
The Pennsylvania State University

The Graduate School

College of Engineering

FLEET PLANNING

IN THE CAR RENTAL BUSINESS

A Dissertation in

Industrial Engineering and Operations Research

by

Gen-Han Wu

© 2010 Gen-Han Wu

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

May 2010

The dissertation of Gen-Han Wu was reviewed and approved* by the following:

Tom M. Cavalier

Professor of Industrial Engineering

Dissertation Advisor

Chair of Committee

A. Ravi Ravindran

Professor of Industrial Engineering

David A. Nembhard

Associate Professor of Industrial Engineering

Terry P. Harrison

Professor of Supply Chain and Information System

Paul Griffin

Professor of Industrial Engineering

Head of the Harold and Inge Marcus Department

 of Industrial and Manufacturing Engineering

*Signatures are on file in the Graduate School.

 iii

Abstract

In the United States, consumption capacity in tourism is poised to grow significantly,

and transportation is one of the essential elements in tourism. Airplanes and car rentals are

the most typical modes of public travel. While air transport has earned significant scholarly

attention and there exist abundant studies, fleet planning in the car rental business is

discussed only minimally in operations research. Therefore, the purpose of this research is

not only to build a thorough analytical framework for car rental fleet planning in different

time phases, but also to develop practical algorithmic procedures.

 In long-term planning, pool segmentation and hub selection are studied. All rental

locations are split into different pools and a hub is selected within each pool. The proposed

clustering-based iterative algorithm offers a reliable clustering method to quickly find an

initial solution with a small solution gap and an iterative method to gradually approach a

near-optimum. In mid-term planning, inter-pool moves and asset replacement are distributed

among different pools based on the change of seasonal demand. Numerical results have

shown that the best-improvement descent local search with the structure of better neighbors

has very good performance and can obtain a satisfactory solution in an extremely short time.

In short-term planning, vehicle imbalance at different locations forces empty vehicles to be

redistributed. Daily planning of demand allocation and empty flow redistribution is addressed

in the same pool. Car upgrade policy and service level are also considered. A first-

improvement descent local search is developed. Computing results demonstrate that the first-

improvement descent local search not only obtains relatively good solutions in quite a short

time but also solves very large scale integer programming problems easily.

 iv

TABLE OF CONTENTS

LIST OF FIGURES …..…………..…………………………………………………….viii

LIST OF TABLES……………………..……………………………………………..…..xi

ACKNOWLEDGEMENTS………………..………………………………….…….......xiv

Chapter 1. INTRODUCTION……………………………………………………..…..1

1.1 Research Origin and Motivation……………………………………………......1

1.2 Research Purpose………………………………………………………...……..2

1.3 Problem Statement………………………………………………………...……3

1.4 Dissertation Framework………….…………………………………………......5

Chapter 2. CAR RENTAL BUSINESS PROFILE……………………………………7

2.1 History of the U.S. Car Rental Business………………..……………………...7

2.2 The U.S. Car Rental Market…………………………………………..………10

2.3 The Car Rental Software…………………………….......................................18

Chapter 3. LITERATURE REVIEW………………………………………..……….20

3.1 Car Rental Problems…………………………………………………….….…20

3.2 Fleet Planning Problems………………………………………………………27

 3.2.1 Long-term: Pool Segmentation and Hub Selection…………………......28

 3.2.2 Mid-term: Inter-pool Moves and Asset Replacement……………….…..32

 3.2.3 Short-term: Demand Allocation and Empty Flow Redistribution…........33

Chapter 4. POOL SEGMENTATION AND HUB SELECTION……………………36

4.1 Problem Formulation……………………………………………………...…..36

4.2 Mathematical Model…………………………………………………………..38

4.3 Motivation………..…………………………………………………….….….40

4.4 Algorithm Procedure…………..………………………………………….…..45

 v

4.4.1 Clustering Algorithm ………………………………………………...…47

 4.4.1.1 Neighbor Factor ………………………………………………..47

 4.4.1.2 Tabu List……………………………………………………..…47

 4.4.1.3 Flow Chart……………………………………………….….….48

 4.4.1.4 Detailed Procedure…………………………..…………….……50

 4.4.1.5 Example……………………………………………………..….53

4.4.2 Enumeration Method…………………………………………………....72

4.4.3 Modified Prim Algorithm……………………………………………….73

4.5 Computing Results…………………………………………………………....74

4.5.1 Parameter Settings ……………………………………………………...74

4.5.2 Factor Levels…………………………………………………………....76

4.5.3 Experimental Platform…………………………………………………..78

4.5.4 Experimental Analysis…………………………………………………..78

4.5.4.1 Impact Analysis on Experimental Factors versus Algorithm

 Time.........................…...79

 4.5.4.2 Impact Analysis on Locations in Practical Problem Size versus

Algorithm Time...84

 4.5.4.3 Impact Analysis on Experimental Factors versus Solution

Gap..84

4.5.4.4 Comparison of Computing Time between the Clustering-Based

Iterative Algorithm and the Branch-and-Bound Method…........87

4.6 Concluding Remarks…………………………………………………………..93

Chapter 5. INTER-POOL MOVES AND ASSET REPLACEMENT………….……94

5.1 Problem Formulation……………………………………………………...…..94

5.2 Mathematical Model………………………………………………………......96

5.3 Motivation………………………………………………………………….....98

5.4 Algorithm Procedure………………………………………………………...102

5.4.1 Initial Solution…………………………………………………………102

 5.4.2 The Structure of Better Neighbors…………………………………….105

5.4.3 Best-Improvement Descent Local Search……………………………..111

 vi

5.5 Computing Results…………………………………………………………..114

5.5.1 Parameter Settings…………………………………………………..…114

5.5.2 Factor Levels……………….…………………………………………..117

5.5.3 Experimental Platform…………………………………………………118

5.5.4 Experimental Analysis…………………………………………………118

5.5.4.1 Impact Analysis on Experimental Factors versus Solution Gap

………………………………………………………………119

5.5.4.2 Impact Analysis on Experimental Factors versus Computing

Time…………………………………………………………121

5.5.4.3 Impact Analysis on Large Scale Number of pools versus

Computing Time………………………………………...…...126

5.6 Concluding Remarks……………………………………………………….129

Chapter 6. DEMAND ALLOCATION AND EMPTY FLOW REDISTRIBUTION…

 ………………………………………………………………………….131

6.1 Problem Formulation………………………………………………………...131

6.2 Mathematical Model…………………………………………………………133

6.3 Motivation…………………………………………………………………...135

6.4 Algorithm Procedure………………………………………………………...136

6.4.1 Initial Solution………………………………………………………….136

 6.4.2 The Structure of Better Neighbors……………………………………..139

 6.4.3 First-Improvement Descent Local Search……………………………...143

6.5 Computing Results……………………………………….…………………145

6.5.1 Parameter Settings…………………………………………………...…145

6.5.2 Factor Levels……………………………………………………………149

 6.5.3 Experimental Platform………………………………………………….150

 6.5.4 Experimental Analysis………………………………………………….150

 6.5.4.1 Results for Small Scale Problems…………………………....150

 6.5.4.2 Results for Large Scale Problems…………………………….154

6.6 Concluding Remarks…………………………………….…………………156

 vii

Chapter 7. Summary and Further Work…………………………………………….157

7.1 Summary……………………………………………………………………..157

7.2 Direction for Further Extensions and Research………………………...……160

REFERENCES……………………………………………………………………...161

Appendix A. Original Data on Experimental Factors versus Algorithm Time in Chapter

4………………………………………………………………………..…176

Appendix B. Tukey Tests on Four Factors versus Algorithm Time in Chapter 4……...182

Appendix C. Original Data on Experimental Factors versus Solution Gap in Chapter

4…………………………………………………………………………..187

Appendix D. Tukey Test on Three Factors versus Solution Gap in Chapter 4………...190

Appendix E. Original Data of Inter-pool Moves and Asset Replacement on Experimental

Factors versus Solution Gap in Chapter 5………………………………..194

 Appendix F. Tukey Tests of Inter-pool Moves and Asset Replacement on the Number of

Car Ages/ Seasonal Periods versus Solution Gap in Chapter 5………….197

 Appendix G. Tukey Tests of Inter-pool Moves and Asset Replacement on Three Factors

versus Computing Time in Chapter 5…………………………..………..199

 viii

LIST OF FIGURES

Figure 1.1: The problem of car rental operations…...…………………………………4

Figure 1.2: Overview of the research framework……...………………………………6

Figure 2.1: The U.S. car rental fleet size and market revenue……………………….10

Figure 2.2: The percentage of car fleet market share by rental companies…………..14

Figure 2.3: Market share of car rental revenue……………………………………….17

Figure 4.1: Network before pool segmentation……………………………………....37

Figure 4.2: Network after pool segmentation………………………………………...37

Figure 4.3: Example of an optimal solution with 60 facility locations………………40

Figure 4.4: The solution form of total cost incurred………………………………....41

Figure 4.5: Optimal value vs. different number of hubs……………………………..43

Figure 4.6: Fixing the pool region and re-selecting the hubs……………………...…44

Figure 4.7: Fixing the hubs and re-shaping the pool regions………………………...45

Figure 4.8: The clustering-based iterative algorithm …………………………….….46

Figure 4.9: The clustering algorithm(1/2)…………………………………………....48

Figure 4.10: The clustering algorithm(2/2)…………………………………………..49

Figure 4.11: Example of 14 locations with their demands and hub opening costs…..54

Figure 4.12: Node 11 is selected to be a hub…………………………………………59

Figure 4.13: Node 10 is selected to be a hub…………………………………………60

Figure 4.14: Node 12 is connected to hub 11 and node 14 is selected to be a hub..…61

 Figure 4.15: Node 6 is connected to hub 11, node 3 is connected to hub 14, and

node 1 is selected to be a hub…………………………………...………63

 ix

Figure 4.16: Node 2 is chosen to be a hub…………………………………………...65

 Figure 4.17: Node 5 is connected to hub 14, node 8 is connected to hub 1, and

node 4 is connected to hub 2……………………………………………68

Figure 4.18: Node 3 is connected to hub 2…………………………………………...69

Figure 4.19: Node 9 is connected to hub 10………………………………………….71

Figure 4.20: Node 9 is connected to hub 1…………………………………………...72

Figure 4.21: Average logarithm time on different levels of experimental factors…...82

 Figure 4.22: The trend chart of algorithm time on the number of locations in

practical problem size………………………………………………….84

Figure 4.23: Average solution gap on different levels of experimental factors……...87

 Figure 4.24: Comparison of logarithm time between the clustering-based iterative

 algorithm and the branch-and-bound method on different number of

locations………………………………………………………………....90

 Figure 4.25: Comparison of logarithm time between the clustering-based iterative

 algorithm and the branch-and-bound method on different ratios of

pool capacity to the demand…………………………………………….91

 Figure 4.26: Comparison of logarithm time between the clustering-based iterative

 algorithm and the branch-and-bound method on different ratios of

hub cost to the demand………………………………………………….92

Figure 5.1: Network for inter-pool moves and asset replacement………………..…..95

Figure 5.2: Average solution gaps on different levels of experimental factors……..120

Figure 5.3: Average algorithm times on different levels of experimental factors…..125

 Figure 5.4: Average time solved by the branch-and-bound method on different

 x

levels of experimental factors…………………………………………...125

Figure 5.5: The trend chart of algorithm time on the large scale number of pools…127

Figure 5.6: The trend chart of the algorithm time in Example 25…………………..128

Figure 6.1: Demand allocation and empty flow redistribution…………………...…132

Figure 6.2: Computing time and iterations on large problem sizes…………………155

 xi

LIST OF TABLES

Table 2.1: Summary of the U.S. car rental companies………………………….…....12

Table 2.2: Summary of the number of cars by rental companies………………….....13

Table 2.3: Summary of the number of the car rental facilities by rental companies…15

Table 2.4: Summary of the car rental revenues by rental companies……………...…16

Table 2.5: Functions of car rental software applications……………………………..18

Table 3.1: Car rental literature on revenue management…………………………….23

Table 3.2: Case studies in car rental business……………………………………......25

Table 3.3: Fleet management in car rental business………………………………….26

Table 3.4: Literature in pool segmentation and hub selection………………………..31

Table 3.5: Literature in inter-pool moves and asset replacement…………………….32

Table 3.6: Literature in demand allocation and empty flow redistribution…………..35

Table 4.1: Optimal solution vs. clustering algorithm…………………………….…..43

Table 4.2: Distance matrix for the 14 nodes…………………………………….……54

Table 4.3: A ranking list of all candidate pool regions……………………………....58

Table 4.4: ANOVA table on four factors versus algorithm time…………………….80

Table 4.5: Tukey test on different numbers of car types……………………………..81

Table 4.6: Tukey test on different numbers of locations……………………………..81

Table 4.7: Tukey test on different ratios of pool capacity to the demand……………81

Table 4.8: Tukey test on different ratios of hub cost to the demand…………………82

 Table 4.9: The algorithm time on the number of locations in practical problem

 size………………………………………………………….…………….83

 xii

Table 4.10: ANOVA tables on three factors versus solution gap…………………....84

Table 4.11: Tukey test on different numbers of locations…………………………....85

Table 4.12: Tukey test on different ratios of pool capacity to the demand…………..86

Table 4.13: Tukey test on different ratios of hub cost to the demand………………..86

 Table 4.14: Computing time of the clustering-based iterative algorithm and the

branch-and-bound method……………………………………………....89

Table 5.1: ANOVA table on three factors versus solution gap……………………..119

Table 5.2: Tukey test on different numbers of ages/seasons………………………..119

Table 5.3: ANOVA table on three factors versus the algorithm time……………....121

 Table 5.4: ANOVA table on three factors versus the time solved by the

branch-and-bound method………….…………………………………...121

 Table 5.5: Tukey test of the algorithm time on different numbers of car types..…...122

 Table 5.6: Tukey test of the time solved by the branch-and-bound method on

different numbers of car types…………………………………………..122

 Table 5.7: Tukey test of the algorithm time on different numbers of car

ages/seasonal periods…………………………………………………....123

 Table 5.8: Tukey test of the time solved by the branch-and-bound method on

different numbers of car ages/seasonal periods……………………...….123

Table 5.9: Tukey test of the algorithm time on different numbers of pools...............124

 Table 5.10: Tukey test of the time solved by the branch-and-bound method on

different numbers of pools……………………………………………....124

Table 5.11: The algorithm time on the large scale number of pools………………..126

 Table 6.1: Solution gaps between the first-improvement descent local search and the

 xiii

branch-and-bound method……………………………………………....152

 Table 6.2: Computing times of the first-improvement descent local search and the

branch-and-bound method……………………………………………....153

 Table 6.3: The algorithm time on large problem sizes …………………...……......154

xiv

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my advisor, Dr. Tom M. Cavalier, for

his continued guidance over the past years. Without his patience and constructive advice, I

could not have completed this dissertation. I would also like to thank my committee members,

Dr. A. Ravi Ravindran, Dr. David A. Nembhard, and Dr. Terry P. Harrison, for their valuable

comments and suggestions that make my dissertation more complete.

Finally, I would like to express my profound gratitude to my parents. None of this

would have been possible without their love, patience, support, and encouragement.

 1

CHAPTER 1

INTRODUCTION

1.1 Research Origin and Motivation

In the United States, consumption capacity in tourism is poised to grow significantly.

Within tourism, transportation is one of the essential elements and the most typical modes of

public travel are airplanes and car rentals. International and long-distance travel relies on

airplanes, but post-flight excursions and trips depend upon car rentals.

In order to rent a car, consumers pay a car rental company a fee to rent an automobile

for a short period of time, ranging from a few hours to several weeks. A car rental company

is comprised of numerous local branches located within airports or throughout urban areas.

Not only do car rental companies offer online reservations, but also many on-line travel

agencies including Priceline, Expedia, and others, offer price comparisons between

companies. Car rental companies primarily serve customers who make excursions or

business trips and they offer customers a choice of economy, compact, medium, or luxury

cars to meet customers’ needs. Therefore, car rental companies presumably own a large

number of fleet vehicles, and their rental facilities are widely distributed to easily schedule

the vehicles. Moreover, car rental companies enter into agreements with vehicle

manufacturers, including Ford, Chrysler, and Dodge, to purchase cars at extremely low prices.

As such, larger car rental companies are generally more competitive than smaller ones

 2

because these larger companies have more rental facilities, more fleet vehicles, and more car

types, and therefore can decrease operational and maintenance costs and provide their

customers a convenient, cheap, and diverse car rental environment.

While air transport has earned significant scholarly attention (Doy and Pope 1985;

Jenkins 1987; Marker 1991; Aykin 1995; Goodovitch 1996; Orlady 2002; Barnhart et al.

2003; Janic 2003;Donohue 2006; Khoury et al. 2007; Baxley et al. 2008) and there exist

abundant studies on the planning of flight routes (Yan and Young 1996; Rosenthal and

Walsh 1996; Barnett 2000; Hsu and Wen 2000), flight schedules (Jarrah et al. 1993; Yan and

Tu 1997; Cao and Kanafani 2000), flight fares(Chatwin 1996; Chatwin 1998; Nero and Black

1998; Subramanian et al. 1999), and aviation rights(Stickle et al. 1991; Dodgson 1994), fleet

planning in the car rental business(Pachon 2000) is discussed only minimally in operations

research even though car rental fleet planning possesses economic value. Moreover, in the

past, most of the effort in car rental fleet planning was devoted to small scale problems.

Hence, more effort and research in car rental fleet planning is essential to continued

improvement in the competitive environment.

1.2 Research Purpose

Since more effort in car rental fleet planning is essential, the purpose of this study is not

only to build a thorough analytical framework for car rental fleet planning in different time

phases, but also to develop practical algorithmic procedures, which can solve the problems in

actual problem sizes. Ultimately, these practical algorithms will build a complete, rapid, and

accurate plan of vehicle distribution in order to effectively reduce staff misjudgment and

workloads in the car rental company.

 3

1.3 Problem Statement

In order to successfully manage the fleet planning of a large car rental company, the

first step is to assess the market, so that the demand can be carefully evaluated and forecasted.

The yearly demand and profit potential in different parts of the country help determine the

locations of rental facilities as well as the number of initial fleet vehicles needed. Due to the

large number of rental facilities, the locations are split into several pools and one location

from each pool is designated as the hub of the pool. The hub is responsible for seasonal

vehicle distribution, depreciation, and procurement among different pools. To manage rental

facilities within the same region, car allocation and empty vehicle redistribution need to be

considered. Moreover, when the reserved car type is not available, it needs to be upgraded

without an additional cost to the customer. Since a car rental company charges for the

reserved car type’s expense even if upgrading to another car type, the upgrade policy is an

important task in the problem of car rental operation.

Focusing on the above issues, this study develops three fleet operation plans: long-term,

mid-term, and short-term. In long-term planning, this study assumes that the location and the

yearly demand of each rental facility are known. The rental facilities are split into different

pools based on yearly demand, distance, hub costs, and car upgrade policy. Additionally, a

clustering-based iterative algorithm is devised to find a suitable solution. In mid-term

planning, a hub represents each pool, and seasonal demand is distributed among different

pools, which are called inter-pool moves. This study also considers the procurement of new

cars, the depreciation of old cars, and car upgrade policy, and develops a best-improvement

descent local search, embedded with the structure of better neighbors, to obtain satisfactory

 4

solutions. In short-term planning, daily demand is assumed to be known and a car upgrade

policy is employed. In the same pool, unused cars can be redistributed on the same night. A

first-improvement descent local search is proved to be very effective in solving this problem.

The overall problem related to car rental operations is outlined in Figure 1.1.

Figure 1.1. The problem of car rental operations

 5

1.4 Dissertation Framework

This dissertation is organized into seven chapters. Chapter 2 provides the car rental

business profile in the United States by discussing the history of the development of the car

rental business, the statistics of the market, and the functions of car rental software. Chapter 3

discusses car rental problems and fleet planning literature. Then, Chapter 4 introduces the

model of pool segmentation and hub selection. A clustering-based iterative algorithm is

proposed and is proven to be very effective. Chapter 5 provides an overview of mid-term

fleet planning, which deals with inter-pool moves and asset replacement. A best-

improvement descent local search is developed and validated. The short-term fleet planning,

which deals with demand allocation and empty flow redistribution, is introduced in Chapter 6.

An analytical model is developed and a first-improvement descent local search is used to

solve this problem. Finally, Chapter 7 outlines the concluding remarks and presents

directions for further extensions and research. An overview of the research framework of this

dissertation is shown in Figure 1.2.

 6

Figure 1.2. Overview of the research framework

 7

CHAPTER 2

CAR RENTAL BUSINESS PROFILE

2.1 History of the U.S. Car Rental Business

Although there is not much recorded detail about the origin of the first car rental

company, many believe that the first car rental company was founded in 1916 by a

Nebraskan native, Joe Saunders, who rented his Ford Model T to a traveling businessman

and charged 10 cents per mile of use. From these humble beginnings Saunders eventually

achieved great car rental success. By 1925, Saunders owned rental businesses in 21 states.

Unfortunately, due to the Great Depression, Saunders’ business declared bankruptcy during

the early 1930s.

However, Saunders was not the only businessman who seized the car rental opportunity.

Another businessman, Walter L. Jacobs, started renting Ford Model T cars to his customers

in 1918. By 1923 Jacobs experienced success of over $ 1 million in annual sales and attracted

the interest of John Hertz, who was the owner of The Yellow Cab and Yellow Truck and

Coach Manufacturing Company. Hertz acquired Jacobs’ business and eventually sold his

Hertz’s Yellow Truck Company to General Motors in 1929. The car rental business became

known as the Hertz Drive-Ur-Self System.

The reputation established previously in the car rental business was damaged during the

Prohibition period because many believed that rental cars were frequently used by

 8

bootleggers and robbers. After the 18th Amendment was repealed in 1933, the industry rebuilt

a respectable reputation and grew considerably.

Later, the expansion of the rail networks bolstered the car rental business for a number

of years. Many railway companies encouraged rental car use by allocating spaces for rental

booths at railroad stations. In addition, rail companies allowed passengers to reserve cars in

advance of their arrivals at stations using the telegraph network.

The car rental business grew rapidly after WWII because the boom of business travels

in the airline industry meant that more people needed a car for their post-flight business trips.

Car rental companies opened franchises at airports to allow passengers vehicular transport at

their arrival destination. For example, Hertz developed the “fly-drive” car rental concept by

opening franchises at Chicago’s Midway Airport in 1932. Avis centered all of its operations

from airports and advertised services through the airline companies. The car rental industry

has been very competitive since the 1960s because many small companies have competed for

profits through small kiosks in tightly compressed airport space.

Another main car rental company, Enterprise Rent-A-Car, which was founded in 1962,

adopted completely different advertising strategies by appealing to customers who needed a

replacement car or did not have a car. Enterprise opened their facilities extensively in local

spots and offered cheaper prices, but older cars to their customers. Its business model

continues to earn great success.

