic requires realtime synchronization between redundant compo-

nents. This is done to ensure that all messages to any redundant component are sent to all

redundant components and they are all running in the same state.

• Passive redundancy (warm restart/dual redundancy/triple redundancy). In this tactic, one

component (the primary) responds to events and informs the other components (the standbys)

of state updates they must make. In the case of a fault, the system has to ensure that

the backup state is sufficiently fresh before resuming services. Implementation of this tactic

requires periodic synchronization which is usually done by the primary component. This tactic

Chapter 2. Background and Definitions 21

will result in a higher downtime compared to active redundancy but it would be cheaper and

easier to implements.

• Spare. A system implemented using this tactic has a standby spare computing platform

which is configured to replace many different failed components. The downtime of a system

using this tactic would be a few minutes to a few hours as the system must be rebooted

to the appropriate software configuration and have its state initialized when a failure occurs.

Implementation of this tactic requires implementing the checkpoint mechanism to save system

state to a persistent device periodically. Periodic logs of all state changes to a persistent device

allows for the spare to be set to the appropriate state.

• Checkpoint/rollback. This is a tactic which uses a checkpoint to record system state during

normal execution and later uses this log to recover the system to a previously safe state. The

logging is done either periodically or in response to specific events.

Fault prevention. The following are some of the common fault prevention architectural tactics.

• Removal from service. The idea is to remove a component of the system from operation to

prevent anticipated or predicted failures. For example, a process can be restarted to prevent

the memory issues attached to that to make the whole system to go to not-responding state.

The removal from services can be implemented both as manual or automated feature of the

system.

• Transactions. This is a construct commonly used to achieve data integrity. A transaction

is the collection of several sequential steps such that the entire collection can be undone at

once. The transaction tactic is used to prevent any data from being affected if one step

in a process fails. Another usage of transaction tactic is in distributed or parallel system

to prevent collisions among several simultaneous threads accessing the same data. In such

systems transactions are implemented through different committing protocols such as two

phase commits and so on.

• Process monitor. The idea is to monitor the running processes and kill/restart them in case

a fault is detected. In the implementation of this tactic there is a monitoring process which

Chapter 2. Background and Definitions 22

can delete the nonperforming process and create a new instance of it, initialized to some

appropriate state as in the spare tactic.

2.2.2 Performance Tactics

A wide range of performance tactics have been developed during the last decades. The main idea

behind these tactics is to tune either response time, latency or throughput of a system. To deal

with these performance indicators, three different categories of tactics have been developed: resource

demand, resource management, and resource arbitration.

Resource Demand. User or Process requests in a software system usually causes resource de-

mands. Performance of the system would be affected by the frequency of the requests and the

resources consumed by each request. This category of performance tactic is designed to deal with

the aforementioned parameters. In other words, the latency of a system can be decreased by reduc-

ing the resources required for accomplishing a task or by controlling the number of requests and

minimizing it.

• Increase computational efficiency. The most common way of decreasing latency is through

algorithmic improvements to performance sensitive part of a system. This includes selection

of algorithms, data structures and techniques which can lead to more efficient implementation

of functions.

• Reduce computational overhead. Latency can be improved by avoiding overheads among

computational elements of a software such as preprocessing, intermediaries, parameters mar-

shalling and so on. Intermediaries or communication adoptors usually are chosen in favorit of

modifiability while they hinder performance of the system. This is a classic modifiability/per-

formance tradeoff.

• Manage/control event rate by sampling. Reducing the demand is possible through partial

sampling of the requests or incoming events. If there is no control over the arrival of externally

generated events, queued requests can be sampled at a lower frequency, possibly resulting in

the loss of requests.

Chapter 2. Background and Definitions 23

• Bound execution times. Confine execution time used to respond to an event or request. This

tactic is applicable in iterative or data-dependent algorithms, limiting the number of iterations

or a computed threshold is a method for confining the execution times.

• Bound queue sizes. This controls the maximum number of queued requests. It is a fair

sampling mechanism which controls the number of requests and consequently the resources

consumed by the system.

• Asynchronous Communication. Once an operation is performed synchronously, a method is

invoked, a request is sent, the results are returned, and the application resumes. In such design,

one operation can be done at a time, other operations block until completion. Sometimes in

order to decrease the response time or increase the throughput, it is useful to initiate a new

request while another one executes. This requires asynchronous communication and method

invocation, where the control returns to an application before obtaining a response.

Resource Arbitration. Resource management tactics are only applicable when there is a chance

to increase resources or introduce concurrency. These tactics deal with contentions over resources by

adding more resources and controlling the assignment of them. Another way to deal with resource

contention is to schedule the resources such as processors, memories, buffers, networks and so on.

Some common examples are:

There are various scheduling strategies. It is the responsibility of the architect to understand

characteristics of each resource, recognize contextual forces of the system creating the contention

over these resources and then select a proper scheduling strategy.

• First-in/First-out. FIFO is a fair scheduling strategy with treats all requests for resources as

equals and satisfy them in the order they have initiated. The problem about this strategy is

that, a small task can get stuck behind a very large task for long time to generate a response.

Also if some of the requests have higher priority than others this scheduling strategy can be

problematic as it ignores priorities.

• Fixed-priority scheduling. Fixed-priority scheduling as its name implies, considers a fixed

priority for each process and assigns resources to these processes in that priority order. This

Chapter 2. Background and Definitions 24

scheduling strategy results in better service for higher-priority requests while making a low-

priority, but important, task wait for a long time to be serviced.

Variation of priority strategies are: semantic based scheduling. Len Bass defines this strategy

as: “Each stream is assigned a priority statically according to some domain characteristic of

the task that generates it.”

Other strategies include: deadline monotonic. This is a static priority assignment for real-

time deadlines, In this strategy the higher priority is assigned to the streams with shorter

deadlines. rate monotonic This is a static priority assignment for periodic streams. In this

strategy the higher priority is assigned to streams with shorter periods.

• round robin. Round robin is a dynamic scheduling strategy, which performs in a fair way. It

orders the requests first then, at every assignment possibility, it assigns the resource to the

next request in that order.

• earliest deadline first. Earliest deadline first is a dynamic scheduling strategy which assigns

priorities based on the pending requests with the earliest deadline.

2.2.3 Security Tactics

Achieving security as a high level goal is dependent on a set of goals which define security character-

istics in a system in terms of nonrepudiation, confidentiality, integrity, and assurance. To address

these goals, architects choose tactics for resisting attacks, detecting attacks, and recovering from

attacks. In this section we cover some examples of such tactics.

Resisting Attacks

• Authentication. User/Process Authentication is widely used in almost every system deal-

ing with sensitive data or activities. This tactic ensures that a user or remote computer is

actually who it is supposed to be. Username/Passwords, digital certificates, and biometric

identifications are typical techniques to implement authentication.

• Message authentication: is used to provide integrity and authenticity assurances on the mes-

sages communicated between programs. Therefore a short piece of information called a mes-

sage authentication code (often MAC) is used for verifying both user authenticity and integrity

Chapter 2. Background and Definitions 25

of communicated messages. This would enable the integrity assurances to detect accidental

and intentional message changes, while at the same time enabling authenticity assurances

affirm the message’s origin.

• Authorization. User/Process Authorization ensures that an authenticated user or remote

computer/process has the rights to access and modify either data or services. This tactic is

usually implemented through some access control patterns within a system. Access control

can be by user roles/classes or by some specific policies. Therefore there are two major types of

authorization. Role Based Access Control (RBAC) or Policy Based Access Control (PBAC).

• Maintain data confidentiality. Data should be protected from unauthorized access. Confiden-

tiality is usually achieved by applying some form of encryption to data and to communication

links. Encryption provides extra protection to persistently maintain data beyond that avail-

able from authorization. Communication links, on the other hand, typically do not have

authorization controls. Encryption is the only protection for passing data over publicly acces-

sible communication links. The link can be implemented by a virtual private network (VPN)

or by a Secure Sockets Layer (SSL) for a Web-based link. Encryption can be symmetric (both

parties use the same key) or asymmetric (public and private keys).

• Maintain integrity. Data must be delivered as it is intended. This tactic can be implemented

by encoding redundant information in data, such as checksums or hash results.

• Limit exposure. An attack mainly depends on exploiting a single weakness or breach to attack

all data and services on a host. The architect can design the allocation of services to hosts so

that limited services are available on each host.

• Limit access. This tactic limits the ways a system can be accessed. For example Firewalls

restrict access through only a set of predefined ports or sources, therefore requests from

unknown sources may be a form of an attack. The negative aspect of this tactic is that, It is

not always possible to limit access, especially for applications which are deployed on a cloud

infrastructure or are public on the web.

• Secure Session. allows an application to only require the users to authenticate once and con-

firm that the user requesting a given action is the user who provided the original credentials.

Chapter 2. Background and Definitions 26

This architectural decision will ensure that the authenticated users have a robust and cryp-

tographically secure association with their session.

Detecting Attacks Attack detection tactics are mainly applied to the computer network, com-

munication infrastructure of a system. The intrusion detection systems are the typical ways to

realize this tactic. The main idea is that the behaviour of the system or network traffic is compared

to patterns of normal or abnormal behaviours stored in a database. This database contains large

number of historic patterns of known attacks or patterns of the normal behaviour.

• Audit Trail: is the most commonly used approach for detecting the attacker. Implementation

of this tactic requires storing information about each transaction done in the system plus the

identification information of that. Such audit information can be used to trace the actions

of an attacker, and support system recovery. Audit trails are often attack targets themselves

and therefore should be maintained in a trusted fashion.

Recovering from Attacks Architectural tactics in this category are basically either about restor-

ing the damage or identifying an attacker (for either preventive or punitive purposes). Restoring

the damage is achieved through many of the well known availability tactics. This could be imple-

mented through introducing redundancy at multiple part of the system. Diversity is also a typical

architectural tactic which is usually used along with availability tactics to increase system security.

In fact, the redundant elements of a system are developed by different technology and deployed on

dissimilar platforms, so that attackers can not use the same approach to bring down the replicated

services used to replace the primary service under the attack.

Chapter 2. Background and Definitions 27

2.3 Tactics in Action

In a preliminary study, we reviewed the design specifications for several high-assurance software

systems including the Airbus A320/330/340 family, Boeing 777, Boeing 747 [11], NASA robots

[65, 95, 113, 115, 116] and over twenty high-performance open-source software systems in order to

determine how architectural tactics were used in actual practice [88, 89]. The study included the 16

commonly utilized tactics shown in Table 2.1, and confirmed claims by Bass [81] and Hanmer [64]

that architectural tactics are commonly utilized across high-performance projects. For example, we

found tactics such as heartbeat and resource pooling across the vast majority of the studied (high-

performance) systems, while others, such as active replication, were found in a few of the more

specialized systems.

Table 2.1: An Analysis of Tactics Across Several Performance-centric and/or Safety-critical Sys-
tems

Fault tolerant, performance-centric software systems from SourceForge H
ea

rt
b

ea
t

Sc
he

du
li
ng

A
ut

he
nt

ic
at

io
n

A
ud

it
T

ra
il

R
es

ou
rc

e
P

oo
l.

A
ct

iv
e

R
ep

l.

R
ec

ov
er

y

P
as

si
ve

R
ep

l.

A
ut

ho
ri

za
ti

on

P
er

m
is

s.
C

he
ck

C
R

C

E
nc

ry
pt

io
n

P
ro

ce
ss

M
on

it
or

R
em

.
Se

rv
ic

e

F
au

lt
D

et
ec

ti
on

V
ot

in
g

1 RIFE: a Web application engine with support for content management. • • • • • •
2 Fault-Tolerant Corba: (OMG Document ptc/2000-04-04) • • • • • • • • • • •
3 CARMEN: Robot Control Software, with navigation capabilities • • •
4 Rossume: an open-source robot simulator for control and navigation. • • • • •
5 jworkosgi: implementation of the JMX and JMX Remote API into OSGI

bundles.
• • • • • • • • •

6 SmartFrog: Distributed Application Development Framework • • • • • • • • •
7 CarDamom: Real-time, distributed and fault-tolerant middleware • • • • • • • • • • •
8 ACLAnalyser: Tool suit to validate, verify and debug Multi Agent Systems • • • • • •
9 Jfolder: Web-based application development and management tool. • • • •
10 Enhydra shark: XPDL and BPMN Workflow Server • • • • • • •
11 Chat3: An instant messenger. • • •
12 ACE+TAO+CIAO: Framework for high-performance, distributed, real-time

systems.
• • • • • • • • •

13 Google Chromium OS: • • • • • • • • •
14 x4technology tools: Framework Enterprise application software. • • • • •
15 OpenAccountingJ: web-based Accounting/ERP system. • • •
16 Airbus Family: Flight Control System*. • • • • • • • • •
17 Boeing 777: Primary Flight Control (PFC)*. • • • • • • • •
18 NASA CEV: Crew Exploration Vehicle using guidance-navigation* & con-

trol model.
• • • • • • • • •

19 Hadoop Framework: a development framework to support cloud computing. • • • • • • • • • •
20 OfBiz: an enterprise automation and E-Commerce software. • • • • • • •

Legend: * = Tactics identified from architectural documents. In all other cases, tactics were observed directly in the code.

2.4 Architecture Erosion

In this dissertation our concern focuses on the use and preservation of architectural tactics. We

therefore provide an overview for the well known problem of software architecture erosion which

Chapter 2. Background and Definitions 28

alternatively sometimes called design erosion or design decay. This phenomena directly impacts

architectural qualities and the intent that the architecture was designed for.

First we present a few definitions for this phenomena and its contributing causes, and we then list

existing attempts to deal with this problem.

2.4.1 Definition

Perry and Wolf [100] define architectural erosion as ‘violations of the architecture’ and architectural

drift as an ‘insensitivity to the architecture’ which occurs when the underlying rules are not clear

to the developers and maintainers. About this issue, David Parnas [99] argues that,

“Programs, like people, get old. We can’t prevent aging, but we can understand its

causes, take steps to limit its effects, temporarily reverse some of the damage it has

caused, and prepare for the day when the software is no longer viable. ... (We must)

lose our preoccupation with the first release and focus on the long term health of our

products.”-Parnas(1992)

Parnas identifies the roots of software aging in premature maintenance engineering work and residual

bugs over years of software evolution. Huang et al. [69] and Grottke et al. [39] consider software

erosion as an issue which helps development of software aging. In the following section, we take a

detailed look at the software erosion problem specifically from an architecture perspective.

2.4.2 Causes of Erosion

Real-world industrial studies have been conducted to investigate the causes of design erosion. One

of these is the work conducted by Bengtsson et.al. [127] which has identified that architecture

erosion is the result of problems associated with the way software is commonly developed. These

problems are:

(i)Traceability of design decisions. The current notations used to create software and all of its by-

products such as different artifacts, lack the expressiveness needed to describe concepts used during

Chapter 2. Background and Definitions 29

design. This has resulted in a situation in which it is hard for developers to track design decisions

and reconstructed them from the system.

(ii)Increasing maintenance cost. As software evolves, it becomes more complex, and this usually

results in high maintenance cost. Refactoring is not an easy task and may cause developers to make

suboptimal design decisions in order to minimize the cost. This could happen for various reasons,

often because the developers do not understand the architecture or because a more optimal and

perfect decision would be too difficult and expensive to implement.

(iii)Accumulation of design decisions. Design decisions are hierarchical in nature. A high-level

architectural decision is followed by many low-level decisions [89], and design decisions are accumu-

lated and interact in a way such that revision of one would force reconsideration of all of the others.

A consequence of this problem is that if programmers decide to refactor the design for any reason,

they must work with a system design which is not going to be optimal.

(iv) Iterative methods. The goal of architecture design is to create a plan to move from requirements

to implementation in a way that future change requests can be easily covered. Unfortunately, this

conflicts with the iterative nature of many software development methods, especially in the agile

family. These methodologies typically incorporate new requirements that may have an architectural

impact during development, whereas a careful and optimized design requires knowledge about these

requirements in advance.

(v)Lack of continuous refactoring. If refactoring is not ongoing over the life-cycle, then small design

or implementation issues, architectural smells or decision inconsistencies will be accumulated, and

consequently the software qualities will degrade.

Although erosion has been a commonly accepted problem of software development, there are only a

few practices, techniques and methods particularly designed to mitigate this problem. The existing

works in this area can be divided into two categories, Prevention: a strategy for using tools or

practices which accept paying an upfront cost to prohibit the erosion problem, or Repair : postponing

this concern until it is the right time to do a big refactoring to reconstruct the eroded or drifted

design.[127][91]

Chapter 2. Background and Definitions 30

2.4.3 Strategies to Prevent Erosion

The first step in preventing design erosion is having a more mature software development process.

From a Capability Maturity Model Integration (CMMI) perspective, this would address the set of

concerns identified by Bengtsson et.al. [127]. The most important factor in such a development

process which can prevent design erosion is: proper documentation of architecture design, so that

it is accessible to developers and gives them up-to-date knowledge about the architecture of the

system. Therefore the chances that they break an architectural principle or strategic decision during

code refactoring are low.

Parnas [99] emphasizes insufficient architecture design documentation, miscommunicated design

principles and poor developer training as the key roots of erosion. Many of these factors can be

addressed by the current artifacts, notations and practices developed in the community. Mature

development processes emphasize efficient and sufficient documentation of design knowledge from

requirements to design and implementation. Len Bass [81] prescribes a detailed documentation

of requirements, especially qualities in form of a precise description template which is ready for

rigorous analysis, as well as documenting the design architecture through different architectural

views suitable for different stakeholders.

Similarly, Philippe Kruchten suggests the 4+1 View Model [77], Grady Booch [18] prescribes docu-

mentation of the architecture through multiple views and emphasizes that a single view cannot be

suitable for presenting and communicating the architecture.

Beside these process related strategies, the linkage between architecture and implementation can

provide a basis for monitoring architectural compliance at any time. Murphy et al.,[94] developed the

reflexion models technique which compares a reconstructed model of the implemented architecture

to a hypothetical model of the design intended by the architect. These two models are mapped by

an analyst to find the deviation between intended and implemented architecture. This technique

does not provide any tool support for mapping and deviation analysis. This technique is later

extended in [108], the assumption is that the intended architecture exists, then repeatedly the

analysts refine the implemented architecture as development progresses, and compare it against the

intended architecture.

Chapter 2. Background and Definitions 31

The Archium tool [25] checks runtime architectural properties. It is mainly developed to explicitly

model architectural design decisions and to ensure that the implementation is aligned and consistent

with the decisions. This tool considers architecture as a collection of design decisions. The idea

behind this work is that capturing design decisions would prohibit design knowledge vaporization

and contribute to the prevention of design erosion.

Although all of these guidelines play a role in preventing erosion, unfortunately their effect in ad-

dressing this problem has been identified as minimal. Therefore, some researchers and practitioners

have adopted other strategies for dealing with architecture erosion issue.

2.4.4 Strategies to Repair Erosion

This category of approaches, is applicable once erosion has already occurred. These approaches

are typically re-engineering techniques which first try to identify erosion, then reverse-engineer the

system and recover the architecture from source code, and finally repair the recovered architecture

to align it with the intended architecture. The existing contributions in this category can be divided

into the main areas of software architecture reconstruction and refactoring. As mentioned earlier,

the repair strategy would not enforce a constant cost during the software development process but

instead, once dealing with erosion became necessary, it would impose a sudden cost of repairing the

degraded software.

• Architecture Reconstruction Techniques

Over the last decade, different tools and techniques have been proposed for reconstructing

architecture from source code or runtime artifacts. This is mainly conducted to understand

the program structure or architecture so that developers can modify the eroded system and

restore it to the intended architecture, or renovate the architecture by changing it to a new

optimal design.

The Architecture Reconstruction Method (ARM) [63] is one of the first semi-automatic meth-

ods for architecture recovery from source code. This method is designed based on the pattern

matching idea, to identify a set of patterns provided by the user in a reverse-engineered model

of the implemented architecture. This method requires human involvement in most steps,

such as specifying the patterns that might be used in the system architecture, or validating

Chapter 2. Background and Definitions 32

patterns instances retrieved from searching the reverse-engineered models. Correctly detected

and verified patterns, are then used to reconstruct the architecture. The actual reconstruct

architecture is visualized using the Rigi visualization tool.

Reflexion models by Murphy et.al. [94] is used to map a hypothetical model of the intended

architecture to the results from a static analysis of the source code. Lung et.al. [83] uses

clustering techniques to refine the reflexion models and create a high level abstraction of the

system structure/architecture. Classes and packages are the element of clustering techniques.

Lung uses filtering to remove ad hoc elements and noises out of the abstracted models.

Mancoridis et al., [84] has created a tool called Bunch which uses dependencies between

classes and generates a call graph which is later used to cluster classes and create a high level

structural abstraction of the system.

Sartipi [111] has developed a software architecture recovery method based on pattern match-

ing. This technique uses a pattern matching language called Architecture Query Language.

The user needs to hypothesize the architectural patterns used in the intended architecture and

describe them using the AQL. Later this description is used for searching the hypothesised

pattern in the abstract graph constructed from source code.

Instead of focusing on the structure of the software, Jansen et al. [73] emphasize recovering

architectural design decisions. Their approach which is called Architectural Design Decision

Recovery Approach (ADDRA) is based on differences in architecture design across different

versions of the system. First, detailed designs from selected versions of the implementation

are recovered to generate architectural views for each version. Then the delta, which indicates

the differences between these views are inspected to identify the architectural design decisions.

This approach is slightly different from other approaches as it is focusing on decisions rather

structure.

• Architecture Refactoring

Architecture refactoring is widely used to reconcile implemented architecture with intended

architecture. Martin Fowler has presented a set of refactoring techniques to replace and repair

violation of a good design.[5] Architecture refactoring systematically restructures the software

implementation code in a way that the eroded implementation stays aligned with the existing

design rules, alternatively the refactoring might enforce new design rules with changing the

Chapter 2. Background and Definitions 33

dependencies among packages, moving functions or alerting the partial structure of the system.

Architecture refactoring is often is done to improve design fragments of software architectures

which can have a negative impact on system maintainability. For example, requirements

change and this might results in the adoption of a design solution which is inappropriate for

that context, or the new solution might result in undesirable behaviour. In such situation,

refactoring the architecture is necessary to remove the issues known as architectural smells

and prevent their accumulation which may end in design erosion. Many researchers also have

conducted studies on identification and categorization of various architectural smells, [53][54]

architectural antipatterns [22], and refactoring of a design [47][5]. A number of different

tools and IDEs have been developed to support code refactoring; unfortunately, none of them

emphasize the architecture-level concerns. Therefore it remains the developers’ responsibility

to take care of these issues.

2.5 Summary

Our focus in this dissertation is on architectural tactics. Like other architectural concerns they

have a tendency to erode over time. Given their importance for realizing critical system qualities

it is important to preserve them. This chapter provided a summary on several different types of

architectural tactic. Furthermore it discussed the problem of architectural erosion and articulated

the current notions used to address this important problem.

“The biggest difference between time and space is that you can’t reuse time;”

Merrick Furst

Chapter 3

Traceability Fundamentals

This chapter provides a quick overview of traceability fundamentals and introduces the essential

traceability terminology and concepts used in this dissertation.

3.0.1 Definition of Software Traceability

The COEST [33] defines Requirements Traceability as,

“the ability to interrelate any uniquely identifiable software engineering artifact to any

other, maintain required links over time, and use the resulting network to answer ques-

tions of both the software product and its development process”.

The source artifact is the artifact from which a trace originates, and the target artifact is the artifact

at the destination of a trace. Software traceability is the ability to relate the concepts and data

within a software artifact (source artifact) to another software artifact (target artifact). This can

be done by explicitly connecting the artifacts together (e.g establishing a trace links) or implicitly

providing this connection (e.g. tagging the artifacts).

The IEEE Standard Glossary of Software Engineering Terminology (IEEE Std 610.12-1990) [4]

provides a more general definition of traceability:

35

Chapter 3. Traceability Fundamental 36

“the degree to which a relationship can be established between two or more products of

the development process, especially products having a predecessor-successor or master-

subordinate relationship to one another”.

Explicit traceability results in the creation of trace links which is a specified association between

the source artifact and the target artifact. A trace link can have tag indicating the semantics of the

link, and by default the direction of a trace link is from source artifact to target artifact, however

it is possible to have inverse or bi-directional trace link.

Software traceability has been identified by many organizations such as the Federal Drug Adminis-

tration (FDA) [3] , Federal Aviation Administration(FAA) [6] and Department of Defence (DOD)

[49] as a mandatory software engineering practice for safety critical software projects in order to ac-

complish compliance verification, impact analysis, regression test selection, safety-case construction,

requirements allocation and coverage analysis.

3.0.2 Traceability information model (TIM)

The traceability information model (TIM) is a graph style model which defines the trace artifact

types, the trace link types and the permissible trace relationships on a project, in order to address

anticipated traceability-related queries and traceability-enabled activities and tasks [58].

Best practices for software traceability dictate that each particular project needs a TIM expressing

what should be traced in the project. A TIM can capture additional information such as semantics

of trace links, cardinality and link direction.

Creating a TIM can help to ensure that traceability is established strategically for a project. Ramesh

[104] has developed a set of well known but generic traceability information models through sys-

tematic analysis of the traceability problems. (more details on [104])

3.0.3 Tracing and Related Concepts

The operation of establishing trace links between different artifacts or using those trace links is

called tracing. Tracing like any other computer aided activity, can occur in three different forms:

manual, automated and semi-automated [57].

Chapter 3. Traceability Fundamental 37

In manual tracing, a human establishes and uses the traceability links. Although there should be

some basic tool support such as drag and drop features to decrease most of tracing burden.

Conversely in automated tracing, the trace links are established via automated techniques, methods

and tools. Finally, in semi-automated tracing the trace links are established via a combination of

automated techniques, methods and tools and human activities.

In all of these cases, the trace links can be established either through traceability creation by

associating two (or more) artifacts, trace capture by creating the trace links concurrently with the

creation of the artifacts, or trace reconstruction by establishment of trace links after the generation

or manipulation of associated artifacts.

Forward traceability is tracing in the same order as the artifacts appear in a developmental path,

which is not necessarily a chronological path, such as forward from quality requirements through

design decisions to source code.

Backward traceability is tracing in the antecedent steps in a developmental path, again not nec-

essarily a chronological path, such as backward from code through design decisions to quality

requirements.

Trace granularity indicates the level of detail at which a trace is recorded and performed. The

granularity of a trace is defined by the granularity of the source artifact and the target artifact. For

example, at a coarse-granularity, an architectural decision is traced to a subsystem or component,

while the same decision at fine granularity could be traced into two different methods in a Java

class.

3.0.4 Automated Traceability

Several IR methods have been developed to automate the creation and recovery of the trace links.

These approaches work based on the similarity between the words in the text contained software

artefacts. A trace link is established between two artifacts if they have high textual similarity.

Typically utilizing IR methods contains the following steps:

1. pre-processing of the documents to extract the vector of words.

Chapter 3. Traceability Fundamental 38

2. corpus indexing with an IR method.

3. ranking the candidate links.

There are several strategies to pre-process a textual document. For example text normalization can

be used to remove white spaces and non-textual characters from the text. stop word removal can

be used to remove stop words or common words (i.e., articles, adverbs, etc) that are not useful to

capture the semantics of each artefact. Furthermore, many times Stemming is used for reducing

inflected or derived words to their stem or root form.

After preprocessing the documents several different IR methods can be used to create the trace links.

Based on a survey conducted on the available research papers indicated that probabilistic models

[10, 36], VSM [16], and LSI [101] are the three most frequently used IR methods for traceability

recovery.

Jane Cleland-Huang et.al [36] have used the probabilistic model based on conditioned probability

to recover links between requirements and UML diagrams, while others have utilized similar prob-

abilistic models to recover the trace links between requirements and source code [9, 10], and links

among requirements and regulatory codes. [31].

Several researchers have used the VSM to recover traceability links among requirements [66], re-

quirements and source code [9], [10], [85], test cases and source code [44], and defect reports and

source code [133].

Despite the wide usage of VSM, there is a major criticism on VSM that it does not take into account

relations between terms [45]. For instance, having a term like “programmer” in one document and

another term like “developer” in another document does not contribute to the similarity measure

between these two documents. Therefore LSI [45] was developed to overcome this problem by taking

into account the synonymy problems, which occur with the VSM model.

LSI addresses this problem by explicitly taking into account the dependencies between terms and

documents. It assumes the existence of a “latent structure” in word usage and uses statistical

techniques to estimate this latent structure. For example, both “programmer” and “developer” are

likely to co-occur in different documents with related terms, such as “codes”, “programs”, etc.

Chapter 3. Traceability Fundamental 39

3.0.5 Event-Based Traceability

Event-based traceability (EBT) developed by Cleland-Huang et.al.[29] provides an infrastructure for

using trace links to answer change impact analysis queries. It also supports long-term evolutionary

change so that the traceability scheme can be maintained.

In Event-Based Traceability (EBT), source artifacts can be considered as publishers of change

events and target artifacts as subscribers. When a source artifact goes through some changes,

all subscribers are notified of the change. The event-notification architecture enables the EBT

traceability scheme to handle change robustly.

3.1 Tracing Architectural Concerns

Non-functional requirements, describing quality concerns such as performance, reliability, availabil-

ity, and security, often exhibit complex interdependencies and trade-offs [80][43] and have broad-

reaching impacts across the architectural design and implementation of a software intensive system.

Non-functional requirements are often realized in the design and implementation code as architec-

tural tactics.

The cross cutting nature of NFRs, creates significant challenges for tracing them, resulting in the

proliferation of traceability links. As a result, tracing NFRs can be expensive, and unfortunately

many organizations do not even attempt to trace them; however this means that change requests

during software maintenance are often implemented with very little understanding of how system

qualities are affected by the change. This section summarizes existing practices and techniques

developed for tracing NFRs.

3.1.1 Software Architecture Practices that capture NFR traces

In practice, many architectural assessment and project scoping techniques implicitly trace NFRs

into architectural designs [62][103][76][75]. Implicitly means that the relationships between NFRs

and design decisions are created or embedded in the artifacts without establishing a traceability

Chapter 3. Traceability Fundamental 40

matrix. The benefits of building implicit traceability on top of such methods is that project stake-

holders realize immediate benefits from their traceability efforts. The disadvantage is that NFR

traceability links are often embedded in documentation that is specific to a given activity, and it is

therefore difficult to extract and use those links to support other unrelated activities. For example,

NFR trace links which are created and documented within an architectural analysis document, will

likely be available for future architectural analysis activities, but will not be readily available for pro-

grammers who may need to understand how a low level code modification impacts an architectural

decision. This section, provides an overview of four software engineering methods and activities that

incorporate the creation and utilization of NFR traceability links. These methods and practices

are the Architectural Tradeoff Analysis Method (ATAM), Architectural Documentation, Enterprise

Architectural Frameworks, and management of architectural knowledge.

• Architecture Tradeoff Analysis Method (ATAM)

The Architecture Tradeoff Analysis Method (ATAM) is a qualitative approach to risk and trade-off

analysis of an architecture with respect to a set of clearly articulated quality scenarios [81][76][75].

The evaluation process starts with a presentation of the business drivers, including a high level

description of quality attributes such as security, safety, or reliability. This is followed by a short

presentation of candidate architectures. Quality scenarios are then generated and prioritized, and

architectural solutions addressing those qualities are identified and documented. As a result of

these steps, the prioritized NFRs are mapped onto their corresponding architectural decision and

the design fragment in which the architectural solution is implemented. and the NFRs are then

evaluated to determine how well they address the specified quality attributes.

ATAM implicitly documents traceability relationships among quality scenarios and the architec-

tural elements in which they are realized. These mappings create a de facto traceability matrix,

documenting relationships between quality concerns, tactical architectural decisions, and lower level

design solutions. Unfortunately, as previously noted, this information is not easily accessible for any

purpose other than architectural analysis. However, Mirakhorli et al [90] have partially addressed

this problem by developing a utility for extracting traceability information from ATAM documents

and using it to construct a more traditional traceability matrix.

• Architecture Documentation Methods

Chapter 3. Traceability Fundamental 41

Architectural documentation approaches such as Views-and-Beyond [81], Siemens S4V [68], and

RUP 4+1 [77] provide guidelines and a template for documenting architectural solutions across

multiple views. Each view depicts a coherent set of architectural elements from a specific perspective

such as hardware resources, runtime behavior, or data usage, and is presented visually with a

supporting catalog describing the behavior and property of each element, its interfaces, and the

qualities associated with each interface. Architectural decisions and rationales associated with each

view are also documented.