When car rental companies began the practice of selling their old cars to the public in

the 1970s and the 1980s, some large car rental companies, such as Hertz, became major used

 9

car dealers as well. At the same time, to counter this competition, major vehicle

manufacturing firms tried to buy used car companies in order to ensure these companies

would primarily purchase their new cars. In fact, car rental companies accounted for about 10

percent of all domestic auto sales in the early 1990s.

The growth of the car rental business slowed down after the terrorist attacks on

September 11, 2001. However, it has made a dramatic comeback in recent years. This

renewed interest in car rentals results, at least in part, from the prevalence of the Internet,

which has made online reservations easier than ever. In 2003, online bookings had become

important for the industry, with 21% of the bookings coming from online agencies and 15%

directly from the car rental companies’ web sites. The importance of online bookings is

expected to grow even further.

For companies to survive in this highly competitive industry, car rental companies must

provide unrivalled service. For instance, car rental companies are increasingly employing

satellite navigation systems for their customers. With prices increasingly forced down by

rivals, the customer now faces possibly the widest choices of cars and affordable prices ever

in the history of the car rental business.

 10

2.2 The U.S. Car Rental Market

According to the statistics provided by Auto Rental News*, in the last 20 years, the size

of the fleets and the market revenue in the U.S. car rental market has progressively increased

(see Figure 2.1). Although this trend has leveled off and stabilized since the year 2000,

overall the size of the car fleet grew from 790,000 in 1986 to 1,813,000 in 2008. As a result

of this growth, the market revenue has expanded from 9.7 billion dollars in 1991 to 21.88

billion dollars in 2008.

Car Fleet & Revenue vs Year

600

800

1000

1200

1400

1600

1800

2000

86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08

Year

C

ar
 F

le
et

 (
th

ou
sa

nd
)

8

10

12

14

16

18

20

22

 R
ev

en
ue

 (
bi

ll
io

ns
)

Revenue # Car Fleet

Figure 2.1. The U.S. car rental fleet size and market revenue

Note : * Auto Rental New http://www.autorentalnews.com/t_inside.cfm?action=statistics

 11

Although the U.S. car rental market has been steady in recent years, there has been a

rise in mergers and acquisitions. Enterprise, which is comprised of Enterprise Rent-A-Car,

Alamo Rent A Car, and National Car Rental, has been the largest car rental company in

North America since the late 1990’s. Republic Service Inc. acquired Alamo Rent A Car in

1995 and in 1996 bought National Car Rental. Republic Service Inc., renamed AutoNation

Inc. in 1998, spun off its unprofitable car rental unit ANC Rental Corp. in 2000. Vanguard

Car Rental took over the bankrupt ANC Rental Corp. in 2003, and in 2007, Enterprise Rent-

A-Car bought Vanguard Car Rental to consolidate its holdings in the U.S. auto rental

business.

Avis Budget Group, which includes Avis Rent A Car and Budget Rent A Car, is the

third largest car rental company after Enterprise Rent-A-Car and Hertz. HFS Incorporated

acquired Avis Rent A Car in 1997, but Cendant Corp. merged with HFS Incorporated later

that same year. In 2002, Cendant Corp. bought Budget Rent A Car and then approved a plan

to separate Cendant into four independent companies, of which the car rental business

became Avis Budget Group. Avis and Budget operate a shared fleet of cars and have the

same back-end system. However, they operate at different locations, offer different service

levels, and have different price structures.

Dollar Thrifty Automotive Group, which consists of Dollar Rent A Car and Thrifty Car

Rental, is the fourth largest car rental company in North America. Thrifty Car Rental was

acquired by Chrysler Corp. in 1989 and then Chrysler Corp. bought Dollar Rent A Car in

1990. In 1997, Chrysler announced that its rental car subsidiary, Dollar Thrifty Automotive

 12

Group, was incorporated. The profiles of these car rental companies are obtained from the

websites of the U.S. car rental companies and displayed in Table 2.1.

Table 2.1. Summary of the U.S. car rental companies

Company Year Founded Birthplace Headquarters
Parent Company

(Co-op Manufacturer)

National 1947 Tulsa, OK Tulsa, OK
Vanguard Enterprise

(GM)
Alamo 1974 Tampa, FL Tulsa, OK

Enterprise 1957 St. Louis, MO St. Louis, MO Enterprise

Hertz 1918 Chicago, IL Park Ridge, NJ Hertz Group (Ford, GM)

Avis 1946 Detroit, MI Parsippany, NJ Avis Budget Group
(GM, Ford) Budget 1958 Los Angeles, CA Chicago, IL

Dollar 1965 Los Angeles, CA Tulsa, OK Dollar-Thrifty Automotive
(Chrysler) Thrifty 1950 Tulsa, OK Tulsa, OK

Table 2.2 and Figure 2.2 show the number of cars and the percentage of the car fleet

market share owned by the individual rental companies. Of all large car rental companies,

only Enterprise Rent-A-Car grew rapidly in its size of car fleet, which increased from

460,100 in 2000 to 627,300 in 2008; its share in the car fleet market jumped from 25.1% to

34.6 % as well. Other car rental companies, however, continually shrank or remained stable

over the last 7 years. In Figure 2.2, it is observed that the car rental companies can be

separated into three groups based on the scale of the market. The first group merely includes

Enterprise Rent-A-Car, which includes more than 30% of the market fleet. The second group

includes Hertz, National/Alamo, Avis, Budget, and Dollar Thrifty. These companies utilize

between 5% and 20% of the market fleet. The third group includes other medium-type

companies, such as Advantage, U-Save, Payless, and others. Their market fleet is between

 13

0.2% and 1%. In Table 2.2, other small rental companies shank from 90,000 in 2000 to

63,000 in 2008. These companies comprise no more than 5% of the market fleet in total.

Table 2.2. Summary of the number of cars by rental companies

Company
U.S. CARS IN SERVICE (Thousand)

2000 2001 2002 2003 2004 2005 2006 2007 2008

Enterprise Rent-A-Car 460.1 486.1 488.7 510.4 540.2 592.4 630.1 643.3 627.3

Hertz 350.0 320.0 304.0 315.0 315.0 315.0 290.0 327.2 311.0

National / Alamo 322.0 271.0 250.0 220.0 209.4 209.4 208.4 232.9 226.7

Avis Rent A Car 220.0 220.0 190.0 184.0 200.0 200.0 190.8 204.2 220.0

Budget Rent A Car 148.0 148.0 124.0 105.0 105.0 105.0 134.2 143.6 155.0

Dollar Thrifty Automotive 128.8 128.4 122.8 130.0 138.9 140.0 85.0 167.0 140.2

Advantage Rent-A-Car 13.0 15.0 15.0 15.5 15.5 15.0 17.0 20.0 15.0

U-Save Auto Rental 14.5 13.4 12.9 10.0 8.7 14.0 11.5 11.8 11.5

Payless Car Rental 7.5 8.5 8.8 9.2 8.5 10.0 10.0 10.0 10.0

ACE Rent A Car 8.0 8.0 7.2 10.0 12.0 12.5 11.5 9.0 9.0

Rent-A-Wreck 12.1 11.6 14.0 11.4 9.8 8.1 6.7 7.3 5.8

Triangle Rent-A-Car 4.2 3.9 4.4 4.0 4.6 4.8 6.0 6.0 5.5

Fox Rent A Car N/A N/A N/A N/A 5.2 6.2 6.8 8.7 8.7

Affordable/Sensible N/A N/A N/A N/A 4.8 5.2 5.0 5.0 4.0

Independent (3000+) 90.0 107.2 87.5 84.3 80.0 74.3 70.5 65.5 63.0

Totals 1,829.7 1,738.3 1,643.3 1,617.3 1,772.9 1,714.0 1,683.4 1,861.5 1,812.7

 14

U.S. CARS IN SERVICE (%)

0%

5%

10%

15%

20%

25%

30%

35%

40%

2000 2001 2002 2003 2004 2005 2006 2007 2008

Year

P
er

ce
nt

ag
e

Enterprise Hertz National/Alamo

Avis Budget Dollar Thrifty

Advantage U-Save Payless

ACE Rent-A-Wreck Triangle

Fox Affordable/Sensible

Figure 2.2. The percentage of car fleet market share by rental companies

 15

The number of car rental facilities in different rental companies is shown in Table 2.3.

Table 2.4 provides the car rental revenue for each rental company, and the percentage of car

revenue market share of each rental company is given in Figure 2.3. Over the last 9 years,

only Enterprise Rent-A-Car has grown rapidly in terms of the number of locations, rental

revenue, and revenue market share.

Table 2.3. Summary of the number of the car rental facilities by rental companies

Company
U.S. Locations

2000 2001 2002 2003 2004 2005 2006 2007 2008

Enterprise Rent-A-Car 4,018 4,398 4,708 4,987 5,388 5,719 6,019 6,131 6,159

Hertz 1,300 1,300 N/A N/A N/A N/A 2,875 2,850 2920

National / Alamo 954 978 500 470 626 626 623 662 647

Avis Rent A Car 1,000 931 975 985 1,035 1,111 1,199 1,200 1,285

Budget Rent A Car 1,110 1,042 1,000 933 858 773 842 850 1,003

Dollar Thrifty Automotive 835 808 673 708 620 686 575 606 609

Advantage Rent-A-Car 150 150 150 150 150 132 100 108 45

U-Save Auto Rental 500 463 419 344 255 359 375 390 380

Payless Car Rental 78 85 85 91 78 43 46 41 41

ACE Rent A Car 39 39 44 56 82 90 85 85 101

Rent-A-Wreck 488 669 422 380 327 271 298 280 222

Triangle Rent A Car 20 20 21 21 25 25 28 30 30

Fox Rent A Car N/A N/A N/A N/A 20 39 28 29 29

Affordable/Sensible N/A N/A N/A N/A 240 246 250 225 210

Independent (3000+) 7,000 7,820 N/A N/A 7,500 7,200 6,800 3,275 6,200

Totals 19,012 19,066 N/A N/A 17,663 17,401 20,143 16,762 19,881

 16

Table 2.4. Summary of the car rental revenue by rental companies

Company
U.S. Rental Revenue(million USD)

2000 2001 2002 2003 2004 2005 2006 2007 2008

Enterprise Rent-A-Car $4500 $5100 $5250 $5490 $5830 $6400 $6800 $7100 $7,500

Hertz $3980 $2900 $3050 $3110 $3500 $3650 $3770 $3,900 $3,860

National / Alamo $3400 $3000 $2000 $1800 $1840 $1930 $2700 $2900 $2,900

Avis Rent A Car $2400 $2380 $2250 $2140 $2280 $2700 $2900 $3100 $3,200

Budget Rent A Car $1800 $1700 $1000 $940 $1130 $1400 $1500 $1,500 $1,600

Dollar Thrifty Automotive $1480 $1430 $1500 $1560 $1680 $1390 $1460 $1,680 $1,650

Advantage Rent-A-CarI $120 $120 $135 $139 $139 $150 $155 $220 $136

U-Save Auto Rental $135 $148 $131 $118 $90 $95 $98 $102 $98

Payless Car Rental $65 $72 $75 $78 $80 $90 $95 $100 $100

ACE Rent A Car $68 $60 $62 $80 $92 $101 $110 $97 $97

Rent-A-Wreck $102 $96 $90 $92 $78 $66 $48 $41 $36

Triangle Rent A Car $35 $34 $33 $35 $37 $41 $45 $45 $45

Fox Rent A Car N/A N/A N/A $31 $50 $40 $62 $78 $81

Affordable / Sensible N/A N/A N/A $26 $33 $35 $36 $36 $36

Independent (3000+) $1200 $1000 $785 $768 $750 $733 $635 $590 $540

Totals $19400 $18200 $16430 $16460 $17640 $18,830 $20,413 $21,489 $21,879

 17

U.S. Rental Revenue (%)

0%

5%

10%

15%

20%

25%

30%

35%

2000 2001 2002 2003 2004 2005 2006 2007 2008

Year

Pe
rc

en
ta

ge
Enterprise Hertz National/Alamo

Avis Budget Dollar Thrifty

Advantage U-Save Payless

ACE Rent-A-Wreck Triangle

Fox Affordable/Sensible

Figure 2.3. Market share of car rental revenue

 18

2.3 Car Rental Software

The different functions of the software applications used by the car rental business are

shown in Table 2.5. A tax function is commonly used for saving taxes such as 1031 exchange,

which is a tax-deferred exchange. Wireless security is used for tracking the position and the

location of the rented car. Rental management is used to manage the vehicle rental operations.

The computerized reservation system handles internet booking. Accident management offers

intelligent fleet solutions including accident reporting, vehicle repair, rental replacement,

salvage, subrogation, and maintenance.

Table 2.5. Functions of car rental software applications

Software Function Companies
Tax Accruit LKE Solutions
Wireless Security AirIQ
Rental Management Bluebird, TSD, Enterprise Fleet Management
Computerized Reservation System CRX, Sabre
Accident Management Fleet Response, PAC

Rental management software is used mainly in fleet planning. TSD is the top car rental

software and its major customers include Dollar Thrifty, Budget, and Avis. Bluebird also has

many large clients including Rent-A-Wreck, Dollar Thrifty, and U-Save. Enterprise Rent-A-

Car developed its own software, “Enterprise Fleet Management” to manage its fleet.

“Enterprise Fleet Management” mainly includes web dashboard, maintenance management,

insurance service, fuel savings, mileage report, full maintenance fees, vehicle acquisition,

 19

state licenses, and remarketing. The functions of these rental management softwares, which

are like database systems, are very similar to each other, and the software allows managers to

manage their fleets based on the reports generated by the rental management software.

Employees still need to assign the available cars to reserved customers. In addition, pool

managers need to use forecasted demand from all locations to decide the car distribution plan

within a pool for the next few days. These decisions are not evaluated and proved by accurate

computations but instead require the manager’s judgment and experience. Therefore, if a

thorough fleet planning system covering long-term, mid-term, and short-term can be created

and a complete plan of vehicle distribution can be rapidly and accurately obtained by

algorithmic procedures, the manager’s workloads will be largely reduced and misjudgments

can be avoided.

 20

CHAPTER 3

LITERATURE REVIEW

The literature pertaining to this dissertation is reviewed based on two main themes: (1)

car rental problems (2) fleet planning problems. In car rental problems, three categories are

discussed: revenue management, case studies, and fleet management. In fleet planning

problems, long-term, mid-term, and short-term fleet planning are discussed individually.

3.1 Car Rental Problems

In a large car rental company, there are many aspects of the rental business that need to

be addressed. The literature can be subdivided into three categories: revenue management,

case study, and fleet management.

Revenue management is a management strategy that balances supply and demand in

order to maximize profit. Tainiter (1964) introduced some stochastic inventory models to

cope with the time fluctuations in the car rental business. Caseau and Kokeny (1998)

proposed a set of practical benchmark instances to solve the overbooking problem. Kuyumcu

and Garcia-Diaz (2000) designed a polyhedral graph theoretical approach utilizing a cutting

plane and a branch-and-bound procedure to deal with the joint pricing and seat allocation

 21

problem in the aircraft industry and obtained significant computer time-savings compared to

integer programming commercial software.

Cooper (2002) used asymptotic properties of revenue management derived from a

linear program to generate allocation policies and described counterintuitive behavior that

could occur when allocations were updated during the booking process. Netessine et al.

(2002) considered investing in a firm’s capacity before the demand was known and

upgrading customers to a higher level of service at no extra cost when the reserved car was

not available. This short-term problem assigned capacity to customers when the demand was

realized and was formulated as a two-stage single-period stochastic program. An efficient

algorithm was developed to obtain the optimal capacities.

Bertsimas and Popescu (2003) designed a dynamic programming based algorithm,

using an adaptive, non-additive bid price from a linear programming relaxation, to solve

dynamic policies for allocating scarce inventory to stochastic demand for multi-fare classes.

In addition, the proposed algorithm was extended to handle cancellation and no-show models

by incorporating overbooking situations in the underlying linear programming formulation.

Anderson et al. (2004) introduced a novel real options approach to revenue management in

the car rental business. The proposed model generated acceptable prices and number of cars

available for renting at a given price as a function of remaining time and inventory. This

pricing and inventory model suggested current practices discount too deeply and too early in

the booking cycle. However, this approach was limited to use in a single rental period and a

single car class. Karaesmen and Ryzin (2004) formulated an overbooking problem with

 22

multiple reservations and inventory classes as a two-period optimization problem and

adopted a stochastic gradient algorithm to find the joint optimal overbooking level.

Hong et al. (2007) described the importance of forecasting monthly revenue per unit

(RPU), which can provide a benchmarking index for annual pricing, and introduced three

forecasting models, including the Holt-Winters’ (HW) model, the seasonal Holt and Winters’

Linear Exponential Smoothing (SHW) model, and the support vector regression (SVR)

model. The numerical results revealed that SVRIA (support vector regression with immune

algorithm) outperformed the other two models and provided a promising method of

forecasting RPU. Cho and Rust (2008) proposed an econometric model to evaluate the

automobile replacement policy adopted by a large car rental company. The simulation

experiments revealed that the suggested alternative strategy, where cars were kept longer and

the rental rates of old vehicles were cheaper, can produce an extra profit between 6% and

140%, depending on the car type. A summary of the research related to revenue management

in the car rental business is presented in Table 3.1.

 23

Table 3.1. Car rental literature on revenue management

 (T
ai

ni
te

r
19

64
)

(C
as

ea
u

an
d

K
ok

en
y

19
98

)

(K
uy

um
cu

 a
nd

 G
ar

ci
a-

D
ia

z
20

00
)

(C
oo

pe
r

20
02

)

(N
et

es
si

ne
, D

ob
so

n
et

 a
l.

20
02

)

(B
er

ts
im

as
 a

nd
 P

op
es

cu
 2

00
3)

(A
nd

er
so

n,
 D

av
is

on
 e

t a
l.

20
04

)

(K
ar

ae
sm

en
 a

nd
 R

yz
in

 2
00

4)

(H
on

g,
 L

ai
 e

t a
l.

20
07

)

(C
ho

 a
nd

 R
us

t 2
00

8)

Practical Field

 Airline         

 Car Rental         
Considerations

 Pricing       

 Demand Forecasting  

 Marginal Revenue   

 Multi-Fare Classes       

 Multi-Periods      

 Cancellation    
 No Show  

 Overbooking     

 Upgrade Policy   

 Auto Replacement Policy   

Modeling and Methodology

 Stochastic Process      

 Linear Programming    

 Dynamic Programming    
 Integer Programming    

 Decision Support System   

 Real Options 

 Cutting Plane  

 Branch and Bound   
 Support Vector Regression  

 Evolutionary Algorithm   

 Inventory Model   

 Econometric Model   

 24

In case studies, Carroll and Grimes (1995) mainly introduced Hertz’ decision support

modules and the experiences in the car rental business. In fleet planning, the models Hertz

adopted to build optimal overall fleet levels were a set of linear equations using past rental

information, including the number of cancellations, and the estimated fleet utilization to

produce aggregate fleet requirements, vehicle costs, and revenue per car per month.

Spreadsheets were employed at the beginning of fleet planning. These tools permitted Hertz

to better evaluate the trade-off between contribution and market share.

Geraghty and Johnson (1997) presented the crisis management of National Car Rental

in 1993. National took steps to develop a revenue management program, which was a set of

analytic models developed to manage capacity, pricing, and reservation, to avoid liquidation.

National dramatically produced immediate results and returned National Car Rental to

profitability in July 1993. New (2003) explored the impact of the multimedia work in Avis

Europe on the field of operations management and offered an analysis of the experience of

Avis Europe in developing a multimedia system for training frontline staff.

Lines et al. (2008) introduced the car rental study of a hydrogen strategy for

transitioning from fleets to consumers in Orlando, FL. This study surveyed 435 consumers

and the results indicated that half of all respondents were willing to pay more to rent a

hydrogen car and that renting a pollution-free car was the most crucial deciding factor for this

subset of customers. Then, Lines et al. pointed out the main barriers of building a hydrogen

car fleet for a rental car company was the fleet purchase cost and proposed some practical

solutions. A summary of case studies in the car rental business is presented in Table 3.2.

 25

Table 3.2. Case studies in car rental business

 (C
ar

ro
ll

 a
nd

 G
ri

m
es

 1
99

5)

(G
er

ag
ht

y
an

d
Jo

hn
so

n
19

97
)

(N
ew

 2
00

3)

(L
in

es
, K

ub
y

et
 a

l.
20

08
)

 Yield Management   

 Revenue  

 Fleet 

 Operations 

 Supply/Demand   

 Green Fuel  
 Questionnaire 

 IT/DSS  

 Hertz  

 National 

 Avis  

 26

Fleet management in the car rental business covers many aspects, such as pool systems,

fleet operations, empty flows, and others. Edelstein and Melnyk (1977) introduced the Pool

Control System (PCS) constructed by Hertz Rent-A-Car. This system needed each city

manager and each distribution manager to complete actual and projected data and then input

the data to PCS in order to provide a detailed picture of the pool for the next seven days.

Furth and Nash (1985) illustrated the benefit of a pooling operation in bus scheduling. This

study indicated that a bus returning early can cover for a bus returning late. Dejax and

Crainic (1987) surveyed and cataloged the empty flow problems and models in freight

transportation. Inaba (2008) proposed a location inference model to infer the location of

assets by using sparse RFID traceability information in the returnable transportation item

rental service industry. A summary of fleet management in the car rental business is

presented in Table 3.3.

Table 3.3. Fleet management in car rental business

 (E
de

ls
te

in
 a

nd
 M

el
ny

k
19

77
)

(F
ur

th
 a

nd
 N

as
h

19
84

)

(D
ej

ax
 a

nd
 C

ra
in

ic
 1

98
7)

(I
na

ba
 2

00
8)

 Pool System  

 Simulation

 Empty Flows 

 RFID 

 27

3.2 Fleet Planning Problems

Fleet planning is normally separated into four groups based on transportation

equipment---aircraft, freight, truck rental, and car rental. Aircraft fleet planning

(Lohatepanont and Barnhart 2004; Li and Wang 2005) determines aircraft acquisition, flight

routing, airline schedules, or the optimal utilization of aircrafts. Freight fleet includes rail

freight (Bojovic 2002), truck freight (Hall 1999), air freight (Tyler 1986), and sea freight

(Sambracos et al. 2004). The characteristics of truck rental (Wu et al. 2005; Martel 1990) and

car rental (Pachon et al. 2003) are very much alike. They both must contend with fleet

allocation and empty flow redistribution.

In the fleet planning literature, discussion of car rentals is very sparse. Pachon (2000)

was basically the only paper that addresses long-term, mid-term, and short-term fleet

planning in the car rental business. Pool segmentation was treated as a Minimum Spanning

Tree problem. Pachon proposed a modified Kruskal’s algorithm to cluster the pools in long-

term planning. In mid-term planning, Pachon formulated a strategic fleet plan into a network

flow problem. In addition, the set of complicated constraints was relaxed to a linear

transshipment model with side constraints and was solved to optimality using optimization

software. In short-term planning, Pachon solved a stochastic optimization model to determine

daily deployment of the fleet.