The catalog of elements implicitly captures traceability relationships among architectural elements

and the quality concerns exposed by a component or its interfaces.

• Enterprise Architectural Frameworks

An enterprise architectural framework provides a mechanism for describing and communicating

architectural concerns, for comparing different architectural solutions, and for helping to ensure

the integrity and completeness of a solution. Several architectural frameworks, including the

Command, Control, Computers, Communication, Intelligence, Surveillance, and Reconnaissance

(C4ISR) framework [24], have directly addressed issues of tracing quality concerns. C4ISR was de-

veloped by the U.S. Department of Defense (DoD) to improve the operational capabilities of warrior

systems across defense agencies. The C4ISR framework encompasses three different architectural

views. The Operational View (OV) artifacts define operational elements, activities and tasks, as well

as the information exchange needed to accomplish an operation. The System View (SV) artifacts

describe the physical systems, software services and interconnections needed to support operations.

Finally the Technical View (TV) defines technical standards, implementation conventions, rules and

criteria governing interaction and interdependences of system parts. C4ISR utilizes traceability in

several different ways. For example the System Interface Description is used to map supporting

security and communication requirements to system interfaces, while the Operational Information

Exchange Matrix (OV-3) is used to describe operational node connectivity characteristics such as

Throughput, Security, Timeliness (e.g., 10/minute), and Required Interoperability Level. In these

cases, the traceability matrices are used to map qualities to software elements; however the traces

are relatively high level and do not provide detailed mappings from quality concerns to subsystems.

• Knowledge Management Tools

Chapter 3. Traceability Fundamental 42

Software architectural knowledge management tools provide support for documenting architec-

turally significant requirements, the architectural decisions that were made to satisfy those re-

quirements, and the rationale behind those decisions [12]. Documenting architectural knowledge

helps developers and architects maintain existing systems and can also be used to improve the archi-

tectural design of future systems. Tyree and Akerman [123] proposed a taxonomy of items needed to

effectively document design rationales including issues, decisions, assumptions, arguments, implica-

tions, related decisions, related requirements, related artifacts, related principles, and notes. Other

researchers, such as Kruchten [79] and Burge [23], have proposed similar ontology to document

architectural decisions. All of these works assume the underlying use of traceability links to relate

architectural decisions to external artifacts such as requirements, design documents, and architec-

tural assessments. Several tools have been developed to capture and re-use architectural knowledge.

Although the primary focus of these tools is on architectural knowledge, the organization of that

knowledge relies upon user-created traceability links.

Most architectural management tools, such as Process-based Architecture Knowledge Manage-

ment Environment (PAKME) [13], Archium [72] and Architecture Design Decision Support System

(ADDSS)[25] , help architects to create traceability links between knowledge related items, such

as requirements and design decisions, and external documents. However, the tools we evaluated

support only relatively coarse-grained traceability between documents and do not support finer

grained traceability between NFRs and specific design or code elements in which architectural deci-

sions are realized. Furthermore, the tools have not yet been integrated with architectural modeling

tools [117], which further limits their ability to support NFR traceability to critical elements of the

architecture.

3.1.2 Custom Processes and Techniques for Tracing NFRs

In addition to software architecture practices which utilize NFR traceability to support their prime

objectives, there are several other techniques, some of which are designed specifically for creating

and maintaining NFR traces. In this section we describe four techniques including use of UML

Profiles, Goal-Centric Traceability, Tracing through Design Patterns, and Decision-Centric Trace-

ability. The benefit of these approaches is that they provide higher degrees of automation for using

Chapter 3. Traceability Fundamental 43

and understanding traceability links, and in some cases are designed specifically with maintainabil-

ity in mind; however unlike the methods described in the previous section, these approaches are

constrained to either specific modeling environments or development practices, and do not neces-

sarily return immediate benefits to the trace creators. This makes their consistent, project-wide use

unlikely.

• Techniques that Embed Traceability Links into UML The Unified Modeling Language

(UML) is used to visualize, specify, and construct elements of an object-oriented system. It mod-

els boundaries and interactions between the system and its users, the communication between

objects, the state of those objects, the static structure of the system, and the system’s physical

architecture[109]. Standard UML can be customized for a particular domain through the use of

UML Profiles, which allow the semantics of standard UML elements to be refined via stereotypes,

tags, and the object constraint language (OCL) [130]. For example, a «trace» stereotype could be

created and associated with a dependency link to depict a traceability relationship.

Several researchers have developed UML profiles for supporting traceability of NFRs. For example,

Salazar-Zrate [110] modeled NFRs and related them to functional elements through use of a «NFR

Behaviour» stereotype, and then described behavioral attributes using OCL.

The Architecture Rationale and Element Linkage (AREL)[118] approach provides two new UML

profiles for modeling Architectural Entities (AE) and Architectural Rationales (AR). These profiles,

and an associated tool, allow architects to visualize AEs and their related ARs. AEs can represent

functional requirements, non-functional requirements, components, processors, or text documents;

while ARs describe quantitative rationales such as the costs, benefits, and risks associated with

architectural decisions, and the qualitative rationales which document the issues, arguments, al-

ternatives, and trade-offs associated with a design decision. An AREL model is represented as an

acyclic graph, in which causal dependencies between design rationales and design objects can be

traversed in order to extract traceability links.

In related work, Zhu et al [135] have proposed two UML profiles for modeling architectural decisions

and NFRs. One of the limitations of embedding traceability links into UML diagrams is the fact that

trace links are limited to individual models. Cysneiro et al. addressed this limitation by developing

a Language Extended Lexicon (LEL) that facilitated the tracing of goals across multiple UML

Chapter 3. Traceability Fundamental 44

diagrams. Their approach embedded controlled keywords from the LEL into goals and elements of

the UML models [42].

UML approaches enable traceability relationships to be depicted within the design model, but suffer

from scalability problems which make even medium-sized models difficult to create and understand.

Furthermore, many UML profile approaches are limited to tracing structural elements and exclude

traces to a broader set of models such as deployment or implementation models. Both of these

issues are major short-comings, as both scalability and heterogeneity were identified through our

study of safety and performance-critical systems as fundamental requirements for tracing NFRs.

Despite these issues, the idea of incorporating traceability into UML models is quite appealing,

simply because UML models are a natural part of many software development projects. However,

it should be noted that such approaches focus on the notation of the trace links and provide very

limited guidance for how and where to establish useful and effective links for tracing NFRs.

• Aspect Oriented Approach:

Aspect Oriented Requirements Engineering (AORE) approaches focus on identifying cross-cutting

concerns, many of which are architectural in nature [61, 106]. As a precursor to Aspect Oriented

Programming (AOP), AORE’s primary purpose is to identify candidate cross-cutting concerns,

some of which will later be recognized as aspects and implemented as such in the final code. The

concepts of AORE provide an enticing framework for tracing NFRs, as many early aspects do in

fact represent specific quality requirements. For this reason, several researchers have explored ideas

of using early aspects to trace NFRs [96, 105, 120]

The first approach, referred to as “Aspect-oriented development model with traceability mecha-

nisms” [96] facilitates the separation, composition and traceability of cross-cutting concerns (both

functional and nonfunctional). This approach includes a dynamic view in which cross-cutting con-

cerns are traced to use-cases and scenarios, and a static view in which they are traced to conceptual

classes. In related work, Tekinerdogan [120] developed a concerns traceability meta-model (CTM)

for tracing concerns throughout the life cycle. The meta-model provides support for bidirectional

traceability between concerns in the requirements and design, and for traces between concerns and

other artifacts.

Chapter 3. Traceability Fundamental 45

• Goal Centric Traceability: Goal-Centric Traceability (GCT) provides traceability support

for managing and maintaining NFRs and their related quality concerns over the long-term life of

a software intensive system [34]. As its name suggests, GCT is a goal-oriented approach which

assumes that quality concerns are modeled in a goal hierarchy such as the NFR framework [80], i*

[134], Tropos [26], or an ATAM utility tree [81]. GCT also assumes that during the initial analysis,

design, and implementation of the software system, a number of different models are developed to

evaluate the quality of the design. These might include ATAM scenarios for evaluating how well

a design satisfies critical use cases, a Software Performance Execution (SPE) graph to evaluate

response time goals, a system execution graph to measure throughput and latency [128], an attack

graph [118] to evaluate security attributes, usability metrics to evaluate a graphical user interface,

or an executable test-case to evaluate functionality that is needed to satisfy quality goal. GCT

refers to these kinds of models as Quality Assessment Models (QAMs) [34]. The GCT framework,

includes: (i) a goal model that captures stakeholders’ quality concerns and their trade-offs, (ii) a

set of QAMs that have been designed to evaluate the extent to which the architecture satisfies the

stated quality goals, (iii) a traceability infrastructure that is used to link QAMs to goals, (iv) GCT

algorithms that manage the automated impact analysis and propagation of change across the goal

hierarchy, and finally (v) an impact report which describes the potential impact of a change on the

overall quality goals.

GCT supports two specific traceability tasks. The first involves identifying the initial impact of a

change upon the GCT model. The second traceability task is triggered once an initial impact point

is discovered. This second task is internal to the GCT model, and utilizes the internal structure of

the goal model, the executable traceability links between specific goals and QAMs, and the GCT

propagation algorithms. In GCT, an executable trace is defined as a trace which carries sufficient

semantics to be processed automatically, so that the QAM can be parameterized and re-executed,

and output values are returned to the GCT model for evaluation.

The primary advantage of GCT is that it provides support for maintaining quality concerns over the

long-term by making use of QAMs that were already created during the initial development phase;

however GCT is only viable if tool support is available to automate the process, and if QAMs, such

as simulation models, are created as an integral component of the development process. GCT is

Chapter 3. Traceability Fundamental 46

therefore best deployed for only a critical set of goals, for which executable QAMs are available,

and as such cannot be seen as a holistic solution for tracing all NFRs.

• Design Pattern-Based Approaches: A design pattern represents a reusable solution to a

commonly occurring problem in software design [51]. In addition to solving a specific functional

problem, design patterns often address a specific class of quality concerns such as maintainability,

flexibility, or portability. Gross and Yu [59] and Cleland-Huang [35] proposed tracing NFRs to

software designs through the use of existing design patterns as intermediaries. This technique

supports traceability for any NFR that can be implemented as a design pattern.

3.2 Summary

This chapter described the fundamental traceability concepts used in this dissertation. Furthermore

it summarized the key approaches previously used for tracing quality concerns. The work described

in the following chapters relies on these concepts and extends the existing work already published

in the area of software architecture traceability.

Part II

Creating Architecture Traceability

47

“I remember my mother’s prayers and they have always followed me. They have clung to me all my

life.”

Abraham Lincoln

Chapter 4

Decision Centric Traceability

The architecture of a system and its qualities can be maintained with the support of traceabil-

ity methods and a related change-impact analysis infrastructure. This infrastructure could help

the developers to fully understand the impact of design or implementation changes they make on

architecturally significant requirements and quality concerns. Unfortunately, the current state of

software traceability methods does not provide this level of support. Existing traceability meta-

models, solutions or techniques do not provide specific guidelines for how traceability links should

be established between quality concerns and software design and implementation artifacts. Further-

more, current methods tend to result in a proliferation of traceability links and create a situation

in which traceability is difficult and costly to maintain, and in which links degenerate into an

inaccurate and non-useful state.

Contribution: In this chapter, the important challenges of architectural traceability have b iden-

tified and summarized through an extensive study of architectural decisions in highly dependable

and complex avionic systems. The conducted study involved reviewing the specifications of several

high-assurance software systems including the Airbus A320/330/340 family, Boeing 777, Boeing

7J7 [11, 113] , NASA robots [70, 95], NASA Crew Exploration Vehicles [65, 115, 116] and also im-

plemented code of performance-centric systems such as Google Chromium OS, Hadoop Framework

etc. Furthermore these traceability challenges have drew the novel concept of Tactic Traceability

Patterns (tTPs). tTPs reduce the cost and effort of traceability through providing a set of re-usable

traceability links.

49

Chapter 4. Traceability Challenges of Architectural Decisions 50

4.1 Introduction

The proliferation of traceability links is one of the main issue of using traceability practices. This

issue is visible through series of Ramesh’s [104] traceability meta-models that were produced from a

study of traceability practices in industry. The Traceability Information Model (TIM) depicted in

Figure 4.1, is derived from these meta-models and shows significant redundancy of traceability paths

for establishing relationships between issues, conflicts, alternative options, arguments, rationales,

assumptions, requirements, and design decisions.

Figure 4.1: Components from Ramesh’s Metamodel - Rationale SubModel [104]

For example decisions can be traced directly to requirements, or they can be traced indirectly

through either rationales or through issues and conflicts. There is a lack of any guidance to inform

architects as to the best way to establish traceability. Moreover, various studies have significantly

emphasized the need to simplify the creation and use of traceability [8].

Proliferation of traceability links is exacerbated when tracing architectural concerns which describe

quality attributes such as performance, security, reliability, and maintainability. Such concerns

Chapter 4. Traceability Challenges of Architectural Decisions 51

often have a cross cutting nature, and therefore exhibit a broad reaching impact across the system.

These concerns are often realized through components and behaviors that are visible in a variety of

architectural and implementation views at very different abstraction levels. Here the main criticism

to standard traceability meta-models arises as they do not begin to address this degree of complexity

and cannot tame it.

Before prescribing specific traceability guidelines for tracing quality concerns, it is necessary to

understand the issues that must drive any effective architecture traceability solution. Therefore, we

first report the results of an extensive study of architectural decisions that we conducted in highly

dependable and complex avionic systems. The conducted study involved reviewing the specifications

of several high-assurance software systems including the Airbus A320/330/340 family, Boeing 777,

Boeing 7J7 [11, 113] , NASA robots [70, 95] see AppendixA.1, NASA Crew Exploration Vehicles [65,

115, 116] and also implemented code of performance-centric systems such as Google Chromium OS,

Hadoop Framework and so on. For each of the systems studied, we identified critical quality goals,

architecturally significant requirements, architectural decisions, tactics, patterns, design solutions,

and views and models in which each of these techniques were visible. This study provided the

foundations and motivation for a new decision-centric traceability approach that includes a meta-

model describing the required traceability links, and a strategic process for applying the meta-model.

4.2 Identified Challenges

As a result of this study we observed seven issues that significantly can influence the proposed

traceability approach. Each of these is discussed below:

• Decisions are Hierarchical in Nature. It is quite common that architectural decisions have

a hierarchical nature. Architects usually start with a high level decision, then they adopt different

low level supporting decisions to tune the effectiveness of their initial high level decision. Although

both high and low level decisions are often traceable back to individual driving user or system level

requirements, it is often only the lower-level decisions that are traceable forward to the architectural

views or source code. For example, in all of the avionics cases studied, the reliability requirement

was at least partially achieved through a decision to deploy redundant components; however this

high level decision was realized through a variety of different sub-decisions. The airbus architecture

Chapter 4. Traceability Challenges of Architectural Decisions 52

utilizes logical redundancy through use of multi-process threading, while the Boeing architecture

deploys components on different processors. In the Boeing 777, the Primary Flight Control (PFC)

system includes three replicated software modules deployed on separate processors [11]. At runtime,

each of the PFCs receives the same input values from which they independently compute output

values, and the results are evaluated using a “majority” voting algorithm.

In contrast, the Airbus flight control system uses a “2-Self Checking Programming” as the voting

mechanism. This includes two software units for command and monitoring, which also receive

identical inputs. The units are located on a single processor but run on separate operating system

processes. The results generated by the command unit are compared to those of the monitoring

unit and in the case that the results do not match, airplane control is switched to another com-

puter. Another architectural decision that we observed in Airbus case studies, involved the use

of N-Version Programming to mitigate against the possibility of duplicating design errors across

redundant components. In this case, sub-decisions involved selecting programming languages, mak-

ing team assignments, adopting different algorithmic solutions, and using different hardware and

software platforms.

These examples demonstrate that high-level architectural decisions are often associated with a

fairly extensive set of subsequent lower-level decisions which impose constraints on the behavior,

structure, and deployment of the system, and which work synergistically to support and shape the

higher level decision. Tracing the high-level decision therefore translates into first understanding

how a high-level decision is realized through lower level decisions, and secondly understanding how

to effectively trace those lower level decisions into the architectural design and implementation.

• Visibility of Architectural Decisions. Different architectural decisions are visible in different

views, therefore traceability links must be established across a wide variety of architectural views.

From observing the various architectural decisions in both the avionics systems and in non-mission

critical system such as Chrome, Hadoop and OfBiz„ it is evident that different decisions have very

different scopes of impact. While some decisions, such as Single Sign in (SSN), may deal with the

structure of the system and lead to creation of sub-systems, layers or specific components, other

decisions, such as fault recovery or performance decisions, affect how elements interact, perform

their responsibilities or appear at runtime, and are more likely to be visible in behavioral models

and runtime views. Furthermore, a layered view may show tactical decisions concerning the system’s

Chapter 4. Traceability Challenges of Architectural Decisions 53

portability, while a deployment view may depict decisions concerning the system’s performance and

reliability. Some decisions are visible in multiple views, for example a decision might be traced to

both architectural models (e.g., a class, an interface, a process or thread, a package or subsystem

etc.) as well as implementation artifacts. An effective traceability scheme therefore needs the ability

to trace quality concerns to a wide variety of architectural and implementation views.

• Granularity of Architectural Impact. Many architectural decisions are characterized by a

set of roles and constraints. For example, an availability tactic such as heart-beat is traced at a

coarse-grained level to a component that emits a heartbeat message and another that listens for

and monitors those messages and reacts accordingly. However, it may also be traced to one or

more variables controlling the heart-beat rate. To preserve system reliability we need to trace the

heart-beat decision to both the component level and to the variable level. Traceability links must

therefore be created and maintained at various levels of granularity.

• Tacit Architectural Knowledge. Sometimes architects make tactical decisions but these

decisions are not explicit. In fact these decisions represent tacit knowledge which is rarely articulated

and, by definition, never documented, they exist but in form of tacit knowledge in the head of

architects and developers. To prevent architectural erosion, tacit knowledge must be articulated as

a design decision, even if it is not traceable into any specific architectural view. For example, an

architect might decide that concurrent threads should not have direct write access to shared data.

Because such decisions are implicit, our study did not reveal them explicitly. Nevertheless, they are

included in this discussion, because of their importance to the traceability issue. If traceability is to

be used to prevent architectural erosion, tacit decisions must be explicitly articulated, documented,

and traced.

• Architectural Trade-offs. Design decisions exhibit tradeoffs and interdependencies. It is neces-

sary to capture such interdependencies so that the impact of a change to one decision is understood

across the broader context of other architectural decisions. Our study identified numerous examples

of potential design trade-offs. For example, redundancy requirements in avionics systems, trade-off

against weight requirements and performance requirements, and similarly security requirements in

Chrome trade-off against performance. Relationships between decisions, including both positive

contributions and negative trade-offs need to be explicitly modeled as traceability links.

Chapter 4. Traceability Challenges of Architectural Decisions 54

• Rich Semantics. Balasubramaniam’s prior study on traceability highlighted the need for trace-

ability links to be semantically typed [5]. This is especially important in tracing architectural

concerns because of the various roles played by different components in realizing architectural de-

cisions. For example, a given component might provide diversity for an N-Version design strategy,

while another component might be responsible for coordinating voting tactics. Semantically typing

each traceability link provides enhanced support for making sense of the traceability links, in a way

that the links convey more conceptual informations and can be used for better support of important

tasks such as architectural preservation.

• Minimalistic Strategy. Complex high-assurance and high-performance systems are rich with

design decisions. Given the known problems of creating, maintaining, and using traceability links,

it is important to develop a minimalistic traceability strategy that removes redundancy, while

retaining only those traceability links needed to support critical software engineering tasks such as

impact analysis and architectural preservation.

4.3 Decision-Centric Traceability Meta-Model

As a result of the above study and after careful considerations of all the observations from these

systems, we developed a decision-centric traceability meta-model for capturing architectural design

decisions and creating traceability links between architectural components and the non-functional

requirements and concerns they are designed to satisfy. The model is depicted in Figure 4.2,

and shows that traces are established from quality concerns, through architectural decisions to

architectural elements visible across various architectural views. In this meta-model the trace

redundancy is removed, while the expressivity required for a traceability model is maintained.

Figure 4.3 illustrates how the model might be instantiated for a redundancy decision that involves

voting and N-Version programming.

Establishing all traces through architectural decisions, and disallowing traces from quality concerns

directly to the architectural design, addresses all of the issues identified through our conducted

studies. As depicted in Figures 4.3, decisions can be structured hierarchically to capture the way

in which sub-decisions shape and help to achieve higher level decisions. Traceability links can then

be created at any granularity level through the hierarchy of decisions. The proposed meta-model

Chapter 4. Traceability Challenges of Architectural Decisions 55

 Architectural
Decisions

Architecturally
Significant

Requirements

Architectural
Elements

Quality
Goals

Rationale

Detailed Design
Elements

Implementation
Elements

Solution
Elements

Specifies

0..N Manifested at

Helps/Hurts

0..N

0..N

0..N

0..N Justifies

Figure 4.2: Decision-Centric Traceability (DCT) Meta-Model

promotes capturing traceability links around design decisions and therefore it supports visualization

of design knowledge. This increases the program comprehension and provides enhanced support for

helping trace users to understand the impact of a decision across multiple architectural views. Since

architectural decisions are frequently realized through the use of standard tactics, architectural pat-

terns, or constraints, many of which include recognized roles; traceability links can be semantically

typed to depict specific roles played by the architectural component in realizing a specific decision.

For example, in Figure 4.3, traceability links to architectural components contributing to the redun-

dancy tactic are semantically typed as “Coordinates”, “Assigned to”, “Provides Diversity”, which

immediately conveys the role of the component in realizing the decision.

The proposed meta-model suggests tracing the requirements through design decisions into design

components and implementation modules. We extended the notion of the meta-model for each

specific architectural tactics, and proposed an augmented model in which, it is clear where to create

traceability links in order balance the costs versus benefits of tracing architectural concerns. [46].

This extension results in the Tactic Traceability Pattern (tTP), designed to help architects establish

strategic traceability links which can be used during the maintenance phase to visualize underlying

architectural tactics and tradeoffs, and to keep maintainers fully informed of underlying decisions

and rationales. The proposed tTPs explicitly differentiate between reusable traceability links i.e.

those links internal to the tactic, which can be used across multiple projects, versus project specific

Chapter 4. Traceability Challenges of Architectural Decisions 56

Availability

goal

Reliability

goal

Reliability

requirement

Redundancy

tactic

Voting

tactic

N-Version
programming

tactic

Deployment
diagram

Node N2

contributes

to

Satisfies

(partially)

supports

supports

Coordinates

Votes

Goals and Requirements Architectural Decisions Design, Implementation, and

development environment

Work
Assignment

Team 1

Team 2

Team 3

Coordinator

Comp 1

Comp 2

Comp 3 A
ss

ig
n

e
d

 t
o

Provides

Diversity

Node N1

Figure 4.3: An example of tracing and visualizing the redundancy tactic using DCT meta-model

traceability links established as mappings from concrete elements of the architectural design to

components of the tTPs.

In this part of work, we are interested to examine the following research questions,

• RQ1. Does using tTPs potentially reduce the cost and effort of establishing and maintaining

traceability links?

• RQ2. How useful are tTPs for notifying the developers of potential erosion through architecture-

change impact analysis?

All the tTPs described in section of the dissertation, were identified through observing the use of ar-

chitectural tactics across several high-assurance software systems including the Airbus A320/330/340

family, Boeing 777, Boeing 7J7 [114], NASA robots [70, 95], NASA Crew Exploration Vehicles

[65, 113, 115, 116], Google Chromium OS[2] and many other and over twenty high-performance

open-source software systems. We conducted an study which included the 16 commonly utilized

tactics shown in Table 4.1.

Chapter 4. Traceability Challenges of Architectural Decisions 57

Table 4.1: An Analysis of Tactics Across Several Performance-centric and/or Safety-critical Sys-
tems

Fault tolerant, performance-centric software systems from SourceForge H
ea

rt
b

ea
t

Sc
he

du
li
ng

A
ut

he
nt

ic
at

io
n

A
ud

it
T

ra
il

R
es

ou
rc

e
P

oo
l.

A
ct

iv
e

R
ep

l.

R
ec

ov
er

y

P
as

si
ve

R
ep

l.

A
ut

ho
ri

za
ti

on

P
er

m
is

s.
C

he
ck

C
R

C

E
nc

ry
pt

io
n

P
ro

ce
ss

M
on

it
or

R
em

.
Se

rv
ic

e

F
au

lt
D

et
ec

ti
on

V
ot

in
g

1 RIFE: a Web application engine with support for content management. • • • • • •
2 Fault-Tolerant Corba: (OMG Document ptc/2000-04-04) • • • • • • • • • • •
3 CARMEN: Robot Control Software, with navigation capabilities • • •
4 Rossume: an open-source robot simulator for control and navigation. • • • • •
5 jworkosgi: implementation of the JMX and JMX Remote API into OSGI

bundles.
• • • • • • • • •

6 SmartFrog: Distributed Application Development Framework • • • • • • • • •
7 CarDamom: Real-time, distributed and fault-tolerant middleware • • • • • • • • • • •
8 ACLAnalyser: Tool suit to validate, verify and debug Multi Agent Systems • • • • • •
9 Jfolder: Web-based application development and management tool. • • • •
10 Enhydra shark: XPDL and BPMN Workflow Server • • • • • • •
11 Chat3: An instant messenger. • • •
12 ACE+TAO+CIAO: Framework for high-performance, distributed, real-time

systems.
• • • • • • • • •

13 Google Chromium OS: • • • • • • • • •
14 x4technology tools: Framework Enterprise application software. • • • • •
15 OpenAccountingJ: web-based Accounting/ERP system. • • •
16 Airbus Family: Flight Control System*. • • • • • • • • •
17 Boeing 777: Primary Flight Control (PFC)*. • • • • • • • •
18 NASA CEV: Crew Exploration Vehicle using guidance-navigation* & con-

trol model.
• • • • • • • • •

19 Hadoop Framework: a development framework to support cloud computing. • • • • • • • • • •
20 OfBiz: an enterprise automation and E-Commerce software. • • • • • • •

Legend: * = Tactics identified from architectural documents. In all other cases, tactics were observed directly in the code.

4.4 Tactic Traceability Patterns

A tTP provides the required infrastructure for tracing a specific architectural tactic into the design

and implementation. Each tTP is centered around a tactic and defines both backward traceability

to the driving requirements and rationales of the tactic, and forward traceability to the architectural

elements in which it is realized. Moreover, a tTP defines the internal structure of a tactic in terms

of its primary roles and parameters, also relationships between the roles and proxy elements which

are used to map architectural elements in design models and code (i.e. concrete classes, methods,

variables, files etc in a project) to the tTP. which are used to map architectural elements in design

models and code to the tTP. Forward traceability is done by using these proxies. Traceability links

between tactics and architecture are therefore established as mappings between a proxy and concrete

design or implementation element. Backward traces include links to goals, quality requirements and

rationales associated with the tactic, however if necessary, these can be customized for a specific

project.

tTPs primarily lead to effective traceability when building families of systems which implement

similar tactics, or when using very common tactics that tend to be implemented in similar ways

across different products.

Chapter 4. Traceability Challenges of Architectural Decisions 58

Figure 4.4: Traceability Pattern for Heartbeat Tactic

As an example, Figure 4.4 depicts the tTP developed for the heartbeat tactic. As previously ex-

plained Heartbeat is an architectural tactic used in many of dependable systems to monitor the

availability of a critical process. This tactic contributes to the achievement of quality goals such as

reliability and availability. The tTP associated with the heart beat tactic, defines three primary roles

shaping this tactic as receiver, emitter, and fault monitor. In addition to these roles, this tTP iden-

tifies supporting parameters of heart beat rate, heart beat message, checking interval, and acceptable

silence threshold. Heart beat rate indicates the frequency with which the heartbeat message is emit-

ted, heart beat message represents the data structure required to transmit the heart beat, checking

interval represents the frequency with which the receiver must check for the incoming heartbeat

message, and finally the acceptable silence threshold indicates the maximum interval that can elapse

between observed heartbeats signals before a failure decision is made. The Heartbeat tTP, models

each of these roles and parameters, along with their relevant proxies connected via �maps� links.

The proxies in tTP are used for creating traceability links to the concrete architecture.

The tTP conveys generic knowledge about architectural tactics through modeling structural rela-

tionships between roles and parameters. For example, the Heartbeat tTP depicts that, the heart

beat emitter sends a pulse to the heartbeat receiver, and the emitter manages both the heart beat

rate and the heart beat message.

Chapter 4. Traceability Challenges of Architectural Decisions 59

Figures 4.5 through 4.7 depict examples of three additional tTPs representing redundancy with

voting, semantic based scheduling, and layers and partitions. Each of these tTPs includes quality

goals, rationales, requirements, and roles, as well as proxies for mapping the tTP to architectural

elements.

Figure 4.5: Tactic Traceability Pattern for Redundancy with Voting

Figure 4.6: Tactic Traceability Pattern for Semantic Based Scheduling

Chapter 4. Traceability Challenges of Architectural Decisions 60

Figure 4.7: Tactic Traceability Pattern for Partitioning/Layers

One of the primary motivations behind designing a catalogue of tTPs is the support they provide for

reducing the potential architectural erosion during the software maintenance process. This is done

through two tasks of link creation and link usage which let us apply tTPs and benefit from them.

During link creation, the architect/developer first identifies all the tactics used in the architecture

of the system, he/she instantiates a tTP for each of these identified tactics, and then connects the

tTP to the concrete implementation or design artifacts by mapping the proxies in the tTP to the

relevant elements in the architecture and code.

Although the established trace links can be used to support manual inspections of the architecture,

greater value can be realized through instrumenting an IDE to automate the use of the traceability

links. Such automated tool should provide support for registering architectural elements mapped to

tTP proxies, monitoring those elements for any changes during maintenance activities, and finally

utilizing the infrastructure of the tTP to generate timely notifications to software maintainers

to keep them informed of architectural decisions related to any components they are currently

modifying.

An example of such a notification is provided in Figure 4.8. It illustrates a notification message that

might be displayed if a developer modifies an architectural component mapped to the heartbeat

tactic’s emitter component. Visualizing tactics in this way abstracts out the important factors of

the underlying design rationale, and makes design decisions understandable to software maintainers.

A functioning prototype has been developed for this purpose. Using this prototype the developer

can create a new tTP, establish trace links by mapping the proxies to the concrete elements in the

source code. The established links are used by an event-based traceability [29] infrastructure to

Chapter 4. Traceability Challenges of Architectural Decisions 61

Figure 4.8: Design rationale displayed to user when they modify the heartbeat emitter component

monitor changes that a developer makes to source code. If a change impacts an element that traces

back to a tactical role, the developer will be notified.

4.5 Examining the Research Questions

This section presents the results of two experiments conducted to investigate the use of tTPs in the

software maintenance process. These experiment were designed to examine the following research

questions:

• RQ1. Does using tTPs potentially reduce the cost and effort of establishing and maintaining

traceability links?

• RQ2. How useful are tTPs for notifying the developers of potential erosion through architecture-

change impact analysis?

Chapter 4. Traceability Challenges of Architectural Decisions 62

The case study of a Lunar Robot system, reconstructed from an extensive set of publicly available

NASA documents [70, 95] was conducted to examine the research questions. The detailed descrip-

tion of this case study, various design models and views, other artifacts such as list of requirements,

and architectural decisions/tactics are described in details in Appendix A section A.2. The Lunar

Robot system uses a reference architecture common to safety critical systems, therefore it provides

a realistic environment for evaluating the utility of tTPs for preserving architectural qualities.

4.5.1 Examining RQ1. Reducing Cost and Effort

Counting the number of traceability links is a commonly adopted technique for estimating traceabil-

ity effort. Therefore, we conduct an experiment to compare the number of traceability links needed

to trace architectural tactics in the Lunar-Robot both with and without the use of tTPs. Conse-

quently, two different traceability matrices were created. The first matrix, established traceability

by using tTPs and mapping architectural elements to tTP proxies. The second matrix established

traceability in a more traditional way without using tTPs. Similarly both traceability matrices pro-

vided forward and backwards traceability between architectural elements, tactics, rationales, goals,

and requirements. In both of these matrices, the traceability links were created at a coarse-grained

level to components, and also at a fine-grained level to the methods and/or parameters.