All related literature has been divided into three sections for discussion. In Section 3.2.1,

long-term planning is discussed mainly in the context of the classic location problems related

to pool segmentation and hub selection. Section 3.2.2 addresses issues related to mid-term

planning of car fleet operations, which solve the problem of inter-pool moves and asset

 28

replacement. Demand allocation and empty flow redistribution, which is short-term car rental

fleet planning, is presented in Section 3.2.3.

3.2.1 Long-term --- Pool Segmentation and Hub Selection

Pool segmentation clusters all locations into separate pools and selects one hub for each

pool. Two classic location problems, the capacitated facility location problem with a single

source constraint (Sridharan 1993) and the generalized assignment problem (Pentico 2007),

are analogous to pool segmentation. A model that includes the cost of facility opening is

called a capacitated facility location problem with a single source constraint. A single source

constraint refers to the fact that each demand node can only be supplied by one facility.

Models that do not include the cost of facility opening are generalized assignment problems.

If a fixed number of districts are specified, the generalized assignment problem will simplify

to a p-median problem (Mladenovic et al. 2007). The abundant literature offers a valuable

direction for a solution methodology.

Sridharan (1993) proposed a Lagrangian relaxation heuristic to solve a capacitated

facility location problem with a single source constraint. He relaxed the capacity constraint

and solved this problem iteratively as a single plant location problem, a single source

transportation problem with all plants open, and a knapsack problem. Syam (1997) designed

a Lagrangian relaxation heuristic to solve a capacitated p-facility location problem and

investigated some logistical issues that may be involved in managerial decision-making.

Ronnqvist et al. (1999) reformulated the capacitated facility location problem with a single

source constraint as a series of matching problems and introduced a repeated matching

algorithm to solve until certain convergence criteria are satisfied. The numerical results

 29

showed this approach to be much better than Pirkul’s Lagrangian relaxation algorithm (1987).

Holmberg et al. (1999) developed a class of heuristic algorithms for the capacitated facility

location with a single source. This approach developed a repeated matching algorithm,

incorporated into a Lagrangian heuristic and a branch-and-bound method based on a

Lagrangian heuristic. The computational results showed the method to be very efficient.

Klose (1999) described a linear programming-based algorithm for a two-stage capacitated

facility location problem with a single source constraint; feasible solutions were obtained by

utilizing linear programming and simple heuristics.

Ahuja et al. (2004) addressed a simple large scale neighborhood search algorithm for a

capacitated facility location problem with a single source constraint. This approach continued

from an initial solution with a sequence of facility moves and customer moves, and iterated

until a local optimal solution is reached. Elhedhli and Goffin (2004) proposed an integrated

algorithm based on an interior-point cutting-plane method within a branch-and-price scheme,

which included decomposition techniques and a branch-and-bound approach. The overall

approach was implemented for a capacitated facility location problem with a single source

constraint and proved much more effective than Kelly’s cutting-plane method (1960).

Correia and Captivo (2006) presented a Lagrangian algorithm, enchanced by Tabu Search or

local search to obtain feasible solutions. Test problems were randomly generated and showed

this method able to obtain satisfactory solutions.

Chen and Ting (2006) suggested two ant colony systems to construct a heuristic

procedure. One ant colony was used to select the opening facilities while the other one was

utilized to allocate customers to each opening facility. Osman and Ahmadi (2007) indicated

 30

that, in comparison with other known approaches in the literature, a guided construction

search, based on a periodic local search procedure or a greedy adaptive search procedure, can

obtain extremely good solutions for a capacitated p-median problem with a single source

constraint.

Besides the capacitated facility location problem and the generalized assignment

problem, Pachon (2000) simply considered the distance and formulated pool segmentation as

a minimum spanning tree problem. A modified Kruskal’s algorithm was proposed to cluster

the pools. In this study (Wu, 2009), the problem of pool segmentation and hub selection is

formulated as a capacitated facility location problem with a single source constraint. The

distance cost, the hub opening cost, and the yearly demand are considered and car upgrade

policy is addressed along with the constraint of pool capacity. A clustering-based iterative

algorithm is presented to find a suitable solution quickly. A summary of the research related

to pool segmentation is presented in Table 3.4.

 31

Table 3.4. Literature in pool segmentation and hub selection

 (S
ri

dh
ar

an
 1

99
3)

(S
ya

m
 1

99
7)

(R
on

nq
vi

st
 e

t a
l.

19
99

)

(H
ol

m
be

rg
 e

t a
l 1

99
9)

(K
lo

se
 1

99
9)

(A
hu

ja
, O

rl
in

 e
t a

l.
20

04
)

(E
lh

ed
hl

i a
nd

 G
of

fi
n

20
04

)

(C
or

re
ia

 a
nd

 C
ap

ti
vo

 2
00

6)

(O
sm

an
 a

nd
 A

hm
ad

i 2
00

7)

(P
ac

ho
n

20
00

)

(W
u

 2
00

9)

Problem Type

 Capacitated Facility Location         

 Capacitated Median Problem 

 Minimum Spanning Tree  

 Single Source Constraint         

 # of hubs is fixed    

 Two Echelons 
 Less than P Hubs 
 Less than m nodes in a pool  
 Car Rental Problem   

 Car Upgrade Policy  
Solution Methodology

 Lagrangian Relaxation      
 Metaheuristic     

 Tabu Search 
 Multi-Exchang 
 Ant Colony
 Guided Construction  

 LP-based heuristic 
 Graph Algorithm  
 Repeated Matching  
 Clustering Algorithm   

 Kruskal's Algorithm   

 Prim's Algorithm   

 Branch-and-Bound   

 Cutting-Plane Method 
 Column Generation 
 Interior-Point Method 
 Enumeration  
Optimization

 Optimal Solution 
 Approximation Solution          
Numerical Example(max)

 Location 50 400 150 200 50 200 10 500 150 27 6,000

 Problem Size (unit: 1,000) 2.5 160 4.5 6 250 6 0.6 500 23 3,601

 Number of Problems 37 24 55 71 120 71 12 22 40 1 342

 32

3.2.2 Mid-term--- Inter-pool Moves and Asset Replacement

In mid-term planning, Pachon (2000) formulated a strategic fleet plan into a network

flow problem. In addition, the set of complicated constraints was relaxed to a linear

transshipment model with side constraints and was solved to optimality using optimization

software. The research proposed in this dissertation (Wu 2009) considers seasonal inter-pool

moves and asset replacement and formulates a network flow model. A best-improvement

descent local search, exploiting the structure of better neighbors, is proposed and validated. A

summary of the research related to inter-pool moves and asset replacement is presented in

Table 3.5.

Table 3.5. Literature in inter-pool moves and asset replacement

(P
ac

ho
n

20
00

)

(W
u

 2
00

9)

Modeling Approach

 Network Flow  
 Linear Programming 

Solution Methodology

 Neighborhood Search 
 LP Solver 

Considerations

 Inter-pool Moves  
 Asset Procurements and Sales  
 Different Car Types  
 Upgrade Car Type  
 Service Level  
 Leasing Contract 

Numerical Example (max)

 # of Pools 100 200

 # of Car Types 5 8

 # of Time Periods (season) 12 12

 # of Car Ages (season) 12 12

Objective

 Max Profit 
 Min Cost  

 33

3.2.3 Short-term --- Demand Allocation and Empty Flow Redistribution

Couillard and Martel (1990) introduced a mid-term seasonal stochastic model covering

purchase, replacement, sale, and car rental. Additionally, an efficient algorithm and a

decision support system were used to solve the model. Beaujou and Turnquist (1991)

formulated an interactive fleet sizing and allocation model under dynamic and uncertain

environments. An approximate network flow problem with a non-linear objective was solved

by an interactive procedure using the Frank-Wolfe algorithm and was proved efficient

enough to solve reasonably sized problems. Du and Hall (1997) developed decentralized

stock control policies and an inventory approach in hub-and-spoke networks, and a

decomposition method was utilized to find appropriate fleet size policies. Parikh (1977)

assumed that all fleets provide a uniform level of service and adopted queueing theory to

approximate the delay probability and the fleet size.

Pachon (2000) and Pachon et al. (2003) proposed the formulation of daily planning and

decomposed the model into a fleet deployment model and a transportation model. Optimal

conditions for both sub-problems and a heuristic to reduce the gap from optimality were

introduced. Additionally, three extensions, including the cost of unsatisfied demand, service

level, and a general price-demand function, were presented. Kochel et al. (2003) introduced a

simulation method with a Genetic algorithm for the fleet sizing and allocation problems.

Joborn et al. (2004) discussed empty freight car distribution and developed a Tabu heuristic

to solve this time-dependent capacitated network model. Wu et al. (2005) suggested a linear

programming model, which used a time-space network and considered demand allocation,

empty truck redistribution, and asset procurements and sales, to determine optimal fleet size

 34

and mix through a two-phase solution approach. Benders decomposition with a demand-

shifting algorithm (Wu et al. 2003), was used to obtain feasible solutions in each subprogram

in Phase I. Moreover, Phase II utilized the initial bounds and dual variables from Phase I to

improve the solution convergence through the use of Lagrangian relaxation, resulting in

effective solutions.

Fink and Reiners (2006) described short-term decisions in the car rental business to

optimize fleet utilization and maintain a high service level. The authors proposed a system

architecture of a decision support system which included a network model, a simulation

model, and essential practical aspects, such as multi-period planning, a country-wide network,

fleeting and defleeting, and car groups with partial substitutability. Simulation experiments

showed that the network flow model led to a rental service level of 99.9% and an acceptable

upgrade ratio of 16% in a seven-day period. Song and Earl (2008) addressed a two-depot

optimal control policy for empty vehicle redistribution and fleet sizing problems, in which

loaded vehicles arrival at depots and redistribution times for empty vehicles were uncertain.

A novel stochastic model was introduced, and optimal threshold values and fleet size were

derived. In this research (Wu 2009), a network flow model for daily planning in the same

pool is developed. Empty flow redistribution, demand allocation, and car upgrade policy are

considered. A first-improvement descent local search, exploiting the techniques of better

neighbors, is developed. A summary of short-term fleet planning is presented in Table 3.6.

 35

Table 3.6. Literature in demand allocation and empty flow redistribution

 (P
ar

ik
h

19
77

)

(B
ea

uj
on

 a
nd

 T
ur

nq
ui

st
 1

99
1)

(D
u

an
d

H
al

l 1
99

7)

(P
ac

ho
n

20
00

)

(W
u,

 H
ar

tm
an

 e
t a

l.
20

03
)

(P
ac

ho
n,

 I
ak

ov
ou

 e
t a

l.
20

03
)

(K
oc

he
l,

K
un

ze
 e

t a
l 2

00
3)

(J
ob

or
n,

 C
ra

in
ic

 e
t a

l.
20

04
)

(W
u,

 H
ar

tm
an

 e
t a

l.
20

05
)

(F
in

k
an

d
R

ei
ne

rs
 2

00
6)

(S
on

g
an

d
E

ar
l 2

00
8)

(S
on

g
an

d
C

ar
te

r
20

08
)

(P
ap

ie
r

an
d

T
ho

ne
m

an
n

20
08

)

(W
u

 2
00

9)

Practical Field
 Car Rental     
 Truck Rental    
 Freight   
Modelling Approach
 Stochastic Process        
 Linear Programming    
 Decision Support System 
 Network Flow   
 Queueing     
 Inventory 
Solution Methodology
 Stochastic Optimization 
 Decomposition Algorithm      
 Lagrangian Relaxation  
 Dynamic Programming  
 Simulation   
 Queueing    
 Nonlinear Technique 
 Metaheuristics / Neighborhood Search   
Considerations
 Empty Flow Redistribution            
 Different Car Types      
 Upgrading Car type    
 Asset Procurements and Sales   
 Stochastic Demand           
 Unmet Demand       
 Car Age    
 Service Level  
Numerical Example (max)
 # of Locations 1 10 2 10 6 5 50 30 500 3 100 21
 # of Time Periods 7 30 5 60 14 21
 # of Car Ages 2 3
 # of Rental Periods 21
 # of Car Types 3 3 3 15 4 10
Objective
 Max Profit      
 Min Cost      
 Min Fleet Size 
 Balance the level of service 

36

CHAPTER 4

POOL SEGMENTATION AND HUB SELECTION

4.1 Problem Formulation

In long-term planning, it is assumed that all rental facilities are known. The distance

between the facility and the opening hub is a known deterministic distance and the triangle

inequality is satisfied. In addition, the yearly demand for each car type in each facility, the

hub opening costs, the pool capacity limit, and the distance costs between any two nodes are

known. All locations are split into several regions and one location is selected from each

region to be the regional hub center. Moreover, the pool capacity limit is satisfied and the

total cost of the transportation and the cost of opening the hubs is minimized. An example of

networks before and after pool segmentation is shown in Figure 4.1 and Figure 4.2,

respectively.

37

Figure 4.1. Network before pool segmentation

Figure 4.2. Network after pool segmentation

38

4.2 Mathematical Model

In this study, a model is formulated similarly to the capacitated facility location model

with a single source constraint. However, an upgrade policy is included within the model.

This pool segmentation and hub selection problem can be formulated as a binary integer

linear programming.

Indices

sizecar larger the the, of valuelarger the the; car type

location

 location

kkk

jj

ii





Parameters

pool same at the car type of demand for total boundlower

pool same at the car type of demand for total boundupper

location at car typefor demand gforecastin annual

location at hub openingfor cost

location and location between cost distanceshortest

kl

ku

ikD

jf

jid

k

k

k
i

j

ij











Variables

0 otherwise, ; hub toassigned is location at demand theif 1

0 otherwise, ; hub a be chosen tolocation if 1

jix

y

ij

j





39

The model can be expressed as:

  (4.5) , 1,0,

(4.4) }{1,2,...,',',

(4.3) ,

(4.2) 1

:osubject t

(4.1) Min

max
' ' '

max max max

jiyx

kkkjyuxDyl

jiyx

ix

yfxdD

jij

k

kk

k

kk i

k

kk
j

k
ij

k
ij

k

jij

j
ij

j
jjijij

k i j

k
i











  





  

Objective (4.1) minimizes the total cost of the transportation costs plus the hub opening

costs. Constraints (4.2) are called single source constraints. They ensure that each facility is

assigned to exactly one hub. Constraints (4.3) address the fact that facility assignments are

made only to open hubs. Constraints (4.4) indicate the capacity limit of regional hubs and the

upgrade policy. The facility demand for a lower car type can be satisfied by the demand at

the facility for a higher car type. For example, if a customer reserves a compact size car, but

the compact size car is not available, then the car can be upgraded to an intermediate size, a

standard size, or an even larger size car. That means that in car type 'k , the total pool

demand for car type 'k and higher needs to satisfy the total regional demand capacity of car

type 'k and higher. Constraints (4.5) are the integrality requirements.

40

4.3 Motivation

The mathematical model was verified and the solution form was observed utilizing

LINGO software. Figure 4.3 is an example of an optimal solution with 60 facility locations.

Pools group the nearby facilities together, which is analogous to clustering tribes with the

smallest distance cost.

0

20

40

60

80

100

120

0 20 40 60 80 100 120

x

y

pool 1

pool 2

pool 3

pool 4

pool 5

pool 6

hub 1

hub 2

hub 3

hub 4

hub 5

hub 6

 Figure 4.3. Example of an optimal solution with 60 facility locations

Observe that in the objective function  
j

jjijij
k i j

k
i yfxdD each facility incurs

only one kind of cost. If a facility is not chosen to be the hub, then it will incur the distance

cost. If a facility is chosen to be the hub, then the hub opening cost will be included. The

distance cost is the product of the distance times the demand (dD) and the hub facility

cost equals f . Figure 4.4 shows the solution form of the total cost incurred. A straight line

41

indicates that the distance cost is incurred and the black circle represents that the hub cost is

incurred.

Figure 4.4. The solution form of the total cost incurred

Because the demands of each node are known, it is easier to evaluate the total cost if the

hub facility cost can be adjusted to the demand description. For example, suppose that there

are 7 nodes with 2 hubs. Nodes 1, 2, and 3 belong to pool 1, with node 2 the hub, and nodes 4,

5, 6, and 7 are in pool 2, with node 6 the hub. Therefore, the total cost will be

    
k k k

kkk

k k

kk dDfdDdDdDfdD),()(76765654643232121 where k represents

the car type. To more conveniently represent the hub facility cost for the algorithmic

procedure, let 
k

j
k
jj rDf , where jr represents the unit demand cost of hub j . Hence, the

total cost    
k k

kk

k k

kk fdDdDdDfdD 65654643232121 ()()767
k

kdD will become

   
k k

k

k

kk

k k

kk

k

k rDdDdDdDrDdD 6656546432322121 ()()477
k

kdD .

42

Let ,),...,,;(21 


 
 











r k

k
i

k

k
j

r k
ji

k
ij

k r k

k
i

k
j

k r k
ji

k
ij

k
j

r

r

rr

r

rr

DD

dDf

DD

dDrD
iiijh where

),...,,;(21 riiijh represents the unit demand cost of pool j , including hub j and nodes

riii ,...,, 21 . The clustering algorithm tries to make the unit demand cost in each pool as small

as possible. Hence, in pool 1, the unit demand cost is


 




k

kkk
k k

kk

DDD

dDfdD

)(321

3232121

, and


 





k

kkkk
k k

k

k

kk

DDDD

dDfdDdD

)(7654

7676565464

 for pool 2. This resulting term is called the unit

demand cost of the pool.

Because of all the known demands and the idea of local optimality, the smaller the

distance, the lower the cost. However, in this formulation, it is unknown how many hubs are

needed; only the capacity of the pool is known. Hence, in the beginning, the minimum unit

demand cost of each possible hub is compared. One node is specified as the hub and other

nodes are linked to this hub node to meet two requirements:

 Meet the lower bound of the capacity, without exceeding the upper bound

 Meet the minimal unit demand cost of this pool

Based on this concept, a very good initial solution can be found and the number of hubs

is therefore close to or equivalent to the real optimal number of hubs. Table 4.1 offers a good

validation for this rule. The clustering algorithm is described in detail in Section 4.4.

43

Table 4.1. Optimal solution vs. clustering algorithm

Example 1 2 3
Number of nodes 90 160 200
Number of car types 5 10 10

Clustering algorithm
Cost ($) 617,785.1 3,102,533.5 4,234,375
Number of hubs 32 24 31

Optimal
Cost ($) 603,013.9 3,050,300 4,212,918
Number of hubs 32 21 29

Solution gap (%) 2.45% 1.71% 0.51%

In addition, Example 1 is re-solved with 90 locations, but the number of hubs is fixed.

That makes the problem solvable as a capacitated p-facility location problem. The optimal

solutions for different numbers of hubs are shown in Figure 4.5 and built into a convex

function. The clustering algorithm can approach the optimal number of hubs and the optimal

solution as the black box shows in Figure 4.5. If the number of hubs is determined, then the

whole problem will reduce to solving the capacitated p-facility location problem. Based on

the characteristic of a convex function, only a small number of capacitated p-facility location

problems need to be solved.

600000

800000

1000000

1200000

1400000

1600000

0 10 20 30 40 50 60

Total Hubs

O
bj

ec
ti

ve
 V

al
ue

Figure 4.5. Optimal value vs. different numbers of hubs

44

In solving a capacitated p-facility location problem, an iterative procedure is adopted to

address the process. Each pool region, obtained from the initial solution of the clustering

algorithm, is fixed as presented in Figure 4.6 and each hub is easily re-optimized by an

enumeration method. Once each hub is re-allocated, the locations of the hubs are fixed and

all the other facility locations are re-located to these fixed hubs as shown in Figure 4.7. This

becomes a multi-resource generalized assignment problem. Although a branch-and-bound

algorithm is widely used in multi-resource generalized assignment problems (Park et al. 1998;

Babkin et al. 1977; Fei et al. 2008; Nauss 2004; Haddadi and Ouzia 2004), it still cannot

solve practical problems in polynomial time. Hence, a modified Prim’s algorithm is

implemented in order to obtain a near-optimal solution. Then these two steps are executed

iteratively to obtain a near-optimal solution for the capacitated p-facility location problem.

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100x

y

Figure 4.6. Fixing the pool region and re-selecting the hub

45

0

20

40

60

80

100

0 20 40 60 80 100

x

y

Figure 4.7. Fixing the hubs and re-shaping the pool regions

After obtaining a near-optimal solution for the capacitated p-facility location problem,

the number of hubs is adjusted using this technique, by either adding or deleting one hub, and

the iterative procedure is re-executed. A near-optimal solution for the whole problem can be

obtained.

4.4 Algorithm Procedure

Based on the previous motivation in Section 4.3, a clustering-based iterative algorithm

is introduced. This algorithm mainly includes three modules: a clustering algorithm, an

enumeration method, and a modified Prim’s algorithm. The whole rough process of the three

phases of the algorithm is displayed in Figure 4.8.

46

Figure 4.8. The clustering-based iterative algorithm

47

The processes of the three important modules are explained in detail below.

4.4.1 Clustering Algorithm

4.4.1.1 Neighbor Factor

The neighbor factor is an integer value and it is used to calculate and extend the list of

all candidate pool regions. If the value of a neighbor factor is m , the neighbor index is

calculated from 1 to m. If the neighbor index is m, that means that this candidate pool region

selects its covered nodes from the m -th closest node and the previous 1m closet nodes are

not covered in this pool region. For example, if the value of a neighbor index is 3, that means

that this candidate pool region selects its covered nodes from the third closest node and the

previous two closet nodes are not covered in this pool region. Because a value of neighbor

factor m covers the neighbor indexes from 1 to m, it can extend the list of all candidate pool

regions and thereby increase the possibility of obtaining a good solution.

4.4.1.2 Tabu List

The Tabu List (TL) is a module of Tabu Search, proposed by Fred Glover.(1977). The

Tabu List is a memory structure used to record past moves and avoid the formation of cycle

moves. In the Tabu List, FIFO rules are usually applied. That means that the newest move is

added to memory and the oldest move is removed from memory. The larger the Tabu List,

the less the possibility of falling into a local optimum. However, more computer memory

space is needed and computing time is significantly longer. Generally speaking, the value of

the Tabu List doesn’t have limits. It is usually decided by the characteristic of the problem.

48

4.4.1.3 Flow Chart

The rough procedure of the clustering algorithm is presented in Figure 4.9 and Figure

4.10.