Eighteen different instances of tactics found in the Lunar Robot were considered to establish these

two traceability matrices. The tactics included several cases of heartbeat, two cases of redundancy,

three cases of N Self-Checking Programming, and several additional tactics as shown in Table A.2

of AppendixA.

Table 4.2 compares two traceability matrices generated in terms of the number of traceability links

created for each tactic. The table shows the number of times each architectural tactic was adopted

in the Lunar-Robot architecture, the number of links needed to support coarse grained traceability,

both with and without the use of tTPs, and lastly the number of additional links needed to achieve

fine-grained traceability to the method or parameter level using the tTP. As Table 4.2 depicts,

Fine-grained links were only counted for scenarios which used the tTP. This is because such traces

would be unlikely without the guidance of the tTP.

Chapter 4. Traceability Challenges of Architectural Decisions 63

A pattern is dominant across all the results. In all cases, the use of tTPs reduced the number of

traceability links which were required to establish and maintain in a specific project. On average,

tracing each tactic through using a tTP required 5.4 links, while 9.28 were required for tracing tactics

without tTPs. Moreover, these results showed that the total number of reusable links for a tactic plus

the project-specific links can sometimes be greater than the number of links created without benefit

of a tTP. This interesting observation highlights the fact that a catalogue of tTPs can be created

once and reused across multiple projects. Also, the results show that the amount of additional effort

needed to achieve fine-grained traceability is often very minimal given the existing infrastructure

of each tTP. It should also be pointed out that the assumption is that equal effort is required to

establish a traceability link using a tTP versus creating a link without the tTP. Furthermore, The

additional links which are internal to the tTPs are not included in Ramesh’s metamodel [104]. The

unique benefits of the links is in providing a larger and richer set of semantically typed traceability

links which could not be created without incorporation of the tTPs. Finally using tTPs replaces

an ad-hoc typing of traceability links created by multiple stakeholders, with a simple mapping of

an architectural element to a proxy in the tTP which provides a rich set of consistently typed

traceability links.

All these results indicate that the answer to the research question of RQ1. Does using tTPs

potentially reduce the cost and effort of establishing and maintaining traceability links?

is positive. These observations have shown that the tTP simplifies the traceability task and therefore

reduces the cost and effort of creating a traceability link. For two main reasons, we believe that

the results of this case study is sufficient to draw a conclusion. Firstly, this is a real system not a

toy example and the tactics covered in this example are realistic example of tactics which might

be used in any industrial project. Secondly with out the loss of generality, a tTP implies the same

benefit every time it is used. Therefore a single case study is enough to show usability of tTPs. A

major reason for reduction of trace link is that tTPs change the task of link creation to mapping

and therefore a set of trace links will be reused and not re-created. The links which are internal to

a tTP are reused every time a tactic is traced and the trace user instead of creating all the links

just maps the proxy to the design or code elements. In conclusion, based on the observed results

in Table 4.2 using a catalogue of tTPs can lead to an effective traceability solution.

C
hapter

4.
Traceability

C
hallenges

ofA
rchitecturalD

ecisions
64

Table 4.2: Trace Link Counts per Tactic in the Lunar Robot

Number of
occurrences
of tactic

Coarse Grained Trace Links Additional Fine-Grained Links
Tactic without tTP with tTP with tTP

per tactic Total per tactic Total re-used from tTP Per Tactic Total
1. Heartbeat, Piggy backing and CRC check 6 9 54 4 24 6 4 24
2. Redundancy with voting 1 7 7 3 3 6 6 6
3. Active redundancy with degradation 1 17 17 9 9 6 5 5
4. Multi Threading 1 12 12 9 9 4 1 1
5. Separate processes with configuration files 1 19 19 9 9 5 2 2
6. Layers (1) 1 9 9 7 7 4 2 2
7. Layers (2) 1 11 11 9 9 Shared with Layers (1) 2 2
8. Transaction 2 5 10 2 4 4 0 0
9. N Self-Checking Programming w. Acceptance Tests 3 7 21 6 18 6 3 9
10. N-Version Programming 1 7 7 6 6 4 3 3

TOTALS: 167 98 45

In summary, this experiment demonstrated that for our Lunar-Robot case study, the use of tTPs reduced the number of project-specific traceability links. Therefore the answer to the research question

RQ1. Does using tTPs potentially reduce the cost and effort of establishing and maintaining traceability links?

has been positive.

Chapter 4. Traceability Challenges of Architectural Decisions 65

4.5.2 Evaluation RQ2. Usefulness of tTPs in Maintenance Scenarios

The second experiment was designed to examine research question of RQ2.

This experiment tested whether tTPs provided adequate support for the goal of keeping developers

informed of underlying architectural decisions during the maintenance process.

The software architecture change characterization framework defined by Williams and Carver has

been used to develop different maintenance scenarios [131]. This framework addresses key areas

involved in making changes to software architecture. It classifies the type of change as perfective,

corrective, adaptive or preventative and identifies the characteristics of a software change that will

have an impact on the high-level software architecture.

Table 4.3 shows eighteen change scenarios we have created using the above framework. Changes

have had different scope and scale of impact. Some changes have impacted the whole architecture,

such as in scenario #1 where a component is removed and existing ones are refactored. Some

changes did not impact the architecture, instead they impacted the low level design, this is illus-

trated in Scenario #2 where the UI was modified. There are some changes that have not changed

the architecture but resulted in changes in the source code, such as refactoring the code to eliminate

the encryption method for messaging on the moon’s surface (Scenario #6). Each one was simulated

by creating change events, and then generating appropriate information displays. Table 4.3 also

depicts the category of change covered by each maintenance scenario, the number of expected noti-

fication messages (as determined through a manual analysis), the number of successfully generated

notifications (true positives), the number of unnecessary notifications (false positives), the number

of missed notifications (false negatives), and the number of correctly ignored maintenance tasks

(true negatives).

Among all 18 scenarios, nine of them affected tactical architectural decisions, and our prototype

tool correctly recognized these potential impacts and generated appropriate notifications. The

remaining nine scenarios indicated either micro-changes or functional changes that did not affect

tactical architectural decisions. From all of these, our tool correctly filtered out three scenarios,

but generated notifications for the remaining six. These six notifications represented false positives,

meaning that tactic information was displayed, even though the actual change did not impact the

tactic. Clearly, displaying unnecessary information can desensitize the developer to the importance

Chapter 4. Traceability Challenges of Architectural Decisions 66

of such messages; however it should be noted that changes made to the large percentage of classes and

components that are entirely unrelated to any tactic will never result in architectural notifications.

False positives are therefore limited to classes which do contain or support an architectural tactic.

Furthermore, false positives do not provide unrelated information, but do in fact provide information

related to the general context of the change.

C
hapter

4.
Traceability

C
hallenges

ofA
rchitecturalD

ecisions
67

Table 4.3: Maintenance Scenarios

Change Scenario Motivation Impact FeaturesNG Imp Description Arch Des Code

1. Y Y
New communication channel established directly between
IVHM::Logger and the Robot Executive and with the
CS::Task Sequencer & Dispatcher is removed

Refactoring, Perfor-
mance Enhancement * Data transfer: Flow of data from system to

external systems

2. N N
IVHM::Actuators Robust Regulators module communicates
with CS::Robot Executive module instead of directly with the
AVM.

Refactoring, Perfor-
mance Enhancement *

3. Y N
IVHM::Simulation and Diagnosis Engine retrieves information
from the shared repository instead of communicating with the
Logger.

Refactoring: Perfor-
mance Enhancement * *

4. Y Y
Component Data Manager is moved from Navigation Domain
process to Control System process and combined with compo-
nent Mission Data Loader

Architecture refac-
toring * * *

5. Y Y A security enhancement changes the encryption algorithm
used to send mission information to agents on the LEO.

Secure data trans-
mission * * Data access: Receipt of data from external

systems/repositories

6. Y N
Communication module is changed to eliminate encryption
from messages sent between the Lunar Robot and the MCC
whilst on the moon.

Performance en-
hancement *

7. Y Y Rover’s processor is upgraded to provide greater processing
power. A mistake occurs and memory is accidentally reduced. Enhancement *

Devices: Hardware devices used by the
system

8. Y Y

High resolution stereo cameras added to work with existing
forward looking infrared cameras and laser sensors. The new
data will be processed by modifying an existing algorithm in
the obstacle detector component

Hardware enhance-
ment * * *

9. Y Y Multi-threading is used instead of multi-process for all the
three domain of Navigation, Guidance and Control

Architecture refac-
toring * * *

10. Y N Communication module is modified to remove a defect Defect removal * * System interface: Software interfaces with external
systems

11. N N Change in Operator Panel, modification of user interface, new
menu item, changes look and feel of dialog UI enhancement * * human computer interaction interfaces

12. Y N Change in protocol for communication with Mission Control
Center (MCC) at the earth

Adaptive enhance-
ment * * Communication: Interfaces to other systems/data

13. Y Y Mission data and operations are logged following completion
of a task instead of following each simple action

Performance En-
hancement *

Computation:algorithm functions and
modification of data14. N N Component Relative Navigation is modified to fix bugs Defect removal *

15. Y Y Change in functionality in a performance critical module
(PPOD)

Addition of new
functionality * * *

16. Y Y Obstacle Detection component is merged into both Path Plan-
ning threads

Corrective mainte-
nance/self checking * * *

17. Y N Data stored by the IVHM::Logger in the Robot’s blackbox, is
modified to be stored in encrypted format Security * I/O format of

information processed
by system18. Y N IVHM Simulation and Diagnosis Engine is modified to decode

data stored in encrypted format in the blackbox Security * * *

*‘NG’ = Notification generated due to potential impact of the change; ‘Imp’ = a true risk of affecting an underlying architectural decision. Hence (Y,Y)= True positives,
(N,N) = True negatives, (N,Y)=False negatives, and (Y,N) = False positives.

Chapter 4. Traceability Challenges of Architectural Decisions 68

4.6 Summary

This chapter first reports the results of an extensive study of architectural decisions conducted

in highly dependable and complex avionic systems. The conducted study involved reviewing the

specifications of several high-assurance software systems including the Airbus A320/330/340 family,

Boeing 777, Boeing 7J7 [11, 113] , NASA robots [70, 95], NASA Crew Exploration Vehicles [65, 115,

116] and also the implemented code of performance-centric systems such as Google Chromium OS,

Hadoop Framework etc. As a result we summarized some of the important issues facing architectural

traceability and presented a meta-model for tracing architecturally significant requirements. To our

knowledge, these issues have not previously been addressed in such a systematic manner, and as

a result existing traceability approaches for tracing architectural concerns and supporting design

rationales tend to suffer from well documented maintenance, and usage problems.

In this chapter, we proposed the generic decision-centric meta-model to trace quality concerns into

design and implementation artifacts. This meta-model suggests tracing the requirements through

design decisions into design components and implementation modules. We extend the notion of the

meta-model for a representative selection of architectural tactic, and proposed an augmented model

called tTP in which, it is clear where to create traceability links in order balance the costs versus

benefits of tracing architectural concerns. As our results have indicated, tTPs reduce the cost and

effort of traceability through providing a set of re-usable traceability links. However, upfront effort

is required to create the tTPs. Clearly our approach is constrained by the extent to which similar

tactics are reused across projects.

“A computer would deserve to be called intelligent if it could deceive

a human into believing that it was human.”

Alan Turing

Chapter 5

Automated Trace Generation

Manually tracing architectural decisions into the code, can be prohibitively expensive as it may

involve creating and maintaining an almost impossible number of traceability links; but on the

other hand, failing to trace architectural concerns leaves the system vulnerable to problems such as

architectural degradation.

Contribution: A cost effective approach which automates construction of traceability links for

architectural tactics can be significantly beneficial. To achieve this aim, we present a novel approach

which utilizes machine learning methods and lightweight structural analysis to detect tactic-related

classes. The detected tactic-related classes are then mapped to a tactic Traceability Pattern (tTP)

by achieving traceability in in an automated way. We train our trace classifier using code extracted

from fifty performance-centric and safety-critical open source software systems.

To achieve the Automate Trace Generation goal we first, introduce and examine set of algorithms

and processes designed to automatically reconstruct traceability links for architectural tactics. This

builds on the tTPs proposed in the previous chapter which required all traces to be created manually.

Second, we evaluate the effectiveness and applicability of our classifier for an industrial setting

through an extended study of a large scale software system.

70

Chapter 5 Automate Trace Generation 71

5.1 Proposed Approach

The problem of detecting architectural tactics in source code is an increasingly challenging task.

This is mainly because of the nature of architectural tactics and the ways and forms in which they

are implemented. In the literature, there have been various techniques for detecting design patterns

in the source code, unfortunately these approaches can not be applied to detect architectural tactics

as design patterns are different from tactics in scope of impact, level of abstraction and the type of

concerns they address. Therefore detection of tactics turns out to be a more challenging task. More

specifically, Design patterns tend to be described in terms of classes and the associations among

them [51], while it is unlikely for tactics to be described in terms of roles and interactions [81].

This means that a single tactic could potentially be implemented using a variety of different design

patterns or proprietary designs. For instance, our studies of the heartbeat tactic in real systems

showed that this tactic has been implemented using (i) direct communication between the emitter

and receiver roles (found in Chat3 and Smartfrog systems), (ii) the observer pattern [51] in which

the receiver registered as a listener to the emitter found in the Amalgam system, (iii) the decorator

pattern [51] in which the heartbeat functionality was added as a wrapper to a core service (found in

Rossume and jworkosgi systems), and finally (iv) numerous proprietary formats that did not follow

any specific design pattern.

Architectural tactics are not dependent upon a specific structure, or structural constraints similar to

those found in design patterns, therefore, we cannot use structural analysis as the primary means of

identification. To detect the tactics in the code in an automatic way, we propose an approach which

relies primarily on information retrieval (IR) and machine learning techniques to train a classifier

to recognize specific terms that occur commonly across implemented tactics, however we also use

light-weight structural analysis to support the differentiation of specific tactic roles.

Figure 5.1 depicts the steps involved in the proposed process. First, a tactic-classifier identifies all

classes related to a given tactic, and then creates tactic-level traceability through mapping those

classes to the relevant tactic. Second, we use a more finely-tuned classifier which is enhanced by

a lightweight structural analysis package to identify the roles of each tactic as defined in tTP. For

example, in the case of the heartbeat tactic, the classifier attempts to identify heartbeat emitter and

heartbeat receiver roles, or in the case of the voting tactic, it attempts to identify voting coordinators

Chapter 5 Automate Trace Generation 72

and voters. The detected tactic-related classes are then mapped to tactic Traceability Patterns

(tTPs) which connect the classified classes back to the design rationales, requirements, and other

related artifacts.

Tactic-related
code snippets

Role-related
classes

Indicator
terms

Role-related
code snippets

Training Phase:
Fine-Grained

Classification
Phase:

Fine-Grained

Lightweight
structural
analysis

Tactic-related
classes

Training Phase:
Coarse-Grained

System to
be traced

Classification Phase:
Coarse-Grained

Indicator
terms

Identified classes mapped
to proxies in tTIMs

Semantically-typed
traceability links constructed

Classes

Classes

Coarse-
grained:
Class to
tactic
mapping

Role
Grained:
Class to
tactic
mapping

Links

Classes

Code

Code

Classes

Figure 5.1: An Overview of the Tactic-Related Trace Reconstruction Process

The classification of classes into various tactics has been achieved by utilizing a text classification

technique previously used in other domains such as classification of textual non-functional require-

ments and for tracing them to software regulations. [37] [32].

Typically classifiers include three phases of preparation, training, and classifying which are defined

as follows:

Phase i. Preparation. Standard information retrieval techniques are used to pre-process all the

data and transform each class into a vector of terms.

Phase ii. Training. In the training phase, the classifier learns the key terms commonly used to

implement each architectural tactic. In this phase, the classifier takes a set of pre-classified code

segments as input, and produces a set of indicator terms that are considered representative of each

tactic type. For instance, the term of priority, is found more commonly in code related to the

scheduling tactic than in other kinds of code, and therefore the classifier gives it a higher weighting

with respect to scheduling tactic.

More formally, let q be a specific tactic such as heart beat. Indicator terms of type q are mined by

considering the set Sq of all classes that are related to tactic q. The cardinality of Sq is defined

Chapter 5 Automate Trace Generation 73

as Nq. Each term t is assigned a weight score Prq(t) that corresponds to the probability that a

particular term t identifies a class associated with tactic q. The frequency freq(cq, t) of term t in

a class description c related with tactic q, is computed for each tactic description in Sq. Prq(t) is

then computed as:

Prq(t) = 1
Nq

∑
cq∈Sq

freq(cq, t)
|cq|

∗ Nq(t)
N(t) ∗

NPq(t)
NPq

(5.1)

Phase iii. Classification. During the classification phase, the indicator terms computed in

Equation 5.1 are used to evaluate the likelihood (Prq(c)) that a given class c is associated with the

tactic q. Let Iq be the set of indicator terms for tactic q identified during the training phase. The

classification score that class c is associated with tactic q is then defined as follows:

Prq(c) =
∑

t∈c∩Iq
Prq(t)∑

t∈Iq
Prq(t) (5.2)

where the numerator is computed as the sum of the term weights of all type q indicator terms that

are contained in c, and the denominator is the sum of the term weights for all type q indicator

terms. The probabilistic classifier for a given type q will assign a higher score Prq(c) to class c that

contains several strong indicator terms for q. Classes are considered to be related to a given tactic

q if the classification score is higher than a selected threshold.

We applied the classifier in different ways to detect architectural tactics at multiple level of granu-

larity, to examine the following research questions:

• RQ3. How accurately does the Tactic Detector generate trace links using two different training

methods of tactic descriptions and code snippets? Which one produces better classification

results?

• RQ4. How effectively can the Tactic Detector identify tactic-related classes for the five tar-

geted tactics in HADOOP?

• RQ5. How accurately does the Tactic Detector generate role-level trace links for each archi-

tectural tactic?

Chapter 5 Automate Trace Generation 74

The following sections present the design and evaluation results of these experiments. Each ex-

periment design involved creation of a specific data set which were created over the course of 7

months. The results of experiments and examination of research questions were evaluated using

four standard metrics of recall, precision, F-Measure, and specificity computed as follows where

code is short-hand for code snippets.

Recall = |RelevantCode ∩RetrievedCode|
|RelevantCode|

(5.3)

while precision measures the fraction of retrieved code snippets that are relevant and is computed

as:

Precision = |RelevantCode ∩RetrievedCode|
|RetrievedCode|

(5.4)

Because it is not feasible to achieve identical recall values across all runs of the algorithm the F-

Measure computes the harmonic mean of recall and precision and can be used to compare results

across experiments:

F −Measure = 2 ∗ Precision ∗Recall
Precision+Recall

(5.5)

Finally, specificity measures the fraction of unrelated and unclassified code snippets. It is computed

as:

Specificity = |NonRelevantCode|
|TrueNegatives|+ |FalsePositives| (5.6)

5.2 Tactic Level Link Reconstruction

The initial step for reconstructing tactic-related traceability links applied the classifier described

in Equations 5.1 and 5.2 to recognize and detect classes which implement the desired tactic. Two

different experiments were conducted to investigate different training methods. In the first experi-

ment, the training method involved using tactic descriptions to train the classifier, while the second

experiment used actual code snippets taken from classes implementing each of the tactics for the

Chapter 5 Automate Trace Generation 75

training purpose. Both these experiments were repeated using a variety of term thresholds and

classification thresholds. Due to the significant cost and effort of manually constructing the ‘an-

swer sets’ needed to evaluate our approach against non-trivially sized projects, we limited the work

described here to the heartbeat, scheduling, resource pooling, authentication, and audit trail. These

tactics were selected because they represented a variety of reliability, performance, and security

concerns.

The main objective behind designing and conducting these two experiments were to examine

whether the classification method described in Equations 5.1 and 5.2 could be used to identify

tactic-related classes for the five targeted tactics, and also to determine whether the tactic de-

scriptions or the code snippets produced better classification results. We hypothesized that the

code-trained classifier would be more effective for retrieving tactic-related classes.

5.2.1 Experiment 1: Training with tactic descriptions

In this experiment, for each of the five targeted tactics i.e. heartbeat, resource pooling, scheduling,

audit trail, and authentication, we established a dataset containing ten descriptions of tactic taken

from text books, online descriptions, and publications. For training purposes, the dataset also

included 20 descriptions of non-tactic-related IT documents so that the common IT terms could be

filtered out from trained indicator terms. The following text provides an excerpt from a description

for the audit trail tactic:

A record showing who has accessed a computer system and what operations he or she

has performed during a given period of time. Audit trails are useful both for maintaining

security and for recovering lost transactions.....

In order to build the testing set, for each of the five tactics we identified 10 different open-source

projects, which incorporated the tactic in their design and implementation. From each of these

projects the code segments that were implementing the tactic were retrieved. Furthermore, four ad-

ditional non tactic-related classes were retrieved for testing purposes.The following code represents

two methods extracted from a code snippet for the audit tactic.

Chapter 5 Automate Trace Generation 76

Table 5.1: Indicator terms learned during training method 1

Tactic Name Document trained indicator terms
Heartbeat heartbeat, fault, detect, messag, period, watchdog, send, tactic, failur, aliv
Scheduling prioriti, schedul, assign, process, time, queue, robin higher, weight, dispatch
Authentication authent, password, kerbero, sasl, ident, biometr, verifi, prove, ticket, purport
Resource Pooling thread, pool, number, worker, task, queue, executor, creat, overhead, min
Audit Trail audit, trail, record, activ, log, databas, access, action, monitor, user

setAuditUserIdentity(inUi);

setAuditSequenceNumber(inSeqNum);

setAuditMachineOfOrigin(inMachineOfOrig);

setAuditDateTime(inDateTime);

public boolean isAuditUserIdentifyPresent(){

return(this.auditUserIdentify != null);

}

public BigDecimal getAuditSequenceNumber(){

return this.auditSequenceNumber;

}

In this experiment, we first trained the classifier using the descriptions of tactics and then tested the

trained classifier against the testing set (extracted code snippets). The experiment was repeated

using a variety of term thresholds and classification thresholds.

Table 5.1 shows the top ten indicator terms that were learned for each of the five tactics using tactic

descriptions training techniques.

The results of running the description trained classifier over tactics’ code snippets is shown in Figure

5.2. We reported the F-Measure results for several combinations of term and classification threshold

values. In four of the five cases, namely scheduling, heartbeat, audit, and pooling the F-Measure was

higher than 0.70 which could be interpreted as an acceptable result. One phenomenon that needs

explaining in these graphs are the horizontal lines in which there is no variation in F-Measure score

across various classification values. This generally occurs when all the terms scoring over the term

threshold value also score over the classification threshold.

Chapter 5 Automate Trace Generation 77

Figure 5.2: Experiment 1: Trained using Tactic Descriptions

5.2.2 Experiment 2: Training with code snippets

The second experiment involved training the classifier using code snippets. We used the code based

dataset already created in experiment(1). Basically for each of the five targeted tactics, 10 different

open-source projects, in which the tactic was implemented were identified and code segments that

were closely related to the tactic were extracted. We also retrieved four additional non tactic-related

classes for training and testing purposes.

Chapter 5 Automate Trace Generation 78

Table 5.2: Indicator terms learned during training

Tactic Name Code trained indicator terms
Heartbeat heartbeat, ping, beat, heart, hb, outbound, puls, hsr, period, isonlin
Scheduling schedul, task, prioriti, prcb, sched, thread, , rtp, weight, tsi
Authentication authent, credenti, challeng, kerbero, auth, login, otp, cred, share, sasl
Resource Pooling pool, thread, connect, sparrow, nbp, processor, worker, timewait, jdbc, ti
Audit Trail audit, trail, wizard, pwriter, lthread, log, string, categori, pstmt, pmr

Table 5.2 shows the top ten indicator terms that were learned for each of the five tactics using the

code snippets training technique. Although there is significant overlap, the code-snippet approach

unsurprisingly learned more code-oriented terms such as ping, isonlin, and pwriter.

Because of the time-consuming nature of finding and retrieving architectural tactics from real sys-

tems, we adopted a standard 10-fold cross-validation process in which the code-snippets dataset

served as both the training and testing set. This dataset has 10 projects, where from each project

we have 1 code snippet implementing a tactic and four unrelated code-snippets. Typically 10-fold

cross-validation experiment has 10 executions which in each, the data was partitioned by project

such that in the first run nine projects were used as the training set and one project was used for

testing purposes. Following ten such executions, each of the projects was classified one time. The

experiment was repeated using the same pairs of term thresholds and classification thresholds used

in the previous experiment.

Figure 5.3 reports the F-Measure results for the 10-fold cross validation technique over the code

trained classifier using several combinations of threshold value. In three of five cases scheduling,

authentication, and pooling the F-Measure was higher than 0.85. Also the other two remaining

tactics were close to 0.80. Comparing these results with previous experiments we observe that

in four of the five cases, scheduling, authentication, audit, and pooling the code-trained classifier

outperformed the description-trained classifier. In the case of heartbeat, the description-trained

classifier performed better at term threshold values of 0.05 and classification thresholds of 0.3 to

0.4.

Experiment 3. Industrial Case Study

The third experiment aimed to reconstruct tactic-related traceability links in a real large scale

software system. Therefore the Apache Hadoop software framework, a system which supports

distributed processing of large datasets across thousands of computer clusters was selected as a

case study. The Hadoop library includes over 1,700 classes and provides functionality to detect and

Chapter 5 Automate Trace Generation 79

Figure 5.3: Experiment 2: Trained using Code Snippets from Tactics implemented in Open Source
Systems

handle failures in order to deliver high availability service even in the event that underlying clusters

fail.

The detailed information about Hadoop’s Architecture and tactics adopted in this system can be

found in Appendix A.3. In order to conduct the experiment(3), the first step included building an

‘answer set’ for evaluation purposes by manually identifying heartbeat, resource pooling, scheduling,

audit trail, and authentication tactics in Hadoop. Creation of the answer set was accomplished by (i)

reviewing the available Hadoop literature[1] to look for any references to specific tactics, and then

Chapter 5 Automate Trace Generation 80

manually hunting for the occurrences of those tactics in the source code, (ii) browsing through the

Hadoop classes to identify tactic-related ones, (iii) using Koders (search engine) to search through

the code using key terms (to reduce bias, this search was performed by two researchers in our group

prior to viewing the indicator terms generated during the classification training step), and finally

(iv) posting a question on the Hadoop discussion forum describing the occurrences of tactics we

found, eliciting feedback, and acquiring confirmation from Hadoop developers. The results of these

activities are documented in the Appendices A.3. Table A.3 shows the occurrences of the five tactics

we identified in Hadoop, and which were then used as the ‘answer set’ for the remainder of the case

study. Our analysis showed that 1,557 classes were not tactic related, 145 classes implemented one

tactic only, 14 classes implemented two tactics, two classes implemented one tactic, and one class

implemented four tactics.

The results observed in Experiment(1) and Experiment(2) were used to decide the optimum thresh-

olds to execute the case study in a way that promised the best outcome. Based on these results,

in order to achieve high recall levels in the case study, we decided to use the code-trained classifier

developed in our previous experiments with the following threshold levels (i.e. term threshold of

0.001 and classification threshold of 0.5) to classify all 1,700 classes in Hadoop according to the five

targeted tactics.

Figure 5.4: Results for Coarse-Grained Tactic Traceability in Hadoop

The above thresholds were used to classify all the 1,700 Java files in Hadoop Framework. The results,

reported in terms of Recall, Precision, Specificity, and F-Measure are depicted in Figure 5.4. These

Chapter 5 Automate Trace Generation 81

results indicate that we were able to correctly reject approximately 97-99% of the unrelated code

snippets in each of the cases. In three cases of audit, resource pooling, and heartbeat we were able to

recall all of the related code snippets; however for scheduling and authentication we were only able

to recall 87% and 70% of the related code snippets respectively In all five cases precision ranged

from 60% to 87%.

Chapter 5 Automate Trace Generation 82

5.3 Role Level Link Reconstruction

In the previous section we examined the performance of a classifier for establishing tactic level

traceability through different training techniques. This section describes the approach we took to

train a classifier to differentiate between various tactic roles defined by a tTP. To build such a

classifier we constructed a Role Snippets Dataset. This dataset was a new code snippets dataset in

which we collected several separate code snippets for each of the tactic’s roles. For example, each

project for the scheduling tactic included one code segment implementing the scheduler role, one

code segment implementing the scheduled by role, as well as four unrelated code segments.

The previously described 10-fold cross-validation experiment was repeated with the role-based train-

ing methods to see if we could effectively retrieve classes according to their role in the project. Initial

experiments and observations indicated that the terms used across roles in a given tactic were quite

similar and so differentiation was poor. To tackle the observed problems an extensive exploratory

investigation was conducted to determine the best possible solution to classify Java classes by roles;

Here we report only the final technique that was adopted.

5.3.1 Light Weight Structural Analysis

The classifier described previously is used in the first two steps of this process, while steps three

to five utilize a light-weight structural analysis developed through extensive analysis of the tactic-

related code found in Fault Tolerant CORBA, the Google Chromium OS and the ROSSUME robotic

system. As a result of this analysis, we hypothesized that utilizing class hierarchy information and

class dependencies caused by method calls and method invocations could further improve the quality

of tactic traceability. Therefore we proposed a hybrid approach for detecting tactic’s roles. The

resulting technique is specified as follows:

1. The tactic-grained classifier is first run against the entire set of classes in order to identify an

initial set of tactic related classes for each tactic.

2. The role-grained classifier is then run against the subset of classes returned by the tactic-

grained classifier. Following this step, each of these classes is assigned a probability with

respect to each of the tactic related roles.

Chapter 5 Automate Trace Generation 83

3. Based on observations that tactic related-behavior is often specified in base classes, proba-

bilities are propagated across “extends” relationships if the probability in the base class for

a specific tactic role is higher than that of the derived class. Values are not propagated

across “implements” relationships because classes that implement an interface define their

own behavior.

4. Based on observations that most tactics require communication between roles, dependency

analysis is performed to eliminate classes that do not interact with other tactic classified

classes. For example, a class assigned some probability of being a heartbeat receiver is in

fact unlikely to actually play that role unless it is associated with other classes which are

also classified as heartbeat-related. However, this heuristic is not valid for all tactics, as some

tactics might implement roles using inbuilt class libraries. For example resource pooling might

be implemented using the classes from Java.util.concurrent, meaning that it is possible to have

a tactic-related, yet isolated class. Furthermore, in the case that standard library functions

are used in this way, it becomes relatively trivial to identify the occurrence of such a tactic.

For purposes of our study, we therefore apply this heuristic to all tactics apart from resource

pooling.

5. Wherever feasible, classes are placed into functional groupings according to their associations,

so that different instances of the same tactic can be separated out.

6. Finally, classes are classified according to the role with the highest probability score, as long

as that score is higher than a predetermined threshold.

Beside these 6 steps, we also explored other options for structural analysis, such as method signa-

ture, direction of method calls, indirect dependencies, and many other types of dependencies, For

example, while it might seem reasonable to differentiate between a heartbeat sender and receiver

according to the direction of the heartbeat message, the variety of implementations made this quite

difficult.

In order to evaluate the light-weight structural approach, we used Hadoop case study. The role

based code snippets needed in experiments could not be used for the purpose of evaluation as they

did not carry associated structural information. We therefore conducted an evaluation within the

richer context of the Hadoop Framework.

Chapter 5 Automate Trace Generation 84

5.3.2 Role-Level Trace Reconstruction in a Real Case Study

The role-grained classifier was used to classify the tactic-related classes by role. Based on initial

analysis of results and gained intuition, the classification threshold (i.e. the minimum threshold

needed to classify a class according to a specific type) was set at 0.5. Figure 5.5 reports these

results and indicates that in each case, the fine-grained classifier was able to classify one dominant

role better than the other one. For instance, in the scheduling tactic the “scheduler” role tended to

contain more tactic-specific terms than the “scheduled by” role, and was therefore classified more

accurately.

Figure 5.5: Results for Fine-Grained Tactic Traceability in Hadoop

A more detailed and specific explanation of these results is shown through an example of one of the

heartbeat instances in Hadoop. Figure 5.6 depicts the role-based classification for the heartbeat

tactic used in Hadoop’s HDFS subsystem.

Tactic roles are depicted as �emitter� or �receiver� stereotypes and are also shaded in gray.