 Figure 4.9. The clustering algorithm(1/2)

49

1ijd

21 ijij dd 





maxmaxmax

'
2

'''

k

kk

k
k

kk

k
i

k

kk

k

j
lDTD

1Cycleor

'
2

'
2

'
1

'
2

'
2

'
1





 



k

k

j

k

k

jj

j

jj

TD

TD

UDC

UDC

'
2

'
1 jj

TNTN 

1Cycle

'
2

'
1

'
2

'
1







or

TD

TD

UDC

UDC

k

k

j

k

k

j

j

j

1ijd

),...,,;(21
'
11 rij iiijhd 

Figure 4.10. The clustering algorithm(2/2)

50

4.4.1.4 Detailed Procedure

Step 1: Set the neighbor index (ni) =1. For each candidate hub j , calculate the unit demand

cost of hub j,




k

k
j

j
j D

f
r , where k represents the car type. Consider the distance ijd

for all nodes ji hub  . Rank these nodes i in ascending order of ijd and obtain a list

of ranked nodes { }...;,...,,,
max321max321 ,,,,,,,, jj mimimimimimimimi dddddddd  , denoted

as
1jL . Go to Step 3.

Step 2: If 1ni , let },...,,{
)1(211 ,,, 


nini mimimijj dddLL . Go to Step 3.

Step 3: For each candidate hub j , if ijj dr  for all ji  , go to Step 4; otherwise, go to Step

5. Continue with Step 3 to check all candidate hubs; then go to Step 6.

Step 4: Calculate the total demand of car type k at hub j , 
r

k
i

k
jr

k
j r

DDiiTD)...,(,1 .

Check if ' car type all ,),...,(
maxmax

''
1 kforliiTD

k

kk

k
k

kk
r

k
j 



 . If yes, record jr and go to Step 3

to check other candidate hubs. If not, add nodes ri nijL to pool j and re-calculate

the unit demand cost








r k

k
i

k

k
j

r k
ji

k
ij

r

r

rr

DD

dDf
iiijh),...,,;(21 of pool j , which includes

hub j and nodes riii ,...,, 21 until ,),...,,(
maxmax

''
21 




k

kk

k
k

kk
r

k
j liiiTD for all car types 'k . Go

to Step 3.

51

Step 5: Add nodes ri nijL to pool j and re-calculate the unit demand cost , ;(1ijh








r k

k
i

k

k
j

r k
ji

k
ij

r

r

rr

DD

dDf
ii),...,, 2 until these two following conditions are satisfied. Go

to Step 3.

(a) ' car types allfor ,),...,,(
maxmaxmax

''
21

'

kliiiTDu
k

kk

k
k

kk
r

k
j

k

kk

k 




(b)),,...,,;(),...,,;(12121  rrr iiiijhiiijh

Step 6: Check if ni=neighbor factor(m). If not, let ni=ni+1 and go back to Step 2; otherwise,

go to Step 7.

Step 7: Based on Step 1~Step 6, one can obtain a stream of nodes with the sequence for each

candidate hub. The pool 1j with the smallest unit demand cost),...,,;(211 riiijh is

selected and recorded in the Tabu List. Let cycle=0. Go to Step 8.

Step 8: For every selected pool 1j , find the node
1j

Li with the shortest distance
1ijd . If

node i has been added to another pool region 2j , the distance
1ijd is compared to

2ijd .

If
21 ijij dd  and 




maxmaxmax

2
'''

21),...,,(
k

kk

k
k

kk

k
i

k

kk
r

k
j lDiiiTD ' car type allfor k , node i is

added to pool 1j , i.e.
1j

P ; otherwise, find the next node
1

'
jLi  until all nodes are

evaluated. Then the shortest distance
1ijd of pool 1j is selected. That means that node

i is added to pool 1j . If more than one node has the smallest distance, the node with

larger demand is picked. Go to Step 9.

52

Step 9: For the unselected candidate hubs recorded in Step 7, find the next pool '
1j , where

nodes riii ,...,, 21 are added to '
1j , with the smallest unit demand cost. Four possible

cases exist:

(a) If all nodes i pool '
1j , '

1j
P , and Si , where S is the union of all selected nodes,

pool '
1j is selected and its unit demand cost),...,, ;(21

'
1 riiijh is recorded. Go to

Step 10.

(b) If any node '
1j

Pi , '
2j

Pi , Si , and
max max max

'
2

' ' '
1 2 '

' ' '
(, ,...,)

k k k
k k k

r ijk k k k k k
TD i i i D l

  
    ' all kfor ,

calculate the unit demand cost and the total demand of pool '
1j plus '

2j . The unit

demand cost '
2

'
1 jj

UDC


of pool '
1j plus '

2j is








k

k
i

k

k

j
k

k

j

k
ij

k
i

k

k

jr
k

k

jr

DTDTD

dDTDiijhTDiijh

'
2

'
1

'
2

'
2

'
1

)',...,';(),...,;('1
'
21

'
1

. The total demand

 
k

k

jj
TD '

2
'
1

 of pool '
1j plus '

2j is  
k

k
i

k

k

j
k

k

j
DTDTD '

2
'
1

. If


 

 

k

k

j

k

k

jj

j

jj

TD

TD

UDC

UDC

'
2

'
2

'
1

'
2

'
2

'
1 or cycle=1, pool '

1j is selected and the affected nodes are

recorded. Go to Step 10.

(c) If any node '
1j

Pi , '
2j

Pi , Si , and 



maxmaxmax

'
2

'''

'
'

'
2

'
1),...,,(

k

kk

k
k

kk

k
i

k

kk
r

k

j
lDiiiTD

'any kfor , calculate the total number '
1j

TN of nodes at pool '
1j and the total

53

number '
2j

TN of nodes at pool '
2j . If (1) '

2
'
1 jj

TNTN  and (2)





k

k

j

k

k

j

j

j

TD

TD

UDC

UDC

'
2

'
1

'
2

'
1 or

cycle=1, pool '
1j is selected and the affected nodes are recorded. Go to Step 10.

(d) If none of the three above cases exist, find the next hub until all candidate hubs

are evaluated.

Step 10: Compare
1ijd in Step 8 to),...,,;(21

'
1 riiijh in Step 9. If),...,,;(21

'
11 rij iiijhd  , node i

is added to pool 1j . Otherwise, pool '
1j is selected. That means that nodes riii ,...,, 21

are added to hub '
1j . Check if a cycle is formed in the Tabu List. If yes, cycle =1.

Update the Tabu List and Go to Step 8. Otherwise, cycle =0 and check if all nodes

have been selected. If yes, this algorithm is complete; otherwise, update the Tabu List

and go to Step 8.

4.4.1.5 Example

 For example, the 14 nodes, as indicated in Figure 4.11, have a distance matrix, as

displayed in Table 4.2. The neighbor factor is assumed to be 1.

54

 Figure 4.11. Example of 14 locations with their demands and hub opening costs

Table 4.2. Distance matrix for the 14 nodes

 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 5 3 9 8 6 3 4 5 10 9 7 13 11
2 5 2 4 8 6 4 9 6 11 9 7 13 11
3 3 2 6 6 4 2 7 4 9 7 5 11 9
4 9 4 6 5 7 8 13 10 12 10 8 10 9
5 8 8 6 5 2 5 11 7 7 5 3 5 4
6 6 6 4 7 2 3 9 5 5 3 1 7 5
7 3 4 2 8 5 3 6 2 7 6 4 10 8
8 4 9 7 13 11 9 6 8 13 12 10 16 14
9 5 6 4 10 7 5 2 8 5 7 6 12 10

10 10 11 9 12 7 5 7 13 5 2 4 9 6
11 9 9 7 10 5 3 6 12 7 2 2 7 4
12 7 7 5 8 3 1 4 10 6 4 2 7 4
13 13 13 11 10 5 7 10 16 12 9 7 7 3
14 11 11 9 9 4 5 8 14 10 6 4 4 3

55

 [I].

The demand bound for the pool region = (200, 800). Calculate all possible hubs:

 Demand Distance Cost
Total
cost

Total demand
Unit demand

cost
Meet the
capacity

Min

Hub 1 100 0 300 300 100 3 No
Node 7 80 3 240 540 180 3 No
Node 3 40 3 120 660 220 3 Yes Yes

Node 8
4

(4>3)
 No

 Demand Distance Cost
Total
cost

Total demand
Unit demand

cost
Meet the
capacity

Min

Hub 2 300 0 1000 1000 300 3.33 Yes
Node 3 40 2 80 1080 340 3.176 Yes Yes

Node 7
4

(4>3.176)
 No

 Demand Distance Cost
Total
cost

Total demand
Unit demand

cost
Meet the
capacity

Min

Hub 3 40 0 2000 2000 40 50 No
Node 2 300 2 600 2600 340 7.647 Yes
Node 7 80 2 160 2760 420 6.571 Yes
Node 1 100 3 300 3060 520 5.885 Yes
Node 9 200 4 800 3860 720 5.361 Yes Yes

Node 6 120 4
840

(840>800)
 No

Node 12 150 5
870

(870>800)
 No

Node 5 60
6

(6>5.361)
 No

 Demand Distance Cost
Total
cost

Total demand
Unit demand

cost
Meet the
capacity

Min

Hub 4 50 0 800 800 50 16 No
Node 2 300 4 1200 2000 350 5.714 Yes
Node 5 60 5 300 2300 410 5.610 Yes Yes

Node 3
6

(6>5.610)
 No

 Demand Distance Cost
Total
cost

Total demand
Unit demand

cost
Meet the
capacity

Min

Hub 5 60 0 600 600 60 10 No
Node 6 120 2 240 840 180 4.667 No
Node 12 150 3 450 1290 330 3.909 Yes Yes

Node 14
4

(4>3.909)
 No

56

 Demand Distance Cost
Total
cost

Total demand
Unit demand

cost
Meet the
capacity

Min

Hub 6 120 0 2500 2500 120 20.83 No
Node 12 150 1 150 2650 270 9.815 Yes
Node 5 60 2 120 2770 330 8.394 Yes
Node 11 400 3 1200 3970 730 5.438 Yes

Node 7 80 3
810

(810>800)
8.394 No

Node 3 40 4 160 4130 770 5.364 Yes Yes

Node 14 600 5
1370

(1370>800)
 No

Node 10 500 5
1270

(1270>800)
 No

Node 9 200 5
970

(970>800)
 No

Node 2
6

(6>5.364)
 No

 Demand Distance Cost
Total
cost

Total demand
Unit demand

cost
Meet the
capacity

Min

Hub 7 80 0 2100 2100 80 26.25 No
Node 9 200 2 400 2500 280 8.929 Yes
Node 3 40 2 80 2580 320 8.063 Yes
Node 6 120 3 360 2940 440 6.682 Yes
Node 1 100 3 300 3240 540 6 Yes

Node 2 300 4 1200 4440
840

(840>800)
 No

Node 12 150 4 600 3840 690 5.565 Yes
Node 5 60 5 300 4140 750 5.52 Yes Yes

Node 11 400
6

(6>5.52)
 No

 Demand Distance Cost
Total
cost

Total demand
Unit demand

cost
Meet the
capacity

Min

Hub 8 90 0 1400 1400 90 15.556 No
Node 1 100 4 400 1800 190 9.474 No
Node 7 80 6 480 2280 270 8.444 Yes
Node 3 40 7 280 2560 310 8.258 Yes
Node 9 200 8 1600 4160 510 8.157 Yes Yes

Node 2
9

(9>8.157)
 No

 Demand Distance Cost
Total
cost

Total demand
Unit demand

cost
Meet the
capacity

Min

Hub 9 200 0 1200 1200 200 6 Yes
Node 7 80 2 160 1360 280 4.857 Yes
Node 3 40 4 160 1520 320 4.75 Yes Yes

Node 10
5

(5> 4.75)
 No

 Demand Distance Cost
Total
cost

Total demand
Unit demand

cost
Meet the
capacity

Min

Hub 10 500 0 800 800 500 1.6 Yes Yes

Node 11
2

(2>1.6)
 No

57

 Demand Distance Cost
Total
cost

Total demand
Unit demand

cost
Meet the
capacity

Min

Hub 11 400 0 400 400 400 1 Yes Yes

Node 10
2

(2>1)
 No

 Demand Distance Cost
Total
cost

Total demand
Unit demand

cost
Meet the
capacity

Min

Hub 12 150 0 900 900 150 6 No
Node 6 120 1 120 1020 270 3.778 Yes
Node 11 400 2 800 1820 670 2.716 Yes Yes

Node 5
3

(3>2.716)
 No

 Demand Distance Cost
Total
cost

Total demand
Unit demand

cost
Meet the
capacity

Min

Hub 13 90 0 600 600 90 6.667 No
Node 14 600 3 1800 2400 690 3.478 Yes Yes

Node 5
5

(5>3.478)
 No

 Demand Distance Cost
Total
cost

Total demand
Unit demand

cost
Meet the
capacity

Min

Hub 14 600 0 1200 1200 600 2 Yes Yes

Node 13
3

(3>2)
 No

58

 Once all possible hubs are calculated, a ranking list of all candidate pool regions is

obtained as shown in Table 4.3.

Table 4.3. A ranking list of all candidate pool regions

Ranking Unit demand cost Hub Connecting Nodes Total Demand

1 1 11 400

2 1.6 10 500

3 2 14 600

4 2.716 12 6,11 670

5 3 1 7,3 220

6 3.176 2 3 340

7 3.33 2 300

8 3.478 13 14 690

9 3.778 12 6 270

10 3.909 5 6,12 330

11 4.75 9 7,3 320

12 4.857 9 7 280

13 5.361 3 2,7,1,9 720

14 5.364 6 12,5,11,3 770

15 5.438 6 12,5,11 730

16 5.52 7 9,3,6,1,12,5 750

17 5.565 7 9,3,6,1,12 690

18 5.61 4 2,5 410

19 5.714 4 2 350

20 5.885 3 2,7,1 520

21 6 7 9,3,6,1 540

22 6 9 200

23 6.571 3 2,7 420

24 6.682 7 9,3,6 440

25 7.647 3 2 340

26 8.063 7 9,3 320

27 8.157 8 1,7,3,9 510

28 8.258 8 1,7,3 310

29 8.394 6 12,5 330

30 8.444 8 1,7 270

31 8.929 7 9 280

32 9.815 6 12 270

59

Select the hub with the smallest unit demand cost (11r =1). Node 11 is chosen to be a

hub as shown in Figure 4.12.

8

7

12

6

2

5

3

1

14
11

9

10

4

13

D=100, f=300
D=300 , f=1000

D=40 , f=2000

D=50 , f=800

D=60 , f=600D= 120 , f=2500

D=80 , f=2100

D=90 , f=1400

D=200 , f=1200

D=500 , f=800 D=400 , f=400

D=150, f=900
D=90 , f=600

D=600 , f=1200

Hub Capacity Limit = [200, 800]

Figure 4.12. Node 11 is selected to be a hub

60

 [II]

Compare the two possible choices and choose the smallest.

(1) Add one node with the shortest distance to the selected hub. However, the demand

capacity for the pool still needs to be satisfied. Otherwise, check the next available

node.

(2) Check other possible hubs from Table 4.3. Choose the next available pool region with

the smallest unit demand cost. If a node has not been selected, check the unit demand

cost.

For (1), the shortest distance for hub 11 is 212,11 d and as a result, node 12 is selected

for possible addition to the hub 11 pool, 11P . For (2), the smallest unit demand cost is

10r 1.6 and hub 10 is selected for possible additional node. Since 12,1110 dr  , node 10 is

selected to be a hub, as shown in Figure 4.13.

8

7

12

6

2

5

3

1

14
11

9

10

4

13

D=100, f=300
D=300 , f=1000

D=40 , f=2000

D=50 , f=800

D=60 , f=600D= 120 , f=2500

D=80 , f=2100

D=90 , f=1400

D=200 , f=1200

D=500 , f=800 D=400 , f=400

D=150, f=900
D=90 , f=600

D=600 , f=1200

Hub Capacity Limit = [200, 800]

Figure 4.13. Node 10 is selected to be a hub

61

[III]

This procedure is the same as [II]. Two possible choices exist.

For (1), the possible selection for the shortest distance for hub 11 is 212,11 d , and hub

10 is 412,10 d . Since 12,1012,11 dd  , node 12 is selected for possible addition to the hub 11

pool, 11P . For (2), the smallest unit demand cost is 214 r and hub 14 is selected for possible

additional node. Since 1412,11 rd  , node 12 is connected to hub 11 and node 14 is selected to

be a hub, as displayed in Figure 4.14. If these two are the same node, this same node is

selected to be a hub.

8

7

12

6

2

5

3

1

14
11

9

10

4

13

D=100, f=300
D=300 , f=1000

D=40 , f=2000

D=50 , f=800

D=60 , f=600D= 120 , f=2500
D=80 , f=2100

D=90 , f=1400

D=200 , f=1200

D=500 , f=800 D=400 , f=400

D=150, f=900

D=90 , f=600

D=600 , f=1200

Hub Capacity Limit = [200, 800]

2

Figure 4.14. Node 12 is connected to hub 11 and node 14 is selected to be a hub

62

 [IV]

For (1), the possible selection for the shortest distance for hub 11 is 36,11 d , hub 10 is

59,10 d , and hub 14 is 313,14 d . Since 9,1013,146,11 ddd  , node 6 and node 13 are selected

for possible additional nodes.

For (2), the smallest unit demand cost is)11 6, ;12(h =2.716 and pool 12 is picked first.

Pool region 12, including hub 12, node 6, and node 11, has the smallest value, 2.716.

However, nodes 12 and 11 have been previously selected. The lower bound of pool 11 is not

satisfied. Based on Step 9 (c), the total number of nodes at pool 12, 12TN , is 3 (hub 12, node

6, node 11), and at pool 11, 11TN , is 2 (hub11, node 12). Since 1112 TNTN  ,






k

k

j

k

k

j

j

j

TD

TD

UDC

UDC

'
2

'
1

'
2

'
1 needs to be inspected. The value of

11

12

UDC

UDC
 is equal to









)(
)(

)(
)(

1211

12,111211

11612

11,12116,12612

DD
dDf

DDD
dDdDf

)150400(
)2150400(

716.2




 .134.2 The value of



k

k
k

k

TD

TD

11

12

 is

150400

400120150

1211

11612








DD

DDD
218.1 . Since 2.134 >1.218,)11 6, ;12(h cannot be

selected. Hence, the next candidate hub is sought. Pool region 1, which includes hub1, node 7,

and node 3, and has the unit demand cost)3 7, ;1(h =3, is found and selected for possible

additional nodes.

Since 3) 7, ;1(13,146,11 hdd  and all of them include different nodes, all of them are

selected, as displayed in Figure 4.15.

63

8

7

12

6

2

5

3

1

14
11

9

10

4

13

D=100, f=300
D=300 , f=1000

D=40 , f=2000

D=50 , f=800

D=60 , f=600D= 120 , f=2500

D=80 , f=2100

D=90 , f=1400

D=200 , f=1200

D=500 , f=800 D=400 , f=400

D=150, f=900
D=90 , f=600

D=600 , f=1200

Hub Capacity Limit = [200, 800]

2

3

3

3

3

Figure 4.15. Node 6 is connected to hub 11, node 13 is connected

to hub 14, and node 1 is selected to be a hub

64

 [V]

For (1), the possible selection for the shortest distance for hub 11 is 55,11 d , hub 10 is

59,10 d , hub 14 is 45,14 d , and hub 1 is 48,1 d . Since 9,105,118,15,14 dddd  , node 5

and node 8 are selected for possible additional nodes.

For (2), the smallest unit demand cost is 176.3)3 ;2(h and hub 2 is picked first. Pool

region 2, including hub 2 and node3, has the smallest value = 3.176. However, if)3 ;2(h is

selected, that will cause hub 1 not to satisfy the lower bound. Based on Step 9(c), the total

number of nodes at pool 2, 2TN , is 2 (hub2, node 3), and at pool 1, 1TN , is 3 (hub1, node 3,

node 7). Since 12 TNTN  ,)3 ;2(h cannot be selected. The next candidate pool, which only

includes hub 2 and its unit demand cost 2r is 3.33, is selected.

Since 8,15,142 ddr  , node 2 is selected to be a hub, as shown in Figure 4.16.

65

8

7

12

6

2

5

3

1

14
11

9

10

4

13

D=100, f=300
D=300 , f=1000

D=40 , f=2000

D=50 , f=800

D=60 , f=600D= 120 , f=2500

D=80 , f=2100

D=90 , f=1400

D=200 , f=1200

D=500 , f=800 D=400 , f=400

D=150, f=900
D=90 , f=600

D=600 , f=1200

Hub Capacity Limit = [200, 800]

2

3

3

3

3

Figure 4.16. Node 2 is chosen to be a hub

66

 [VI].

For (1), the possible selection for the shortest distance for hub 11 is 55,11 d , hub 10 is

59,10 d , hub 14 is 45,14 d , hub 1 is 48,1 d , and hub 2 is 44,2 d . (Note: node 3 is not

connected to hub 2 because that will cause hub 1 to violate its lower bound.) Since

9,105,114,28,15,14 ddddd  , nodes 5, 8, and 4 are selected for possible additional nodes.

For (2), the smallest unit demand cost is 478.3)14 ;13(h and hub 13 is picked first.

Pool region 13, including hub 13 and node 14, has the smallest value=3.478. However, if

)14 ;13(h is selected, that will cause hub 14 not to satisfy the lower bound. Based on Step

9(c), the total number of nodes at pool 13, 13TN , is 2 (hub13, node 14), and at pool 14, 14TN ,

is 2 (hub 14, node 13). Since 1413 TNTN  ,





k

k

j

k

k

j

j

j

TD

TD

UDC

UDC

'
2

'
1

'
2

'
1 needs to be inspected. The

value of
14

13

UDC

UDC
 is equal to 







)(
)(

)(
)(

1314

13,141314

1413

14,131413

DD
dDf

DD
dDf

 .633.1
478.3

)90600(
)3901200(





 The value of




k

k
k

k

TD

TD

14

13

 is
1314

1413

DD

DD




1 . Since 1.633 >1,)14 ;13(h cannot be selected.

Hence, the next candidate hub is sought. Pool region 12, which includes hub 12 and

node 6, and its unit demand cost 778.3)6 ;12(h . If)6 ;12(h is selected, hub 11 still satisfies

the lower bound. Based on Step 9 (b), 

 



k

k
k

k

TD

TD

UDC

UDC

11

1112

11

1112

67

1
)150120400/()21503120400(

778.3

)(

)(

)/()(

)/()(

61112

61112

6111212,11126,11611

611126,1261112 










DDD

DDD

DDDdDdDf

DDDdDff

.0582.01582.1 )6 ;12(h cannot be selected.

The next candidate pool region with the smallest unit demand cost is 909.3)12 6, ;5(h .

Pool region 5, including hub 5, node 6, and node 12, has the smallest value=3.909. Based on

Step 9(b), selecting 6,12) ;5(h does not affect the lower bound for hub 11 but the value of


 

 

k

k
k

k

TD

TD

UDC

UDC

11

115

11

115 = 







)(
)(

)(
)(

12611

11,121211,6611

126511

5,12125,66511

DDD
dDdDf

DDDD
dDdDff

12611

126511

DDD

DDDD




(400 600 120 2 150 3) / (400 60 120 150) (400 60 120 150)
1.463 1.090 0.373 0.