For example DataNode which implements DatanodeProtocol sends the heartbeat message to the

NameNode, therefore each of them has the �emitter� stereotype. In Figure 5.6, roles are ordered

according to probability for each class, and if all probabilities fall below the classification threshold

Chapter 5 Automate Trace Generation 85

Figure 5.6: Reverse Engineered Role-Grained Traces for a Heartbeat Tactic in Hadoop

an additional unclassified role is added. All classes with bold borders have been correctly classified

either as a specific tactic role or as unclassified. As depicted in the diagram, we were able to

correctly classify two out of three receivers, one out of two emitters, and to correctly reject eight

out of 11 unclassified classes. The missed emitter was in fact an interface and not a fully defined

class. Classes originally misclassified by the tactic-grained classifier as heartbeat related are marked

with an X.

As described early in this chapter, the last part of Role Level link construction is mapping the de-

tected roles to their corresponding proxies in the tTP. This step will provide fine-grained traceability

links with enhanced semantics. The link semantic is achieved through the information embodied in

each tTP. As it is depicted in Figure 5.7, a subset of role-classified classes are mapped to specific

roles in a tTP, and other classes which were classified as tactical but unclassified to any role, are

mapped at the tactic level. These mappings are performed automatically as part of the classification

process, and as a result, the classified classes are traced to other tactic-related classes, to quality

goals, and to related requirements. For example, in this case the mapping of DataNode.java as a

Heartbeat emitter and FSNamesystem.java as a Heartbeat receiver establishes a relationship between

them of type Sends Pulse. Similarly it establishes that both java classes contribute to achieving the

reliability requirement that “HDFS must store reliability even in the presence of failures.”

Chapter 5 Automate Trace Generation 86

Figure 5.7: Trace Reconstruction through Mapping Classified Classes at both Tactic and Role
Granularities to a tactic Traceability Pattern

5.4 Examining the Research Questions

This section summarizes the results of experiments conducted in the previous sections and answers

whether the research questions related to the goal of automating trace generation. In total, we con-

ducted four different experiments to examine effectiveness of the proposed solutions for automating

tTP based traceability. These experiment were designed to examine the following research questions

as defined in chapter 1:

• RQ3. How accurately does the Tactic Detector generate trace links using two different training

methods of tactic descriptions and code snippets? Which one produces better classification

results?

• RQ4. How effectively can the Tactic Detector identify tactic-related classes for the five tar-

geted tactics in HADOOP?

• RQ5. How accurately does the Tactic Detector generate role-level trace links for each archi-

tectural tactic?

In order to answer research question RQ3 we created a table (Table 5.3) which reports the results

from the use of the two different training methods of Tactic-Descriptions and Code-Snippets to train

the tactic level classifier. These experiments were run for various term and classification thresholds.

In order to compare the results of these two experiments, we report only a result which achieved

the high levels of recall (0.9 or higher if feasible) while also returning as high precision as possible.

Chapter 5 Automate Trace Generation 87

Table 5.3: A Summary of the Highest Scoring Results

Tactic Training Method F-Measure Recall Prec. Spec. Term/ Classification
threshold

Audit Descript. 0.758 1 0.611 0.972 0.001 / 0.3
Code 0.758 1 0.611 0.833 0.001 / 0.5

Authentication Descript. 0.588 1 0.416 0.945 0.005 / 0.2
Code 0.956 1 0.916 0.977 0.005 / 0.4

Heartbeat Descript. 0.75 0.6 1 1 0.01 / 0.4
Code 0.689 1 0.526 0.775 0.001 / 0.2

Pooling Descript. 0.695 0.8 0.615 0.98 0.005 / 0.6
Code 0.9 0.818 1 1 0.05 / 0.7

Scheduling Descript. 0.705 0.545 1 1 0.05 / 0.8
Code 0.88 1 0.785 0.931 0.01 / 0.4

These results show that in four cases the code-trained classifier recalled all of the tactic related

classes, while also achieving reasonable precision for most of the tactics(.0.526 for Heartbeat to

0.916 for Authentication). The description-trained classifier achieved recall of 1 for only two of

the tactics and its precision was changing from 0.416 for Authentication to 1 for Scheduling and

Heartbeat. In all cases except Heartbeat tactic, the code based training method achieved a higher

level for F-Measure.

The results showed that the code snippets trained classifier generally outperformed the description

trained classifier. This can be concluded from the higher F-Measure which we observed in four out

of five cases trained using the code snippets.

The results of the experiment conducted on the Hadoop case study to reconstruct tactic level trace

links indicates that the proposed approach performed reasonably well on a real case study. These

results showed that for four of the five tactics we were able to recall 100% of the tactic-related classes

at precision values ranging from 18-88%. In the case of the authentication tactic we were only able

to recall 60% of the tactic-related classes. Considering the search space for architectural tactics in a

large project such as Hadoop, the answer to research question RQ4 can be interpreted as positive.

While at the same time, the last experiment on using hybrid approach to reconstruct role-level trace

links did not achieve a high level of F-Measure for all the roles in a tactic, and suffered from a large

number of false positive cases. Therefore we are not able to have a positive answer for RQ5 and

conclude that constructing role-level trace links using our approach was successful.

Chapter 5 Automate Trace Generation 88

5.5 Summary

This chapter has presented a technique for automating the reconstruction of traceability links

between classes and their related architectural tactics. It has been demonstrated and evaluated

within the context of a large-scale performance-centric software system. Integrating the concept

of tTPs with existing notions of trace retrieval and classification introduces a novel approach to

tracing architectural concerns, and minimizes the human effort required to establish traceability. It

produces traces which can be used to support critical software engineering tasks such as software

maintenance and ultimately to help mitigate the pervasive problem of architectural erosion.

“I think a hero is an ordinary individual who finds strength to persevere and endure in spite of

overwhelming obstacles.”

Christopher Reeve

Chapter 6

Off-the-Shelf Classifiers for Detecting

Architectural Tactics

In the previous chapter we presented our novel approach based on a custom made classifier to

automatically establish traceability links. Our classifier is built specifically based on the nature of

architectural tactics in the source code however there are several off-the-shelf classifiers which could

also be used in this context.

Contribution: This chapter presents a ranking comparison for the performance of our tactic detec-

tor approach presented in the previous chapter with a number of Off-The-Shelf text categorization

methods as well as a voting approach including all the classification methods. Although we evalu-

ated several of the classification techniques in the context of this work, we only report the results

for the methods which performed the best and do not include the discussion and the results of the

weak classification techniques.

The results are reported in terms of the Recall, Precision and Specificity which all together measure

the overall performance of these methods and are commonly used in this context. Our results show

that overall, our custom Tactic Detector outperformed the other classifiers and ranked first. In the

following sections, the datasets and experiments used to compare and rank classifiers are presented.

90

Comparison 91

6.1 Datasets for Architectural Code Snippets

The initial experiments described in Chapter 5 utilized a small Code Snippets Dataset which was

developed to support the task of training and evaluating the tactic-grained classifier. In this chapter

in order to extend the scope of the work and rank several classification techniques we increased the

number of projects used in the training set from 10 to 50 projects and furthermore instead of five

architectural tactics we covered 10 tactics.

For each of the ten targeted tactics, 50 different open-source projects were identified in which the

tactic was implemented. For each of these projects we performed an architectural biopsy where we

retrieved a source file implementing the tactic and one random non-tactical source file. As a result

we built a balanced training set from 50 different open source projects.

Each of the code snippets in the training set were selected through one of the following search

methods:

• Direct Code Search: Search for the tactic using source code search engines such as Koders.

In this search approach we utilized several different keywords commonly used in literature

to present and implement these tactics. After retrieving the example of tactical files, a code

review was conducted to determine if the file was tactical or not.

• Indirect Code Search: Searching through the meta-data of projects and developers’ posts

in online forums to find the projects which have implemented architectural tactics. Once a

candidate project was selected, the source code review was conducted to identify code snippets

implementing tactics and to perform the architectural biopsy.

• Tactics’ How-To: Searching through online learning materials and libraries (e.g. MSDN) to

find how-to-examples of implementing architectural tactics in a specific language.

6.2 Classification Methods

This section introduces a set of off-the-shelf classification methods chosen to answer the following

research question:

Comparison 92

• RQ6 What is the best classification technique for detecting architectural tactics?

For this purpose, six well known text classification methods have been chosen. The fist step of this

experiment includes a preparation phase where all data was preprocessed using standard information

retrieval techniques. Terms were stemmed, stop words were removed and the remaining terms were

represented as a vector of terms. These vectors of terms were provided as input for each of the

classification methods. In each case we justify the reason for including the method in our study.

6.2.1 Tactic Detector

As previously discussed in the chapter 5, the Tactic Detector has two phases of training and clas-

sification. The training phase takes a set of preclassified code segments as input, and produces a

set of weighted indicator terms that are considered representative of each tactic type. For example,

a term such as priority, is found more commonly in code related to the scheduling tactic than in

other kinds of code, and therefore receives a higher weighting with respect to that tactic. During

the classification phase the vector of indicator terms is used to predict whether any given source

file implements a specific tactic.

6.2.2 Support Vector Machine

A Support Vector Machine (SVM) is a powerful classifier used in various application domains such as

bug prediction, text classification and feature selection [74]. SVM selects a small number of critical

boundary samples from each class in the training set and builds a linear discriminant function

that separates the instances of each classes with a maximum possible separation. When there is no

linear separation, the training data is transformed into a higher-dimensional space where it becomes

linearly separable. The automatic transformation is done through the technique of “kernel method”

[82].

The main property of SVMs that makes them a suitable classifier for our problem is that their

ability to learn is independent of the dimensionality of the feature space. SVM based classifier

performs well on data with a high dimensional input space which is the case in text classification

[74][121]. Typically these methods have been successful in classifying corpii with very many (more

Comparison 93

than 10000) features [74]. Particularly this is due to the power of SVMs in avoiding the over fitting

problem independent of the number of features. In fact SVMs work according to the margin with

which the classes are separated not based on the number of features.

Additionally SVM methods perform well on sparse vectors. This is the case for all text classification

problems and is valid for our tactic classification problem in which each java file has only a few

non-zero entries.

6.2.3 Classification by Decision Tree (J.48)

Decision Trees (DTs) are a supervised learning method used for classification and regression. The

goal is to create a model that predicts the type of a source file by learning simple decision conditions

inferred from the words used in tactical files. This decision tree based model is a tree for which

internal nodes are test conditions and leaf nodes are categories (tactical/non-tactical). Each internal

node of the tree examines an attribute, in our case term frequency. Each branch from a node in the

tree examines the value for the attribute.

The attributes which are used to build the tree are chosen based on the information gain theory. It

means that the decision tree uses a set of attributes that give maximum information. And the leaf

node predicts a category or class [102].

Building a training set for our problem, each file in the training set is represented as vector of

terms, and has a categorical type of tactical or non-tactical. The problem is to determine a decision

tree that on the basis of word frequencies in each file predicts correctly the value of the category

attribute. C45 decision tree generating algorithm is used to induce classification rules in the form

of decision trees from a set of given examples.

6.2.4 Bayesian Logistic Regressions (BLR)

One of the effective methods commonly used for the purpose of text classification is Bayesian Logistic

Regression model. This method can be applied to problems with a large number of predictor

variables, larger than 10000 [56]. Therefore it is suitable for the text classification problem where

the dimensionality is high and reducing it can impact the accuracy of the results. In the context of

Comparison 94

Figure 6.1: Decision Tree Built to Detect HeartBeat Tactic

text classification, this method provides highly accurate predictions and is generally as effective as

classifiers produced by the support vector machine approach.

Utilizing BLR, we aim to learn a classifier, y = f (x), from a set of training examples

D = (x1, y1), ..., (xi, yi), ..., (xn, yn). Each document of xi, is presented in terms of a vector of word

frequencies, xi = [xi,1 , ..., xi,j , ..., xi,d]. The values yi ∈ {+1,−1} are class labels encoding Tactical

as (+1) or nonTactical as (-1) of the vector in the category.

In BLR we are interested in conditional probability models of the following form

p(y = +1|β, xi) = ψ(βTxi) = ψ(
∑

j βjxi,j)

In what follows we use the logistic link function ψ(r) = exp(r)
1 + exp(r)

Comparison 95

For detecting architectural tactics, p(y = +1|xi) will be an estimate of the probability that the ith

source file is tactical. Then a threshold is needed to make decision about this.

6.2.5 AdaBoost

Boosting is an approach in machine learning that creates a highly accurate prediction model by

combining many relatively weak and inaccurate ones. The AdaBoost algorithm proposed by Freund

and Schapire [50] is one of the most widely applied methods in several domains including software

engineering.

Boosting is performed by running a given weak classification algorithm repeatedly over the dis-

tribution of the training data and then building an accurate classifier by computing a weighted

majority vote of the weak classifiers. The weight assigned to each classifier (in Weka) is equal to

log(1/Beta)wherebeta = error/(1-error). AdaBoost increases the weight of cases which are hard to

classify at each iteration.

6.2.6 Ensembled Rule Learning: SLIPPER

Another method utilized in this chapter is the rule-based learning algorithm called SLIPPER (for

Simple Learner with Iterative Pruning to Produce Error Reduction) [38].

SLIPPER is a standard rule-learning algorithm which is based on confidence-rate boosting and is

commonly used for text classification. In this method a weak learner is first boosted to identify a

weak hypothesis (an IF-THEN rule), then the training data are re-weighted for the next round of

boosting. The main difference of this approach with traditional rule-learning methods is that the

data used for learning the rules are not removed from the training set. Instead they are given a

lower weight in the next boosting rounds.

The weak hypotheses generated from each round of boosting are merged into a stronger hypothesis

in order to ultimately build a binary classifier. The SLIPPER method is recognized as a scalable

approach which can work on noisy data with high dimensionality while other divide and conquer

rule learning methods suffer from this point. Furthermore, the rule sets generated by this approach

are smaller in size in comparison with C45 rules.

Comparison 96

6.2.7 Bagging

Bagging, a method described by Breiman [20], works in the same way as boosting but utilizes

a simpler way for generating the training set. This approach creates individual classifiers for its

ensemble by training each of them on a random redistribution of the training set. Each of the

classifiers is trained on a data set created through random sampling of the original training set

with replacement. Therefore many of the original items in the training set may be repeated in the

resulting training sets while some may be left out. A majority vote on the classification results

defines the final results.

Similarly to the boosting case, the training sets are also samples of the original data set, but the

“hard to classify” cases more frequently appear in the later training sets. This is mainly because

Boosting aims at correctly predicting hard to classify cases.

Bagging is more effective on “unstable” learning algorithms such as decision trees where small

changes in the training set result in large changes in predictions [21].

6.3 Tuning Classifiers through N-Fold Cross-Validation

N-fold cross validation experiment is commonly used for tuning the classification methods to find

their best thresholds or examining the generalizability of the results when there is a limited number

of data points. In our work, we use N-fold cross validation experiments to fine tune each of the

classification techniques. We conducted a 5-Fold cross validation experiments over 50 code snippets

collected previously. Several rounds of experiments were conducted, where we manually modified

the classifiers parameters to obtain the parameters which result in the best accuracy for each of the

classifiers. These parameters are reported at (WEBSITE). Tables 6.1 to 6.10 report the outcome of

each of the classification techniques in forms of recall, precision and F-Measure on each individual

architectural tactic.

The results of the 5-Fold cross validation experiments indicate that SVM classifier was the overall

weakest classifier. The remaining 6 classifiers exhibited very close accuracy across several architec-

tural tactics. However, it should be stated that the purpose of these experiments was not to rank

the classifier. The 5-fold cross validation experiments were performed to solely tune each classifier,

Comparison 97

Table 6.1: 5-Fold Cross-Validation for Audit Tactic

SVM Slipper J48 Bagging AdaBoost Bayesian TD

Precision 0.96 0.85 0.85 0.88 0.85 0.94 0.84
AuditRecall 0.46 0.78 0.85 0.88 0.85 0.91 0.92

F-Measure 0.62 0.81 0.85 0.88 0.85 0.92 0.88

Table 6.2: 5-Fold Cross-Validation for Authenticate Tactic

SVM Slipper J48 Bagging AdaBoost Bayesian TD

Precision 0.91 0.96 0.98 1.00 0.98 1.00 0.96
authenticateRecall 0.58 0.94 0.92 0.92 0.94 0.80 0.98

F-Measure 0.71 0.95 0.95 0.96 0.96 0.89 0.97

Table 6.3: 5-Fold Cross-Validation for HeartBeat Tactic

SVM Slipper J48 Bagging AdaBoost Bayesian TD

Precision 0.91 0.84 0.77 0.89 0.91 0.92 0.77
HeartBeatRecall 0.62 0.84 0.88 0.84 0.86 0.70 0.92

F-Measure 0.74 0.84 0.82 0.87 0.89 0.80 0.84

Table 6.4: 5-Fold Cross-Validation for Pooling Tactic

SVM Slipper J48 Bagging AdaBoost Bayesian TD

Precision 0.97 0.94 0.94 0.94 0.98 0.94 0.92

PoolingRecall 0.66 0.96 0.96 0.94 0.96 0.96 0.98
F-Measure 0.79 0.95 0.95 0.94 0.97 0.95 0.95

Table 6.5: 5-Fold Cross-Validation for Scheduler Tactic

SVM Slipper J48 Bagging AdaBoost Bayesian TD

Precision 0.98 0.88 1.00 1.00 1.00 0.96 0.86

schedulerRecall 0.88 0.92 0.98 0.98 0.98 0.98 0.88
F-Measure 0.93 0.90 0.99 0.99 0.99 0.97 0.87

Table 6.6: 5-Fold Cross-Validation for Asynch Tactic

SVM Slipper J48 Bagging AdaBoost Bayesian TD

Precision 0.58 0.96 0.96 0.96 0.96 0.80 0.95

AsynchRecall 0.92 0.96 0.98 0.98 0.98 0.78 0.84
F-Measure 0.71 0.96 0.97 0.97 0.97 0.79 0.89

Comparison 98

Table 6.7: 5-Fold Cross-Validation for HMAC Tactic

SVM Slipper J48 Bagging AdaBoost Bayesian TD

Precision 0.78 0.96 0.96 0.94 0.96 0.95 0.91

HMACRecall 0.76 0.96 1.00 0.98 1.00 0.84 0.82
F-Measure 0.77 0.96 0.98 0.96 0.98 0.89 0.86

Table 6.8: 5-Fold Cross-Validation for RBAC Tactic

SVM Slipper J48 Bagging AdaBoost Bayesian TD

Precision 0.83 0.91 0.92 0.92 0.92 0.92 0.86

RBACRecall 0.60 0.86 0.88 0.88 0.88 0.88 0.88
F-Measure 0.70 0.89 0.90 0.90 0.90 0.90 0.87

Table 6.9: 5-Fold Cross-Validation for Session Tactic

SVM Slipper J48 Bagging AdaBoost Bayesian TD

Precision 0.63 0.91 0.91 0.91 0.91 0.76 0.91

SessionRecall 0.80 0.98 0.98 0.96 0.98 0.87 1.00
F-Measure 0.71 0.94 0.94 0.93 0.94 0.81 0.95

Table 6.10: 5-Fold Cross-Validation for CheckPoint Tactic

SVM Slipper J48 Bagging AdaBoost Bayesian TD

Precision 0.62 0.90 0.94 0.94 1.00 1.00 0.94

CheckPointRecall 0.42 0.92 0.94 0.94 0.94 0.97 0.94
F-Measure 0.50 0.91 0.94 0.94 0.97 0.99 0.94

and examine the individual accuracy of the classifiers, a second experiment was designed to examine

how each of the classifiers performed on an independent large scale software project.

6.4 Ranking the Classifiers based on Hadoop Case Study

In the previous section, a 5-fold cross validation experiment was used to identify best parameters for

each classifier. Using those parameters, each classification method was used over Apache Hadoop

framework, a large scale software project.

Comparison 99

The purpose of this experiment was to (i) rank the classifiers based on their performance, (ii) create

a majority voting mechanism between the classifiers and compare it with the tactic detector and

lastly (iii) make a suggestion about which classifiers should be used in future.

The following subsections report the results of this study for each architectural tactic in Hadoop.

In addition to Recall, Precision and F-Measure, Sensitivity is also reported as it shows more details

about the power of each classifier in reducing false positive cases which is very important in the

utilization of the classifiers in practice.

6.4.1 Audit Trail Tactic

The outcome of each classifier in detecting Audit Trail tactic in Apache Hadoop project is presented

in the Table 6.11. In Hadoop, the Tactic Detector (TD) with the F-Measure of 0.83 outperformed

the other classifiers. It also performed better than the majority voting. The low accuracy of majority

voting method is because most classifiers participating in the voting had a very low accuracy. The

high sensitivity of tactic detector indicates that not only does it detect the audit trail source files

with high accuracy, it also ignores the majority of non-tactical source files.

Table 6.11: Classifiers Comparison: Audit Trail Architectural Tactic in Hadoop

SVM Slipper J48 Bagging AdaBoost Bayesian TD Voting

Precision 0.08 0.02 0.03 1.00 0.03 0.04 1.00 0.67
Recall 0.29 0.29 0.29 0.29 0.29 0.50 0.71 0.50

F-Measure 0.13 0.04 0.06 0.44 0.06 0.07 0.83 0.57
Sensitivity 0.99 0.95 0.96 1.00 0.96 0.95 1.00 1.00

In practice a classifier with sensitivity of %95 is not a good methods as it means that the developers

of a medium scale project like Apache Hadoop would receive over 100 of false positive notifications.

6.4.2 Authentication Tactic

Similarly for Authentication architectural tactic as reported in the table 6.12 the Tactic Detector

outperformed the other methods, by achieving the F-Measure of 0.66. In case of Authentication, the

tactic detector correctly retrieved 70% of relevant source files while the precision of 61% indicates

the high rate of false positive cases.

Comparison 100

Table 6.12: Classifiers Comparison: Authenticate Architectural Tactic in Hadoop

SVM Slipper J48 Bagging AdaBoost Bayesian TD Voting

Precision 0.14 0.16 0.57 0.58 0.17 0.15 0.61 0.47
Recall 0.52 0.61 0.59 0.56 1.00 0.37 0.70 0.66

F-Measure 0.22 0.26 0.58 0.57 0.30 0.21 0.66 0.55
Sensitivity 0.9473 0.9224 0.9929 0.9935 0.9243 0.9657 0.9929 0.98

Similarly we discovered that majority voting has also failed to achieve the better accuracy. This is

mainly because the weaknesses of the classifiers participated in the voting.

6.4.3 HeartBeat Tactic

In case of heartbeat tactic, four of the classifiers achieved a recall of 0.96 and higher. However

three out of four exposed a high false positive rate. Tactic Detector has achieved the maximum

F-Measure among all the classifiers.

Table 6.13: Classifiers Comparison: HeartBeat Architectural Tactic in Hadoop

SVM Slipper J48 Bagging AdaBoost Bayesian TD Voting

Precision 0.07 0.31 0.22 0.50 0.35 0.07 0.66 0.57
Recall 0.11 0.59 1.00 1.00 0.96 0.04 1.00 0.96

F-Measure 0.09 0.41 0.36 0.67 0.51 0.05 0.79 0.71
Sensitivity 0.98 0.98 0.94 0.98 0.97 0.99 0.99 0.99

6.4.4 Resource Pooling Tactic

In case of Resource Pooling tactic, although all the methods achieved similar sensitivity rate, J48,

Bagging, AdaBoost and Tactic Detector performed very well achieving a F-Measure of 0.87 to 0.93

and the voter achieved similar performance. SVM method performed well in identifying non-tactical

source files, achieving a high precision but it has failed to identify most of the tactical files.

6.4.5 Resource Scheduling Tactic

In case of the Scheduling architectural tactic, the performance of the classifiers was less diverse.

Tactic Detector and Voting methods exhibited the highest F-Measure.

Comparison 101

Table 6.14: Classifiers Comparison: Resource Pooling Architectural Tactic in Hadoop

SVM Slipper J48 Bagging AdaBoost Bayesian TD Voting

Precision 0.71 0.13 0.89 0.88 0.87 0.16 0.88 0.89
Recall 0.11 0.44 0.97 1.00 0.87 0.33 1.00 0.96

F-Measure 0.19 0.20 0.93 0.93 0.87 0.22 0.93 0.92
Sensitivity 1.00 0.83 0.99 0.99 0.99 0.90 0.99 0.99

The scheduling architectural tactic was implemented across several modules of Hadoop and over

87 source files. Therefore the precision of 65% and recall of 70% for example, will result in about

44 false notifications, and 82 true positive cases. Considering the size of Hadoop project, this is a

significant enhancement in productivity.

Table 6.15: Classifiers Comparison: Scheduling Architectural Tactic in Hadoop

SVM Slipper J48 Bagging AdaBoost Bayesian TD Voting

Precision 0.36 0.65 0.64 0.65 0.66 0.32 0.65 0.68
Recall 0.63 0.20 0.87 0.89 0.77 0.78 0.94 0.89

F-Measure 0.46 0.30 0.74 0.75 0.71 0.46 0.77 0.77
Sensitivity 0.94 0.99 0.97 0.97 0.98 0.91 0.97 0.98

6.4.6 Asynchronous Method Invocation Tactic

In comparison to other architectural tactics, Asynchronous Method Invocation has a different nature

where the evidence of tactic existence can likely only be seen structurally. However, in Hadoop, we

were able to extract instances of this tactic based on comments about the type of communication.

The results of applying different methods on Apache Hadoop projects shows that in five out of

eight methods we achieved similar performance. The Bayesian Logistic Classifier, entirely failed to

correctly retrieve a single instance of tactical files.

Table 6.16: Classifiers Comparison: Asynch Architectural Tactic in Hadoop

SVM Slipper J48 Bagging AdaBoost Bayesian TD Voting

Precision 1.00 0.19 1.00 1.00 0.82 0.00 1.00 1.00
Recall 0.72 0.44 0.72 0.72 0.50 0.00 0.72 0.72

F-Measure 0.84 0.26 0.84 0.84 0.62 0 0.84 0.84
Sensitivity 1.00 0.98 1.00 1.00 1.00 0.97 1.00 1.00

Comparison 102

6.4.7 Hash Based Method Authentication

HMAC exhibited the lowest F-Measure across all architectural tactics. The Tactic Detector with

F-Measure of 0.11 listed as the last classifier for HMAC, although it had the highest precision of

0.86. The problem is due to the large false positive rate. The Tactic Detector could correctly

identify 6 out of 7 java files implementing HMAC,but it also retrieved about 99 files which had

nothing to do with HMAC. Across all the other architectural tactics, Tactic Detector shown to be

efficient in decreasing the false positive rates.

Table 6.17: Classifiers Comparison: HMAC Architectural Tactic in Hadoop

SVM Slipper J48 Bagging AdaBoost Bayesian TD Voting

Precision 0.09 0.12 0.12 0.12 0.12 0.13 0.06 0.12
Recall 0.63 0.50 0.57 0.57 0.57 0.71 0.86 0.57

F-Measure 0.15 0.19 0.20 0.20 0.20 0.22 0.11 0.20
Sensitivity 0.97 0.98 0.98 0.98 0.98 0.98 0.94 0.98

6.4.8 RBAC Tactic

In case of RBAC architectural tactic, most classification methods, could not achieve even 50% of

recall. The Tactic Detector was the only exception with recall of 97%. The precision of Tactic

Detector, indicates that out of all the retrieved cases about one third are correctly classified java

files.

For example in the Hadoop case study, about 121 java files are identified as RBAC of which about

38 of them are correctly classified files, 1 file has been misclassified as unrelated and 83 files are

false positives. These numbers are considered the best in terms of accuracy across other classifiers.

Table 6.18: Classifiers Comparison: RBAC Architectural Tactic in Hadoop

SVM Slipper J48 Bagging AdaBoost Bayesian TD Voting

Precision 0.12 0.19 0.20 0.42 0.35 0.03 0.31 0.69
Recall 0.13 0.49 0.21 0.21 0.28 0.13 0.97 0.23

F-Measure 0.12 0.27 0.20 0.28 0.31 0.05 0.48 0.35
Sensitivity 0.98 0.95 0.98 0.99 0.99 0.90 0.95 1.00

Comparison 103

6.4.9 Secure Session Management

The performance comparison of the classifiers for secure session tactics, shows that SVM and

Bayesian classifiers have incorrectly classified most of the tactical files. Slipper classifier ranked

first among all the classifiers, then Bagging is the second best classifier. Tactic Detector, AdaBoost,

J48 and even the Voter all performed in a similar manner.

In comparison with the other architectural tactics, this is the first time that Slipper classifier wins

the competition. In most previous cases tactic detector had performed better than the rest.

Table 6.19: Classifiers Comparison: Secure Session Architectural Tactic in Hadoop

SVM Slipper J48 Bagging AdaBoost Bayesian TD Voting

Precision 0.07 1.00 0.84 0.84 0.84 0.09 0.84 0.84
Recall 0.11 1.00 0.84 1.00 0.84 0.31 0.84 1.00

F-Measure 0.09 1.00 0.84 0.91 0.84 0.14 0.84 0.91
Sensitivity 0.98 1.00 1.00 1.00 1.00 0.97 1.00 1.00

Table 6.20: Classifiers Comparison: CheckPoint Session Architectural Tactic in Hadoop

SVM Slipper J48 Bagging AdaBoost Bayesian TD Voting

Precision 0.29 1.00 1.00 1.00 1.00 0.12 1.00 1.00
Recall 0.35 1.00 0.94 0.94 0.97 0.68 1.00 0.94

F-Measure 0.32 1.00 0.97 0.97 0.99 0.21 1.00 0.97
Sensitivity 0.98 1.00 1.00 1.00 1.00 0.90 1.00 1.00

6.4.10 CheckPoint Architectural Tactic

The last architectural tactic we studied was CheckPoint, in which the Slipper classifier performed as

well as the Tactic Detector. Although J48, Bagging, AdaBoost and Voting classifiers also achieved

a very close F-Measure of 0.97 and higher. SVM and Bayesian performed worst among all the

methods.

6.5 Examining Research Questions

This section, examines the following research question identified for this part of the research:

Comparison 104

• RQ6 What is the best classification technique for detecting architectural tactics?

In this work, for which dataset creation and validation is extremely time consuming, we decided to

focus on evaluating the practicality of the classifiers in the context that they are going to be used.

The results of Hadoop study indicates that the Tactic Detector outperformed the voting approach

and this is mainly due to the problem of weak voters.

Furthermore, the purpose of this work is to port a classifier into a Integrated Development Envi-

ronment such as Eclipse IDE. Therefore first we need to select a classifier which is reliable, easy to

use , relatively stable and does not require a heavy involvement of the developers or the actual user

to tune or make use of it.

Table 6.21: F-Measure Reported for Different Classifiers in Hadoop Case Study

Audit auth heartb Pooling sche Asynch HMAC RBAC Sess Check
SVM 0.13 0.22 0.09 0.19 0.46 0.84 0.15 0.12 0.09 0.32

Slipper 0.04 0.26 0.41 0.20 0.30 0.26 0.19 0.27 1.00 1.00
J48 0.06 0.58 0.36 0.93 0.74 0.84 0.20 0.20 0.84 0.97

Bagging 0.44 0.57 0.67 0.93 0.75 0.84 0.20 0.28 0.91 0.97
AdaBoost 0.06 0.30 0.51 0.87 0.71 0.62 0.20 0.31 0.84 0.99
Bayesian 0.07 0.21 0.05 0.22 0.46 0.00 0.22 0.05 0.14 0.21

TD 0.83 0.66 0.79 0.93 0.77 0.84 0.11 0.48 0.84 1.00
Voting 0.57 0.55 0.71 0.92 0.77 0.84 0.20 0.35 0.91 0.97

Considering this context and the nature of our dataset, we performed a rank comparison of the

classifiers. Table 6.21 reports the F-Measure from all the previous experiments in a table and

highlights the top classifier. In detecting 10 different architectural tactics from source code, the

Tactic Detector, could rank first, in eight datasets out of ten while in 2 cases the Bayesian and

Slipper classifiers performed better than the tactic detector.

Further statistical analysis were performed to examine if the differences between the classifiers are

statistically significant or not. Table 6.22 shows descriptive statistics of our data points. In this

table we report both mean and median for the F-Measure of each classifier. This data point does not

follow a normal distribution, therefore we used Friedman ANOVA test which is a non-parametric

test for comparing the median of paired samples.

Comparison 105

Table 6.22: Descriptive Statistics for F-Measure of Different Classification Techniques

Group N Mean Rank Median

SVM 10 2.60 .170381
SLIPPER 10 3.55 .266862
J48 10 4.60 .661641
Bagging 10 5.85 .707120
AdaBoost 10 4.40 .565247
Bayesian 10 2.40 .174968
Tactic Detector 10 6.50 .813725
Voting 10 6.10 .741164
Total 80 .458313

Friedman test (Table 6.23) indicates the there is a statistically significant difference between the

performance of all the classifiers used in our study. However this test does not provide any insight

about which classifier is better than the other ones.

Since the Tactic Detector exhibited the highest mean and median (Table 6.22) across 10 different

architectural tactics in Hadoop, we performed a pairwise comparison between Tactic Detector and

the other classification techniques.

Table 6.23: Testing Statistically Significance in Medians of Classifiers Performance

Friedman Test’s Statistics

N 10
Chi-Square 30.395
df 7
Asymp. Sig. .000

To test the statistical significance between performance of Tactic Detector Table 6.24 reports the

results of this experiment using both non-parametric and parametric tests. Uniformly both tests

indicated that Tactic Detector is more accurate than SVM, Slipper, AdaBoost and Bayesian classi-

fication technique and this conclusion is statistically significant with a p-value of 0.05. Furthermore

Tactic Detector performs better than Bagging and J45 classification methods but this conclusion

with a p-value of 0.05 and confidence level of 0.95 is not statistically significant.

Similarly although Tactic Detector performs better than the Voting mechanism, the difference

between two is not statistically significant. However Tactic Detector is certainly a better approach

to be used than Voting, simply because Voting mechanism utilizes the Tactic Detector as a voter.

Comparison 106

Table 6.24: Pairwise Comparison of Classifiers with Tactic Detector

Test Null Hypothesis SVM Slip. J48 Bag. AdaB. Bay. Voting

Wilcoxon
Signed
Rank Test

The difference in
Medians equals to
zero

0.011 0.021 0.069 0.123 0.028 0.007 0.173

Paired
Sample
T-Test

The difference in
Means equals to
zero

0.001 0.012 0.103 0.154 0.044 0.000 0.193

In terms of stability of the approach, the performance of Tactic Detector has not drastically changed

from a cross-validation experiment to a large scale experiment on unseen data of Hadoop. In all the

other classifiers, there have been a major change in false positive notifications over Hadoop project.

This questions the stability of the methods, across different learning and testing set sizes which

can quite often occur in the software engineering context. In many cases we may need to detect

architectural tactics in projects of different sizes and also with the different ratios of correct and

incorrect classes in the dataset.

Furthermore, approaches such as Bagging, Boosting and Slipper are not simple approaches, they

require creation of different rule learners. In contrast, Tactic Detector is a simple, linear classifier

which works the same on different dataset sizes. This classifier is easy to use, easy to understand

and has now assumptions about the data.

6.6 Summary

This chapter presented several experiments used to rank the performance of a number of Off-the-

shelf text categorization methods, tactic detector and a majority voting classifier. The results

indicate that over 10 architectural tactics, our approached performed as a top classifier.

We ran two types of experiment, first a set of 5-fold cross-validation experiments, and secondly an

experiment on unseen data of Apache Hadoop. While most of the classification methods performed

well on 5-fold cross validation, their accuracy significantly dropped over Hadoop case study, mainly

due to a large number of false positive cases.

Part III

Traceability for Architecture Erosion

107

“Treat people as if they were what they ought to be and you help them become what they are capable

of becoming.”

Goethe

Chapter 7

Notifications and Visualization

Previous chapters, described our approach for creating a strategic infrastructure of architecturally-

relevant traceability links. In this part of the research we investigated techniques for effectively

utilizing those links to keep developers informed of relevant architectural decisions. Developing a

trace usage technique and integrating it with programming IDEs is important for the simple reason

that even when traceability links have been created, practitioners often do not utilize them because

of the inaccessibility of traceability links to support daily software engineering tasks. [27]

Contribution: The developed architectural tactic discovery technique is used to establish trace-

ability links. The traceability links then are used for keeping developers informed of underlying

architectural concerns so that they can modify the design and code without inadvertently degrading

the architectural quality. To achieve this goal, our developed solution involves monitoring architec-

turally significant classes, and providing timely notifications to developers to keep them informed

of underlying architectural decisions related to any classes they may be modifying. The monitoring

and notification scheme is build upon Event-based Traceability (EBT) [28–30] which allowed trace

users to be registered as listeners for change events to specific artifacts. In this chapter we extend

EBT so that all classes mapped to a tTP are monitored by the EBT system, and notifications are

displayed within the IDE (integrated development environment) to the current user.

109

Chapter 7 Notifications and Visualization 110

7.1 Usage of Event Based Traceability

In this work we incorporate EBT it into our prototyped infrastructure. Our approach has the

following steps:

• The tactic detector is used to classify all the classes in a project and create Tactic-Level

traceability links.

• The constructed trace links are represented to developers in the form of recommendations,

and they are asked to approve or reject the identified links.

• All the tactical classes, are registered as event initiators to the event server through their

subscriber manager.

• The source code monitoring module, monitors all the tasks the developer performs. In case

of a change to a class implementing a tactic, this monitoring module publishes an event to

the notification module.

• The notification module, informs the developer by sending a message to the warning list

of the IDE. If the developer clicks on the message, a traceability visualization panel will

open which shows the tTP which the changed file is traced to. The developer will see the

tactical architectural decisions, and requirements which could be impacted by his/her change.

Additionally he/she can view further design knowledge such as codification of tactic, rationale

and the business goals behind the tactical decision.

Figure 7.1 depicts the sequence of these actions. First, all the tactical code snippets are registered

with a central coordinator which monitors those code snippets for modifications, and generate

informational messages to keep the maintainer informed of underlying architectural decisions.

The visual notifications are integrated with a monitoring platform which monitors the code changes

and visually informs the developers of potential architectural decisions behind the code, possibly

impacted requirements and business goals. The Event-Based Asynchronous Pattern is used to

implement the code monitoring infrastructure. This pattern support implementation/integration

with the IDE in various ways. Time consuming tasks such as on demand detection of tactics,

Chapter 7 Notifications and Visualization 111

Figure 7.1: Monitoring Critical Architectural Element during Maintenance

and visualization of design knowledge are accomplished “in the background”, without interrupting

programmers activities or slowing down their programming environment. The monitoring infras-

tructure implemented by this pattern executes multiple operations simultaneously, handle all the

activities done by programmers and provide visual notifications when each completes. In the fol-

lowing sections first we present an illustrative example which demonstrates how a tTP can be used

in practice. Furthermore we examine the following research question:

RQ7. To what extent can automatically reconstructed unvetted trace links support change

notification without inundating developers with excessive false positives?

7.2 Two Notification Scenarios

To illustrate how notifications and visualizations can be used to address the erosion problem, we

demonstrate two examples of actual changes here. The first example uses tTP and EBT infras-

tructure at the model level, while the second one uses tactic detector at the code level. These

two examples are selected to show how we can use the architecture level trace links during daily

activities of programmers.

Chapter 7 Notifications and Visualization 112

7.2.1 Illustrative Example at Model Level using tTP

To illustrate how tTPs can help mitigate the erosion problem, we provide a step-by-step example of

a specific change request executed within the context of Sparx Enterprise Architect (EA). It should

be noted that event monitoring and basic notifications are fully functioning in our tool. The actual

implementation is in eclipse but could easily be implemented in other environment such as EA.

Some of the GUIs depicted in this change scenario are still under development.

For this example we use part of the Lunar Robat Architecture presented in Appendix A.2. In our

maintenance scenario, we decide to modify and enhance the robot architecture by adding a high

resolution stereo camera to the system to work in conjunction with existing forward looking infrared

cameras and laser sensors. The new data is processed by modifying an existing algorithm in the ob-

stacle detection (OD) component from the navigation domain. The OD component utilizes infrared

cameras and other resources to identify obstacles in the planned path. It sends obstacle messages

to two Path Planning (PP) components. However, an underlying architectural decision to use the

heartbeat tactic to monitor the availability of the OD component is not explicitly documented, even

though the design calls for the OD component to embed heartbeats into the obstacle messages sent

to the PPi component. This means that obstacle messages must be sent regularly, regardless of

whether an obstacle is detected or not.

In the change scenario, the developer starts modifying the OD component to interface with the

infrared camera, and to integrate data from the camera into the obstacle detection logic. As the

OD component is a monitored element (i.e. registered as playing a role in the heartbeat pattern),

an ‘architectural’ icon is displayed on the screen. This is labeled as (1) in Figure 7.2 and shown as

a pyramid over the OD component on the left hand side of the Enterprise Architect (EA) screen.

Once an architectural event is detected, the related architectural tactics are visualized in the IDE.

In our prototype we display the tactic in a separate pane on the right hand side of the screen

(labeled (3)), and color-coordinate specific roles in the primary architectural view (labeled (2))with

those of the tactic.

In this way, the developer modifying the OD component is informed of architectural tactics that

impact the OD component. The tactical roles of the OD are clearly visible in the visualized tactic,

and in this case show that the OD plays the role of a heartbeat emitter, and that the heartbeat is

Chapter 7 Notifications and Visualization 113

Figure 7.2: Visualizing architectural tactics within Enterprise Architect

packaged into the obstacle message sent to the PPi component. Although the PPii component also

receives the obstacle message, it does not monitor the heartbeat and is therefore not involved in the

tactic. This example illustrates how tTPs are used during the maintenance process.

7.2.2 Illustrative Example at the Code Level using Tactic Detector

The second example shows how trace links can be used to help prevent architectural erosion at the

code level. We illustrate this with an actual scenario from another project. In TraceLab project

[122], there is a change scenario in which a new developer joins the team and starts modifying a

part of the system implementing serialization to transmit a copy of the needed data from the shared

memory (blackboard) to the executing component. Our traceability framework therefore instigates

a “change-impact analysis” request to inform him of the consequence of change. The notification

and visualization mechanism in our framework utilizes trace links automatically generated from

code to architectural decisions and from architectural decisions to rationale and goals behind the

Chapter 7 Notifications and Visualization 114

Figure 7.3: A Screen Shot of the Archie Tool showing Traceability Established from Implemented
Code via the Architectural Decisions to use the Blackboard Pattern to Quality Concerns related to

Performance and Usability

serialization code. Figure 7.3 shows parts of our trace infrastructure implemented through our

Archie tool suite.

Archie introduces a pluggable tool which provides an architectural protection layer for use in a

variety of programming IDEs and software modeling tools. Archie utilizes the Tactic Detector to

detect and monitor code snippets that implement key architectural decisions in the source code

and proactively keep developers informed of underlying architectural decisions during maintenance

activities.

In its current form Archie provides support for modeling architectural tactics as tTPs, and for

mapping code to elements in the tTP. Mapping can be done manually for all types of decisions and

automatically for tactical decisions. Figure 7.3 depicts a screen shot of using Archie to establish

trace links by mapping the components implementing Blackboard TIM to its code in the TraceLab

project.

Chapter 7 Notifications and Visualization 115

You are modifying Datanode.java. This file appears to play the
role of heartbeat emitter in the heartbeat tactic.

This class therefore contributes to reliability and availability
goals. Tell me more.

Please confirm the role of this class in the heartbeat tactic:

Heartbeat emitter (Prob 79%)

Heartbeat sender (Prob 75%)

Supporting role

Unrelated to heartbeat



Figure 7.4: Utilizing Traces to Generate Maintenance Notifications

7.3 Examining Research Questions

This section, examines the following research question identified for this part of the research:

RQ7. To what extent can automatically reconstructed unvetted trace links support change

notification without inundating developers with excessive false positives?

An important, yet often unexplored research question addresses the issue of whether automatically

reconstructed traceability links are good enough for use. Prior work has assumed that the generated

(candidate) links must be presented to the user for evaluation and feedback prior to their use [41][40].

We therefore designed an experiment to evaluate the usefulness of the notified messages through

coarse-grained traceability links for supporting software maintenance. This task is of particular

interest to our work, because of the previously discussed problems of architectural degradation. The

experiment utilized the Hadoop change logs for the past four releases, and simulated the scenario in

which the generated tactic-level traceability links were used to determine whether a modified class

was tactic-related. If it was, we simulated the generation of a message to inform the developer about

the underlying architectural tactic. For example, a modification made to the Datanode.java class

might result in the notification message shown in Figure 7.4 which utilizes traceability to provide

useful architectural information.

Table 7.1(a) reports on the number of successfully generated notifications (true positives), the num-

ber of unnecessary notifications (false positives), the number of missed notifications (false negatives),

and the number of correctly ignored maintenance tasks (true negatives). It also computes recall

(the fraction of changes that were tactic-related for which messages were actually sent), precision

Chapter 7 Notifications and Visualization 116

Table 7.1: Accuracy of Generated Notification Messages during Simulated Modifications to
Hadoop

(a) Notification Messages with no User Feedback
True
Pos.

False
Pos.

True
Neg.

False
Neg.

Recall Prec. Spec.

Audit 159 5 4405 0 1 0.96 0.99
HeartBeat 256 57 4256 0 1 0.81 0.98
Scheduling 709 1301 2559 0 1 0.35 0.66
Res. Pooling 315 19 4235 0 1 0.94 0.99
Authentication 259 266 4037 7 0.97 0.49 0.93
Averages: 0.99 0.71 0.91

(b) Notification Messages with User Feedback
True
Pos.

False
Pos.

True
Neg.

False
Neg.

Recall Prec. Spec.

Audit 159 1 4409 0 1 0.99 0.99
HeartBeat 256 9 4304 0 1 0.96 0.99
Scheduling 709 262 3598 0 1 0.73 0.93
Res. Pooling 315 4 4250 0 1 0.98 0.99
Authentication 259 19 4284 7 0.97 0.93 0.99
Averages: 0.99 0.92 0.98

(the fraction of sent messages that were for tactic-related classes), and specificity (the fraction of

changes that were unrelated to any tactics and for which no notifications were sent). Recall of 1.0

was achieved for four of the tactics, and 0.97 for the Authentication tactic. Specificity was over

0.93 in all cases except for the scheduling tactic; however precision ranged from 0.35 to 0.96. Table

7.1(b) reports on a second scenario in which we assume that the developer rejects incorrect notifica-

tion messages, in effect rejecting the underlying traceability link and leading to its removal. Under

these circumstances, feedback from initial notifications increases recall, precision, and specificity

significantly higher for all five tactics. In fact all metrics are over 0.92 except the precision for the

scheduling tactic which remains at 0.73.

The results reported for this case study demonstrate that our approach generates tactic-grained

links capable of supporting a critical task such as architectural preservation. Therefore the answer

to research question of RQ7 is positive; however, it also highlights the importance of capturing

relevance feedback from the developers as they receive impact notifications in order to gradually

filter out the false-positive links, and ultimately develop a relatively accurate set of traces.

Chapter 7 Notifications and Visualization 117

7.4 Summary

In this chapter we utilized previously developed traceability infrastructure and developed a notifi-

cation & visualization mechanism to help reduce the risk of design erosion. Our approach achieves

this by keeping the developers informed of tactical architectural decisions behind the code and no-

tifying them which architectural tactics and consequently software qualities can be affected by the

changes they implement. This would address one of the key causes of architectural erosion known

as insensitivity to design. The notification mechanism is built primarily on top of automated trace

reconstruction technique and has been evaluated in Hadoop case study.

The work presented in this chapter represents an initial attempt to address the challenges introduced

by Grady Booch [18] in his IEEE article named “Draw me a picture”. In this article, he asks the

software engineering community to develop new visualization tools capable of providing greater

insights into underlying frictions, design decisions, and social factors of a software system. Our

traceability approach makes a partial contribution to addressing this challenge through notifying

the developer and showing how different parts of the system work together to achieve various quality

goals.

Part IV

Design for Change

118

You won’t get it right the first time anyway!

Frederick P. Brooks

Chapter 8

Variability Points and Design Pattern

Usage in Architectural Tactics

In this chapter we conducted a novel analysis of the potential for merging design pattern detection

with tactic detection i.e. using one to support the other. We examined various open source soft-

ware, with the aim of using design pattern detector to increase the accuracy of tactic detector. Our

observations indicated that the use of design patterns was sparse (based on the study) and therefore

the conclusion was that it would not be worth the cost and effort to incorporate an additional step

of design pattern detection into the tactic detection. Nevertheless in the course of conducting the

study, we observed that design patterns use in tactics produced some advantages that contribute

to our broader goal of preventing architectural erosion. Therefore this chapter aims to utilize a

complimentary perspective in preventing architecture erosion. Following David Parnas’ notion of

“Design for Change”[97][98], we propose a concrete set of guidelines to using design patterns to im-

plement or modify a tactic so that tactic implementation becomes more efficient and tactics become

easier to maintain. The guidelines are created through an extensive analysis of hundreds of open

source systems; They are presented, through a set of decision trees which support a programmer in

his decision making process to select a design pattern based on the constraints or forces he faces in

implementing a tactic.

120

Chapter 8 Creation of Tactic Reference Model 121

8.1 Implementation Issues of Architectural Tactics

Once a decision is made to utilize a tactic, the developer must generate a concrete plan for the

low level design and implementation of the tactic in the code. The code reviews we conducted on

various systems showed that, there are various contextual forces, idioms and variability points in

each individual tactic which require developers to make numerous decisions in order to implement a

tactic. All these variability points, can make implementation of tactics a challenging task, especially

for less experienced developers. Figure 8.1 illustrates this point with two concrete examples of

developers posting requests for help to online forums because they did not understand how to

implement specific tactics. We found many examples of such questions.

Figure 8.1: Developers seek help in online forums to implement architectural tactics

This is a typical knowledge gap that exists between high level architecture design decisions and

low level programming decisions, especially for less experienced programmers and unfortunately

it has been ignored in many books, materials and tutorial published on software architecture and

architectural tactics. If not all, most existing materials focus on high level design and there is not

enough guidance for how to implement these tactics specially using well know design patterns.

Chapter 8 Creation of Tactic Reference Model 122

Unlike design patterns which are described in terms of specific classes and associations, tactics

are defined at a higher conceptual level of roles and responsibilities [81] similar to those defined

in tTIMs[91]. It is really the responsibility of a programmer to grasp the nuances of the tactic,

take into consideration a wide range of project-specific factors that serve as forces upon the tactic,

consider various implementation options, and ultimately derive a suitable design solution.

Another important observation in our study of real systems was that usually there is not a single way

to implement an architectural tactic. A single architectural tactic could be implemented entirely

differently in different systems. Some of these implementations tend to be more efficient, structured,

well shaped and well designed and consequently easier to understand and maintain, while there are

implementation which are not easy to understand even with a rigorous code review. This increased

our interest to investigate the better ways that a developer could implement architectural tactics

to make them more suitable for long-time maintenance and evolution.

For example, the heartbeat tactic is a relatively simple tactic used to monitor the availability

of a critical component. However, in a previous study of over 20 open source systems [92] we

observed numerous variations in how the tactic could be implemented. These included (i) direct

communication between the emitter and receiver roles8.2(a), (ii) use of the observer pattern in

which the receiver registered as a listener to the emitter 8.2(b), (iii) the decorator pattern in

which the heartbeat functionality was added as a wrapper to a core service8.2(c), and finally (iv) in

numerous proprietary formats that did not follow any specific design pattern. While an experienced

developer can certainly come up with a functioning implementation, it is difficult for any but the

most experienced developers to have a complete understanding of all the issues and trade-offs, that

might go into making an informed implementation decision.

To achieve the envisioned goal for this part of research and answer the following research questions

we conducted an extensive study of tactics implementation over a large number of open source

systems.

RQ8. Do developers tend to use specific design patterns to implement architectural tactics?

RQ9. What forces influence the choice of design patterns for implementing architectural

tactics?

Chapter 8 Creation of Tactic Reference Model 123

(a) HeartBeat with configuration files

(b) Observer design pattern to implement the tactic

(c) Decorator design pattern to implement the tactic

Figure 8.2: Hadoop : (a)Hadoop, Chat3, smartfrog (b)Amalgam System (c)Thera, JSRB,
Rossume Systems

In this study, we investigated the way developers used design patterns within the implementation

of architectural tactics (from now on referred to as tactic/pattern overlaps). Our approach, findings

and examination of research questions are discussed in the following sections.

Chapter 8 Creation of Tactic Reference Model 124

8.2 Mining Tactic Implementations

Finding a representative sample of tactic/pattern instances is far from trivial. We therefore devel-

oped a semi-automated process shown in figure 8.3 for retrieving candidate instances of tactic-related

classes implemented using the gang-of-four (GoF) design patterns [51].

This process involves: (i) building a code repository, (ii) detecting and extracting instances of

architectural tactics, (iii) detecting and extracting instances of design patterns, (iv) computing

the overlap between tactics and design patterns to identify tactic/pattern instances, and lastly (v)

manually inspecting the results to remove false positives and to clearly delimit the boundaries of

each tactic and each identified pattern. The output from this process provides the raw data needed

in the remainder of our study.

(i) Building a code repository The code repository was built by downloading 500 open source

projects using Sourcerer [124], which is an automated crawling application designed to extract

projects from publicly available open source repositories such as Apache, Java.net, Google Code

and Sourceforge.

(ii) Extracting architectural tactics To identify architectural tactics, we utilized our previously

developed tactic detection algorithm and tool [93] (Chapter 5). The tactic detector was ran against

all 500 previously downloaded projects. Projects were then ranked according to the number of

detected tactics, and the top 36 scoring projects were carried forward into the next stage of the

analysis.

The final projects are listed in Table 8.1. For each project we report its name, the number of classes

in the system, the number of tactic types covered (maximum 13), number of candidate design

patterns detected (maximum 20), and the final count of pattern/tactic overlaps as predicted by our

automated tools. As depicted in this table, most of the inspected projects provided coverage of 5

or more tactic types; however in order to ensure coverage of all the studied tactics, we included a

couple of additional projects simply because they included the targeted tactic type, even though

the overall tactic coverage was low.

(iii) Detecting Design Patterns in the Code Pattern detection was performed on the selected

projects using an algorithm and tool developed previously by one of our collaborators [107]. The

Chapter 8 Creation of Tactic Reference Model 125

Manual

evaluation

and

assessment

Tactic extraction & project selection

500 Open source
projects

Design

Pattern Detection:

Candidate
classes mapped
onto tactics

Pattern Detection

Candidate
patterns

Candidate
tactics

Tactic

Detector:

Tactic
rich
projects

nual

Overlap Analysis

Identify variability points and design

pattern solutions.

Decision
trees

Tactic
reference
models

Figure 8.3: An Overview of our semi-automated process for mining open source repositories to
retrieve samples of tactic/pattern code, identifying tactic-specific variability points, and generating

reference models

approach incorporates a catalog of various pattern definitions and applies multiple search technolo-

gies during the matching process. The pattern definitions are based on the concept of a feature

type, defined as an elementary property of a design pattern likely to recur across different pattern

types (e.g., an aggregation relation between two classes or a method return and the instance of the

class that contains it). Pattern definitions can be created through composing feature types. A set

of 44 feature types were defined and enabled the detection of all 23 so-called Gang of Four (GoF)

patterns [51] as well as several of their variants.

Different search technologies have been used which utilize the catalog of pattern definitions and

search the source code or reverse engineered class diagram of source code to detect design patterns.

The approach has been evaluated and achieved high recall and precision rates of 96-100% for three

systems[107].

To detect patterns in the 36 open source projects, we used our existing catalog of pattern definitions

Chapter 8 Creation of Tactic Reference Model 126

Table 8.1: Studied Projects: Size, identified tactics, detected design patterns and observed overlaps

of Tactic Pattern Over-
Area Name classes types types laps

Enterprise
ERP/CRM

Apache OFBiz 1987 11 14 44
Apache Tobago 632 9 7 3
Compiere ERP 1476 10 13 27
Enterprise 5920 11 3 0
Jpos 430 7 13 16
Neogia 3667 11 12 25
nomadpim 4364 10 18 105
Open SubSystem 8201 13 17 130
PaperDog 347 6 7 8
QuickFix 2291 6 3 1

Frameworks/
Middleware

Apache Cocoon 2945 10 14 62
Apache DS 1324 9 13 22
Jboss 5703 13 15 99
LuntBuild 412 7 7 9
nomadpim 4364 10 18 105
open3ds 66 4 1 0
Oracle CAC 720 10 12 38
Posit 2545 8 13 22
vt-middleware 898 9 6 12

Commun-
ications
etc.

Arsenal-1 3065 9 10 19
Charliebot 180 8 7 11
icemud 93 5 3 0
Projectvianet 1056 9 11 36

Operating
Systems

MVctrl 43 2 0 0
tinyOS 6244 11 16 31

Internet archive-crawler 757 11 12 38
Sino 3055 11 14 42

Content
Management

Apache Lenya 3661 10 16 65
mdfiction 227 5 9 11

Distributed
Computing

Apache Hadoop 2735 12 14 81
Apache Triplesec 375 9 9 32
Mobicents-parlay-ra 2813 6 10 18
mx4j 891 8 13 40
OpenJMX 313 7 11 14
pfc 541 5 13 7
Spumoni 75 5 10 3

[107]. However due to precision issues we had in detecting similar design patterns, we made the

decision to report results from the State and the Strategy pattern together because their structural

representation is hard to differentiate. Furthermore we completely omitted results for the Abstract

Factory and the Facade pattern as we felt that additional rules and evaluation were needed to detect

these correctly. As a result, our pattern detection algorithm was run for 20 GoF design patterns.

Results from the 36 projects are reported in Table 8.1. Column 5, labeled ‘Pattern Types’, reports

the number of distinct design patterns found in each of the projects. Numbers range from zero,

meaning that no patterns were detected, to 18, meaning that 18 of the possible 20 pattern types

were discovered.

(iv) Computing Overlap The tactic classifier and design pattern detector algorithms were run

Chapter 8 Creation of Tactic Reference Model 127

Adapter
Bridge

Builder
Chain of Res.

Command

Composite

Decorator

Factory Meth.

Flyweight

Interpreter

Iterator
Mediator

Memento

Observer

Prototype

Proxy
Singleton

State/Strategy

Template Meth.

Visitor

Active Redundancy 0.60 0.25 0.15 0.00 0.00 0.10 0.00 0.10 0.40 0.00 0.05 0.00 0.35 0.00 0.20 0.10 0.10 0.50 0.30 0.00
Audit 0.67 0.42 0.25 0.00 0.00 0.00 0.00 0.17 0.58 0.00 0.00 0.00 0.58 0.00 0.33 0.17 0.08 0.67 0.50 0.00
Authenticate 0.69 0.26 0.23 0.09 0.00 0.11 0.11 0.49 0.77 0.00 0.06 0.00 0.69 0.06 0.26 0.14 0.29 0.51 0.37 0.00
CheckPointing 0.56 0.33 0.17 0.06 0.00 0.00 0.06 0.17 0.44 0.00 0.00 0.06 0.33 0.00 0.17 0.06 0.06 0.50 0.17 0.00
HeartBeat 0.63 0.31 0.25 0.00 0.00 0.00 0.06 0.38 0.50 0.00 0.00 0.00 0.38 0.13 0.06 0.19 0.25 0.56 0.44 0.00
Kerbrose 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.38 0.00 0.00 0.00 0.13 0.00 0.00 0.00 0.00 0.13 0.00 0.00
Load Balancing 0.35 0.35 0.13 0.04 0.00 0.04 0.04 0.17 0.48 0.00 0.13 0.04 0.35 0.00 0.09 0.13 0.04 0.30 0.30 0.00
PBAC 0.64 0.41 0.18 0.23 0.00 0.09 0.18 0.36 0.68 0.00 0.09 0.05 0.68 0.05 0.32 0.14 0.18 0.55 0.45 0.00
PingEcho 0.57 0.24 0.19 0.00 0.00 0.00 0.00 0.24 0.43 0.00 0.00 0.00 0.33 0.00 0.05 0.10 0.14 0.38 0.24 0.00
Pooling 0.69 0.34 0.29 0.11 0.00 0.11 0.09 0.34 0.74 0.00 0.09 0.03 0.66 0.06 0.26 0.31 0.26 0.66 0.43 0.06
RBAC 0.53 0.40 0.20 0.17 0.00 0.10 0.10 0.33 0.70 0.00 0.07 0.00 0.67 0.07 0.33 0.27 0.30 0.63 0.50 0.03
Scheduler 0.74 0.35 0.26 0.10 0.00 0.03 0.06 0.39 0.74 0.00 0.06 0.03 0.58 0.03 0.29 0.23 0.16 0.68 0.39 0.03
Session 0.38 0.25 0.13 0.17 0.00 0.08 0.13 0.21 0.38 0.00 0.08 0.00 0.33 0.00 0.21 0.21 0.04 0.33 0.33 0.00

Figure 8.4: Overlaps produced automatically and reported prior to human evaluation

independently across each of the selected 36 projects. The classes detected by the tactic classifier

were compared against those detected by the design pattern detector in order to identify tactic/-

pattern overlaps. If a pattern and tactic shared at least one class then a candidate overlap was

declared. For example, in one case, a decorator design pattern added heartbeat functionality to an

http service, and was identified as a decorator/heartbeat instance despite the fact that only a single

class overlapped.

The un-vetted results of automatic overlap analysis showing occurrences of each pattern within each

of the tactics is reported in Figure 8.4. The numbers in each cell represent the percentage of times

a tactic of the given type overlapped with the specified design pattern. For example, the top left

hand cell shows that in 60% of the occurrences of the redundancy tactic, there was overlap with

a class from the adapter pattern. Similarly, the bridge pattern overlapped with the redundancy

tactic in 25% of its occurrences. It is important to remember that these are raw values computed

automatically by our tools and therefore not guaranteed to be accurate until they are evaluated in

the next phase.

The color coding of Figure 8.4, shows stronger overlaps in red or orange, and lesser ones in paler

colors. It highlights several interesting trends. Some of the design patterns are clearly used more

prevalently in tactics than others. For instance adapter, flyweight, memento and strategy are the four

most commonly occurring patterns. This is may not be really surprising as these patterns contribute

to scalability, flexibility, and state restoration, all of which are important in high-performance sys-

tems. Furthermore, this could be biased with the imprecision of design pattern detector in detecting

these tactics. Unsurprisingly there are no individual tactics that implement a high percentage of

patterns.

Chapter 8 Creation of Tactic Reference Model 128

Column 6 in Table 8.1 shows the number of overlapping tactic/pattern pairs per project. These

numbers range from zero, in projects in which no design patterns overlapped with the identified

tactics, to 130 in the OpenSubsystem project.

(v) Manual Inspection Given the huge search space of classes in these open source systems, our

automated approach significantly reduces the amount of human effort needed to find tactic/pattern

overlaps. Nevertheless it is still necessary to manually inspect the results in order to eliminate

the incorrectly identified instances and also understand how and why the pattern was used in the

tactic. We tried to extract contextual characteristics of each projects which was forcing utilization

of specific patterns in implementation of an architectural tactic.

Identifying correct instances of patterns for deeper analysis was done by initially skimming the

pattern instance and eliminating obviously incorrect classifications (i.e. the pattern detector claimed

a group of classes to be the heartbeat pattern where clearly they were not). Analysis continued until

we found three correct uses of the pattern in the tactic, ran out of cases to evaluate, or searched

through 10 tactic/pattern instances without finding a correct use of the pattern. Instances that

were not initially ruled out were then checked more carefully to confirm that they represented the

claimed pattern and tactic. As part of this process we evaluated approximately 300 instances, and

attempted to disperse our efforts equally across the different tactic/pattern pairs. The following

steps were then followed:

For each correct tactic/pattern instance we evaluated the pattern to answer the question ‘what

purpose does this pattern play in the tactic?’ In cases where the same pattern was implemented

for different purposes we studied additional pattern instances until we gained understanding of the

multiple contributions the pattern played in the tactic. For each pattern/purpose pair in a tactic,

we constructed a generalized class diagram, capturing the classes and their associations needed to

implement the design pattern in the context of the tactic. Finally we documented specific factors

which might trigger a decision to utilize a specific pattern in the tactic.

On average we found that approximately one tactic/pattern pair was correct for every five evalu-

ated. This is expected, given the precision of the two underlying tools, plus the additional step of

combining results [92, 107]. The tactic/pattern overlaps for which we identified correct uses of both

the pattern and tactic are depicted in Figure 8.4 with a bold border.