(400 120 3 150 2) / (400 120 150) (400 120 150)

          
     

       

Hence, 6,12) ;5(h cannot be selected.

The next available pool region 9 is found, which includes hub 9, node 7, and node 3 and

its unit demand cost 7,3) ;9(h =4.75. This value is greater than 5,14d , 8,1d , and 4,2d , which

have the same value 4. Hence, node 5 is connected to hub 14, node 8 is connected to hub 1,

and node 4 is connected to hub 2, as displayed in Figure 4.17.

68

8

7

12

6

2

5

3

1

14
11

9

10

4

13

D=100, f=300
D=300 , f=1000

D=40 , f=2000
D=50 , f=800

D=60 , f=600D= 120 , f=2500

D=80 , f=2100

D=90 , f=1400

D=200 , f=1200

D=500 , f=800 D=400 , f=400

D=150, f=900
D=90 , f=600

D=600 , f=1200

Hub Capacity Limit = [200, 800]

2

3

3

3

3

4

4
4

Figure 4.17. Node 5 is connected to hub 14, node 8 is connected to

hub 1, and node 4 is connected to hub 2.

69

 [VII]

For (1), the possible selection for the shortest distance for hub 11 is 79,11 d , hub 10 is

59,10 d , hub 14 is 109,14 d , hub 1 is 59,1 d , and hub 2 is 23,2 d . Since 3,2d has the

shortest distance, node 3 is selected for the possible additional node.

For (2), the smallest unit demand cost is 75.4)3 7, ;9(h and hub 9 is selected for the

possible additional node.

Since 3,2)3 7, ;9(dh  , node 3 is connected to hub 2, as displayed in Figure 4.18.

8

7

12

6

2

5

3

1

14
11

9

10

4

13

D=100, f=300
D=300 , f=1000

D=40 , f=2000

D=50 , f=800

D=60 , f=600D= 120 , f=2500

D=80 , f=2100

D=90 , f=1400

D=200 , f=1200

D=500 , f=800 D=400 , f=400

D=150, f=900
D=90 , f=600

D=600 , f=1200

Hub Capacity Limit = [200, 800]

2

3

3

3

2

4

4
4

Figure 4.18. Node 3 is connected to hub 2

70

[VIII].

For (1), the possible selection for the shortest distance for hub 11 is 79,11 d , hub 10 is

59,10 d , hub 14 is 109,14 d , hub 1 is 59,1 d , and hub 2 is 69,2 d . Since 9,10d and 9,1d

have the same shortest distance, they both are selected for possible additional nodes.

For (2), the smallest unit demand cost is 75.4)3 7, ;9(h and hub 9 is picked first. Pool

region 9, including hub 9, node 7, and node 3, has the value of 4.75. However, if pool region

9 is chosen, that will result in hub 1 violating its lower bound but hub 3 still satisfies the

lower bound. Based on Step 9(c), the total number of nodes at pool 9 and pool 2, 29TN , is 5

(hub 9, node 7, node 3, hub 2, node 4), and at pool 1 and pool 2, 21TN , is 6 (hub1, node 7,

node 8, hub 2, node 3, node 4). Since 2129   TNTN ,)3 7, ;9(h is not selected.

The next available pool region includes hub 9 and node 7 and its unit demand cost

7) ;9(h equals 4.857. However, it also will result in hub 1 violating its lower bound. Based

on 9(c), the total number of nodes at pool 9, 9TN , is 2 (hub 9, node 7), and at pool 1, 1TN , is

3 (hub 1, node 7, node 8). Since 19 TNTN  , 7) ;9(h is also not selected.

The next available pool region includes hub 3, node 2, node 7, node 1, and node 9, and

its unit demand cost is 9) 1, 7, 2, ;3(h equals 5.361. However, it also will result in hub 1 and

hub 2 violating the lower bound. Based on 9(c), the total of nodes at pool 3, 3TN , is 5 (hub 3,

node 2, node 7, node 1, node 9), and at pool 1 and pool 2, 21TN , is 6 (hub 1, node 7, node 8,

hub 2, node 3, node 4). Since 213  TNTN , 9) 1, 7, 2, ;3(h is not selected.

71

Since 59) 1, 7, 2, ;3(9,19,10  ddh , the next available pool region does not need to be

checked. Either 9,10d or 9,1d is chosen. Hence, node 9 is connected to hub 10, as shown in

Figure 4.19, or connected to hub 1, as shown in Figure 4.20. Either one can be selected for

the next procedure. However, all nodes have been chosen, which means that either Figure

4.19 or Figure 4.20 is the solution. Both of them have the same smallest cost.

LINGO was utilized to verify the quality of this small example; the result shows that

the solution from the clustering algorithm is the same as the optimal solution.

8

7

12

6

2

5

3

1

14
11

9

10

4

13

D=100, f=300
D=300 , f=1000

D=40 , f=2000

D=50 , f=800

D=60 , f=600D= 120 , f=2500

D=80 , f=2100

D=90 , f=1400

D=200 , f=1200

D=500 , f=800
D=400 , f=400

D=150, f=900
D=90 , f=600

D=600 , f=1200

Hub Capacity Limit = [200, 800]

2

3

3

3

2

4

4
4

5

Figure 4.19. Node 9 is connected to hub 10

72

8

7

12

6

2

5

3

1

14
11

9

10

4

13

D=100, f=300
D=300 , f=1000

D=40 , f=2000

D=50 , f=800

D=60 , f=600D= 120 , f=2500

D=80 , f=2100

D=90 , f=1400

D=200 , f=1200

D=500 , f=800 D=400 , f=400

D=150, f=900
D=90 , f=600

D=600 , f=1200

Hub Capacity Limit = [200, 800]

2

3

3

3

2

4

4
4

5

Figure 4.20. Node 9 is connected to hub 1

4.4.2 Enumeration Method

In this phase, the hubs j are unknown, but the pool regions are known. One hub is

selected from each pool region. The total cost is calculated for each possible hub and then the

hub with the lowest cost is chosen. The same rule is followed until all hubs are chosen.

73

4.4.3 Modified Prim’s Algorithm

Step 1: For all nodes i excluding hub j , sort the total demand 


max

1

k

k

k
iD and rank these nodes i

in descending order of 


max

1

k

k

k
iD , denoted as .DL

Step 2: For each node i excluding hub j , sort the distance ijd and rank these hubs j in

ascending order of ijd , denoted as idL .

Step 3: For these nodes which are not yet selected from DL , select the node i with the

largest demand 


max

1

k

k

k
iD and assign it to the hub j with the shortest distance ijd ,

selected from idL . The upper capacity needs to be satisfied simultaneously.

Otherwise, select the next available hub from idL . Continue Step 3 until all nodes are

assigned.

Step 4: Check if the lower capacity is satisfied for each pool region. If pool region 1j (hub 1j)

is not satisfied, for nodes i unassigned to pool region 1j , find the assigned pool

region 2j of node i and calculate the cost difference for node i , )(
21 ijiji dddiff




max

1

k

k

k
iD . Sort the cost difference idiff and rank these nodes i in ascending order of

idiff , denoted as diffL . The upper capacity needs to be maintained simultaneously for

pool region 2j . Otherwise, select the next available node from diffL . Continue Step 4

until the lower and upper capacities are satisfied for all pool regions.

74

4.5 Computing Results

This section focuses on an experimental design generated by four types of experimental

factors including: the number of car types, the number of locations, pool capacity, and hub

opening costs. Section 4.5.1 introduces the parameter settings and the meaning of the

parameters. In Section 4.5.2, the setting of factor levels and three parts of the experiment are

described. This description includes the problem size in practice and the problem size which

can be solved optimally in a reasonable computing time by a branch-and-bound algorithm.

The computer equipment used for conducting this experiment is introduced in Section 4.5.3.

In Section 4.5.4, experimental results are analyzed through a three-part experiment.

4.5.1 Parameter Settings

The parameter settings in pool segmentation and hub selection are chosen based on the

website data of Auto Rental News or the assumptions of making the problems feasible, and

are as described below.

 Distance: The facility locations are randomly generated within a square space of

100100. The Euclidean distance between two nodes is taken as the shortest distance in

this experiment and is rounded off to five decimal places. Thus, the distances

automatically satisfy the triangle inequality and are symmetric.

 Demand: The demand is a parameter in this experiment. Because the demand for small

sized cars is normally higher than for the larger models at the same location, the

demands for different sizes have the characteristic of this dependence. Hence, when a

problem is generated based on a specified demand level, which equals 40, based on the

75

website data of Auto Rental News in 2007, the demand for car type 1 at each location is

generated by multiplying this specified demand level by a random number generated

from a uniform distribution (0.4, 5). As for the demands for car type 2 and the higher car

types, a similar ratio value is generated from a uniform distribution (0.5, 1.2) for each

car type. The demand for car type 2 is then generated by multiplying the demand of car

type 1 by the ratio for car type 2. The demands for the higher car types are generated by

multiplying the demand for the previous car type by the respective ratio. The demand is

rounded off to an integer.

 Lower Pool Capacity: The lower pool capacity of car type 1 is set to be the specified

demand level, 40. The lower capacity bound of other car types is generated by

multiplying the demand for each car type by a random number generated from a

uniform distribution (0.8, 1). This value is set to be low in order to make the feasible

region larger. The lower pool capacity is rounded off to an integer.

 Hub Opening Cost: The ratio of hub opening cost to the demand is a factor in this

experiment. Hence, when a problem is generated based on a specified demand level, 40,

and a specified factor level of the ratio of hub opening cost to the demand, the hub

opening cost is generated by multiplying the demand for car type 1 by a random number

generated from a uniform distribution (0.5, 2) along with the ratio of hub opening cost to

the demand. The hub opening cost is rounded off to an integer.

 Neighbor Factor: Because a value of neighbor factor m covers the neighbor indexes

from 1 to m, a larger neighbor factor can extend the ranking list of all candidate pool

regions. However, a larger neighbor factor also takes more computing time. Hence, it is

important to strike a balance between the computing time and a larger ranking list. In

76

this experiment, the neighbor factor is set to be 5 in parts 1 and 3, but it is set to be 1 for

the large cases in part 2.

 Tabu List: The Tabu List is set to be 200 based on the results after testing for several

examples.

4.5.2 Factor Levels

Three parts of the experimental designs are utilized in pool segmentation and hub

selection. In part 1, the large problem sizes are tested to determine which factors can

significantly affect the algorithm time. In part 2, the number of locations in practical problem

sizes is tested and compared to the algorithm time. In part 3, the problem size, which can be

solved optimally in a reasonable time by a branch-and-bound algorithm, is tested to compare

the solution quality and computing times of the clustering-based iterative algorithm and the

optimal solution.

Based on the experimental design in part 1, the following 4 factors are tested to

determine if the computing time is significantly affected.

 Number of Locations: Three factor levels are set to be 300, 600, and 1200. These

numbers are close to the levels of the top 8, top 6, top 3 rental companies in the United

States.

 Number of Car Types: Based on the website data of large car rental companies, three

factor levels are set to be 4, 8, and 12.

 Ratio of Pool Capacity to the Demand (R_Capacity): The lower capacity bound is

fixed to be the base demand for car type 1 at one location. The upper capacity bound is

77

set to be 10 times, 25 times, and 62.5 times the lower capacity. Three factor levels are

set to be 10, 25, and 62.5.

 Ratio of Hub Opening Cost to the Demand (R_Hub Cost): Three factor levels are set

to be 300, 600, and 1200.

In part 2, the number of locations in practical problem sizes is tested and compared to

the algorithm time. The number of car types, the ratio of pool capacity to the demand, and the

ratio of hub opening cost to the demand are fixed to be 8, 25 and, 600. The numbers of

locations tested are 1000, 2000, 3000, 4000, 5000, and 6000. The number 6000 is close to the

factor level of the number of locations of Enterprise Rent-A-Car, the top car rental company

in the United States.

In part 3, the solution quality of the clustering-based iterative algorithm is compared to

the optimal solution solved by a branch-and-bound algorithm. In addition, the computing

time of the clustering-based iterative algorithm is compared. The problem size is assumed to

be solved in a reasonable time by a branch-and-bound algorithm because the computing time

of branch-and-bound is time-consuming. Three factors are tested and the number of car types

is assumed to be 8.

 Number of Locations: Three factor levels are set to be 30, 60, and 90.

 Ratio of Pool Capacity to the Demand: The lower capacity bound is fixed to be the

base demand for car type 1 at one location. The upper capacity bound is set to be 10

times, 15 times, and 20 times the lower capacity. Three factor levels are set to be 10, 15,

and 20.

 Ratio of Hub Opening Cost to the Demand: Three factor levels are set to be 300, 600,

78

and 1200.

4.5.3 Experimental Platform

This experiment uses the software Visual C++ to compile the computer coding of the

clustering-based iterative algorithm and uses the optimization software LINGO 9.0 to find an

optimal solution. The computer equipment utilized to conduct this experiment includes an

Intel Core 2 Duo E7400 2.80 GHz CPU and 6 GB memory.

4.5.4 Experimental Analysis

The experiment is divided into three parts. Four types of experimental factors are

utilized to test which factors affect the computing time in part 1. Each factor contains three

levels and each factor level uses three replications based on different random seeds. Hence, 3

factor levels of the number of locations 3 factor levels of the number of car types  3 factor

levels of the ratio of the capacity to the demand  3 factor levels of the ratio of hub opening

cost to the demand  3 random seeds  243 independent trials in part 1.

In part 2, the number of locations is the only experimental factor and it contains six

factor levels. Hence, 6 factor levels of the number of locations  3 random seeds = 18

independent trials in part 2.

In part 3, an experiment is conducted with the problem size that was solved in a

reasonable time by the branch-and-bound algorithm. The clustering-based iterative algorithm

is compared to the optimal solution solved by the branch-and-bound algorithm. Three types

of experimental factors are utilized to test which factors affect the solution quality of the

79

algorithm. Each factor contains three levels and each factor level conducts three replications

based on different random seeds. Hence, 3 factor levels of the number of locations  3

factor levels of the ratio of the capacity to the demand  3 factor levels of the ratio of hub

opening cost to the demand  3 random seeds  81 independent trials in part 3.

The Statistics Software Minitab is used to implement a General Linear Model to run the

Analysis of Variance (ANOVA) in order to analyze the experimental factors versus the

algorithm time and the solution gap. The significance level is set to be 5%. If the main effect

of a specific experimental factor is significant, this means that the algorithm time has a

significant difference among different levels of this specific experimental factor. Hence, the

Tukey’s test is conducted to find which means are significantly different from one another in

this specific experimental factor.

4.5.4.1 Impact Analysis on Experimental Factors versus Algorithm Time

 In the results of part 1, the statistical distribution of the residuals of the algorithm time

is not a normal distribution. Data transformation of the logarithm of the algorithm time is

applied to resemble a normal distribution. Hence, the logarithm of the algorithm time is used

as the response. The original results of this part can be referenced in Appendix A.

Observe in Table 4.4 that all p-values of these four factors are less than 0.05. That

means that the effects of these four factors are all significant. Hence, the number of car types,

the number of locations, the ratio of pool capacity to the demand, and the ratio of hub cost to

the demand can affect the computing time of the algorithm.

80

Table 4.4. ANOVA table on four factors versus algorithm time

Source DF SSE MSE F value p value
Car Types
Locations

R_Capacity
R_HubCost

Error

2
2
2
2

234

0.777
136.097
3.157
3.926
4.500

0.389
68.049
1.578
1.963
0.019

20.22
3538.75
82.09
102.08

0.0
0.0
0.0
0.0

Total 242 148.457

Next, Tukey’s test is conducted to compare different factor levels on each experimental

factor. The original results of Tukey’s test are represented in Appendix B. The summary data

are shown from Table 4.5 to Table 4.8. The levels of experimental factors are represented in

Column 1. Column 2 is the number of experimental trials. Column 3 shows whether or not

the responses on different levels of the factors are significantly different. If the responses on

different levels of the factors are divided into different groups, this means that their responses

are significantly different. The group type of the algorithm time is named in alphabetical

order. The closer to A the letter is in the alphabet, the faster the algorithm time, and that is

... CBA . If two factor levels are divided into the same group, this means that there is

not a significant difference between the algorithm times of these two factor levels. The value

of the group A, B, C is the average logarithm algorithm time in the level of experimental

factor. The smaller the value, the faster the algorithm time.

Tukey’s test on different numbers of car types is represented in Table 4.5. In Table 4.5,

there are significant differences in the algorithm time between the numbers of car types, 4

and 8, or, 4 and 12. The algorithm time of car type 4 is slower than the algorithm time of car

type 8 or 12. However, there seems not to be any difference in the algorithm time between

the numbers of car type 8 and 12.

81

Table 4.5. Tukey test on different numbers of car types

Car Type # of Trials
Group (log time)
A B

4 81 1.3246
8 81 1.2110
12 81 1.1991

Tukey’s test on different numbers of locations is represented in Table 4.6. From Table

4.6, the greater the number of locations, the slower the algorithm time.

Table 4.6. Tukey test on different numbers of locations

Locations # of Trials
Group (log time)

A B C
300 81 0.3318
600 81 1.2381
1200 81 2.1649

Tukey’s test on different ratios of pool capacity to the demand is represented in Table

4.7. From Table 4.7, the tight pool capacity seems to make the algorithm time much longer.

In addition, the loose pool capacity results in a longer algorithm time.

Table 4.7. Tukey test on different ratios of pool capacity to the demand

R_Capacity # of Trials
Group (log time)

A B C
10 81 1.3646
25 81 1.0915

62.5 81 1.2786

82

Tukey’s test on different ratios of hub cost to the demand is represented in Table 4.8.

From Table 4.8, the larger the ratio of pool capacity to the demand, the slower the algorithm

time.

Table 4.9. Tukey test on different ratios of hub cost to the demand

R_HubCost # of Trials
Group (log time)

A B C
300 81 1.0910
600 81 1.2415
1200 81 1.4023

The figures of average logarithm time on different levels of these four experimental

factors are summarized as in Figure 4.21

 Figure 4.21. Average logarithm time on different levels of experimental factors

83

4.5.4.2 Impact Analysis on Locations in Practical Problem Size versus Algorithm

Time

The experiment of part 2 is the impact analysis on the number of locations in practical

problem size versus algorithm time. The number of locations is the most important

experimental factor in this problem because it affects how large of a problem size this

algorithm can solve. Table 4.9 represents the algorithm time and the number of integer

variables on different numbers of locations and its trend chart is presented in Figure 4.22.

The largest case, 6000, is similar to the number of locations in the top rental company in the

United States, Enterprise Rent-A-Car. Thirty-six million integer variables are covered in this

case and the algorithm takes about 135 minutes to solve.

Table 4.9. The algorithm time on the number of locations

of practical problem size

Example

of

locations

of integer
variables
(millions)

Seed

Time
(sec)

Avg
time
(sec)

1
1,000 1

20 23
20 2 40 18

3 60 19
4

2,000 4
20 171

169 5 40 200
6 60 138
7

3,000 9
20 800

645 8 40 590
9 60 545

10
4,000 16

20 2,183
1,564 11 40 1,297

12 60 1,211
13

5,000 25
20 4,490

3,340 14 40 2,943
15 60 2,588
16

6,000 36
20 10,301

8,112 17 40 7,111
18 60 6,924

84

0

1500

3000

4500

6000

7500

9000

1000 2000 3000 4000 5000 6000

of Locations

T
im

e(
se

c)

Avg Time

Figure 4.22. The trend chart of algorithm time on the number of locations

of practical problem size

4.5.4.3 Impact Analysis on Experimental Factors versus Solution Gap

In the ANOVA table of part 3 shown in Table 4.10, all p-values of these three factors

are less than 0.05. The effects of these four factors are all significant. Hence, the number of

locations, the ratio of pool capacity to the demand, and the ratio of hub cost to the demand,

can affect the solution gap. The original results of part 3 can be referenced in Appendix C.

Table 4.10. ANOVA table on three factors versus solution gap

Source DF SSE MSE F value p value
Locations

R_Capacity
R_HubCost

Error

2
2
2
74

0.0052972
0.0061696
0.0049541
0.0223130

0.0026486
0.0030848
0.0024771
0.0003015

8.78
10.23
8.22

0.000
0.000
0.001

Total 80 0.0387339

85

Tukey’s test is conducted to compare different levels of each experimental factor. The

original results of Tukey’s test are represented in Appendix D. The illustration of this process

can be reference in Section 4.5.4.1.

Tukey’s test on different numbers of locations is represented in Table 4.11. In Table

4.11, there are significant differences in the solution gaps between the numbers of locations,

30 and 60, or, 30 and 90. The solution gap of the number of locations, 30, is smaller than the

solution gap of the number of locations 60 or 90. However, there seems not to be any

significant difference in the solution gap between the numbers of locations 60 and 90.

Table 4.11. Tukey test on different numbers of locations

Locations # of Trials
Group (Solution Gap)

A B
30 27 1.10%
60 27 2.46%
90 27 3.03%

Tukey’s test on different ratios of pool capacity to the demand is represented in Table

4.12. From Table 4.12, there are significant differences in the solution gap between the ratios,

10 and 15, or, between the ratio, 10 and 20. The solution gap of the ratio of pool capacity to

the demand, 10, is larger than the solution gap of the ratio of pool capacity to the demand, 15

or 20. However, there seems not to be any significant difference in the solution gaps between

the ratio 15 and 20.

86

Table 4.12. Tukey test on different ratios of pool capacity to the demand

R_Capacity # of Trials
Group (Solution Gap)

A B
10 27 3.41%
15 27 1.80%
20 27 1.39%

Tukey’s test on different ratios of hub cost to the demand is represented in Table 4.13.

From Table 4.13, there is a significant difference in the solution gap between the ratios, 300

and 1200. The solution gap of the ratio of hub cost to the demand, 300, is smaller than the

solution gap of the ratio of hub cost to the demand, 1200. However, there seems not to be any

significant difference in the solution gap between the ratios, 300 and 600, or, 600 and 900.

Table 4.13. Tukey test on different ratios of hub cost to the demand

R_HubCost # of Trials
Group (Solution Gap)

A B C
300 27 1.28%
600 27 2.13% 2.13%
1200 27 3.19% 3.19%

The figures of average solution gap on different levels of these three experimental

factors are summarized as in Figure 4.23.

87

 Figure 4.23. Average solution gap on different levels of experimental factors

4.5.4.4 Comparison of Computing Time Between the Clustering-Based Iterative

Algorithm and the Branch-and-Bound Method

In order to more easily measure the computing time of different problems, the

computing time and the objective value is standardized. The computing time *t of the best

solution found by the branch-and-bound method in LINGO Software in each problem is set

to be 6)*(10log
*

*
6

10 
t

t
. Other computing times t can be transformed to standardized

logarithm time)*10(log
*

6
10 t

t
. This time setting can avoid the value of standardized

logarithm time to be negative and the scale of logarithm time is easily compared to multiple

solutions, especially shown in the same plot. In this problem, Algorithm Solution, BetterSolu,

and BestSolu are included.

88

If the optimal objective value found by the branch-and-bound method is *Z and the

objective value of the clustering-based iterative algorithm is Z , the solution gap is calculated

by %100
*

*



Z

ZZ
. These standardized data are used in the following observations and

analysis.

The comparison of the computing time between the clustering-based iterative algorithm

and the branch-and-bound method is presented in Table 4.14. In Table 4.14, three kinds of

computing times are recorded. Algorithm times in Column 5 and Column 8 represent average

times and average logarithm times of the clustering-based iterative algorithm, respectively.

BetterSolu time is recorded when a better solution than in the clustering-based iterative

algorithm is found in LINGO. BetterSolu times in Column 6 and Column 9 represent average

times and average logarithm times when a better solution found. BestSolu time *t represents

the time of the optimal solution found in LINGO.

If the gap of two logarithm times is 1, this means that the gap of these two computing

times is 10 times. In Table 4.14, the overall results show that the average gaps of the

logarithm times between the algorithm time and better solution fall between 2 and 3 and the

average gaps of the logarithm times between the algorithm time and best solution fall

between 2 and 4. This means that the branch-and-bound method usually takes 100~1,000

times the algorithm time to find a better solution and 100~10,000 times the algorithm time to

find an optimal solution than in the clustering-based iterative algorithm.

89

Table 4.14. Computing time of the clustering-based iterative algorithm and the

branch-and-bound method

Locations R_Cap

Ratio

Hubcost

of
trials

Avg Time (sec) Avg Log Time
Solution

Gap
(%)

Algorithm
Time

BetterSolu
Time

BestSolu
Time

Algorithm
Time

BetterSolu
Time

30

10
300 3 0.065 2.667 2.667 4.03 6.00 0.46%
600 3 0.025 5.667 7.000 3.39 5.93 3.50%
1200 3 0.075 5.333 8.667 3.63 5.85 2.27%

15
300 3 0.011 3.000 3.000 3.52 6.00 0.16%
600 3 0.012 2.333 2.333 3.71 6.00 0.52%
1200 3 0.025 4.333 4.667 3.56 5.97 1.08%

20
300 3 0.011 2.667 2.667 3.56 6.00 0.16%
600 3 0.012 2.667 2.667 3.63 6.00 1.08%
1200 3 0.008 2.333 2.333 3.51 6.00 0.72%

60

10
300 3 0.095 10.000 10.667 3.84 5.98 1.14%
600 3 0.047 18.667 22.667 3.30 5.92 1.99%
1200 3 0.042 24.667 261.667 2.40 5.20 5.79%

15
300 3 0.027 7.667 7.667 3.56 6.00 0.64%
600 3 0.027 19.000 24.667 3.07 5.91 2.39%
1200 3 0.022 20.000 338.333 2.49 5.43 4.17%

20
300 3 0.029 7.667 7.667 3.58 6.00 1.33%
600 3 0.023 8.000 8.000 3.50 6.00 2.82%
1200 3 0.025 14.000 28.667 3.10 5.80 1.90%

90

10
300 3 0.247 59.667 512.333 2.78 5.19 4.44%
600 3 0.271 82.333 5309.667 2.05 4.58 3.78%
1200 3 0.254 108.667 80826.333 0.53 3.17 7.32%

15
300 3 0.144 33.333 36.333 3.53 5.96 1.35%
600 3 0.099 51.000 142.000 2.93 5.64 2.10%
1200 3 0.048 69.000 3230.333 1.98 5.09 3.80%

20
300 3 0.074 13.333 13.333 3.73 6.00 1.85%
600 3 0.044 20.000 22.000 3.36 5.98 0.96%
1200 3 0.047 35.000 58.667 2.92 5.79 1.66%

The comparisons of logarithm time between the clustering-based iterative algorithm

and the branch-and-bound method are represented from Figure 4.24 to Figure 4.26. Figure

4.24 is based on different numbers of locations. Figure 4.25 is based on different ratios of

pool capacity to the demand. Figure 4.26 is based on different ratios of hub cost to the

demand. From these three figures, the computing time of the clustering-based iterative

algorithm seems always 100 times faster than the computing time of BetterSolu time.

90

In Figure 4.24, the greater the number of locations, the smaller the logarithm time of

the clustering-based iterative algorithm and the BetterSolu. As a result of the proportional

scale characteristic of the logarithm time)*10(log
*

6
10 t

t
 compared to BestSolu time *t , the

logarithm time becomes less as the number of locations increases. This means that the

efficiency of the clustering-based iterative algorithm is much better than the branch-and-

bound method as the number of locations increases.

2

3

4

5

6

30 60 90

of Locations

L
og

ar
it

hm
 T

im
e

Log(Algorithm Time)

Log(BettSolu Time)

Log(BestSolu Time)

Figure 4.24 Comparison of logarithm time between the clustering-based

iterative algorithm and the branch-and-bound method on

different numbers of locations

91

In Figure 4.25, the larger the ratio of pool capacity to the demand, the larger the

logarithm time of the clustering-based iterative algorithm and the BetterSolu. The means that

the efficiency of the clustering-based iterative algorithm is much better than the branch-and-

bound method as the ratio of pool capacity versus demand decreases.

2

3

4

5

6

10 15 20

Ratio of Pool Capacity versus Demand

L
og

ar
it

hm
 T

im
e

Log(Algorithm Time)

Log(BettSolu Time)

Log(BestSolu Time)

Figure 4.25 Comparison of logarithm time between the clustering-based

iterative algorithm and the branch-and-bound method on

different ratio of pool capacity to the demand

92

In Figure 4.26, the larger the ratio of hub cost to the demand, the smaller the

logarithm time of the clustering-based iterative algorithm and the BetterSolu This means that

the efficiency of the clustering-based iterative algorithm is much better than the branch-and-

bound method as the ratio of hub cost versus demand increases.

2

3

4

5

6

300 600 1200

Ratio of Hub Cost versus Demand

L
og

ar
it

hm
 T

im
e

Log(Algorithm Time)

Log(BettSolu Time)

Log(BestSolu Time)

Figure 4.26 Comparison of logarithm time between the clustering-based

iterative algorithm and the branch-and-bound method on

different ratios of hub cost to the demand

93

4.6 Concluding Remarks

In this chapter, a model of pool segmentation and hub selection was introduced and a

clustering-based iterative algorithm was proposed and validated. This algorithm utilizes three

important modules. The clustering algorithm uses the concept of unit demand cost to cluster

nearby locations and quickly captures a very good initial solution. The iterative procedure of

an enumeration method and a modified Prim’s algorithm utilizes the concept of a convex

function to obtain a near-optimal solution.

Based on the numerical results, the computing time of the clustering-based iterative

algorithm is sensitive to all experimental factors. Fewer car types, more locations, tight or

loose ratios of pool capacity to the demand, and larger ratios of hub cost to the demand will

lead to longer computing time. The algorithm times on different numbers of locations in

practical problem sizes were also compared. The largest case was tested for 6000 nodes and

36 million integer variables, which is close to the level of Enterprise Rent-A-Car, the top car

rental company in the United States. This algorithm takes about 135 minutes to solve.

Compared to the optimal solution solved by the branch-and-bound method, the branch-

and-bound method needs 100~1,000 times the algorithm time to find a better solution and

100 ~10,000 times to find an optimal solution than in the clustering-based iterative algorithm.

In addition, the solution gap of the clustering-based iterative algorithm is relatively small

with an average gap of 2.22%. The numerical results show that the clustering-based iterative

algorithm achieves a near-optimal solution in an extremely short time.

 94

CHAPTER 5

INTER-POOL MOVES AND ASSET REPLACEMENT

5.1 Problem Formulation

In Chapter 4, all locations are allocated to different pools and one hub is selected for

each pool based on the yearly demand, the distance cost, and the hub opening cost. When the

job of pool segmentation and hub selection is accomplished for long-term planning, the next

task is to distribute the inter-pool moves and asset replacement, which is selling and buying

cars among different pool regions based on the change of seasonal demand. Seasonal

demands, selling prices, buying prices, inventory costs, and transportation costs are assumed

to be known. The inter-pool moves, and buying/selling cars are allocated to different pool

regions as shown in Figure 5.1. In addition, the service level concerning the fraction of

demand satisfied for different car types needs to be achieved.

 95

Figure 5.1. Network for inter-pool moves and asset replacement

 96

5.2 Mathematical Model

In this section, the framework of a mathematical model for seasonal inter-pool moves,

asset replacement (buying/selling cars), service level, and upgrade policy is proposed. This

problem is formulated as an integer programming model.

Indices

Parameters

t

laks

t

lkd

ak
tl

k
tl

 period seasonal

at poolin sold age seasonal and car type acar with afor priceunit

 period

 seasonalat poolin car type a with carsfor demand gforecastin seasonal

,
,

,





t

lakinv

tlkb

k

tll

aktr

ak
tl

k
tl

k

ak

tll

 period

 seasonalat poolin stored age, car type acar with afor cost unit

 period seasonalat poolin purchased car type acar with afor priceunit

 car type afor satisfied demand offraction

 period seasonalat pool to pool

 from age seasonal , car typecar with afor cost portation unit trans

,
,

,

'

,

,, '











aa

kk

tt

ll

 age seasonal

 car type

 period seasonal

 pool






 97

Variables

tl

lakX

t

lakS

tlkB

t

lakI

ak

tll

ak
tl

k
tl

ak
tl

 period seasonalat pool to

 pool from tedredistribu age seasonal and car type with cars ofnumber

 period

 seasonalat poolin sold age seasonal and car type with cars ofnumber

 period seasonalat poolin purchased car type with cars ofnumber

 period

 seasonalat poolin stored age seasonal and car type with cars ofnumber

'

,

,,

,
,

,

,
,

' 







The model can be expressed as:

'

max max max max

, , , , , ,
, , , , , , , ', , ',

, '

, ,
,(1) , ,

' 0 ' 1

 :

k a k a k a k a k k k a k a
l t l t l t l t l t l t l l t l l t

t l k a t k l t k a l l l l

k a k a
k a k k a
l t l t l t

k k a k k k k a

Min inv I s S b B tr X

subject to

I B S




    

    

 

  

  
max max max max

max

, ,
', , , ',

' ' 1 ', '

'
, max

'

()

 , , ', ' {1, 2,..., } (5.2)

k k a l
k a k a
l l t l l t

k k a l l l

k
k k

l t
k k

X X

d l t k k k

  



 

   

  



 (5.4) ,,1,a

(5.3) 1,a

,
,

',' ','

,
,',

,
,,'

,
,

)1(,
)1(,

,
,

,

,

,,
,

,

,,

,
,,

''

'

''

'

tklforIXXSI

tk,l,forIXXSB

ak
tl

lll lll

ak
tll

ak
tll

ak
tl

ak
tl

ak
tl

lll

ak

tll
lll

ak

tll

ak
tl

k
tl





 



 






(5.6) ,, given is

(5.5) ,,,, integers are ,,,

,
0,

',

 ,,

,
,,

,
, '

aklI

takllXSBI

ak
tl

ak

tll

ak
tl

k
tl

ak
tl







Objective (5.1) is to minimize the total cost of inter-pool moves plus asset replacement.

Constraints (5.2) indicate that at least the fraction 'k of demand for car type 'k and higher

car types is satisfied. Constraints (5.3) and (5.4) are the inventory balance constraints.

Constraints (5.5) are the integrality requirements and initial inventory levels are given in

Constraints (5.6).

 98

5.3 Motivation

In the design of the algorithm procedures in a very large scale integer programming

problem, two kinds of algorithms should be considered. One type of algorithmic procedure,

such as Benders’ decomposition or Lagrangian relaxation, decomposes the complicating

variables or constraints to obtain a solution bound or a LP solution. Due to the simplification

of the original problem, the problem is easier to solve; however, if the original problem after

decomposing is still a NP-hard or NP-complete problem, it will need other algorithmic

procedures or meta-heuristics to solve the problem successfully. Another class of algorithms

used for large scale problems is meta-heuristics. Due to the large number of integer variables,

a possible direction is to exploit meta-heuristics to solve this combinatorial optimization

problem. Some traditional meta-heuristics, such as Tabu Search (Glover 1986), Simulated

Annealing (Kirkpatrick et al. 1983), Genetic Algorithms (Holland 1975), Memetic

Algorithms (Moscato 1989), and Ant Colony Optimization (Dorigo et al. 1996) are widely

used. In recent years, other search mechanisms, such as Scatter Search (Glover 1998),

Variable Neighborhood Search (Mladenovic and Hansen 1997), Guided Local Search

(Voudouris and Tsang 1996), Greedy Randomized Adaptive Search Procedure (Feo and

Resende 1995), Iterated Local Search (Lourenc et al. 2002), and Nested Partition Method

(Shi and Olafsson 2000) have also been developed. Most of the meta-heuristics are

implemented in binary integer programming problems and their neighborhood structures are

normally designed for binary variables by different moves, such as swap moves and insert

moves. However, all variables in this study are non-binary integer variables, and are not

suitable for swap or insert moves.

 99

Therefore, to solve this problem in this study, a new neighborhood structure hVar 

called “better neighbors” is proposed. The better neighbors are obtained from the value of a

specific variable Var adding/subtracting a flexible value h, and are only adopted for those

which have better objectives than the current solution. A flexible value h is decided based on

the maximal reduction of the objective. If a fixed value h is adopted for the design of a

neighborhood structure, it will only reduce a fixed objective value in each iteration and need

more iterations in the same type of neighbor. However, a flexible value h will reduce the

number of iterations in the same type of neighbor because h is decided by the maximal

reduction of the objective.

Among the four kinds of variables, ak
tllX ,
,', includes five parameter indices, ak

tlS ,
, and

ak
tlI ,
, have four, and k

tlB , has three. If one large problem covers 8 car types, 12 car ages, 12

seasonal periods, and 200 pool regions, there will be 8×12×200×(200-1)×12=45,849,600

integers variables in ak
tllX ,
,', , 8×12×200×12=230,400 integer variables in ak

tlS ,
, and ak

tlI ,
,

respectively, and 8×200×12=19,200 integer variables in k
tlB , . Of all integer variables, ak

tllX ,
,',

utilize 98.96%, ak
tlS ,
, and ak

tlI ,
, utilize 0.50% each, and k

tlB , only utilize 0.04%. However, k
tlB ,

has the largest impact on the objective. Next is ak
tlS ,
, , and ak

tlI ,
, and ak

tllX ,
,', have the smallest

impact on the objective. Their impacts on the objective are in inverse proportion to the

numbers of integer variables.

Since the change of any integer variables will force other integer variables to change

because of the inventory balance constraints, the design of this algorithm will be based on the

change of a single integer variable. All neighbors of ak
tll

ak
tl

k
tl XSB ,

,',
,

,, ,, are not calculated and

 100

evaluated at the same iteration because that will take an enormous amount of time to

compute. Instead, the neighbors of the variables k
tlB , , which have the largest impact on the

objective, are first evaluated. k
tlB , is evaluated based first on the highest car type, which is

normally the most expensive car type. ak
tlS ,
, is evaluated secondly, and ak

tllX ,
,', is evaluated last.

However, ak
tlI ,
, is not included. The change of ak

tlI ,
, will affect at least the inventory balance

constraints in two different seasonal periods and make the structure of better neighbors

complicated. Furthermore, each move in ak
tll

ak
tl

k
tl XSB ,

,',
,

,, ,, has forced ak
tlI ,
, to change its value.

Since the change of a single variable forces other variables to change and the maximal

reduction of the objective is adopted for h , some cases may not happen. Based on several

trials, the better neighbors of hX ak
tll ,
,', never happen, and the better neighbors of hX ak

tll ,
,',

normally happen in one case and only 4 times in another case, which affected the objective

very minimally. Moreover, more cases of hX ak
tll ,
,', will result in an extremely heavy

computing burden. Hence, all cases in hX ak
tll ,
,', and all cases in hX ak

tll ,
,', except one case are

removed. Because ak
tllX ,
,', utilize 98.96% of all integer variables, this removal largely reduces

the burden of the computing and almost does not affect the objective.

Based on the previous example, there will be 8×12×200=19,200 constraints for the

service level and 8×12×200×12=230,400 constraints for inventory balance. Of all

constraints, the service level utilizes 7.69%, and the inventory balance utilizes 92.31%. The

structure of better neighbors is designed based on the inventory balance constraints. When

the single variable changes, exploiting the inventory balance constraints adjusts other

changed variables and finds possible cases, which can maintain the inventory balance

 101

constraints automatically and improve the objective. It will not be necessary to evaluate

whether the inventory balance constraints, which utilize 92.31% of all constraints, are

violated. Furthermore, in such a neighborhood structure, most of the service level

constraints also will be automatically satisfied and no additional evaluation is needed. Only

3 cases out of all 10 cases of better neighbors are needed to examine whether one or two of

their service level constraints are satisfied. Such a design structure can save at least 99% of

the computing time of constraint evaluations.

 102

5.4 Algorithm Procedure

The process of obtaining a feasible initial solution is introduced in Section 5.4.1.In

addition, based on the previous motivation in Section 5.3, the structure of better neighbors

and the best-improvement descent local search are proposed in Section 5.4.2 and Section

5.4.3.

5.4.1 Initial Solution

The initial solution is generated for an almost worst case and given based on four basic

rules as follows.

 If possible, set 0,
, ak
tlS , 0,

,', ak
tllX

 If possible, set k
tl

k
tl dB ,, 

 Calculate ak
tlI ,
, based on the inventory balance constraints

 Slightly adjust ak
tll

ak
tl

ak
tl

k
tl XISB ,

,',
,

,
,

,, ,,, if still infeasible

Basically, ,
,',
ak
tllX is set to be 0 except in Step 6. The inventory balance constraints

become constraints 5.7 and 5.8.

 (5.8) ,,1,a

(5.7) 1,a
,

,
,

,
)1(,

)1(,

,
,

,
,,

)1(,
)1(,

tklforISI

tk,l,forISBI
ak

tl
ak

tl
ak

tl

ak
tl

ak
tl

k
tl

ak
tl











 103

The detailed procedure of finding an initial feasible solution is listed in the following

steps.

Step 1: For lktta ,),1(~1,1 max  , let .,0,0, ,
1,

,
1,

,',
1,

,,,
k
tl

ak
tl

ak
tll

ak
tl

k
tl

k
tl dIXSdB  

 When all are assigned, go to Step 2.

Step 2: For lktta ,,,1 max  , because known, is 1,
, max

ak
tlI

 .,let , if 1,
,,

1,
,,,

1,
,max, maxmaxmaxmaxmaxmax

  ak
tl

k
tl

ak
tl

k
tl

k
tl

ak
tl

k
tl IdSdBId

 .0,0,let , if ,
,',

1,
,

1,
,,

1,
,max, maxmaxmaxmax

  ak
tll

ak
tl

ak
tl

k
tl

ak
tl

k
tl XSIBId

 When all are assigned, go to Step 3.

Step 3: For lkttaa ,,~1,~2 1max1max   , because been has andknown is 1',
1,

,
0',







ak
atl

tak
tl II

 given from case 2,

 0,0,let , if ,
,

,
,',

,
0',

,
,  


ak

tl
ak
tll

tak
tl

ak
tl SXIIta .

 0,0,let , if ,
,

,
,',

1',
1,

,
,  


ak

tl
ak
tll

ak
atl

ak
tl SXIIta .

 When all are assigned, go to Step 4.

Step 4: For tlkaa ,,,max  , ,known is 0max,
, ak
tlI let .0, max1maxmax ,

,',
,

1,
,

,  


ak
tll

ak
tl

ak
tl XIS

 When all are assigned, go to Step 5.

 104

Step 5: For ,,,~2, 1maxmax lkaatt   because known, is ,
, max

ak
tlI

 .0,let , if ,
,',

,
,

1,
,

,
,

1,
,

,
, maxmax1maxmax1maxmax

 


ak
tll

ak
tl

ak
tl

ak
tl

ak
tl

ak
tl XIISII

 Let 0._ record and calculate , if ,
,

1,
,

,
,

1,
,

,
, max1maxmax1maxmax

 


ak
tl

ak
tl

ak
tl

ak
tl

ak
tl IIStmpII

 0 ,
, max

ak
tlX

 When all are assigned, go to Step 6.

Step 6: For any ak
tlStmp ,
, max

_ , find ak
tl

ak
tl StmpS ,

,
,
,' maxmax

_ .

 Let ak
tl

ak
tll

ak
tl

ak
tl

ak
tl

ak
tl StmpXStmpSSS ,

,
,
,,'

,
,

,
,'

,
,'

,
, maxmaxmaxmaxmaxmax

,,0  .

 When all are assigned, the feasible initial solution is done.

 105

5.4.2 The Structure of Better Neighbors

The neighborhood structure of this problem includes five types of variable changes

based on the change of single variables, ak
tll

ak
tl

k
tl XSB ,

,',
,

,, or ,, . The better neighbors are obtained

from the value of a specific variable adding/subtracting a flexible value h and are only

adopted for those which have better objectives than the current solution. A flexible value h is

decided based on the maximal reduction of the objective. Several possible cases are covered

for each type of variable changes. In addition, the structure of better neighbors is designed

based on the inventory balance constraints. These five types of better neighbors include

hBk
tl , , hBk

tl , , hS ak
tl ,
, , hS ak

tl ,
, , and hX ak

tll ,
,', . The detailed structure is introduced below.

1) hBk
tl , :

The prerequisite for this type of better neighbor is 0, 
k
tlB

 Case 1:

Let .1a For any ll ' , if the difference of the objective k
tl

ak
tll

k
tlobj btrbdiff ,'

,
,,',  0 ,

then k
tlBh , . Let hBBhXXhBB k

tl
k

tl
ak
tll

ak
tll

k
tl

k
tl  ,','

,
,,'

,
,,',, ,, . The constraint

representation of this case is

 '

',

,
,'

,
,,'

',

,
,',

,
,','

,
,

,

,

,,
,

,

,,

,
,,

''

'

''

'

lforIXXSB

lforIXXSB

lll

ak
tl

ak
tll

lll

ak
tll

ak
tl

k
tl

ak
tl

lll

ak

tll
lll

ak

tll

ak
tl

k
tl













 106

 Case 2:

Let .1a For any ll ' , if 0,
,' ak
tlS and the difference of the objective objdiff

0,
,'

,
,,',  ak

tl
ak
tll

k
tl strb , then }, min{ ,

,',
ak
tl

k
tl SBh  . Let ,, ,

,,'
,
,,',, hXXhBB ak

tll
ak
tll

k
tl

k
tl 

hSS ak
tl

ak
tl  ,

,'
,
,' . The constraint representation of this case is

 '

',

,
,'

,
,,'

',

,
,',

,
,','

,
,

,

,

,,
,

,

,,

,
,,

''

'

''

'

lforIXXSB

lforIXXSB

lll

ak
tl

ak
tll

lll

ak
tll

ak
tl

k
tl

ak
tl

lll

ak

tll
lll

ak

tll

ak
tl

k
tl













 Case 3:

Let .1a

For llany '

For } , min{ to1 maxmax ttaan 

 {

 If 0,
,' 


nak
ntlS , calculate nak

ntl
ak
tll

k
tlobj strbdiff 

 ,
,'

,
,,', . Otherwise, the neighbor

is not selected.