Chapter 8 Creation of Tactic Reference Model 129

The following sections reports on three different tactic types, and the design patterns that were

used to implement them. These tactics are scheduling, resource pooling, and heartbeat. We do not

claim to have identified all possible patterns that could be used to implement these tactics, after all

it is likely that a creative developer could figure out a way to incorporate almost any design pattern

in any tactic. However, what we do claim is that we have identified many common uses of design

patterns in the studied tactics.

ConcreteTask

- initialSettings

+ taskOperation()

Scheduler

+ schedule()

Task

+ taskOperation()

TaskFactory

+ createTask()

tasks

(a) Many Tasks: Flyweight

ConcreteTask

+ taskOperation()

«interface»

Task

+ taskOperation()

Scheduler

+ schedule()

TaskProxy

+ taskOperation()

(b) High Resource Demand: Proxy

TaskFactory

- state

+ createTaskState()

+ setTaskState()

TaskState

- state

+ getState()

+ setState()

Scheduler

TaskState

(c) Stateful tasks: Memento

TaskProgressMonitor

+ update()

Task

+ notify()

+ register()

ConcreteTask

+ notify()

+ register()

ProgressMonitor

+ update()

(d) Task Monitoring: Observer

TaskProgressMonitor

+ addMonitor()

+ done()

+ removeMonitor()

+ setCancled()

+ started()

ProgressDistributor

+ addMonitor()

+ done()

+ removeMonitor()

+ setCancled()

+ started()

ProgressMonitor

+ addMonitor()

+ done()

+ removeMonitor()

+ setCancled()

+ started()

(e) Hierarchy of Monitors: Composite

Scheduler

+ getTaskID()

+ schedule()

«interface»

Task

+ getTaskID()

+ taskOperation()

ConcreteTask

+ getTaskID()

+ taskOperation()

ConcreteTask2

+ getTaskID()

+ taskOperation()

task

(f) Many task types: Bridge

Figure 8.5: Design Patterns used to address variability points in the Scheduler Tactic

Chapter 8 Creation of Tactic Reference Model 130

8.3 Scheduling Tactic: Forces and Solutions

The first tactic studied was the scheduler. This tactic is commonly adopted to improve system

performance in the face of resource contention. It is defined in terms of elements to be scheduled,

the scheduler responsible for scheduling them, and a scheduling policy such as FIFO (First in first

out), fixed-priority, or dynamic priority scheduling [14, 81, 132]. Bachman et al. identify five

independent parameters that must be considered when designing and implementing a scheduler.

These include the execution times of units of concurrency, arrival distribution, number of units of

concurrency, number of processes, and number of processors. These parameters are used to fine-

tune the performance of the scheduler in order to satisfy a response measure such as worst-case

latency; however they say nothing about how the scheduler must actually be implemented. As with

all design solutions, there are numerous trade-offs to consider. In the case of the scheduler these

center around latency, scalability, and code maintainability.

We identified several design patterns which were used quite prevalently to implement the sched-

uler tactic. These included adaptor, bridge, composite, flyweight, memento, observer, proxy, and

strategy. To more fully understand the purpose of these patterns in the tactic, we analyzed their

implementations following the steps outlined previously.

As a result, six primary reasons were identified for adopting design patterns in scheduler imple-

mentations. We termed these variability points because, in most cases, they could be added as

additional features to augment the basic behavior of the tactic. Each variability point is described

below.

1. Many tasks: If the scheduler is responsible for scheduling a large number of tasks, incurred

memory costs may be high and it may be necessary to minimize memory usage. Tasks share intrinsic

state such as task priority or task type, while also exhibiting individual properties such as start time,

resources required, and so on. The flyweight pattern reduces the memory resource requirements,

and also reduces time needed to start a task. This concept is generalized in Figure 8.5(a).

2. High resource demand When individual tasks have high resource demands (e.g. high mem-

ory), it is more efficient to create them immediately prior to use and destroy them immediately

afterwards. The proxy pattern can be used so that a proxy object serves as a stand-in for the task

while it waits in the queue. The scheduler is unaware that the proxy exists. However, the proxy

Chapter 8 Creation of Tactic Reference Model 131

creates, invokes, and destroys the task as soon as it is scheduled for execution. This is depicted in

Figure 8.5(b).

3. Stateful tasks When the state of the task needs to be preserved between scheduled runs, the

memento pattern is used to preserve state at the end of a run, and restore previous state at the

beginning of the next run. This is depicted in Figure 8.5(c).

4. Task monitoring Tasks often need to be monitored to ensure that they are active and progress-

ing. The observer pattern allows a task progress monitor (which could be the scheduler itself)

to register as an observer of the task and receive status update notifications. In more complex

systems, it may be necessary to have hierarchies of monitors. In this case the composite pattern

can be used to compose monitors into hierarchies. These uses of patterns are depicted in Figures

8.5(d) and 8.5(e) respectively.

5. Remote tasks The proxy pattern can be used to provide a local object as a stand-in for a

task that is running remotely. This is not shown in the Figure.

6. Multiple task types When a scheduler is responsible for managing multiple types of tasks i.e.

MapTask, ReduceTask, DFSTask, etc, and new types of tasks may be added in the future and/or

behavior of those tasks may change over time, then the bridge pattern can be used to create a

flexible environment in which both the tasks and their behavior can change independently. This

is depicted in Figure 8.5(f). When there are multiple types of tasks to be scheduled, and different

types of tasks involve different steps (i.e. retrieving data, checking priorities etc) then the adapter

pattern can be used to adapt each task with the required steps. In this case a generic schedule

method is invoked for all tasks and this method is then adapted according to task type.

The identified patterns used in the scheduler are modeled as the decision tree shown in Figure 8.6.

A developer needing to implement the scheduler tactic could use the decision tree to examine the

variability points of the tactic with respect to the specific project.

8.4 Resource Pooling Tactic: Forces and Solutions

The second tactic evaluated was resource pooling. This tactic allows limited resources to be shared

between clients if neither exclusive nor continual access is needed to the resource. Pooling is typically

Chapter 8 Creation of Tactic Reference Model 132

Many tasks

High resource demand

Stateful tasks

Task

monitoring

Simple

monitoring

Complex

monitoring

Remote task

Multiple task types

Scheduling

Flyweight

Proxy

Memento

Observer

Composite

Proxy

Bridge

Adapter
Multi-stepped

scheduling

Figure 8.6: Decision tree for the scheduler tactic

used to share threads, database connections, sockets, and other such resources [15]. Based on our

analysis of resource pooling implementations, we identified several design patterns which were used

quite prevalently to implement the tactic. These included prototype, singleton, template method,

strategy, factory method, chain of responsibility, and memento. The following variability points were

identified.

1. Lazy load Shared resources are typically created either at start-up time or upon demand. When

the cost of creating a resource in the standard way is high, the prototype pattern can be used to

efficiently create a clone of a prototypical object.

2. Single point of access Access to a resource pool is managed by a pooler role. If many different

components need to access the pool there can be significant overhead for establishing and managing

a sharing scheme. The problem can be addressed through using singleton to ensure that there is

only one instance of the pooler at runtime.

3. Multiple kinds of resources When there are multiple types of resources (i.e. thread pooling,

connection pooling, session pooling), and if the types are stable, i.e. it is unlikely that new types will

be introduced, the template method can be used to customize resource management according to

resource type. When new types are expected to be introduced the factory pattern can be used to

create the pools and their associated resources (sometimes referred to as ponds), while the strategy

pattern can be used to select the appropriate factory method according to type.

Chapter 8 Creation of Tactic Reference Model 133

Lazy load

Single point

of access

Complex steps

Reset before use

Resource

pooling

Prototype

Singleton

Strategy

Factory Method

Chain of responsibility

Memento

New resource

types likely

Multiple kinds

of resources

Template

Prototype

OR

Figure 8.7: Decision tree for Resource Pooling

4. Complex steps When the task of creating, managing, and using a resource pool is complex, the

chain of responsibility pattern can be used to decouple the sender of a request from its receiver.

For example a series of requests for checking the existence of the pool, checking the number of

objects, or checking the maximum allowed number of objects, can be passed as a command along

a chain of objects until the request is handled.

5. Reset before use A resource pool recycles resources. Before a recycled resource can be reused

it needs to be reset to its original state. Use either memento to reset the resource to its original

state, or prototype to create a new clone before each use.

These variability points and their associated design solutions are modeled in the decision tree shown

in Figure 8.7. However, due to space constraints we do not provide class diagrams for each design

pattern.

8.5 Heartbeat Tactic: Forces and Solutions

The third tactic studied was the heartbeat tactic. This is used to monitor the availability of a

critical component. The monitored component emits a periodic heartbeat message while another

component listens for the message. The original component is assumed to have failed if the heartbeat

fails [81].

Chapter 8 Creation of Tactic Reference Model 134

Our study identified six different patterns used to implement the heartbeat. These included dec-

orator, template method, observer, composite, Bridge, flyweight, and state. From these we derived

the following variability points.

1. Wrap around The heartbeat tactic often needs to be added onto other services or functions

which have availability concerns. The decorator pattern can be used to wrap those services with

heartbeat functionality without the need to modify the services themselves.

2. Piggybacking Sending periodic messages such as a heartbeat can add significant communication

overhead and impact system performance. The heartbeat can therefore be piggybacked on other

messages such as logging messages used for check-pointing. The template pattern can be used to

construct a message which carries different kinds of information.

Wrap around

Piggy backing

Different monitor types

Mass creation

Heartbeat

Decorator

Template

Composite

Bridge

Flyweight

Many

monitored

components

Heartbeat

monitor

Observer

State Many tasks

Figure 8.8: Decision tree for Heartbeat

3. Heartbeat monitor When multiple components emit heartbeats that need monitoring, the

observer pattern can be used to register one or more monitors with the heartbeat emitter. In more

complex systems where hundreds or thousands of components are being monitored, the composite

pattern can be used to establish a hierarchy of monitors. In this case a low level monitor checks

the health of a group of threads, while its own health is checked by a higher level of monitor.

4. Different monitor types When different types of component are being monitored, the fault

monitor must support different monitoring techniques (HTTPS, HTTP, FTP, etc). In this case, the

Bridge pattern can be used to monitor different types of heartbeat messages, and also check the

health of different heartbeat senders in ways that are appropriate for their type.

Chapter 8 Creation of Tactic Reference Model 135

5. Mass Creation When the heartbeat connection service requires mass creation of the same

service specification for many clients, the Flyweight pattern can be used to create multiple objects

in an efficient way. For example, this approach is appropriate if a HTTP connection is heartbeat

enabled in a given project, there are many requests for such connections, and connections and

heartbeat services exhibit common properties across all the client requests, then flyweight pattern

can be used to create and share multiple HeartbeatHTTP objects.

6. Many tasks: The heartbeat receiver’s responsibilities vary based on the status of heartbeat

sender. For example the receiver could be in (i) steady-state, i.e. receiving regular messages at

predefined intervals from the sender, (ii) compromised-state, when one or more senders is failing to

transmit, or in (iii) recovery-state when steps are taken to remediate the problem of the unavailable

sender. The state pattern can be used to manage these various states.

8.6 a Tactic Reference Model

In sections 8.3 - 8.5 we presented individual patterns implemented in scheduling, resource pooling,

and heartbeat patterns respectively. We also presented a decision tree for each of the tactics,

depicting the factors driving the adoption of each design pattern.

These factors and their associated implementation solutions can be seen as variability points of

the tactic. As in a product line, features can be mandatory, optional, or variants. Mandatory

features represent the essence of the product. In the case of architectural tactics, the core roles,

responsibilities, and interactions that define the tactic can be seen as its mandatory features [126].

For example, in the scheduling tactic, there must be a scheduler and one or more schedules, while in

the heartbeat tactic there must minimally be an emitter and a receiver. Optional features are those

features which can be added to the product to bring additional value. Finally a variant feature is

an abstraction of a group of mandatory or optional features, which provides alternate methods of

delivering the functionality. In the case of architectural tactics, the identified variability points of

the tactic represent a mixture of optional and variant features.

Figure 8.9 shows the reference model we developed for the scheduler tactic. All of the design

patterns discussed in section 8.3 are integrated into this model. However, we do not claim that

Chapter 8 Creation of Tactic Reference Model 136

«StatefulTasks»

TaskState

- state

+ getState()

+ setState()

«HighResourceD...

TaskProxy

+ taskOperation()

TaskProgressMonitor

«ComplexMonitoring»

+ addMonitor()

+ done()

+ removeMonitor()

+ setCanceled()

+ started()

«TaskMonitoring»

+ update() ConcreteTask

- initialSettings

+ taskOperation()

«MultipleTaskTypes»

+ getTaskID()

«TaskMonitoring»

+ notify()

+ register()

«MultipleTaskTypes»

ConcreteTask2

- initialSettings

+ taskOperation()

«MultipleTaskTypes»

+ getTaskID()

«TaskMonitoring»

+ notify()

+ register()

Scheduler

+ createTask()

+ schedule()

+ monitorTask()

ProgressMonitor

«ComplexMonitoring»

+ addMonitor()

+ done()

+ removeMonitor()

+ setCanceled()

+ started()

«TaskMonitoring»

+ update()

ProgressDistributor

«ComplexMonitoring»

+ addMonitor()

+ done()

+ removeMonitor()

+ setCanceled()

+ started()

TaskFactory

«StatefulTasks»

- state

«ManyTasks, StatefulTasks»

+ createTask()

«StatefulTasks»

+ createTaskState()

+ setTaskState(TaskState)

Task

+ taskOperation()

«MultipleTaskTypes»

+ getTaskID()

«TaskMonitoring»

+ notify()

+ register()

TaskState

tasks

Figure 8.9: A reference model for the scheduler tactic. Variability points are marked as stereo-
types. These stereotypes are used to reduce the model to deliver only the functionality specified by

the user.

Data Node

Name Node

Task Tracker

Secondary

Name Node

Job Tracker

Scheduler

Task Tracker
Task Tracker

Task Tracker
Task Tracker

Data Node
Data Node

Data Node
Data Node

DFS Layer Parallelization Layer

Figure 8.10: The high level architecture of the Parallel Computing Infrastructure used in our
Case Study

this is the only possible way of combining the design patterns into a complete design solution, nor

do we claim that it is the best way. We merely present this solution as a viable design given the

variability points of the tactic and their related design patterns.

This reference model can help developers to implement the tactic. Although our longer-term goal

is to automate the generation of a customized reference model from a decision tree, we currently

provide only the static reference model, where each variability point is labelled with a unique

Chapter 8 Creation of Tactic Reference Model 137

Many tasks

High resource demand

Stateful tasks

Task

monitoring

Simple

monitoring

Complex

monitoring

Remote task

Multiple task types

Scheduling

Flyweight

Proxy

Memento

Observer

Composite

Proxy

Bridge

Adapter

Multi-stepped

scheduling

Figure 8.11: Desired variability points selected by the developers for the PCI system

«MultiStepSchedul,

 RemoteTask»

TaskProxy

+ taskOperation()

TaskProgressMonitor

«TaskMonitoring»

+ update()

ConcreteTask

- initialSettings

+ taskOperation()

«MultipleTaskTypes»

+ getTaskID()

«TaskMonitoring»

+ notify()

+ register()

Scheduler

+ createTask()

+ schedule()

+ monitorTask()

ProgressMonitor

«TaskMonitoring»

+ update()

TaskFactory

«ManyTasks»

+ createTask()

Task

+ taskOperation()

«MultipleTaskTypes»

+ getTaskID()

«TaskMonitoring»

+ notify()

+ register()

tasks

Figure 8.12: The reference model modified to retain only desired variability points

stereotypes. This is depicted in Figure 8.9 which shows stereotypes attached to classes, attributes,

and to methods. Stereotypes on attributes and methods are shown above the element and refer to

all elements underneath. A stereotype on a class means that the whole class with all its attributes

and methods contributes to a single variability point and could simply be removed if this variation is

not part of the desired configuration. For classes that contribute to multiple variations, the elements

inside the class are stereotyped and will be removed if not needed in the desired configuration. If

Chapter 8 Creation of Tactic Reference Model 138

these reductions result in elements without attributes and methods, then the class itself must be

removed and its associations replaced with associations that connect source and target directly.

All core elements, e.g., Task, ConcreteTask, taskOperation(), initialSettings, are not stereotyped

and will accordingly form the mandatory elements of all configurations, even if all variations are

removed.

We present an illustrative example of a system, which we will refer to as Parallel Computing

Infrastructure (PCI). PCI is a development environment in which developers can write and/or

run parallelized computing tasks. A high-level architectural view is depicted in Figure 8.10. This

example is loosely built upon the architecture and implementation of the Hadoop system. PCI has

two main layers, the distributed file system (DFS) layer and the parallelization layer. In the DFS

layer, Datanodes components are responsible for managing and storing data chunks while NameNode

is a central control point responsible for managing the file system namespace and controlling access

by external clients. It keeps track of datachunks managed by datanode and also is responsible for

distributing replicated data. The parallelization layer is designed to execute tasks through a map

reduce paradigm. Operations are submitted by a client and then started by jobtracker. Jobtracker is

also responsible for creating a set of taskTrackers to track and report on task status. Job scheduling

is a critical function of process parallelization so that the system can achieve high throughput and

low response times. The system is expected to handle thousands of concurrent requests.

To explore the possible design space of the scheduler, the architect and/or developers use the

scheduler decision tree from section 8.3, and mark the variability points of interest. Their choices

are summarized in Figure 8.11. The first key characteristic of the PCI system is it needs to schedule

a very large number of tasks. We therefore check off Many Tasks to increase parallelization and

decrease the performance time. The PCI architecture is cloud-based in which physical redundancy

and parallelization are achieved through distributing tasks on different machines. The scheduler

therefore needs to manage remote tasks running in different address spaces. We therefore check off

Remote Task. Scheduling user defined tasks requires customized initialization across the Map

Reduce schema, therefore we check multiple task types and multi-stepped scheduling. Finally we

opt for simple monitoring of tasks and check simple monitoring. Armed with these decisions, the

developer utilizes the stereotypes provided in the reference model to remove unwanted parts of the

Chapter 8 Creation of Tactic Reference Model 139

design and customize the reference model for the PCI project. The end result is shown in Figure

8.12.

8.7 Examining Research Questions

The research questions identified to examine achievement of the automation goal are:

RQ8. Do developers tend to use specific design patterns to implement architectural tactics?

RQ9. What forces influence the choice of design patterns for implementing architectural

tactics?

The results of manual inspection indicated that there is a meaningfull relationship between design

pattern usage in each of the tactics. Furthermore, as a result of this inspection we could find the

forces impacting each tactic (see sections 8.3, 8.4, 8.5). However we need to conduct further qual-

itative and quantitative experiments to evaluate the extend each of the design patterns contribute

to the implementation of a tactic.

8.8 Summary

This chapter illustrated the results of an extensive study conducted into the use of design patterns

for implementing architectural tactics. This study revealed interesting usage trends from which

we were able to identify variability points, associate specific design pattern solutions with each

variability point, and construct a tactic-specific reference model. In its current form a developer

can manually transform the reference model into a customized class diagram showing only the

desired features of the tactic. This provides guidance to developers as they implement architectural

tactics in a more flexible way and therefore less likely to be eroded over time.

Part V

Conclusion and Summary

140

“I was born not knowing and have had only a little

time to change that here and there.”

Richard P. Feynman

Chapter 9

Conclusions

This dissertation has explored the idea of using Software Traceability as a means of preventing the

erosion of architectural decisions and degradation of architectural qualities. The work has focused

on the new notion of decision-centric-traceability which can potentially address the aforementioned

problems through explicitly documenting relationships between quality requirements, architectural

decisions, and source code and also using this explicit relationship to perform change impact anal-

ysis.

The traceability method developed in this dissertation puts architectural decisions (aka tactics) as

the centre of the tracing activity to connect the driving requirements into the implementation source

code. Such links later can be used to support change impact analysis and program comprehension

during the maintenance process by revealing underlying design decisions behind each code snippets.

Establishing the traceability links requires the recovery and discovery of architectural decisions in the

source code. While several other researchers have developed architecture reconstruction techniques

for the sake of reverse engineering and design comprehension, this work publishes the first results

that utilized such a technique to help developers perform architecture based software development

and to strategically maintain critical architectural decisions in the code. First, a hybrid-classifier

is utilized to develop an architecture-decision detector, which can be used for regenerating the

traceability links. Then the reconstructed traceability links are used to create an architecture

protection layer that can be embedded into various modeling environments such as Enterprise

Architect, and also within programming Integrated Development Environments (IDEs). The work

142

Chapter 8. Conclusions 143

presented in this dissertation, automatically detects and monitors architecturally significant classes

and when developers modify those classes, it provides timely notifications informing the developers

of the relevant underlying architectural decisions. The monitoring and notification scheme is built

upon an event-based infrastructure in which all classes related to an architectural decision are

monitored, and notifications are displayed to the current user within the IDE.

This chapter summarizes the main findings and conclusions of this dissertation. It also lists several

ways in which the work can be extended in the future.

The chapter is organized as follows: Section 9.1 presents a summary of the main results of this

thesis, and answers the nine key research questions of this work. Section 9.2 discusses the main

threats to the validity of the results as well as the controls that were used to mitigate these threats.

Finally, Section 9.3 lists possible extensions and future research directions.

9.1 Summary of Results

The work of this thesis investigates several research questions regarding the utilization of software

traceability for partially addressing the problem of architectural erosion. Overall the work is di-

vided into 6 parts. First part focuses on studying several real, large scale software systems and

to Development of a Decision Centric Traceability Method which can be used for establishing and

using the traceability links. The second part utilizes the developed traceability models and aims at

Automating the Construction of the Traceability Links using a classification technique. Furthermore

this part includes several experiments for Comparing Off-the-Shelf Classifiers with Tactic Detector.

The third part of this dissertation focuses on Utilization of Traceability Links. The fourth part of

this dissertation goes beyond traceability and aims at Investigating the Notion of Design for Change

for Architectural Tactics and fighting the problem of erosion with more maintainable implementa-

tion of architectural tactics. Lastly this dissertation takes the developed tactic detector technique

and focuses on Building a Smart IDE to Help Developers Address the Design Erosion Problem.

Chapter 8. Conclusions 144

9.1.1 Development of a Decision Centric Traceability Method

One of the early goals of this dissertation was to conduct an extensive study of architectural de-

cisions in highly dependable and complex systems and understand the important issues in tracing

architectural concerns. To our knowledge, this kind of study has not previously been conducted

in such a systematic manner, and as a result existing traceability approaches for tracing ASRs

and supporting design rationales are not fully practical and tend to suffer from well documented

traceability maintenance, and usage problems.

As a result of this study, we proposed the generic decision-centric meta-model to trace quality con-

cerns into design and implementation artifacts. This meta-model recommends that tracing quality

concerns should be done through the design decisions into design components and implementation

modules. We extended the notion of the meta-model for each specific architectural tactic, and

proposed an augmented model called tTP in which, it is clear where to create traceability links in

order balance the costs versus benefits of tracing architectural concerns.

Each tTP is centered around a tactic and defines both backward traceability to the driving require-

ments, quality concerns and rationales of the tactic, and forward traceability to the architectural

elements in which it is realized. Furthermore, each tTP defines the internal structure of a tactic in

terms of its primary roles and parameters, also relationships between the roles.

The first research question investigated in this part of research was:

RQ1. Does using tTPs potentially reduce the cost and effort of establishing and maintaining

traceability links?

The answer to this research question is positive. The utilization of tTPs provides guidelines for the

trace user to trace architectural tactics and at the same time tTPs will result in fewer traceability

links.

In practice, a common way of estimating the traceability effort is to count the number of traceability

links. Therefore, we conduct an experiment to compare the number of traceability links needed to

trace architectural tactics both with and without the use of tTPs. The design artifacts of a Lunar-

Robot system was used for this purpose.

Chapter 8. Conclusions 145

Consequently, two different traceability matrices were created. The first matrix, established trace-

ability by using tTPs and mapping architectural elements to tTP proxies. The second matrix

established traceability in a more traditional way without using tTPs.

As our results have indicated, tTPs reduce the cost and effort of traceability through providing a

set of re-usable traceability links. However, upfront effort is required to create the tTPs. Clearly

our approach is constrained by the extent to which similar tactics are reused across projects.

Our observations also have shown that the tTP simplifies the traceability task and therefore reduces

the cost and effort of creating a traceability link. For two key reasons, we believe that the results

of this case study is sufficient to draw a conclusion. First of all, the Lunar Case study is a real

system not a toy example and the tactics covered in this example are realistic example of tactics

which might be used in any industrial project. Secondly, the nature of experiment is in a way that,

without loss of generality we can expect to see the similar results in any other system.

One main reason for reduction of trace link is that tTPs change the task of link creation to mapping

and therefore a set of trace links will be reused and not re-created. The links which are internal to

a tTP are reused every time a tactic is traced and the trace user instead of creating all the links

just maps the proxy to the design or code elements.

The second research question investigated in this part of research was:

RQ2. How useful are tTPs for notifying the developers of potential erosion through architecture-

change impact analysis?

The traceability links created through tTPs can be used to provide change impact analysis support

for the developers during software maintenance. Architecture level change impact analysis can

minimize the risk of design erosion.

A set of change scenarios studied over architecture of Lunar Robot Case Study shows that tTPs

can be used for proactively keeping developers informed of underlying design decisions when they

make changes to the system.

Chapter 8. Conclusions 146

9.1.2 Automating the Construction of the Traceability Links

The first contribution of this work is the introduction of the Tactic Traceability Patterns, how-

ever this concepts required manually establishing the traceability links between quality concerns

and source code. Therefore chapter 5 presented a technique for automating the reconstruction of

traceability links between classes and their related architectural tactics. This automated technique

called Tactic Detector and uses a classification method to identify tactical source files and has been

used to support the developers stablish the links in each tTPs.

Two different training methods have been used to train the Tactic Detector, the first training method

involved using tactic descriptions to train the classifier, while the second experiment used actual

code snippets taken from classes implementing each of the tactics for the training purpose. The

underlining assumption is that, establishing a training set based on tactic descriptions is far easier

than establishing a training set based on code snippets but the accuracy of the tactic detector tends

to be better with code snippets.

For automating the discovery of architectural tactics in the source code and establishing the trace

links, the following research questions have been investigated:

RQ3. How accurately does the Tactic Detector generate trace links using two different training

methods of tactic descriptions and code snippets? Which one produces better classification

results?

The investigation of this research question shows that both code trained and description based clas-

sifiers accurately identify tactic related classes. However the code trained classifier outperforms the

description based classifier. Therefore the Tactic Detector method utilized this training mechanism.

RQ4. How effectively can the Tactic Detector identify tactic-related classes for the five tar-

geted tactics in HADOOP?

The evaluation of this method within the context of the large-scale performance-centric case study

of Hadoop system, indicates that this technique is capable of generating fairly accurate links. Fur-

thermore, integrating the concept of tTPs with existing notions of trace retrieval and classification

introduces a novel approach to tracing architectural concerns, minimizes the human effort required

Chapter 8. Conclusions 147

to establish traceability, produces traces which can be used to support critical software engineer-

ing tasks such as software maintenance, and ultimately helps mitigate the pervasive problem of

architectural erosion.

RQ5. How accurately does the Tactic Detector generate role-level trace links for each archi-

tectural tactic?

The hybrid approach to reconstruct role-level trace links did not simultaneously achieve high levels

of recall and precision for all the roles in a tactic, and suffered from a large number of false positive

cases. Therefore we are not able to have a positive answer for RQ5 and conclude that constructing

role-level trace links using our approach was successful.

9.1.3 Comparing Off the Shelf Classifiers with Tactic Detector

In a series of studies we compared Tactic Detector method with a number of Off-the-shelf classifi-

cation methods. This part of the dissertation, presented a comparison of the performance of our

tactic detector approach presented in the previous chapter with a number of Off-The-Shelf text cat-

egorization methods. In particular, we evaluate the performance of classifiers from different families

of Decision Tree, Support Vector Machines, Bayesian Network. The following research questions

were examined:

• RQ6 What is the best classification technique for detecting architectural tactics?

The Tactic Detector was recognized as the best classifier among those studied in this dissertation.

We reported the results obtained using Recall, Precision, F-measure and Specificity as measures of

overall performance. These are commonly used evaluation metrics for such problems. Our results

show that overall the Tactic Detector performed better than the other methods, and ranked first.

However this was a ranking study based on win/lose cases. A second study was performed to

examine if the differences between accuracy of the classifiers are statistically significant or not.

The results indicate that Tactic Detector performs better than SVM, SLIPPER, AdaBoost and

Bayesian Logistic Regression. The difference between accuracy of the Tactic Detector and these

four classifiers is statistically significant.Although Tactic Detector performs better than J48 and

Bagging, we need additional data points to conclude that this difference is statistically significant.

Chapter 8. Conclusions 148

Overall simplicity and stability of Tactic Detector make it a better classification technique to be

used in integration with a programming IDE.

9.1.4 Trace Link Usage

Previous sections of this dissertation, described our approaches for creating a strategic infrastructure

of architecturally-relevant traceability links. In this part of the research we investigated techniques

for effectively utilizing those links to keep developers informed of relevant architectural decisions.

Developing a trace usage technique and integrating it with programming IDEs is important for the

simple reason that even when traceability links have been created, practitioners often do not utilize

them because of the inaccessibility of traceability links to support daily software engineering tasks.

The research question investigated in this section was:

RQ7. To what extent can automatically reconstructed unvetted trace links support change

notification without inundating developers with excessive false positives?

The answer is that the link created using Tactic Detector can be used to effectively keep developers

informed of the design decisions behind the code. The low ratio of false positive messages makes

the approach more reliable.

The research goal discussed in this section focuses on the task of keeping developers informed of

underlying architectural concerns so that they can modify the design and code without inadvertently

degrading the architectural quality. To achieve this goal, our proposed solution involved monitoring

architecturally significant classes, and providing timely notifications to developers to keep them

informed of underlying architectural decisions related to any classes they may be modifying.

To examine the research question RQ7. the Hadoop change logs for the past four releases were

utilized, and simulated the scenario in which the generated tactic-level traceability links were used to

determine whether a modified class was tactic-related. The generation of a message were simulated

to inform the developer about the underlying architectural tactic.

Chapter 8. Conclusions 149

The results of applying the Tactic Detector over Hadoop projects and utilizing the change logs of

Hadoop in four releases demonstrate that our approach generates tactic-grained links capable of

supporting a critical task such as architectural preservation.

Therefore the answer to research question of RQ7. is positive; however, it also highlights the

importance of capturing relevance feedback from the developers as they receive impact notifications

in order to gradually filter out the false-positive links, and ultimately develop a relatively accurate

set of traces.

9.1.5 Design Patterns to Implement Architectural Tactics

In this part of work, a novel experiment was conducted to examine the potentials of using low level

programming design patterns to implement architectural design patterns. The following research

questions were examined:

RQ8. Do developers tend to use specific design patterns to implement architectural tactics?

RQ9. What forces influence the choice of design patterns for implementing architectural

tactics?

The answer to RQ7. is positive. The results of a study containing various open source software

systems revealed interesting usage trends from which we were able to identify variability points,

associate specific design pattern solutions with each variability point, and construct a tactic-specific

reference model.

Tactic reference model illustrate various forces which drive the utilization of design patterns for

implementing architectural tactics. In its current form a developer can manually transform the

reference model into a customized class diagram showing only the desired features of the tactic.

This provides guidance to developers as they implement architectural tactics in a more flexible way

and therefore less likely to be eroded over time.

Chapter 8. Conclusions 150

9.1.6 Archie: A Smart IDE

The ultimate goal of this work has been the creation of a Smart IDE, capable of supporting the devel-

oper to prevent the problem of architecture erosion through increasing their architecture awareness

and sensitivity to the design.

Long term goals of the Archie project are to provide a proactive environment to support secure

software development though detecting, monitoring and visualizing the critical code snippets in a

project, and also preserving the quality of these code snippets through helping developers make bet-

ter architectural choices. Once completed, we plan to integrate Archie into the Software Assurance

Marketplace (SWAMP) www.cosalab.org.

Archie introduces a pluggable tool which provides an architectural protection layer for use in a

variety of programming IDEs and software modeling tools. Archie utilizes information retrieval and

machine learning techniques to:

• Detect and monitor code snippets that implement key architectural decisions in the source

code, including security related ones.

• Proactively keep developers informed of underlying architectural decisions during maintenance

activities .

• Automatically trace external architecture specification documents to the source code or design

model.

• Perform change impact analysis of architectural concerns at both the code and design level.