)1(to0'For  nn

 {

 If calculate ,0',
',' 


nak

ntlI ',
','
nak

ntlobjobj invdiffdiff 
 . Otherwise, the

 neighbor is not selected.

 }

 If 0objdiff , then)1(~0'},,, min{ ',
','

,
,',  



 nnISBh nak

ntl
nak

ntl
k
tl .

 Let ,,, ,
,,'

,
,,'

,
,'

,
,',, hXXhSShBB ak

tll
ak
tll

nak
ntl

nak
ntl

k
tl

k
tl  



 .

1)-(n~0' ',
','

',
','  



 nforhII nak

ntl
nak

ntl .

 Otherwise, the neighbor is not selected.

 }

 107

 The constraint representation of this case is

1

1

2,
2,'

',

2,
2,,'

',

2,
2,',

2,
2,'

1,
1,'

', ',

1,
1,'

1,
1,,'

1,
1,',

1,
1,'

,
,'

', ',

,
,'

,
,,'

,
,',

,
,','

,
,

,

,

,,
,

,

,,

,
,,

''

'

''

'




















 













 













 

 



ak
tl

lll

ak
tll

lll

ak
tll

ak
tl

ak
tl

lll lll

ak
tl

ak
tll

ak
tll

ak
tl

ak
tl

lll lll

ak
tl

ak
tll

ak
tll

ak
tl

k
tl

ak
tl

lll

ak

tll
lll

ak

tll

ak
tl

k
tl

IXXSI

IXXSI

,l'for aIXXSB

,lfor aIXXSB

2) hBk
tl ,

 Case 1:

Let .1a For any ll ' , if 0,' k
tlB and the difference of the objective

k
tl

ak
tll

k
tlobj btrbdiff ,

,
,',,'  0 , then k

tlBh ,' . Let ,, ,
,',

,
,',,, hXXhBB ak

tll
ak
tll

k
tl

k
tl 

hBB k
tl

k
tl  ,',' . The constraint representation of this case is

 '

',

,
,'

,
,,'

',

,
,',

,
,','

,
,

,

,

,,
,

,

,,

,
,,

''

'

''

'

lforIXXSB

lforIXXSB

lll

ak
tl

ak
tll

lll

ak
tll

ak
tl

k
tl

ak
tl

lll

ak

tll
lll

ak

tll

ak
tl

k
tl













3) hS ak
tl ,
,

The prerequisite for this type of better neighbor is 0,
, ak
tlS

 Case 1:

For any ll ' , if ,1a 0,' k
tlB and the difference of the objective  k

tlobj bdiff ,'

0,
,

,
,',  ak

tl
ak
tll str , then } , min{ ,

,,'
ak

tl
k

tl SBh  . Let , , ,
,',

,
,',

,
,

,
, hXXhSS ak

tll
ak
tll

ak
tl

ak
tl 

hBB k
tl

k
tl  ,',' . The constraint representation of this case is

 108

 '

',

,
,'

,
,,'

',

,
,',

,
,','

,
,

,

,

,,
,

,

,,

,
,,

''

'

''

'

lforIXXSB

lforIXXSB

lll

ak
tl

ak
tll

lll

ak
tll

ak
tl

k
tl

ak
tl

lll

ak

tll
lll

ak

tll

ak
tl

k
tl













 Case 2:

For any ll ' , if , ,1 taa  and the difference of the objective  ak
tlobj sdiff ,
,'

ak
tl

ak
tll str ,

,
,
,',  0 , then ak

tlSh ,
,  . Let  ak

tll
ak

tl
ak

tl XhSS ,
,',

,
,

,
, , ,,

,', hX ak
tll  hSS ak

tl
ak
tl  ,

,'
,
,' .

The constraint representation of this case is

 '

',

,
,'

,
,,'

',

,
,',

,
,'

1,
1,'

,
,

,

,

,,
,

,

,,

,
,

1,
1,

''

'

''

'

lforIXXSI

lforIXXSI

lll

ak
tl

ak
tll

lll

ak
tll

ak
tl

ak
tl

ak
tl

lll

ak

tll
lll

ak

tll

ak
tl

ak
tl



















4) hS ak
tl ,
,

 Case 1:

 For } , min{ to1 maxmax ttaan 

 {

 If 0,
, 


nak
ntlS , calculate nak

ntl
ak

tlobj ssdiff 
 ,

,
,

, . Otherwise, the neighbor is not

 selected.

)1(to0'For  nn

 {

 If 0',
', 


nak

ntlI , calculate ',
',
nak

ntlobjobj invdiffdiff 
 . Otherwise, the neighbor

 is not selected.

 }

 If 0objdiff , then)1(~0'},, min{ ',
',

,
,  




 nnISh nak
ntl

nak
ntl .

 Let , , ,
,

,
,

,
,

,
, hSShSS nak

ntl
nak

ntl
ak

tl
ak

tl  





1)-(n~0' ',
',

',
',  




 nforhII nak
ntl

nak
ntl .

 Otherwise, the neighbor is not selected.

 109

 }

 The constraint representation of this case is

 



 






















lll lll

ak
tl

ak
tll

ak
tll

ak
tl

ak
tl

ak
tl

lll

ak

tll
lll

ak

tll

ak
tl

ak
tl

k
tl

IXXSI

IXXSIB

',' ','

1,
1,

1,
1,',

1,
1,,'

1,
1,

,
,

,
,

,

,

,,
,

,

,,

,
,

1,
1,, /

''

'

''

'

 Case 2:

For any ll '

 For } , min{ to1 maxmax ttaan 

 {

 If 0,
,' 


nak
ntlS , calculate nak

ntl
ak
tll

ak
tlobj strsdiff 

 ,
,'

,
,,'

,
, . Otherwise, the neighbor

 is not selected.

)1(to0'For  nn

 {

 If 0',
',' 


nak

ntlI , calculate ',
','
nak

ntlobjobj invdiffdiff 
 . Otherwise, the

 neighbor is not selected.

 }

 If 0objdiff , then)1(~0'},, min{ ',
','

,
,'  



 nnISh nak

ntl
nak

ntl .

 Let , , , ,
,'

,
,'

,
,,'

,
,,'

,
,

,
, hSShXXhSS nak

ntl
nak

ntl
ak
tll

ak
tll

ak
tl

ak
tl  





 1)-(n~0' ',
','

',
','  



 nforhII nak

ntl
nak

ntl .

 Otherwise, the neighbor is not selected.

 }

 The constraint representation of this case is

 





 





























', ',

1,
1,'

1,
1,,'

1,
1,',

1,
1,'

,
,'

,
,'

',

,
,,'

',

,
,',

,
,

1,
1,,'

,
,

,

,

,,
,

,

,,

,
,

1,
1,,

 /

 /
''

'

''

'

lll lll

ak
tl

ak
tll

ak
tll

ak
tl

ak
tl

ak
tl

lll

ak
tll

lll

ak
tll

ak
tl

ak
tl

k
tl

ak
tl

lll

ak

tll
lll

ak

tll

ak
tl

ak
tl

k
tl

IXXSI

IXXSIB

IXXSIB

 110

 Case 3:

For any ll ' , if 0,
,' ak
tlS and the difference of the objective  ak

tlobj sdiff ,
,

0,
,'

,
,,'  ak

tl
ak
tll str , then ak

tlSh ,
,' . Let  ak

tll
ak

tl
ak

tl XhSS ,
,,'

,
,

,
, , ,,

,,' hX ak
tll  hSS ak

tl
ak
tl  ,

,'
,
,' .

The constraint representation of this case is

 ' /

 /

',

,
,'

,
,,'

',

,
,',

,
,'

1,
1,','

,
,

,

,

,,
,

,

,,

,
,

1,
1,,

''

'

''

'

lforIXXSIB

lforIXXSIB

lll

ak
tl

ak
tll

lll

ak
tll

ak
tl

ak
tl

k
tl

ak
tl

lll

ak

tll
lll

ak

tll

ak
tl

ak
tl

k
tl



















5) hX ak
tll ,
,',

The prerequisite for this type of better neighbor is 0,
,', ak
tllX

 Case 1:

For any ll '

{

 If 0,
,,' ak
tllX , calculate ak

tll
ak
tllobj trtrdiff ,

,',
,
,,'  . Otherwise, the neighbor is not

 selected.

 If ak
tll

ak
tll

ak
tll XhXX ,

,',
,
,',

,
,,' ,  . Otherwise, ak

tllXh ,
,,' .

 Let hXXhXX ak
tll

ak
tll

ak
tll

ak
tll  ,

,,'
,
,,'

,
,',

,
,', , .

}

The constraint representation of this case is

 ' /

 /

',

,
,'

,
,,'

',

,
,',

,
,'

1,
1,','

,
,

,

,

,,
,

,

,,

,
,

1,
1,,

''

'

''

'

lforIXXSIB

lforIXXSIB

lll

ak
tl

ak
tll

lll

ak
tll

ak
tl

ak
tl

k
tl

ak
tl

lll

ak

tll
lll

ak

tll

ak
tl

ak
tl

k
tl



















 111

5.4.3 Best-Improvement Descent Local Search

Based on the structure of better neighbors, a simple algorithm called best-improvement

descent local search is proposed and introduced.

Step 1: Let Iterpre_loop=0 and Itercurrent=0. Go to Step 2.

Step 2:

For car type k=kmax to 1

 For pool l=1 to lmax

 For period t=1 to tmax

 Step 2.1: Calculate diffobj for all better neighbors i of hBhB k
tl

k
tl  ,, , .

 Step 2.2: Rank these neighbors i in descending order of diffobj and obtain a

 list of ranked neighbors, denoted as LBi .

 Step 2.3: Pick a neighbor *i from LBi and check if constraints (5.2) are

 satisfied. If yes, move to *i , Itercurrent= Itercurrent +1, and go

 to Step 2.1; if not, choose the next available from LBi until all

 neighbors are checked.

 End

 End

 End

 Go to Step 3.

Step 3:

For car type k=kmax to 1

 For pool l=1 to lmax

 For period t=1 to tmax

 112

 For car age a=1 to amax

 Step 3.1: Calculate diffobj for all better neighbors i of hShS ak
tl

ak
tl  ,

,
,

, , .

 Step 3.2: Rank these neighbors i in descending order of diffobj and obtain

 a list of ranked neighbors, denoted as LSi .

 Step 3.3: Pick a neighbor *i from LSi and check if constraints (5.2) are

 satisfied. If yes, move to *i , Itercurrent= Itercurrent +1, and go

 to Step 3.1; if not, choose the next available from LSi until all

 neighbors are checked.

 End

 End

 End

 End

 Go to Step 4.

Step 4:

For car type k=kmax to 1

 For pool l=1 to lmax

 For period t=1 to tmax

 For car age a=1 to amax

 For pool l’=1 to lmax

 Step 4.1: Calculate diffobj for all better neighbors i of hX ak
tl ,
, .

 Step 4.2: Rank these neighbors i in descending order of diffobj and

 obtain a list of ranked neighbors, denoted as LXi .

 Step 4.3: Pick a neighbor *i from LXi and check if constraints (5.2)

 113

 are satisfied. If yes, move to *i , Itercurrent= Itercurrent +1,

 and go to Step 4.1; if not, choose the next available from LXi

 until all neighbors are checked.

 End

 End

 End

 End

 End

 Go to Step 5.

Step 5: If Iterpre_loop Itercurrent , let Iterpre_loop= Itercurrent and go to Step 2; otherwise, the

 whole algorithm is finished.

 114

5.5 Computing Results

This section focuses on an experimental design generated by three types of

experimental factors including: the number of car types, the number of pools, and the number

of seasonal periods/car ages. Section 5.5.1 introduces the parameter setting and the meaning

of the parameters. In section 5.5.2, the setting of factor levels and the two parts of the

experiment are described, including small scale problems and large scale problems. The

software and the computer equipment for conducting this experiment are described in Section

5.5.3 In Section 5.5.4, experimental results are analyzed and explained.

5.5.1 Parameter Settings

The parameter settings in inter-pool moves and asset replacement are chosen based on

the website data of Auto Rental News or the assumptions of making the problems feasible,

and are as described below.

 Demand: Because the demand for small-sized cars is normally higher than that of the

larger models at the same location, the demands for different sizes have the

characteristic of this dependence. Hence, the demand for car type 1 in each season at

each pool is generated by multiplying a random demand level, generated from a uniform

distribution (40, 60), by a random time ratio, generated from a uniform distribution (0.5,

1.5). As for the demands for car type 2 and the higher car types, a type ratio value is

generated from a uniform distribution (0.6, 1.2) for each car type. The demand for car

type 2 is then generated by multiplying the demand for car type 1 by the ratio for car

 115

type 2. The demands for the higher car types are generated by multiplying the demand

for the previous car type by the respective ratio. The demand is rounded off to an integer.

 Unit Price of Buying A Car: The unit price of buying a car with a car type 1 in each

season at each pool is generated by multiplying a random unit price level, generated

from a uniform distribution (12000, 13000), by a random time ratio generated from a

uniform distribution (0.9, 1.1). As for the unit buying price of car type 2 and the higher

car types, a type ratio value is generated from a uniform distribution (2.0, 2.1) for each

car type. The unit buying price of car type 2 is then generated by multiplying the

demand for car type 1 by the ratio for car type 2. The unit buying prices of the higher

car types are generated by multiplying the demand for the previous car type by the

respective ratio. The unit price of buying a car is rounded off to four decimal places.

 Unit Price of Selling A Car: The unit price of selling a car for each car type in each

season at each pool is generated by multiplying its unit price of buying a car by a

random car age ratio generated from a uniform distribution (0.5, 0.6). The unit price of

selling a car is rounded off to four decimal places.

 Unit Inventory Cost: The unit inventory cost for car type 1, car age 1 in each season at

each pool is generated by multiplying a random unit inventory level, generated from a

uniform distribution (15, 70), by a random time ratio generated from a uniform

distribution (0.8, 1.2). As for the unit inventory cost for car type 2 and the higher car

types, a type ratio value 1.1 is generated. The type ratio for car type k equals)1(1.1 k .

The unit inventory cost for car age 2 and higher, an age ratio value 1.1 is generated. The

car age ratio for car age a equals)1(1.1 k . The unit inventory cost of car type k , car age

a is then generated by multiplying the unit inventory cost of car type 1, car age 1 by the

 116

type ratio for car type k and the age ratio for car age a . The unit inventory cost is

rounded off to four decimal places.

 Transportation Cost: The unit transportation cost from pool l to pool 'l for car type 1,

car age 1 in each season at each pool is generated by multiplying a random unit

transportation cost level, generated from a uniform distribution (1, 3), by a random time

ratio generated from a uniform distribution (0.9, 1.1). As for the unit transportation cost

for car type 2 and the higher car types, a type ratio value 1.1 is generated. The type ratio

for car type k equals)1(1.1 k . The unit transportation cost for car age 2 and higher car

ages, a age ratio value 1.05 is generated. The car age ratio for car age a equals)1(05.1 k .

The unit transportation cost from pool l to pool 'l for car type k , car age a is then

generated by multiplying the unit transportation cost from pool l to pool 'l for car type

1, car age 1 by the type ratio for car type k and the age ratio for car age a . The

transportation cost is rounded off to four decimal places.

 Initial Inventory: The initial inventory of car type 1 in each car age within each pool is

generated by multiplying a random initial inventory level, generated from a uniform

distribution (40, 60), by a random time ratio, generated from a uniform distribution (0.8,

1.2). As for the initial inventory of car type 2 and the higher car types, a type ratio value

is generated from a uniform distribution (0.6, 1.2) for each car type. The initial

inventory of car type 2 is then generated by multiplying the initial demand for car type 1

by the ratio for car type 2. The initial demands for the higher car types are generated by

multiplying the demand for the previous car type by the respective ratio. The initial

inventory is rounded off to an integer.

 117

 Final Inventory: The parameter setting for the final inventory is the same as the initial

inventory.

 Service Ratio: In this problem, the service ratio is set to be 1, which means all demands

need to be satisfied.

5.5.2 Factor Levels

Two parts of the experimental designs are exploited in inter-pool moves and asset

replacement. In part 1, small scale problems are tested and compared to the branch-and-

bound algorithm, to determine which factor can significantly affect the solution quality and

the algorithm time. In part 2, the algorithm time is tested and compared in large scale

problems.

Based on the experimental design in part 1, the following 3 factors are tested to

determine if the solution quality and the computing time are significant affected.

 Number of Pools: Three factor levels are set to be 10, 20, and 30, which are the

maximal number of pools available to solve by the branch-and-bound through LINGO

Software.

 Number of Car Types: Three factor levels are set to be 4, 5, and 6.

 (Number of Car Ages, Number of Seasonal Periods): Three factor levels are set to be

(4, 4), (5, 5), and (6, 6).

In part 2, the large scale problems are tested to understand how large of a problem size

this algorithm can solve and how long it will take. The number of car types and the number

 118

of car ages/seasonal periods are fixed to be 8 and 12. Only the numbers of pools are tested

for 6, 9, 12, 50, 100, 150, and 200.

5.5.3 Experimental Platform

This experiment uses the software Visual C++ to compile the computer coding of the

best-improvement descent local search and uses the optimization software LINGO 9.0 to

solve the optimal solution. The computer equipment for conducting this experiment includes

an Intel Core 2 Duo E7400 2.80 GHz CPU and 6 GB memory.

5.5.4 Experimental Analysis

The experiment is divided into two parts. Three types of experimental factors are

utilized to test which factors affect the computing time and the solution quality in part 1.

Each factor contains three factor levels and each factor level uses three replications based on

different random seeds. Hence, 3 factor levels of the number of pools 3 factor levels of the

number of car types  3 factor levels of the number of car ages/seasonal periods  3 random

seeds  81 independent trials in part 1.

In part 2, the number of pools is the only experimental factor and it contains seven

factor levels. Hence, 7 factor levels of the number of pools  3 random seeds = 21

independent trials in part 2.

The illustration of the Analysis of Variance (ANOVA) and Tukey test conducted can be

referenced in Section 4.5.4

 119

5.5.4.1 Impact Analysis on Experimental Factors versus Solution Gap

The ANOVA table on three factors versus the solution gap is shown in Table 5.1.

Observe in Table 5.1 that only the p-value of the number of ages/seasons is less than 0.05.

This means that the factor effect of the number of ages/seasons is significant. Hence, the

number of ages/seasons can affect the solution quality of the algorithm. The original results

of this part can be reference in Appendix E.

Table 5.1. ANOVA table on three factors versus solution gap

Source DF SSE MSE F value p value
Car Types

Ages/Seasons
Pools
Error

2
2
2
74

0.0002070
0.0092451
0.0000083
0.0054295

0.0001035
0.0046226
0.0000042
0.0000734

1.41
63.00
0.06

0.251
0.000
0.945

Total 80 0.0148899

Tukey’s test on different numbers of car ages/seasonal periods is represented in Table

5.2. The original results of Tukey’s test on the number of ages/seasons are represented in

Appendix F. In Table 5.2, there are significant differences in the solution gap among the

numbers of car ages/seasonal periods. The average solution gaps of car ages/seasonal periods

4, 5, and 6 are 3.34%, 1.47%, and 0.82%, respectively. The larger the number of

ages/seasons, the smaller the solution gap.

Table 5.2. Tukey test on different numbers of ages/seasons

Ages/Seasons # of Trials
Group (solution gap)

A B C
4 27 3.34%
5 27 1.47%
6 27 0.82%

 120

The figures of average solution gap on different levels of these three experimental

factors are summarized as in Figure 5.2.

654

0.030

0.025

0.020

0.015

0.010

654

302010

0.030

0.025

0.020

0.015

0.010

Type

M
ea

n

age/season

pool

Main Effects Plot for solution gap
Fitted Means

Figure 5.2. Average solution gaps on different levels of experimental factors

 121

5.5.4.2 Impact Analysis on Experimental Factors versus Computing Time

In this section, two ANOVA tables on three factors versus the algorithm time and the

time solved by the branch-and-bound method are represented in Table 5.3 and Table 5.4. The

original results of this part can be referenced in Appendix E. Note from Table 5.3 and Table

5.4 that all p-values of these three factors are less than 0.05. That means that the effects of

these three factors are all significant. Hence, the number of car types, the number of car

ages/seasonal periods, and the number of pools can affect the computing time of the

algorithm and the computing time of the branch-and-bound method.

Table 5.3. ANOVA table on three factors versus the algorithm time

Source DF SSE MSE F value p value
Car Types

Ages/Seasons
Pools
Error

2
2
2
74

0.22465
0.18063
1.45017
0.12324

0.11233
0.09032
0.72508
0.00167

67.45
54.23
435.38

0.000
0.000
0.000

Total 80 1.97869

Table 5.4. ANOVA table on three factors versus the time solved by the

 branch- and-bound method

Source DF SSE MSE F value p value
Car Types

Ages/Seasons
Pools
Error

2
2
2
74

59959
122894
440060
182755

29979
61447
220030
2470

12.14
24.88
89.08

0.000
0.000
0.000

Total 80 805668

 122

Next, Tukey’s test is conducted to compare different factor levels on each experimental

factor. The original results of Tukey’s test are represented in Appendix G.

Tukey’s tests for the algorithm time and the time solved by the branch-and-bound

method on different numbers of car types are represented in Table 5.5 and Table 5.6. In

Table 5.5, there are significant differences in the algorithm time among different numbers of

car types. The fewer the number of car types, the less the algorithm time. In Table 5.6, there

seems not to be any difference in the time solved by the branch-and-bound method between

the numbers of car type 4 and 5. However, there are significant differences in the time solved

by the branch-and-bound method between the numbers of car types, 4 and 6, or, 5 and 6. The

time solved by the branch-and-bound method is normally 200 to 300 times more than the

algorithm time.

Table 5.5. Tukey test of the algorithm time on different numbers of car types

Car Types # of Trials
Group (algorithm time(sec))

A B C
4 27 0.247
5 27 0.312
6 27 0.376

Table 5.6. Tukey test of the time solved by the branch-and-bound method on

different numbers of car types

Car Types # of Trials
Group (LINGO time(sec))

A B
4 27 50
5 27 78
6 27 116

 123

Tukey’s tests for the algorithm time and the time solved by the branch-and-bound

method on different numbers of car ages/seasonal periods are represented in Table 5.7 and

Table 5.8. In Table 5.7 and Table 5.8, there are significant differences in the algorithm time

and in the time solved by the branch-and-bound among different numbers of car

ages/seasonal periods, respectively. The fewer the number of car ages/seasonal periods, the

less the algorithm time or the less the time solved by the branch-and-bound method. The time

solved by the branch-and-bound method is normally 150 to 350 times more than the

algorithm time.