9.2 Threats to Validity

This section presents a summary of the main threats to the validity of the results of this thesis, as

well as a discussion about the controls that were set in place to mitigate these threats.

Chapter 8. Conclusions 151

9.2.1 Tactic Traceability Patterns

Evaluating a new process is always challenging. Ideally such an evaluation should be conducted

within the context of a real project over a period of time as the project progresses from early design

decisions to deployment and finally on into the maintenance phase. As this has not been feasible at

the current stage of our research, we evaluated the approach through the use of a case study and

two quantitative experiments.

The case study of the Lunar Robot created a realistic environment for evaluating the utility of tTPs

for preserving architectural qualities, as its architectural decisions are typical of those found in other

safety critical software systems. Counting the number of traceability links represents a commonly

adopted technique for estimating traceability effort, although given our observations that less effort

is required to create traceability links using a tTPs, this approach likely underestimates the realized

savings. Furthermore, the maintenance scenarios were constructed using a standard framework, and

were therefore representative of a broad spectrum of maintenance tasks. The results from this study

therefore suggest that our findings will be applicable across a broad range of systems which utilize

some of the architectural tactics we have specified as tTps. The primary threat to validity of our

results is that our approach was studied only in a controlled environment, and has not yet been

used within the context of a real project. This will be the focus of future work.

9.2.2 Automated Study

There are several threats to validity that may have impacted the automation section of this work.

The primary threat is related to the construction of the datasets for training the classifiers. The

datasets included 50 open source projects, where from each projects two architectural samples were

drawn, one representing tactic-related code and another one unrelated code snippets. The task of

locating and retrieving these code snippets was conducted primarily by two members of our research

team and was then reviewed by two additional members. This was a very time-consuming task that

was completed over the course of three months. The systematic process we followed to find tactic

related classes and the careful peer-review process gave us confidence that each of the code snippets

was representative of its relevant tactic.

Chapter 8. Conclusions 152

A greater threat to validity is that the search for specific tactics was limited by the preconceived

notions of the researchers, and that additional undiscovered tactics existed that used entirely dif-

ferent terminology. However we partially mitigated this risk through locating tactics using direct

search and indirect search by looking at projects meta-data and documents. In the case of the

Hadoop project, we elicited feedback from Hadoop developers on the open discussion forum. This

type of study is always concerned with generalizability of the results. To address this problem

we created our initial code-snippets datasets from tactics found in over 50 different open source

systems. The leave-one-out and 5-fold cross-validation experiments we conducted are a standard

approach for evaluating results when it is difficult to gather larger amounts of data. Furthermore,

the Hadoop case study was designed to evaluate the tactic classifier on a large and realistic system.

Hadoop has three major sybsystems and many hundreds of programs. We therefore expect it to be

representative of a typical software engineering environment, which suggests that it could generalize

to a broader set of systems. On the other hand, IR approaches are inherently dependent upon the

use of terminology and so there are no guarantees that our classifier will recognize all instances of

a particular tactic.

9.2.3 Off-the-Shelf Classifiers

There are several threat to validity related to the classification ranking study we conducted. Al-

though the results indicates that Tactic Detector is the best classifier for detecting tactical code

snippets, this is only valid for the studied architectural tactics.

In terms of stability of the approaches, we only evaluated it over a single case study of Apache

Hadoop. However this case study included 10 different architectural tactics. The changes in the

number of false positive rate for unstable classifiers followed a uniform pattern for all the tactics.

This work only reports the results of the classifiers which performed well in identifying architectural

tactic. An initial study contained several classifiers which the best ones were selected to be included

in this work.

Chapter 8. Conclusions 153

9.2.4 Design for Change

The tactic/pattern overlap datasets were created using two data-mining techniques, neither of which

is 100% precise. This approach introduces potential errors of ommision and commission. Ommission

errors were reduced by setting the thresholds in both mining tools quite low in order to favor high

recall over high precision. However this also increased the manual evaluation effort which could have

resulted in failure to identify instances of correct tactic/pattern implementations. As a result, we

clearly cannot claim that we have identified all common cases of design pattern usage in architectural

tactics. Instead we claim to have identified many of the common uses. Commission errors were

reduced significantly by manually inspecting the resulting overlaps. This task was performed by

one author of this paper and validated by the other two. Nevertheless, this is a non-trivial task

which sometimes involves deep understanding of the source code. While we are confident that the

use of patterns was correctly identified, it is possible that we misinterpreted the intent of using

the pattern in a particular context. This danger was somewhat mitigated by examining multiple

instances of each pattern use within each of the reported tactics.

Second, our work studies the actual use of design patterns for implementing architectural tactics

in open source systems. However, just finding a pattern use does not necessarily mean it was used

correctly. Developers may choose less than effective design solutions. To mitigate this problem we

only included a pattern in our framework if we found it used in a similar way across three or more

systems, or else found its use particularly convincing. Given the nature of open-source development,

a pattern that is used in several systems suggests community consensus that it is a solid idea.

Finally, an additional threat to validity arises in the construction of the reference models. These

models represent a synthesis of designs found across multiple projects as well as standard knowledge

of design patterns available in text books and other material [51]. We have presented our approach

as applicable to a broad range of patterns; however due to the time-consuming nature of our study,

we have only developed such models for the three tactics discussed in detail in this paper. Based

on our study of the other tactics described in this paper, we see no reason to believe this approach

is not generalizable.

Chapter 8. Conclusions 154

9.3 Future Work

Automatically detecting parts of a software system that implement tactical architectural decisions

can enhance a number of critical software engineering activities, such as change-impact analysis at

an architecture level, compliance verification, safety-case construction, program comprehension and

prevention of architecture degradation. This work has received the ACM SIGSOFT Distinguished

Paper Award at ICSE 2012 and is currently in the technology-transfer stage at the US Department

of Homeland Security (DHS). The automatic discovery of critical code snippets that impact major

software qualities, opens new opportunities for novel research, and enables many researchers to

conduct deep analysis of the interplay between these critical code snippets and various software

characteristics, such as stability of the software, changes, co-changes, and bugs.

In the following several possibilities for the future work is discussed.

9.3.1 Extensions

Seperating Instances of Architectural Tactics: At the current stage of the work, the tactic

detector retrieves all the code snippets that implement a particular architectural tactic. In case of

some of the architectural tactics, specially the cross-cutting ones there is only one instance of the

architectural tactic implemented in a project. However for several of the architectural tactics, there

might be one or more instances of the tactic implemented in a project (e.g. Heartbeat). In future

work, we aim to incorporate a set of structural analysis and graph theory techniques to distinguish

the different instances of an architectural tactic.

The current implementation of Archie, leaves it to the developers to manually distinguish instances

of a tactic and connect then to a tTPs. Being able to distinguish instances of an architectural tactic

will reduce developers manual effort and also can provide better insight into the architecture of a

software.

Fine-Grained Traceability: This dissertation included several experiments for establishing the

coarse-grained traceability links at the tactic level and also fine-grained traceability links to the roles

in each architectural tactic. Although the results for coarse-grained links were quite promising, the

fine-grained link recovery method did not achieve a reliable accuracy. Therefore, for future work

Chapter 8. Conclusions 155

we aim to utilize more detailed structural analysis and pattern matching techniques to identify the

roles each source file plays in implementing an architectural tactic.

Design Patterns and Architectural Tactics In future work we plan to adopt concepts from the

feature modeling domain so that each tactic and its variability points will be specified as a feature

model from which we can automatically generate a class diagram. We will also extend our work on

reference models by adding dynamic views.

In Depth comparison of Several classification Techniques One of the challenges we have

faced in comparison of the tactic detector and off-the-shelf classification methods relates to the

lack of access to a large number of the datasets. In future, we plan to include 30 more security

architectural tactics and conduct a more comprehensive comparison of the classifiers. The current

comparison indicates that the tactic detector outperforms the other classifiers but including more

data point can help better examine if there is a statistically significant difference between these

classifiers or not. To achieve such conclusion a larger and more divers dataset is required.

9.3.2 New Direction

Holistic Software Architecture Reconstruction: Although existing approaches address im-

portant aspects of architecture recovery and software program comprehension, they tend to focus

only on recovering the structure of software, and fail to discover the complete ground truth archi-

tecture. State-of-the-art and state-of-practice tools are currently limited in their ability to retrieve

a rich and complete picture of the underlying architecture.

An effective reverse engineering technique should be able to reconstruct the design knowledge gen-

erated and consumed during forward engineering of a software product, from early phases of re-

quirements engineering to design and implementation. It is necessary to develop reverse engineering

techniques that discover not only the design decisions, but also architecturally significant require-

ments, business goals, design rationales, various important views of the architecture such as the

deployment view and functional view.

This requires using novel methods from various areas of data mining, information retrieval, bio-

informatics, principal component regression, code analysis, and structural analysis. More notably,

these research trends are beginning to influence the practice of software development in industry.

“Looking back, I have this to regret, that too often when I loved, I did not say so.”

David Grayson

Appendix A

Case Studies

This section describes all the case studies used along this proposal.

A.1 Case Study of NASA Crew Exploration Vehicle (CEV)

This section presents the case study of Crew Exploration Vehicle (CEV) system from NASA’s

Constellation System of Systems. CEV is an exploratory vehicle that is designed to provide round

trip transportation for human crews between Earth and space. The CEV is designed to coordinate

with transfer stages, landing vehicles, and surface exploration systems in order to support manned

voyages to the Moon and beyond. Requirements, architectural decisions, and architectural models

of CEV were obtained from a published documentation manual [116] [115].

This case study focuses on the CEV’s Guidance, Navigation & Control (GN&C) flight software archi-

tecture designed to provide evolving automation, fault detection, isolation and recovery throughout

all phases of the flight. The CEV GN&C architecture consists of three major components: the

OTM (Onboard Trajectory Manager), the Vehicle Executive, and the core GN&C. The OTM is

responsible for trajectory planning. It provides a direct interface for communicating with the crew,

and it utilizes a telemetry interface to communicate with ground control and receive activity lists

and mode commands. The OTM’s primary output is a queue of flight dynamics tasks intended to

be executed in sequence by the core GN&C module. This task list is created by the FD Task List

Selector (FDTLS) sub-module. The Vehicle Executive is responsible for The OTM and core GN&C

157

Appendix A. Case Studies 158

Figure A.1: Tactical Decisions, Rationales, and Driving Requirements in CEV

FSW exchange information via the Vehicle Executive FSW. The Vehicle Executive subsystem is re-

sponsible for scheduling and executing all of the vehicle’s subsystem executives; e.g., GN&C, power,

environmental control, and life support. GN&C is responsible for vehicle navigation during differ-

ent phases of the mission, and includes primary components of guidance, navigation, control, and

targeting processes. GN&C communicates with sensors such as the Inertial Measurement Unit and

Effectors such as the Chutes/Landing System through its Subsystem Operating Programs (SOPs).

Each GN&C sensor and effector type has its own software subsystem dedicated to receiving raw

data from the hardware; FDIR is another component of GN&C which is responsible for Fault De-

tection, Isolation and Recovery at subsystem level. However health management across different

Appendix A. Case Studies 159

Vehicle subsystems is performed by the Integrated Health Management System.

The most important architectural decisions, requirements and quality goals in this system are

demonstrated in table A.1.

Figure A.2: Crew Exploration Vehicle (CEV) system from NASA’s Constellation System of Sys-
tems

Appendix A. Case Studies 160

A.2 Case Study of NASA Lunar Robot

The case study of a Lunar Robot system, reconstructed from an extensive set of publicly available

NASA documents [70, 95] was conducted to examine the research questions. The robot’s primary

mission is to autonomously traverse the lunar surface, collect sample data related to comets, dust,

and celestial objects, record temperatures, perform scientific experiments, and send results back

to the earth-based Mission Control Center (MCC). From a maintenance perspective, our interest

is in ensuring that quality concerns, as realized through the various architectural decisions, are

maintained throughout the lifetime of the Lunar-Robot software system. Such systems often live far

beyond a single lunar mission, as individual components and sometimes entire architectures are often

reused in future implementations. Maintenance activities therefore include initial modifications

made during the early development phase, modifications made to the system after deployment

(which in the case of the lunar robot often means transmitting new software after the robot has

been launched into space), and finally modifications made to the system if it is re-used in a new

robot system.

A selection of the Lunar Robot’s functional and non-functional requirements are shown in Table

A.1. An initial analysis of these led to a series of design decisions including the ones depicted in

Table A.2. In turn, these decisions resulted in the high-level architectural design shown in Figure

A.3. The Lunar-Robot architecture is structured around a control system (CS), Integrated Vehicle

Health Management (IVHM) system, the Sensors Virtual Machine and Actuators virtual machine,

a communication system, and an operator panel. Data from the sensors is first passed through the

IVHM component for correctness checking and is then forwarded to the CS. The CS uses the data

to make decisions and to process high level commands. It then sends lower level commands to the

actuators. One of the most interesting components is the integrated vehicle health management

system (IVHM) responsible for monitoring the health of the robot, and when necessary, performing

dynamic reconfigurations to maintain functionality. The Lunar Robot received inputs from cameras,

GPS receivers, rate gyros, and star trackers, and issues commands to mechanical devices such as

the power controller, wheels, and scientific instruments.

It is worth noting that the component and connector view of Figure A.3 provides only limited

visual clues concerning the architectural decisions behind the design. Certain architectural decisions

Appendix A. Case Studies 161

are clearly visible, such as the use of partitions to separate different types of functionality. Other

decisions are partially visible, such as the decision to include redundant components (given the plural

descriptions for GPS receivers and Rate Gyros). However, many of the important architectural

decisions listed in Table A.2 are not visible at all, either in this diagram or in lower level diagrams.

This lack of visibility is one reason that maintenance efforts often result in architectural degradation.

Figure A.3: Lunar Robot: High Level Component and Connector View

Appendix A. Case Studies 162

Figure A.4: Lunar Robot: Composite Structure Navigation Domain

Appendix A. Case Studies 163

Figure A.5: Lunar Robot: Deployment View

Table A.1: Lunar Robot: A Sub-set of High-level Requirements

ID Requirement Type
1. The Lunar-Robot (LR) shall have the capability to operate in two

modes: manual and autonomous.
Functional

2. At any time, the LR shall be either inactive, waiting, or active. Functional
3. When the LR is inactive, it will check periodically for activation com-

mands.
Functional

4. The LR shall perform the following functions: move, plan, collect, an-
alyze, record, and transmit functions.

Functional

5. When the LR is in manual mode it will respond to specific commands
received from MCC.

Functional

6. When the Lunar-Robot is in autonomous mode it will determine and
execute the correct steps needed to perform a higher level function de-
fined by MCC. Examples of such functions include reaching a specified
location, or gathering atmospheric samples.

Functional

7. If the Lunar-Robot is in manual mode and and receives no com-
mands from MCC for over maximum outOfRange period it shall switch
to autonomous mode and return to the geographical coordinates of
last point of known contact.

Availability

8. The Lunar-Robot will have a probability of uncorrectable failure of
0.00001 or less during 90 days of its mission on the surface of the moon.

Reliability

9. Commands sent from MCC to LR will be acknowledged within 3 sec-
onds when communication is feasible.

Responsiveness

10. Transmissions between MCC and the LR shall be secure. Security

Appendix A. Case Studies 164

Table A.2: Lunar Robot: Primary Architectural Decisions

ID. Decision
1. The Lunar Robot control system will be replicated using active redundancy with graceful degradation.

There will be replications.
2. Each instance of the Guidance, Navigation and Control subsystems(GN&C) will run on a separate process,

and will be configured uniquely.
3. The tasks to be performed at various phases of the mission will be managed in individual configuration

files by the robot executive and domain executive modules. The task sequencer reference model is used to
achieve real-time task distribution and execution

4. Task scheduling will be performed using the semantic-based scheduling algorithm. This approach takes
priorities of various tasks, and the current mode of operation into consideration. It allows task priorities
to be established according to the current operating mode.

5. Each of the three domains will have a dedicated health management module which will implement two-
self checking for each running thread (i.e. two separate threads will run the same task and must be in
agreement). In case of a mismatch, the result which most closely matches the data produced by the
simulation engine will be used.

6. Critical modules in each of the Guidance, Navigation and Control (GN&C) domains will be redundantly
coded in three different programming languages by three independent teams.

7. Thread execution will be scheduled according to predefined priorities using preemptive scheduling.
8. All sensors will be monitored using the heartbeat tactic.
9. All data received from sensors will be tested for validity i.e. using CRC.
10. A majority voting schema will be used to select the most accurate data from a set of replicated sensors.
11. Two separate buses will be used for conveying sensor data and control data respectively. Note: This allows

different scheduling strategies to be applied to each bus.

Appendix A. Case Studies 165

A.3 Case Study of Hadoop Framework

The Hadoop project is one of the Apache Foundation’s projects. It is a framework that allows for

the distributed processing of large data sets across clusters of computers using simple programming

models. It is designed to scale up from single servers to thousands of machines, each offering local

computation and storage. Rather than rely on hardware to deliver high-avaiability, the library itself

is designed to detect and handle failures at the application layer, so delivering a highly-availabile

service on top of a cluster of computers, each of which may be prone to failures. Hadoop is modeled

after Google’s MapReduce / GFS framework and is implemented in Java.

Hadoop is economical, It is preferable to have more low-performance, low-cost hardware working

in parallel than to have less high-performance, high-cost hardware. Also it’s reliable, it’s applicable

in distributed systems where failure becomes the norm. With Hadoop design, At some point,

the number of discrete systems in a cluster will be greater than the mean time between failures

(MTBF) for any hardware platform, no matter how reliable, so fault tolerance must be built into

the controlling software.

Major Subsystems:

• Hadoop Distributed File System (HDFS): A distributed file system that provides high-

throughput access to application data.

• Hadoop MapReduce: A YARN-based system for parallel processing of large data sets.

• Hadoop YARN: A framework for job scheduling and cluster resource management.

• Hadoop Common: The common utilities that support the other Hadoop modules.

Main Architectural Styles Master-Slave style is dominant across all Hadoop’s subsystems. The

master-slave architecture is a variant of the main-subroutine architecture style that supports fault

tolerance and system reliability. In this architecture, slaves provide replicated services to the master,

and the master selects a particular result among slaves by certain selection strategies. The slaves

may perform the same functional task by different algorithms and methods or by a totally different

functionality.

Appendix A. Case Studies 166

A.3.1 HDFS Architecture

Hadoop distributed file system is built around two major components:

NameNode: A master server that manages the file system namespace and regulates access to files

by clients DataNodes: Store the actual data in HDFS files. Usually one per node in the cluster.

Application Code

Client Code

Name Node
Process

Data Node
Process

RPC

RPC

Streaming Protocol

Application Process

Figure A.6: Hadoop Distributed File System: Module View

One of the main goal of HDFS is fast parallel processing of lots of data. To accomplish that it’s

necessary to have high level of redundancy. Client need to break his/her own data file into smaller

“Blocks”, and place those blocks on different machines throughout the cluster. Copying the blocks

of data on more machines will increase the redundancy level and throughput of parallel operations.

Also as these machines may be prone to failure, the data redundancy will guarantee that data loss

will not happen. Therefore in HDFS each block will be replicated in the cluster as its loaded. The

standard setting for Hadoop is to have (3) copies of each block in the cluster. However this is a

configurable parameter (inside hdfs-site.xml).

The copy operation on HDFs has the following workflow (shown in A.7): For each block, the Client

consults the Name Node (usually TCP 9000) and receives a list of (3) Data Nodes which should

have a copy of the block. Then it’s the responsibility of the Client to write the block directly to

the Data Node (usually TCP 50010). The replication is done through the receiving Data Node, it

will replicate the copied block to (two) other Data Nodes, and the cycle repeats for the remaining

blocks. The Name Node will not be in the data path. The Name Node is playing the role of a look

Appendix A. Case Studies 167

up table or dictionary which only provides the map of where data is and where data should go in

the cluster.

Client Name Node

DataNode 1 DataNode 5 DataNode 6 DataNode N

I want to write
blocks A,B, C of

file.txt

Blk A Blk B Blk C

File.txt

Blk A Blk B Blk C

OK. Write to
Data Nodes

1,516

Figure A.7: Writing-Files-to-HDFS

protocol The protocol package is used in communication between the client and the namenode

and datanode. It describes the messages used between these servers.

security security is used in authenticating access to the files. The security is based on token-based

authentication, where the namenode server controls the distribution of access tokens.

server.protocol server.protocol defines the communication between namenode and datanode, and

between namenode and balancer.

server.common server.common contains utilities that are used by the namenode, datanode and

balancer. Examples are classes containing server-wide constants, utilities, and other logic that is

shared among the servers.

client The client contains the logic to access the file system from a user’s computer. It interfaces

with the datanode and namenode servers using the protocol module.

datanode The datanode is responsible for storing the actual blocks of filesystem data. It receives

instructions on which blocks to store from the namenode. It also services the client directly to

stream file block contents.

namenode The namenode is responsible for authorizing the user, storing a mapping from filenames

to data blocks, and it knows which blocks of data are stored where.

Appendix A. Case Studies 168

balancer The balancer is a separate server that tells the namenode to move data blocks between

datanodes when the load is not evenly balanced among datanodes.

tools The tools package can be used to administer the filesystem, and also contains debugging code.

Figure A.8: Hadoop Framework: Module View1

A.3.2 Hadoop Map-Reduce Architecture

As we already said, Hadoop is a Map-Reduce framework. It is implemented based on a programming

paradigm called Map-Reduced. The Map: A map transform is provided to transform an input data

row of key and value to an output key.value: That is, for an input it returns a list containing zero

or more (key,value) pairs:

The Reduce: A reduce transform is provided to take all values for a specific key, and generate a new

list of the reduced output.

Hadoop implements this programming paradigm through the following components:

JobTracker : Job Tracker oversees and coordinates the parallel processing of data using Map Reduce.

In the Master-Slave architectural style, Job Tracker plays the role of master node.

TaskTracker : Does the actual work given by Job Tracker- It does either map or reduce. In the

Master-Slave architectural style, Task Trackers play the role of slave nodes.
1Included with permission from Dr. Rick Kazman. Original Source: http://itm-vm.shidler.hawaii.edu/HDFS/

Appendix A. Case Studies 169

A.3.3 Combined Architectural View

The combined view shows how different components of data layer (HDFS) and paralleling layer

(Map-Reduce) work together. Figure A.9 shows different categories of machines and components

deployed on them. The Master nodes oversee the two key functional pieces that make up Hadoop:

storing lots of data (HDFS), and running parallel computations on all that data (Map Reduce).

The Name Node coordinates the data storage function (HDFS), while the Job Tracker coordinates

the parallel processing of data using Map Reduce operations. Slave Nodes make up the majority of

machines on the cluster and do all the labour work of storing the data and running the computations.

Each slave node runs both a Data Node and Task Tracker threads which communicate with and

get instructions from their master nodes. The Task Tracker thread is a slave to the Job Tracker,

the Data Node thread is a slave to the Name Node.

Client machines must have Hadoop installed, but are neither a Master or a Slave. The primary

responsibilities of the Client machine are to load data into the cluster, submit Map Reduce jobs

describing how that data should be processed, and then retrieve or view the results of the job when

its finished. These roles are logical, it means that in small clusters (40 nodes) a single node (server)

can play multiple roles, such as both Job Tracker and Name Node. While in large clusters it is

common to have distinct machines for each role.

The summary of cooperations among these nodes is: Client machine submits the Map Reduce

job to the Job Tracker, asking ”How many times does Refund occur in File.txt“ The Job Tracker

consults the Name Node to learn which Data Nodes have blocks of File.txt. The Job Tracker then

provides the Task Tracker running on those nodes with the Java code required to execute the Map

computation on their local data.

The Task Tracker starts a Map task and monitors the tasks progress. The Task Tracker provides

heartbeats and task status back to the Job Tracker.

Appendix A. Case Studies 170

Clients

Name Node

Data Node &
Task Tracker

HDFS
(Distributed Data Storage)

Job Tracker
Secondary

Name Node

Map Reduce
(Distributed Data Processing)

Data Node &
Task Tracker

Data Node &
Task Tracker

Data Node &
Task Tracker

Data Node &
Task Tracker

Data Node &
Task Tracker

master

slave

Figure A.9: A Combined View: Server Roles in Hadoop

A.3.4 HDFS Architectural Issues

HDFS does not have any interesting layering. Its portability concerns are, by and large, addressed

by the technique of “implement in Java”. The governing architectural pattern in HDFS is a master-

slave style, which is a run-time structure. While modifiability has been important in Hadoop, it

has been addressed simply by keeping the code base at a relatively modest size and by having a

significant number of committers spending considerable time learning and mastering this code base.

Figure A.10: HDFS Reverse Engineered Code Structure2

2Included with permission from Dr. Rick Kazman. Original Source: [17]

Appendix A. Case Studies 171

A.3.4.1 Availability

Availability is managed by maintaining multiple replicas of each block in an HDFS file, recognizing

failure in a DataNode or corruption of a block, and having mechanisms to replace a failed DataNode

or a corrupt block.

Furthermore, the data copy is done through pipeline schema facilitating the speed of file transfer.

In this schema as the subsequent blocks of a file are written, the initial node in the pipeline will

vary for each block, spreading around the hot spots of in-rack and cross-rack traffic for replication.

Detecting Failure:

The Name Node is the master server coordinating the data node servers in the cluster. Name node

contains all the file system metadata for the cluster and and coordinates access to data located on

data nodes. Data Nodes send heartbeat messages to the Name Node every 3 seconds via a TCP

handshake, using the same port number defined for the Name Node daemon, which is usually TCP

9000. The heartbeat is implemented by piggybacking, therefore every tenth heartbeat is a Block

Report, where the Data Node tells the Name Node about all the blocks it has. The block reports

are used by the Name Node to build its metadata and insure (3) replicas of the block exist on

different nodes, in different racks. In this design, if the Name Node is down the HDFS is down.

Re-replicating the Missing Replicas Missing heartbeat message means the loss of data on a Data

Node. Name Node uses the block reports it had been receiving from the dead data node, to decide

which blocks of data are lost along with the node and therefore it makes the decision to re-replicate

those blocks to other Data Nodes. Name node will consult the Rack Awareness data in order to

maintain the two copies in one rack, one copy in another rack replica rule when deciding which

Data Node should receive a new copy of the blocks. This rule guarantees that if a rack of servers

crashes or fall of the network because of the rack switch failure the client will lose all the data.

Figure shows this process.

Single Point of Failure in HDFS Name node could be a single point of failure in HDFS. In

the case of an unplanned event such as a machine crash, the cluster would be unavailable until an

operator restarted the NameNode, or planned maintenance events such as software or hardware

upgrades on the NameNode machine would result in windows of cluster downtime. This means that

Appendix A. Case Studies 172

the availability of the whole HDFS depends on the health and availability of Name Node. Standby

tactic with the following details is used to avoid single point of failure in Hadoop (Figure A.11).

• In a typical HA cluster, two separate machines are configured as NameNodes. At any point

in time, exactly one of the NameNodes is in an Active state, and the other is in a Standby

state.

• The Active NameNode is responsible for all client operations in the cluster, while the Standby

is simply acting as a slave, maintaining enough state to provide a fast failover if necessary.

• To keep the state synchronized, the current implementation requires that the two nodes both

have access to a directory on a shared storage device (eg an NFS mount from a NAS)- Point

of Failure - This restriction will likely be relaxed in future versions.

• When any namespace modification is performed by the Active node, it durably logs a record

of the modification to an edit log file stored in the shared directory. The Standby node is

constantly watching this directory for edits, and as it sees the edits, it applies them to its own

namespace.

• For fast failover, the Standby node must have up-to-date information regarding the location

of blocks in the cluster. Therefore the DataNodes are configured with the location of both

NameNodes, and send block location information and heartbeats to both.

• Only manual failover is supported. HA NameNodes are incapable of automatically detecting

a failure of the Active NameNode, and instead rely on the operator to manually initiate a

failover. Automatic failure detection and initiation of a failover will be implemented in future

versions.

A.3.4.2 Security

The major security goal of HDFS is to keep data in HDFS secure from unauthorized access. To

achieve this goal, HDFS architecture adopted the following architectural guidelines.

• Users must be authenticated

Appendix A. Case Studies 173

Name Node

Secondary
Name Node

Its been an
hour give me

your metadata

File system metadata

File.txt=A,C

Figure A.11: Synchronization between Primary NameNode and Secondary NameNode

• Since Map/Reduce run applications as user, they must authenticate the users.

• Since servers HDFS or Map/Reduce are entrusted with user credentials, they must also be

authenticated.

• Kerberose is the key authentication system in HDFS.

• Security on/off option to handle the trade-off between performance and security. Specially in

cases which the cluster is used by a single user or company and security is a less concern.

To prevent unauthorized HDFS access, it is decided that all HDFS clients must be authenticated.

This includes tasks running as part of MapReduce jobs and Submitted jobs. Users must also

authenticate servers, Otherwise fraudulent servers could steal credentials. The idea in the current

version of the Hadoop is to integrate Hadoop with Kerberos to provide well tested open source

distributed authentication system.

A few major authentication issues of Hadoop were that Hadoop 0.20 completely trusted the user,

also user passes their username and groups over wire. The next releases of Hadoop added the

feature request to have authentication on both RPC and Web UI. About authorization, HDFS had

owners, groups and permissions since 0.16. However Map/Reduce had nothing in version 0.20.

A.3.4.3 Performance

Scheduling is one of the key tactic used to tune the performance on Hadoop. This framework

implements a set of scheduling mechanisms FIFO: Under Hadoop’s default FIFO scheduler as

Appendix A. Case Studies 174

soon as a job is sent to Hadoop for execution, the JobTracker will assign as many TaskTrackers as

necessary to process that job. This strategy has express Checkout for smaller Jobs. Therefore it

tends to follow a fair strategy in scheduling the tasks, avoiding starvation.

Fair Scheduler: Multiple jobs, each having a Pool. Each Pool gets a guaranteed number of task

slots (map/reduce). ”fair sharing“ such that each job gets roughly an equal amount of compute

resource after exceeding the pool size.

Capacity Scheduler: shares similar goals with the Fair Scheduler. The Capacity Scheduler works

on queues rather than pools. Within a queue, jobs have priority. Queues are guaranteed a fraction

of the capacity of the grid. Each queue enforces a limit on the percentage of resources allocated to

a user at any given time, if there is competition for them

Examining TaskTrackers: Heartbeat tactic and some performance metrics are used to detect

task failure, or tasks which do not preform well. Therefore those tasks will be killed and restarted.

Pooling: is used in various parts to increase performance.

Load Balancing: is used to balance data and workload on various computers of the Hadoop

cluster.

Nodes in Hadoo cluster are classified asÂăhighly-utilized,Âăaverage-utilized, andÂăunder-utilized.

First, it acquires neighborhood details: When the load increases in a DataNode to the threshold

level, it sends a request to the NameNode. The NameNode had information about the load levels

of the specific DataNode’s nearest neighbors. Loads are compared by the NameNode and then the

details about the free-est neighbor nodes are sent to the specific DataNode.

Next, the DataNodes go to work: Each DataNode compares its own load amount with the sum of

the load amount of its nearest neighbors. If a DataNode’s load level is greater than the sum of

its neighbors, then load-destination nodes (direct neighbors AND other nodes) will be chosen at

random. Load requests are then sent to the destination nodes.

Last, the request is received: Buffers are maintained at every node to received load requests. A

message passing interface (MPI) manages this buffer. A main thread will listen to the buffered

queue and will service the requests it receives. The nodes enter the loadbalancing execution phase.

Appendix A. Case Studies 175

Table A.3: Instances of Architectural Tactics in Apache Hadoop

Tactic Classes Explanation Package Name or Subsystem

Heartbeat 27 HDFS uses a master/slave architecture with replication. All slaves
send a heartbeat message to the master (server) indicating their
health status. Master replicates a failed node (slave).

MapReduce Subsystem

The MapReduce subsystem uses heartbeat with piggybacking to
check the health and execution status of each task running on a
cluster.

HDFS Subsystem

Resource Pooling 36 MapReduce uses thread pooling to improve performance of many
tasks e.g. to run the map function.

mapred package

7 A global compressor/decompressor pool used to save and reuse
codecs.

compress package

47 Block pooling is used to improve performance of the distributed
file system.

HDFS subsystem

5 Combines scheduling & job pooling . Organizes jobs into “pools”,
and shares resources between pools.

MapReduce subsystem

Scheduling 88 Scheduling services are used to execute tasks and jobs. These
include fair-, dynamic-, & capacity-scheduling

common & MapReduce

Audit Trail 4 Audit log captures users’ activities and authentication events. mapred package
Authentication 35 Uses Kerberos authentication for direct client access to HDFS

subsystems.
security package

The MapReduce framework uses a DIGEST-MD5 authentication
scheme.

MapReduce & HDFS subsys.

Secure Session 35 Uses Kerberos authentication for direct client access to HDFS
subsystems.

security package

The MapReduce framework uses a DIGEST-MD5 authentication
scheme.

MapReduce & HDFS subsys.

Asynchronous Com-
munication

13 Handles communication with all the NodeManagers and provides
asynchronous updates on getting responses from them

mapreduce & datanode

Hash Based Method 8 Verifies message replies using base64Hash. security package & NameNode
Authenti-cation
(HMAC)

Authorizes queue submissions based on symmetric private key
HMAC/SHA1.

MapReduce & dynamic-
scheduler.

Role Based Access
Control

39 Authorizes access to the directories, files as well as operations on
data files

HDFS & fs & NameNode

authorizes access to the queue of jobs. MapReduce.
An authorization manager which handles service-level authoriza-
tion.

Security.

CheckPoint 32 Periodic checkpoints of the namespace to keep NameNode and
Backup NameNode in synch and help Namenode restart.

HDFS

Bibliography

[1] Apache-Hadoop Design documents. http://hadoop.apache.org /common/docs/current/hdfs-

design.html.

[2] Chromium projects, design documents. http://www.chromium.org/developers/design-

documents.

[3] U.s. food and drug administration. http://www.fda.gov/.

[4] Ieee standard glossary of software engineering terminology, 1990.

[5] Refactoring: improving the design of existing code. Addison-Wesley Longman Publishing Co.,

Inc., Boston, MA, USA, 1999.

[6] Guidelines for the oversight of software change impact analyses used to classify software

changes as major or minor. Federal Aviation Administration Notice 8110.85, May 2000.

[7] Deriving Architectural Tactics: A Step Toward Methodical Architectural Design. Technical

Report, Software Engineering Institute, 2003.

[8] Grand Challenges, Benchmarks, and TraceLab: Developing Infrastructure for the Software

Traceability Research Community. International Workshop on Traceability in Emerging Forms

of Software Engineering (TEFSE) 6 (2011).

[9] Abadi, A., Nisenson, M., and Simionovici, Y. A traceability technique for specifications.

In Program Comprehension, 2008. ICPC 2008. The 16th IEEE International Conference on

(June 2008), pp. 103–112.

176

http://www.fda.gov/

Bibliography 177

[10] Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., and Merlo, E. Recovering

traceability links between code and documentation. IEEE Trans. Softw. Eng. 28, 10 (Oct.

2002), 970–983.

[11] Aplin, J. Primary flight computers for the boeing 777. Microprocessors and Microsystems

20, 8 (1997), 473–478.

[12] Babar, M. A., Dingsyr, T., Lago, P., and van Vliet, H. Software Architecture Knowl-

edge Management: Theory and Practice, 1st ed. Springer Publishing Company, Incorporated,

2009.

[13] Babar, M. A., and Gorton, I. A tool for managing software architecture knowledge.

In Proceedings of the Second Workshop on SHAring and Reusing architectural Knowledge

Architecture, Rationale, and Design Intent (Washington, DC, USA, 2007), SHARK-ADI ’07,

IEEE Computer Society, pp. 11–.

[14] Bachmann, F., Bass, L., and Klein, M. Deriving Architectural Tactics: A Step Toward

Methodical Architectural Design. Technical Report, Software Engineering Institute, 2003.

[15] Bachmann, P. Deferred cancellation: a behavioral pattern. In Proceedings of the 15th

Conference on Pattern Languages of Programs (New York, NY, USA, 2008), PLoP ’08, ACM,

pp. 18:1–18:17.

[16] Baeza-Yates, R. A., and Ribeiro-Neto, B. Modern Information Retrieval. Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[17] Bass, L., Kazman, R., and Ozkaya, I. Developing architectural documentation for the

hadoop distributed file system. In Open Source Systems: Grounding Research, S. Hissam,

B. Russo, M. MendonÃğa Neto, and F. Kon, Eds., vol. 365 of IFIP Advances in Information

and Communication Technology. Springer Berlin Heidelberg, 2011, pp. 50–61.

[18] Booch, G. Draw me a picture. IEEE Software 28 (2011), 6–7.

[19] Bosch, J. Design and use of software architectures: adopting and evolving a product-line

approach. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 2000.

[20] Breiman, L. Bagging predictors. Mach. Learn. 24, 2 (Aug. 1996), 123–140.

Bibliography 178

[21] Breiman, L. Bagging predictors. Mach. Learn. 24, 2 (Aug. 1996), 123–140.

[22] Brown, W. J., Malveau, R. C., McCormick, III, H. W., and Mowbray, T. J.

AntiPatterns: refactoring software, architectures, and projects in crisis. John Wiley & Sons,

Inc., New York, NY, USA, 1998.

[23] Burge, J. E., and Brown, D. C. Software engineering using rationale. Journal of Systems

and Software 81, 3 (2008), 395–413.

[24] C4ISR Architecture Working Group. C4ISR Architecture Framework, Version

2.0. Washington, D. D. o. D. . http://www.afcea.org/education/courses/archfwk2.pdf.

[25] Capilla, R., Nava, F., Pérez, S., and Dueñas, J. C. A web-based tool for managing

architectural design decisions. SIGSOFT Softw. Eng. Notes 31 (Sept. 2006).

[26] Castro, J., Kolp, M., and Mylopoulos, J. Towards requirements-driven information

systems engineering: the tropos project. Inf. Syst. 27, 6 (Sept. 2002), 365–389.

[27] Cleland-Huang, J., Berenbach, B., Clark, S., Settimi, R., and Romanova, E. Best

practices for automated traceability. Computer 40, 6 (2007), 27–35.

[28] Cleland-Huang, J., Chang, C. K., and Christensen, M. J. Event-based traceability

for managing evolutionary change. IEEE Trans. Software Eng. 29, 9 (2003), 796–810.

[29] Cleland-Huang, J., Chang, C. K., and Ge, Y. Supporting event based traceability

through high-level recognition of change events. In COMPSAC (2002), pp. 595–602.

[30] Cleland-Huang, J., Chang, C. K., and Wise, J. C. Automating performance-related

impact analysis through event based traceability. Requir. Eng. 8, 3 (2003), 171–182.

[31] Cleland-Huang, J., Czauderna, A., Gibiec, M., and Emenecker, J. A machine

learning approach for tracing regulatory codes to product specific requirements. In Software

Engineering, 2010 ACM/IEEE 32nd International Conference on (May 2010), vol. 1, pp. 155–

164.

[32] Cleland-Huang, J., Czauderna, A., Gibiec, M., and Emenecker, J. A machine

learning approach for tracing regulatory codes to product specific requirements. In ICSE (1)

(2010), pp. 155–164.

Bibliography 179

[33] Cleland-Huang, J., Gotel, O., Huffman Hayes, J., Mader, P., and Zisman, A.

Software traceability: Trends and future directions. In Proc. of the 36th International Con-

ference on Software Engineering (ICSE), Hyderabad, India (2014).

[34] Cleland-Huang, J., Marrero, W., and Berenbach, B. Goal-centric traceability: Using

virtual plumblines to maintain critical systemic qualities. IEEE Trans. Software Eng. 34, 5

(2008), 685–699.

[35] Cleland-Huang, J., and Schmelzer, D. Dynamically tracing non-functional require-

ments through design pattern invariants, 2003.

[36] Cleland-Huang, J., Settimi, R., Duan, C., and Zou, X. Utilizing supporting evidence

to improve dynamic requirements traceability. In Proceedings of the 13th IEEE International

Conference on Requirements Engineering (Washington, DC, USA, 2005), RE ’05, IEEE Com-

puter Society, pp. 135–144.

[37] Cleland-Huang, J., Settimi, R., Zou, X., and Solc, P. Automated detection and

classification of non-functional requirements. Requir. Eng. 12, 2 (2007), 103–120.

[38] Cohen, W., and Singer, Y. A simple and fast and and effective rule learner. In Proceedings

of the Sixteenth National Conference on Artificial Intelligence (1999), pp. 335–342.

[39] Cotroneo, D., Natella, R., Pietrantuono, R., and Russo, S. A survey of software

aging and rejuvenation studies. J. Emerg. Technol. Comput. Syst. 10, 1 (Jan. 2014), 8:1–8:34.

[40] Cuddeback, D., Dekhtyar, A., and Hayes, J. H. Automated requirements traceability:

The study of human analysts. In RE (2010), pp. 231–240.

[41] Cuddeback, D., Dekhtyar, A., Hayes, J. H., Holden, J., and Kong, W.-K. Towards

overcoming human analyst fallibility in the requirements tracing process: Nier track. In ICSE

(2011), pp. 860–863.

[42] Cysneiros, L. M., and Yu, E. Non-functional requirements: A comprehensive approach.

[43] Davis, A. M. Software requirements: objects, functions, and states. Prentice-Hall, Inc.,

Upper Saddle River, NJ, USA, 1993.

Bibliography 180

[44] De Lucia, A., Oliveto, R., and Sgueglia, P. Incremental approach and user feedbacks:

a silver bullet for traceability recovery. In Software Maintenance, 2006. ICSM ’06. 22nd IEEE

International Conference on (Sept 2006), pp. 299–309.

[45] Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., and Harshman,

R. Indexing by latent semantic analysis. JOURNAL OF THE AMERICAN SOCIETY FOR

INFORMATION SCIENCE 41, 6 (1990), 391–407.

[46] Egyed, A., Biffl, S., Heindl, M., and Grünbacher, P. Determining the cost-quality

trade-off for automated software traceability. In ASE (2005), pp. 360–363.

[47] Eramo, R., Cortellessa, V., Pierantonio, A., and Tucci, M. Performance-driven

architectural refactoring through bidirectional model transformations. In Proceedings of the

8th international ACM SIGSOFT conference on Quality of Software Architectures (New York,

NY, USA, 2012), QoSA ’12, ACM, pp. 55–60.

[48] Fairbanks, G. Just Enough Software Architecture A Risk-Driven Approach. Marshall &

Brainerd, 2010.

[49] for Advancing Software-Intensive Systems Producibility; National Re-

search Council, C. Critical Code: Software Producibility for Defense. The National

Academies Press, 2010.

[50] Freund, Y., and Schapire, R. E. Experiments with a new boosting algorithm. In Thir-

teenth International Conference on Machine Learning (San Francisco, 1996), Morgan Kauf-

mann, pp. 148–156.

[51] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley, 1994.

[52] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design Patterns: Elements of

Reusable Object-oriented Software. Addison-Wesley Longman Publishing Co., Inc., Boston,

MA, USA, 1995.

[53] Garcia, J., Popescu, D., Edwards, G., and Medvidovic, N. Identifying architectural

bad smells. In Proceedings of the 2009 European Conference on Software Maintenance and

Bibliography 181

Reengineering (Washington, DC, USA, 2009), CSMR ’09, IEEE Computer Society, pp. 255–

258.

[54] Garcia, J., Popescu, D., Edwards, G., and Medvidovic, N. Toward a catalogue of

architectural bad smells. In Proceedings of the 5th International Conference on the Quality

of Software Architectures: Architectures for Adaptive Software Systems (Berlin, Heidelberg,

2009), QoSA ’09, Springer-Verlag, pp. 146–162.

[55] Garlan, D., and Shaw, M. An introduction to software architecture. In Advances in

Software Engineering and Knowledge Engineering (1993), Publishing Company, pp. 1–39.

[56] Genkin, A., Lewis, D. D., and Madigan, D. Large-scale bayesian logistic regression for

text categorization. Technometrics 49 (August 2007), 291–304(14).

[57] Gotel, O., Cleland-Huang, J., Hayes, J., Zisman, A., Egyed, A., GrÃĳnbacher,

P., Dekhtyar, A., Antoniol, G., Maletic, J., and MÃďder, P. Traceability funda-

mentals. In Software and Systems Traceability, J. Cleland-Huang, O. Gotel, and A. Zisman,

Eds. Springer London, 2012, pp. 3–22.

[58] Gotel, O., Cleland-Huang, J., Hayes, J. H., Zisman, A., Egyed, A., GrÃĳn-

bacher, P., Dekhtyar, A., Antoniol, G., Maletic, J., and MÃďder, P. Traceability

Fundamentals. Springer-Verlag London Limited, 2012, pp. 3–22.

[59] Gross, D., and Yu, E. From non-functional requirements to design through patterns.

Requirements Engineering 6 (2000), 18–36.

[60] Group, I. A. W. Ieee std 1471-2000, recommended practice for architectural description of

software-intensive systems. Tech. rep., IEEE, 2000.

[61] Grundy, J. Aspect-oriented requirements engineering for component-based software systems.

2012 20th IEEE International Requirements Engineering Conference (RE) 0 (1999), 84.

[62] Guide, R. T. P. Online at: http://www2.cdc.gov/cdcup/library/practices.

[63] Guo, G. Y., Atlee, J. M., and Kazman, R. A software architecture reconstruction

method. In Proceedings of the TC2 First Working IFIP Conference on Software Architecture

(WICSA1) (Deventer, The Netherlands, The Netherlands, 1999), WICSA1, Kluwer, B.V.,

pp. 15–34.

Bibliography 182

[64] Hanmer, R. Patterns for Fault Tolerant Software. Wiley Series in Software Design Patterns,

2007.

[65] Hart, J., King, E., Miotto, P., and Lim, S. Orion GN&C Architecture for Increased

Spacecraft Automation and Autonomy Capabilities, August 2008.

[66] Hayes, J., Dekhtyar, A., and Sundaram, S. Advancing candidate link generation for

requirements tracing: the study of methods. Software Engineering, IEEE Transactions on

32, 1 (Jan 2006), 4–19.

[67] HegedÅśs, P., BÃąn, D., Ferenc, R., and GyimÃşthy, T. Myth or reality? analyz-

ing the effect of design patterns on software maintainability. In Computer Applications for

Software Engineering, Disaster Recovery, and Business Continuity, T.-h. Kim, C. Ramos,

H.-k. Kim, A. Kiumi, S. Mohammed, and D. ÅŽlÄŹzak, Eds., vol. 340 of Communications in

Computer and Information Science. Springer Berlin Heidelberg, 2012, pp. 138–145.

[68] Hofmeister, C., Nord, R., and Soni, D. Applied software architecture. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, 2000.

[69] Huang, G., Mei, H., and Yang, F.-Q. Runtime recovery and manipulation of software

architecture of component-based systems. Automated Software Engg. 13, 2 (Apr. 2006), 257–

281.

[70] (IRG), N. A. I. R. G. Online at: http://ti.arc.nasa.gov/tech/asr/intelligent-robotics/, 2012.

[71] Izurieta, C., and Bieman, J. M. How software designs decay: A pilot study of pattern

evolution. In ESEM (2007), pp. 449–451.

[72] Jansen, A., and Bosch, J. Software architecture as a set of architectural design decisions. In

Proceedings of the 5th Working IEEE/IFIP Conference on Software Architecture (Washington,

DC, USA, 2005), IEEE Computer Society, pp. 109–120.

[73] Jansen, A., Bosch, J., and Avgeriou, P. Documenting after the fact: Recovering archi-

tectural design decisions. J. Syst. Softw. 81, 4 (Apr. 2008), 536–557.

[74] Joachims, T. Text categorization with suport vector machines: Learning with many relevant

features. In Proceedings of the 10th European Conference on Machine Learning (London, UK,

UK, 1998), ECML ’98, Springer-Verlag, pp. 137–142.

Bibliography 183

[75] Kazman, R., Barbacci, M., Klein, M., Carrière, S. J., and Woods, S. G. Experi-

ence with performing architecture tradeoff analysis. In Proceedings of the 21st international

conference on Software engineering (New York, NY, USA, 1999), ICSE ’99, ACM, pp. 54–63.

[76] Kazman, R., Klein, M., and Clements, P. Atam: A method for architecture evaluation.

Software Engineering Institute (2000).

[77] Kruchten, P. The 4+1 view model of architecture. IEEE Softw. 12 (November 1995),

42–50.

[78] Kruchten, P. An ontology of architectural design decisions. Groningen Workshop on Soft-

ware Variability management (2004), 55–62.

[79] Kruchten, P., Capilla, R., and Dueas, J. C. The decision view’s role in software

architecture practice. IEEE Software 26, 2 (2009), 36–42.

[80] L. Chung, B. Nixon, E. Y., and Mylopoulos, J. Non-functional requirements in software

engineering., 2000.

[81] Len Bass, Paul Clements, R. K. Software Architecture in Practice. 2000.

[82] Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., and Watkins, C. Text

classification using string kernels. J. Mach. Learn. Res. 2 (Mar. 2002), 419–444.

[83] Lung, C.-H., Zaman, M., and Nandi, A. Applications of clustering techniques to software

partitioning, recovery and restructuring. J. Syst. Softw. 73, 2 (Oct. 2004), 227–244.

[84] Mancoridis, S., Mitchell, B. S., Chen, Y., and Gansner, E. R. Bunch: A clustering

tool for the recovery and maintenance of software system structures. In Proceedings of the

IEEE International Conference on Software Maintenance (Washington, DC, USA, 1999),

ICSM ’99, IEEE Computer Society, pp. 50–.

[85] Marcus, A., and Maletic, J. I. Recovering documentation-to-source-code traceability

links using latent semantic indexing. In Proceedings of the 25th International Conference

on Software Engineering (Washington, DC, USA, 2003), ICSE ’03, IEEE Computer Society,

pp. 125–135.

Bibliography 184

[86] Medvidovic, N., and Egyed, A. Stemming architectural erosion by coupling architectural

discovery and recovery, 2003.

[87] Merkle, B. Stop the software architecture erosion. In Proceedings of the ACM international

conference companion on Object oriented programming systems languages and applications

companion (New York, NY, USA, 2010), SPLASH ’10, ACM, pp. 295–297.

[88] Mirakhorli, M., and Cleland Huang, J. A decision-centric approach for tracing relia-

bility concerns in embedded software systems. In Proceedings of the Workshop on Embedded

Software Reliability (ESR), held at ISSRE10 (November 2010).

[89] Mirakhorli, M., and Cleland-Huang, J. Tracing architectural concerns in high assur-

ance systems: (nier track). In ICSE (2011), pp. 908–911.

[90] Mirakhorli, M., and Cleland-Huang, J. Transforming trace information in architectural

documents into re-usable and effective traceability links. In Proceedings of the 6th workshop

on Sharing Architectural Knowledge (May 2011).

[91] Mirakhorli, M., and Cleland-Huang, J. Using tactic traceability information models

to reduce the risk of architectural degradation during system maintenance. In Proceedings of

the 2011 27th IEEE International Conference on Software Maintenance (Washington, DC,

USA, 2011), ICSM ’11, IEEE Computer Society, pp. 123–132.

[92] Mirakhorli, M., Shin, Y., Cleland-Huang, J., and Cinar, M. A tactic centric ap-

proach for automating traceability of quality concerns. In International Conference on Soft-

ware Engineering, ICSE (1) (2012).

[93] Mirakhorli, M., Shin, Y., Cleland-Huang, J., and Cinar, M. A tactic-centric ap-

proach for automating traceability of quality concerns. In Proceedings of the 2012 Interna-

tional Conference on Software Engineering (Piscataway, NJ, USA, 2012), ICSE 2012, IEEE

Press, pp. 639–649.

[94] Murphy, G. C., Notkin, D., and Sullivan, K. J. Software reflexion models: Bridging

the gap between design and implementation. IEEE Trans. Softw. Eng. 27, 4 (Apr. 2001),

364–380.

[95] NASA’s, and Robots. Online at: http://prime.jsc.nasa.gov/ ROV/nlinks.html, 2008.

Bibliography 185

[96] Ormandjieva, M. K. O. Towards an aspectoriented software development model with

tractability mechanism, 2006.

[97] Parnas, D. Designing software for ease of extension and contraction. Software Engineering,

IEEE Transactions on SE-5, 2 (March), 128–138.

[98] Parnas, D. L. Designing software for ease of extension and contraction. In Proceedings of

the 3rd international conference on Software engineering (Piscataway, NJ, USA, 1978), ICSE

’78, IEEE Press, pp. 264–277.

[99] Parnas, D. L. Software aging. In Proceedings of the 16th international conference on

Software engineering (Los Alamitos, CA, USA, 1994), ICSE ’94, IEEE Computer Society

Press, pp. 279–287.

[100] Perry, D. E., and Wolf, A. L. Foundations for the study of software architecture.

SIGSOFT Softw. Eng. Notes 17 (October 1992), 40–52.

[101] Poshyvanyk, D., Gethers, M., and Marcus, A. Concept location using formal concept

analysis and information retrieval. ACM Trans. Softw. Eng. Methodol. 21, 4 (Feb. 2013),

23:1–23:34.

[102] Quinlan, J. R. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers Inc.,

San Francisco, CA, USA, 1993.

[103] Ramesh, B., and Edwards, M. Issues in the development of a requirements traceability

model. In Requirements Engineering, 1993., Proceedings of IEEE International Symposium

on (1993), pp. 256–259.

[104] Ramesh, B., and Jarke, M. Toward reference models for requirements traceability. IEEE

Trans. Softw. Eng. 27 (January 2001), 58–93.

[105] Rashid, A., Moreira, A., and Araújo, J. Modularisation and composition of aspectual

requirements. In Proceedings of the 2nd international conference on Aspect-oriented software

development (New York, NY, USA, 2003), AOSD ’03, ACM, pp. 11–20.

[106] Rashid, A., Sawyer, P., Moreira, A., and Araujo, J. Early aspects: a model for

aspect-oriented requirements engineering. In Requirements Engineering, 2002. Proceedings.

IEEE Joint International Conference on (2002), pp. 199 – 202.

Bibliography 186

[107] Rasool, G., and Mäder, P. Flexible design pattern detection based on feature types. In

ASE (2011), pp. 243–252.

[108] Rosik, J., Le Gear, A., Buckley, J., and Ali Babar, M. An industrial case study of

architecture conformance. In Proceedings of the Second ACM-IEEE international symposium

on Empirical software engineering and measurement (New York, NY, USA, 2008), ESEM ’08,

ACM, pp. 80–89.

[109] Rumbaugh, J., Jacobson, I., and Booch, G., Eds. The Unified Modeling Language

reference manual. Addison-Wesley Longman Ltd., Essex, UK, UK, 1999.

[110] Salazar-zÃąrate, G., and Botella, P. Use of uml for modeling non-functional aspects,

2000.

[111] Sartipi, K. Software architecture recovery based on pattern matching. In Proceedings of

the International Conference on Software Maintenance (Washington, DC, USA, 2003), ICSM

’03, IEEE Computer Society, pp. 293–.

[112] (SEI), C. M. S. E. I. Online at: http://www.sei.cmu.edu/.

[113] Sieriorek, D., and Narasimhan, P. Fault tolerant architectures for space and avionics

applications. NASA Ames Research (http://ic.arc.nasa.gov/projects/ishem/Papers/Siewi).

[114] Siewiorek, D. P., and Narasimhan, P. Fault-tolerant architectures for space and avionics

applications. NASA Ames Research http://ic.arc.nasa.gov/projects/ishem/Papers/Siewi.

[115] Tamblyn, S., Hinkel, H., and Saley, D. NASA Exploration Systems Architecture Study

(ESAS) Final Report, 2005.

[116] Tamblyn, S., Hinkel, H., and Saley, D. Crew Exploration Vehicle (CEV) Reference

Guidance, Navigation, and Control (GN&C) Architecture, February 2007.

[117] Tang, A., Avgeriou, P., Jansen, A., Capilla, R., and Babar, M. A. A comparative

study of architecture knowledge management tools. Journal of Systems and Software 83, 3

(2010), 352 – 370.

[118] Tang, A., Jin, Y., and Han, J. A rationale-based architecture model for design traceability

and reasoning. Journal of Systems and Software 80, 6 (2007), 918 – 934.

Bibliography 187

[119] Taylor, R., Medvidovic, N., and Dashofy, E. Software Architecture: Foundations,

Theory, and Practice. John Wiley and Sons, 2009.

[120] Tekinerdoğan, B., Hofmann, C., Akşit, M., and Bakker, J. Metamodel for tracing

concerns across the life cycle. In Proceedings of the 10th international conference on Early

aspects: current challenges and future directions (Berlin, Heidelberg, 2007), Springer-Verlag,

pp. 175–194.

[121] Tong, S., and Koller, D. Support vector machine active learning with applications to

text classification. J. Mach. Learn. Res. 2 (Mar. 2002), 45–66.

[122] Tracelab. Online at: http://www.coest.org, 2013.

[123] Tyree, J., and Akerman, A. Architecture decisions: Demystifying architecture. IEEE

Softw. 22, 2 (Mar. 2005), 19–27.

[124] University of California, I. The sourcerer project. sourcerer.ics.uci.edu.

[125] van Gurp, J., and Bosch, J. Design erosion: problems and causes. J. Syst. Softw. 61, 2

(Mar. 2002), 105–119.

[126] van Gurp, J., Bosch, J., and Svahnberg, M. On the notion of variability in software

product lines. In WICSA (2001), pp. 45–54.

[127] van Gurp, J., Brinkkemper, S., and Bosch, J. Design preservation over subsequent

releases of a software product: a case study of baan erp: Practice articles. J. Softw. Maint.

Evol. 17 (July 2005), 277–306.

[128] van Lamsweerde, A., and Letier, E. From object orientation to goal orientation: A

paradigm shift for requirements engineering. In RISSEF (2002), M. Wirsing, A. Knapp, and

S. Balsamo, Eds., vol. 2941 of Lecture Notes in Computer Science, Springer, pp. 325–340.

[129] Vokáč, M., Tichy, W., Sjøberg, D. I. K., Arisholm, E., and Aldrin, M. A controlled

experiment comparing the maintainability of programs designed with and without design

patterns—a replication in a real programming environment. Empirical Softw. Engg. 9,

3 (Sept. 2004), 149–195.

Bibliography 188

[130] Warmer, J., and Kleppe, A. The Object Constraint Language: Getting Your Models Ready

for MDA, 2 ed. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2003.

[131] Williams, B. J., and Carver, J. C. Characterizing software architecture changes: A

systematic review. Information & Software Technology 52, 1 (2010), 31–51.

[132] Wojcik, R., Bachmann, F., Bass, L., Clements, P., Merson, P., Nord, R., and

Wood, B. Attribute-driven design (add), version 2.0, 2006-023.

[133] Yadla, S., Hayes, J. H., and Dekhtyar, A. Tracing requirements to defect reports: an

application of information retrieval techniques. Innovations in Systems and Software Engi-

neering 1, 2 (2005), 116–124.

[134] Yu, E. Towards modelling and reasoning support for early-phase requirements engineering.

In Requirements Engineering, 1997., Proceedings of the Third IEEE International Symposium

on (jan 1997), pp. 226 –235.

[135] Zhu, L., and Gorton, I. Uml profiles for design decisions and non-functional requirements.

In Proceedings of the Second Workshop on SHAring and Reusing architectural Knowledge

Architecture, Rationale, and Design Intent (Washington, DC, USA, 2007), SHARK-ADI ’07,

IEEE Computer Society, pp. 8–.

	Preserving the Quality of Architectural Tactics in Source Code
	Recommended Citation

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	I Problem Statement and Background
	1 Introduction
	1.1 Contributions
	1.2 Overview of the Methodology
	1.3 Scope
	1.4 Published Work
	1.5 Organization

	2 Background and Definitions
	2.1 Software Architecture
	2.1.1 Definitions of Software Architecture

	2.2 Architectural Tactics
	2.2.1 Availability Tactics
	2.2.2 Performance Tactics
	2.2.3 Security Tactics

	2.3 Tactics in Action
	2.4 Architecture Erosion
	2.4.1 Definition
	2.4.2 Causes of Erosion
	2.4.3 Strategies to Prevent Erosion
	2.4.4 Strategies to Repair Erosion

	2.5 Summary

	3 Traceability Fundamentals
	3.0.1 Definition of Software Traceability
	3.0.2 Traceability information model (TIM)
	3.0.3 Tracing and Related Concepts
	3.0.4 Automated Traceability
	3.0.5 Event-Based Traceability

	3.1 Tracing Architectural Concerns
	3.1.1 Software Architecture Practices that capture NFR traces
	3.1.2 Custom Processes and Techniques for Tracing NFRs

	3.2 Summary

	II Creating Architecture Traceability
	4 Decision Centric Traceability
	4.1 Introduction
	4.2 Identified Challenges
	4.3 Decision-Centric Traceability Meta-Model
	4.4 Tactic Traceability Patterns
	4.5 Examining the Research Questions
	4.5.1 Examining RQ1. Reducing Cost and Effort
	4.5.2 Evaluation RQ2. Usefulness of tTPs in Maintenance Scenarios

	4.6 Summary

	5 Automated Trace Generation
	5.1 Proposed Approach
	5.2 Tactic Level Link Reconstruction
	5.2.1 Experiment 1: Training with tactic descriptions
	5.2.2 Experiment 2: Training with code snippets

	5.3 Role Level Link Reconstruction
	5.3.1 Light Weight Structural Analysis
	5.3.2 Role-Level Trace Reconstruction in a Real Case Study

	5.4 Examining the Research Questions
	5.5 Summary

	6 Off-the-Shelf Classifiers for Detecting Architectural Tactics
	6.1 Datasets for Architectural Code Snippets
	6.2 Classification Methods
	6.2.1 Tactic Detector
	6.2.2 Support Vector Machine
	6.2.3 Classification by Decision Tree (J.48)
	6.2.4 Bayesian Logistic Regressions (BLR)
	6.2.5 AdaBoost
	6.2.6 Ensembled Rule Learning: SLIPPER
	6.2.7 Bagging

	6.3 Tuning Classifiers through N-Fold Cross-Validation
	6.4 Ranking the Classifiers based on Hadoop Case Study
	6.4.1 Audit Trail Tactic
	6.4.2 Authentication Tactic
	6.4.3 HeartBeat Tactic
	6.4.4 Resource Pooling Tactic
	6.4.5 Resource Scheduling Tactic
	6.4.6 Asynchronous Method Invocation Tactic
	6.4.7 Hash Based Method Authentication
	6.4.8 RBAC Tactic
	6.4.9 Secure Session Management
	6.4.10 CheckPoint Architectural Tactic

	6.5 Examining Research Questions
	6.6 Summary

	III Traceability for Architecture Erosion
	7 Notifications and Visualization
	7.1 Usage of Event Based Traceability
	7.2 Two Notification Scenarios
	7.2.1 Illustrative Example at Model Level using tTP
	7.2.2 Illustrative Example at the Code Level using Tactic Detector

	7.3 Examining Research Questions
	7.4 Summary

	IV Design for Change
	8 Variability Points and Design Pattern Usage in Architectural Tactics
	8.1 Implementation Issues of Architectural Tactics
	8.2 Mining Tactic Implementations
	8.3 Scheduling Tactic: Forces and Solutions
	8.4 Resource Pooling Tactic: Forces and Solutions
	8.5 Heartbeat Tactic: Forces and Solutions
	8.6 a Tactic Reference Model
	8.7 Examining Research Questions
	8.8 Summary

	V Conclusion and Summary
	9 Conclusions
	9.1 Summary of Results
	9.1.1 Development of a Decision Centric Traceability Method
	9.1.2 Automating the Construction of the Traceability Links
	9.1.3 Comparing Off the Shelf Classifiers with Tactic Detector
	9.1.4 Trace Link Usage
	9.1.5 Design Patterns to Implement Architectural Tactics
	9.1.6 Archie: A Smart IDE

	9.2 Threats to Validity
	9.2.1 Tactic Traceability Patterns
	9.2.2 Automated Study
	9.2.3 Off-the-Shelf Classifiers
	9.2.4 Design for Change

	9.3 Future Work
	9.3.1 Extensions
	9.3.2 New Direction

	A Case Studies
	A.1 Case Study of NASA Crew Exploration Vehicle (CEV)
	A.2 Case Study of NASA Lunar Robot
	A.3 Case Study of Hadoop Framework
	A.3.1 HDFS Architecture
	A.3.2 Hadoop Map-Reduce Architecture
	A.3.3 Combined Architectural View
	A.3.4 HDFS Architectural Issues
	A.3.4.1 Availability
	A.3.4.2 Security
	A.3.4.3 Performance

	Bibliography