Table 5.7. Tukey test of the algorithm time on different numbers of car

ages/seasonal periods

Ages/Seasons # of Trials
Group (algorithm time(sec))

A B C
4 27 0.254
5 27 0.311
6 27 0.370

Table 5.8. Tukey test of the time solved by the branch-and-bound method on

different numbers of car ages/seasonal periods

Ages/Seasons # of Trials
Group (LINGO time(sec))

A B C
4 27 37
5 27 75
6 27 132

 124

Tukey’s tests for the algorithm time and the time solved by the branch-and-bound

method on different numbers of pools are represented in Table 5.9 and Table 5.10. In Table

5.9 and Table 5.10, there are significant differences in the algorithm time and in the time

solved by the branch-and-bound among different numbers of pools, respectively. The fewer

the number of pools, the less the algorithm time or the less the time solved by the branch-

and-bound method. The time solved by the branch-and-bound method is normally 50 to 380

times more than the algorithm time.

Table 5.9. Tukey test of the algorithm time on different numbers of pools

Pools # of Trials
Group (algorithm time(sec))

A B C
10 27 0.152
20 27 0.303
30 27 0.479

Table 5.10. Tukey test of the time solved by the branch-and-bound method on

different numbers of pools

Pools # of Trials
Group (algorithm time(sec))

A B C
10 27 7.5
20 27 54.8
30 27 182.0

 125

The figures of average algorithm time and average time solved by the branch-and-

bound method on different levels of these three experimental factors are summarized as in

Figure 5.3 and Figure 5.4.

654

0.5

0.4

0.3

0.2

654

302010

0.5

0.4

0.3

0.2

Type

M
ea

n

age/season

pool

Main Effects Plot for algorithm time
Fitted Means

Figure 5.3. Average algorithm times on different levels of experimental factors

654

200

150

100

50

0
654

302010

200

150

100

50

0

Type

M
ea

n

age/season

pool

Main Effects Plot for lingo time
Fitted Means

 Figure 5.4. Average time solved by the branch-and-bound method

on different levels of experimental factors

 126

5.5.4.3 Impact Analysis on Large Number of pools versus Computing Time

The experiment of part 2 is the impact analysis on the large number of pools versus

algorithm time. The number of pools is the most important experimental factor in this

problem because it affects how large of a problem size this algorithm can solve. Table 5.11

represents the algorithm time and the number of integer variables on different numbers of

pools and its trend chart is presented in Figure 5.5. The branch-and-bound method has the

problem of memory overflow in the large case and cannot obtain their results. The largest

case, 200, covers 46 million integer variables and 250 thousand constraints and the algorithm

takes only 38.6 seconds to solve.

Table 5.11. The algorithm time on the large number of pools

EX
of

Pools
of

Integer Var
of

Constraints
Seed

Algorithm Branch-and-Bound
solution
gap(%)

Avg
solution
gap (%)

Time
(sec)

Avg
Time(sec)

Time
(sec)

Avg
Time(sec)

1
6 48,960 7,489

20 0.28
0.270

55
55.0

0.23%
0.20% 2 40 0.265 54 0.14%

3 60 0.265 56 0.22%

4
9 104,544 11,233

20 0.422
0.432

195
194.3

0.15%
0.14% 5 40 0.437 195 0.12%

6 60 0.437 193 0.14%

7
12 180,864 14,977

20 0.608
0.608

452
448.7

0.24%
0.20% 8 40 0.578 442 0.19%

9 60 0.639 452 0.17%

10
50 2,942,400 62,401

20 3.541
3.458

Memory
Overflow

11 40 3.339

12 60 3.494

13
100 11,644,800 124,801

20 9.375
9.968 14 40 10.686

15 60 9.843

16
150 26,107,200 187,201

20 19.781
20.020 17 40 21.512

18 60 18.767

19
200 46,329,600 249,601

20 38.485
38.631 20 40 38.907

21 60 38.501

 127

0

5

10

15

20

25

30

35

40

50 100 150 200

number of pools

ti
m

e(
se

c)

algorithm time

Figure 5.5. The trend chart of algorithm time on the large number of pools

 128

Figure 5.6 is the trend chart of the algorithm time in example 25 (The number of pools

is 200 and seed # is 20). The solution gap is calculated by %100


final

finalcurrent

Z

ZZ
 and it

decreases rapidly from 45% to 10% in the first 5 seconds. Several Steep points as the dashed

circles fall at the start of Step 2, Step 3, and Step 4 of the best-improvement descent local

search. The solution gap decreases to almost 0% after 30 seconds.

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

0 5 10 15 20 25 30 35 40

time(sec)

so
lu

ti
on

 g
ap

(%
)

Figure 5.6. The trend chart of the algorithm time in Example 25

Step 2

Step 3

Step 4

 129

5.6 Concluding Remarks

In this chapter, an integer model of inter-pool moves and asset replacement was

introduced and a best-improvement descent local search with the structure of better neighbors

was proposed and validated. The structure of better neighbors exploits the concept of the

maximal objective reduction to decide a flexible value h in the neighbors hVar  .

Compared to a fixed value h, this reduces the number of iterations in the same type of

neighbor. In addition, the better neighbors exploit the inventory balance constraints to adjust

other variables and largely reduce the computing time of evaluating the constraints. In this

algorithm, k
tlB , , ak

tlS ,
, , and ak

tllX ,
,', are evaluated in the order of their impacts on the objective.

This design enables the algorithm to quickly decrease the objective early in the computing

process.

Based on the numerical results, the number of car ages/seasonal periods can affect the

solution gap but the number of car types and the number of pools do not. The larger the

number of car ages/seasonal periods, the smaller the solution gap. The solution gap normally

falls below 4%. If the problem size becomes larger, the solution gap normally becomes

smaller. This result demonstrates that the best-improvement descent local search will have

better results as the problem size becomes larger. While observing the computing times of

the algorithm and the branch-and-bound method, all three experimental factors can affect the

computing times in these two methods. The average time solved by the branch-and-bound

method is about 50 to 380 times more than the algorithm time. The largest problem tested in

this algorithm contains 200 pools, 46 million integer variables, and 250 thousand constraints

and the best-improvement descent local search only takes 38.6 seconds to solve. These

 130

numerical results show that the best-improvement descent local search has very good

performance and can obtain a near-optimal solution in an extremely short time.

 131

CHAPTER 6

DEMAND ALLOCATION AND

EMPTY FLOW REDISTRIBUTION

6.1 Problem Formulation

In Chapter 4, all locations are allocated to pool regions and hubs are selected based

on the yearly demand. In Chapter 5, seasonal inter-pool moves and asset replacement are

implemented. However, it is necessary to address daily planning in the same pool region.

The fact that the customers can rent a car and return it either in the same or in a different

location leads to the problem of vehicle imbalance, and empty vehicles need to be

redistributed to meet demand at individual locations. In the same pool, empty cars can be

redistributed the same day. Moreover, the car upgrade policy and service level are

considered. The network flow of demand allocation and empty flow redistribution is

presented in Figure 6-1.

 132

= empty flow redistribution

= demand allocation

Figure 6.1. Demand allocation and empty flow redistribution

 133

6.2 Mathematical Model

This section introduces a mathematical model to solve the problem of demand

allocation and empty flow redistribution. In addition, the upgrade policy and a specific

service ratio of satisfying the exact demand are included. This problem is formulated as

an integer programming model.

Indices

rr

kk

tt

ll

 period rental

 car type

 period time

location






Parameters

tl

lrkd rk
tll

 period at time 'location

 tolocation from move to period rental and car typefor demand,
,', 

,

,

, ',

 unit inventory cost for an idle car of type at location at time period

operatonal and maintenance cost for a rental car of type and rental period

 from location

k

l t

k r

l l t

m k l t

v k r

l





, ',

 to location ' at time period

operational and maintenance cost for an empty car of type from location

 to location ' at time period

ratio of satisfying exact demand for

k

l l t

k

l t

c k l

l t





 car type without upgradingk

 134

Variables

tllr

kkd

tlkI

tllkX

rkk
tll

k
tl

k
tll

 period at time 'location tolocation from period

 rental and car typefor demand serving ' typeof flowcar rental

 period timeof end at the location at held car type ofinventory

 period at time 'location tolocation from car type of flowempty

,',
,',

,

,',









The model can be expressed as:

, ', ,

, ', , ', , ', , ', , ,', ' ' ' 1
 (6.1)

kk k k r k k r k k

l l t l l t l l t l l t l t l tt k l l l l t k l l k r t k l
Min c X v d m I

 
             

max max max
1 2 1

1 2 1 1

, , ,

, ', , ',

', ,

', ,() ', ,' 1 ' ', '

 :

 , ', , , (6.2)

k k kk k r k r

l l t l l tk k k k k k

k k k r k

l l t r l l t lk l r l l l

subject to

d d l l t r k

d X I



  


 

  

   

 

  ', ,

,(1) , ', , ', ,', ' ' 1 '

, , ,

, ', , ',' '

, ',

 , , (6.3)

 , , , 0 1 (6.4)

 ar

kk k k k r k

t l l t l l t l tl l l k l r

k k r k k r k

l l t l l tt r l l t r l l

k

l l t

X d I k l t

d d k l t

X

 


  



   

       

   

    

, ',

, ', ,

e integers , , ', , ' (6.5)

 , are integers , ', , , ', k k r k

l l t l t

k l l t l l

d I k k r l l t

 



, ', 0

, ',

, 0 , ',() 0

 (6.6)

 are given , , ', , ' (6.7)

 , are given

k

l l t

k k k r

l t l l t r

X k l l t l l

I d




  

 

 , ', , ', , (6.8)k k l l t r

In Objective (6.1), the objective function is to minimize the operational and

maintenance cost of empty car flow, rental car flow, and inventory cars. Constraints (6.2)

ensure that the demand for car type k plus higher types can always be allocated.

Constraints (6.3) indicate that the car type k flow of rental cars, empty cars, and

inventory cars at location l in time period t needs to be balanced. 





k

k l r

rkk
rtlld

1' '

,,'
)(,,'

 and





k

k l r

rkk
tlld

1' '

,,'
,',

 designate the non-empty in-flow and out-flow at location l and car type k

 135

at time period t . 
lll

k
tllX

','
,,' and 

lll

k
tllX

','
,', designate the empty in-flow and out-flow at

location l and car type k at time period t . Constraints (6.4) are used to ensure that at

least a specific percentage of the demand for car type k is satisfied by the same car type.

Constraints (6.5) and (6.6) are the integrality requirements and the initial levels are given

in Constraints (6.7) and (6.8).

6.3 Motivation

It is not difficult to observe that the structure of this mathematical model is similar

to the model of inter-pool moves and asset replacement. There are flow balance

constraints and capacity constraints in both models. The variable of rental car flow

', ,

, ',

k k r

l l td  has as many as six parameter indices. That means that if a problem covers 21 rental

locations, 21 rental days, 21 planning days, and 10 car types, the number of integer

variables will be up to 10.8 millions. It will be very difficult to solve to optimality.

In solving a very large scale integer programming problem, the decomposition

method seems not to be effective because, even after decomposing, the number of the

variables is still too huge. It also needs a set of effective rules to transfer the LP solution

solved by the decomposition method to a feasible IP solution. Instead, if this problem is

solved by a neighborhood search, it needs to overcome the problem of the large

neighborhood in this problem. In Chapter 5, the design of better neighbors obtains

excellent performance. Hence, a suitable neighbor structure based on the concept of

better neighbors is proposed to solve this problem.

 136

6.4 Algorithm Procedure

The rule for obtaining a feasible initial integer solution is introduced in Section

6.4.1. In Section 6.4.2, the structure of better neighbors is proposed. A first-improvement

descent local search is developed in Section 6.4.3.

6.4.1 Initial Solution

The initial solution is generated based on the following basic rule.

Step 1: Assign , , ,

, ', , ',

k k r k k r

l l t l l td d   for all , , ', ,k l l r t .

Step 2: For max ~ 1k k , , , ',r l l t ,

 if maxk k , , , ,

, ', , ',

k k r k r

l l t l l td d .

 if maxk k ,for max' (1) ~k k k  , , ', , , ,

, ', , ', , ', max() / ()k k r k r k k r

l l t l l t l l td d d k k    .

Step 3: Assign , ', 0 for all , , ', , 'k

l l tX k l l t l l  .

Step 4: ,

k

l tI is obtained from Constraint (6.3).

Step 5: Slightly adjust , ',

, , ', , ',, ,k k k k r

l t l l t l l tI X d  if , 0k

l tI  .

 137

The detailed procedure of finding an initial feasible solution is listed in the

following steps.

Step 1: Assign , , ,

, ', , ',()k k r k k r

l l t l l td ceil d   for all , , ', ,k l l r t , ceil function represent the

smallest integer value which is larger than ,

, ',

k k r

l l td  .

Step 2: For max ~ 1k k , , , ',r l l t ,

 if maxk k , , , ,

, ', , ',

k k r k r

l l t l l td d .

 if maxk k , , , ,

, ', , ',_ 1 k r k k r

l l t l l tleft capa d d   , max_left type k k  ,

_ _ 1/ _left each left capa left type .

 For max' ~k k k ,

 If 'k k , , ',

, ', (_)k k r

l l td floor left each   , _ 1 (_)left capa floor left each  .

Floor function represents the largest integer value which is smaller
than _left each .

 Otherwise,

if max'k k , (_)temp ceil left each .
, ', , ',

, ', , ',if (_ 1), ; otherwise, _ 1.k k r k k r

l l t l l ttemp left capa d temp d left capa   

Otherwise, , ',

, ', _ 1.k k r

l l td left capa 

 , ',

, ',_ 1 k k r

l l tleft capa d  

 End

 End

Step 3: Assign , ', 0k

l l tX  for all , , ', , 'k l l t l l .

Step 4: For max1 ~t t

 For max1 ~k k

 138

 For max1 ~l l

 ', , ', ,

, ', ,() ,(1) , ',' 1 ' ' 1 '

k kk k k r k k k r

l t l l t r l t l l tk l r k l r
I d I d 

  
        .

 End

 End

 End

Step 5: For max1 ~t t

 For max1 ~k k

 For max1 ~l l ,

 If , 0k

l tI  , ,min_ k

l th I  .

 for max,' 1 ~ 'l l l l 

 for max' ~t t t

 If ', 0k

l tI  , go back to forloop;

Otherwise, if ', min_k

l tI h , let ',min_ k

l th I .

 End

 ', , min_k

l l tX h .

 for max' ~t t t , ', ' , 'min_ , min_k k

l t l tI h I h   

 if , 0k

l tI  , go back to forloop, otherwise, jump out from forloop.

 End

 End

End

End

 139

Step 6: if , 0, , ,k

l tI t k l  ,

 For max1 ~r r

 For max' 1 ~l l

 For max' 1 ~k k

 If capa1(', , , , 'k r t l l)>0, ', ,

, ', ,min_ { 1, , ()}k k r k

l l t l th capa d I  . Then adjust

other related I . Let 1 min_capa h  , ', ,

, ', min_k k r

l l td h   ,

, min_k

l tI h  .

 End

 End

 End

Step 7: if , 0, , ,k

l tI t k l  ,

 For ' 1 ~k k

 For max1 ~r r

 If ', ,

, , 0k k r

l l td   , ', ,

, , ,min_ { , ()}k k r k

l l t l th d I  . Let ', ,

, , min_k k r

l l td h   and ,

k

l tI 

min_ h . Then adjust other related I .

 End

 End

6.4.2 The Structure of Better Neighbors

There are three types of better neighbors in this problem based on the interchange

of a single variable, 1 2', , ', ,

, ', , ',(,)k k r k k r

l l t l l td h d h   , , ', ,(,)k k

l l t l tX h I h  , and
1 2, , , ,(,)k k

l l t l l tX h X h  .

The better neighbors are obtained from the value of a specific variable adding/subtracting

 140

a flexible value r and are only adopted for those which have better objectives than current

solution. A flexible value r is decided based on the maximal reduction of the objective.

The detailed structure is introduced below.

1) 1 2', , ', ,

, ', , ',(,)k k r k k r

l l t l l td h d h  

 The prerequisite for this type of better neighbor is 1', ,

, ', 0k k r

l l td   , 1 2k k .

1', ,

, ',min_ k k r

l l th d  . 1 2, ,

, ', , ',

k r k r

obj l l t l l tdiff v v 

 For max' ~t t r t  , if 1

', ' 0k

l tI  , 1 2

', ' ', '

k k

obj obj l t l tdiff diff m m  

 If 1

', ' min_k

l tI h , 1

', 'min_ k

l th I .

 If 1

', ' 0k

l tI  , this neighbor is not selected.

 For max' ~t t t , if 2

, ' 0k

l tI  , 2 1

, ' , '

k k

obj obj l t l tdiff diff m m  

 If 2

, ' min_k

l tI h , 2

, 'min_ k

l th I .

 If 2

, ' 0k

l tI  , this neighbor is not selected.

If 0objdiff  , let 1', ,

, ', min_k k r

l l td h   , For max' ~t t r t  , let 1

', ' min_ , k

l tI h  .

2

', ' min_k

l tI h  . The constraint representation of this case is

1 1
1 1 1 1 1 1

1 1 1

', , ', ,

', ,() ', , ,(1) , ', , ', , 1' 1 ' ', ' ' 1 ' ', '

', ,

', ,(1) ', , 1 ,', '

 (, ,)
k kk k r k k k k r k k

l l t r l l t l t l l t l l t l tk l r l l l k l r l l l

k k r k k

l l t r l l t l tr l l l

d X I d X I k l t

d X I d

 
    


  

       

 

     

   1 1
1 1 1

1 1 1 1 1

', ,

, ',(1) , ',(1 ,(1) 1' 1 ' ' 1 ' ', '

', , ' ', , '

, ',(') , ',() ',(1) ', ,() ', ,()' , ' ' ,

 (, , 1)
k k k k r k k

l l t l l t l tk l k l r l l l

k k r k k k k r k

l l t r r l l t r l t r l l t r l l t rr l l l l r l

X I k l t

d X I d X


    

 
      

     

   

   

    1 1
1

1 1
1 1 1 1 1 1

',() 1' 1 ' 1 '

', , ' ', , '

, ',(' 1) , ',(1) ',() ', ,(1) ', ,(1) ',(1)' 1 ' , ' ' 1 ' , '

 (, ',)

k k k

l t rk l k l l

k kk k r k k k k r k k

l l t r r l l t r l t r l l t r l l t r l t rk l r l l l k l r l l l

I k l t r

d X I d X I

  

 
              

   

       

  

      

1 (, ', 1)k l t r 

 141

2 2
2 2 2 2 2 2

2 2 2

', , ', ,

', ,() ', , ,(1) , ', , ', , 2' 1 ' ', ' ' 1 ' ', '

', ,

', ,(1) ', , 1 ,', '

 (, ,)
k kk k r k k k k r k k

l l t r l l t l t l l t l l t l tk l r l l l k l r l l l

k k r k k

l l t r l l t l t lr l l l

d X I d X I k l t

d X I d

 
    


  

       

 

      

   2 2
2 2 2

2 2 2 2 2

', ,

, ',(1) , ',(1 ,(1) 2' 1 ' ' 1 ' ', '

', , ' ', , '

, ',(') , ',() ',(1) ', ,() ', ,()' , ' ' ,

 (, , 1)
k k k k r k k

l t l l t l tk l k l r l l l

k k r k k k k r k

l l t r r l l t r l t r l l t r l l t rr l l l l r l l l

X I k l t

d X I d X


    

 
       

     

   

   

    2 2
2

2 2
2 2 2 2 2 2

',() 2' 1 ' 1 '

', , ' ', , '

, ',(' 1) , ',(1) ',() ', ,(1) ', ,(1) ',(1)' 1 ' , ' ' 1 ' , '

 (, ',)

k k k

l t rk l k

k kk k r k k k k r k k

l l t r r l l t r l t r l l t r l l t r l t rk l r l l l k l r l l l

I k l t r

d X I d X I

 

 
              

   

       

  

      

2 (, ', 1)k l t r 

2) , ', ,(,)k k

l l t l tX h I h 

The prerequisite for this type of better neighbor is , ', 0k

l l tX  , 'l l . , ',min_ k

l l th X .

, ',

k

obj l l tdiff c

For max' ~t t t , if ', 0k

l tI  , ', ' , '

k k

obj obj l t l tdiff diff m m   .

 If ', ' min_k

l tI h , let ', 'min_ k

l th I .

 Otherwise, this neighbor is not selected.

If 0objdiff  , let , ', min_k

l l tX h  , For max' ~t t t , let ', ' min_ , k

l tI h  .

, ' min_k

l tI h  . The constraint representation of this case is

', , ', ,

', ,() ', , ,(1) , ', , ', ,' 1 ' ', ' ' 1 ' ', '

', , ', ,

', ,(1) ', , 1 , , ',(1)', '

 (, ,)
k kk k r k k k k r k k

l l t r l l t l t l l t l l t l tk l r l l l k l r l l l

k k r k k k k r

l l t r l l t l t l l tr l l l r

d X I d X I k l t

d X I d

 
    

 
   

       

 

      

    , ',(1) ,(1)' 1 ' ' 1 ' ', '

', , ', ,

, ',() , ', ',(1) ', , ', , ',' 1 , ' ' 1 , '

 (, , 1)

 (, ',)

k k k k

l l t l tk l k l l l l

k kk k r k k k k r k k

l l t r l l t l t l l t l l t l tk l r l l l k l r l l l

l

X I k l t

d X I d X I k l t

d

   

 
    

     

       

   

      

', , ', ,

, ',(1) , ', 1 ', ', ,(1) ', ,(1) ',(1)' 1 , ' ' 1 , '
 (, ', 1)

k kk k r k k k k r k k

l t r l l t l t l l t l l t l tk l r l l l k l r l l l
X I d X I k l t 

        
              

 142

3)
1 2, , , ,(,)k k

l l t l l tX h X h 

The prerequisite for this type of better neighbor is
1, , 0k

l l tX  and
2 , , 0k

l l tX  .

1 2, , , ,min_ min{ , }k k

l l t l l th X X .
1 2, , , ,

k k

obj l l t l l tdiff c c  .

For max' ~t t t , if
1 , ' 0k

l tI  ,
1 2, ' , '

k k

obj obj l t l tdiff diff m m   .

 If
1 , ' min_k

l tI h , let
1 , 'min_ k

l th I

 Otherwise, this neighbor is not selected.

If 0objdiff  , let
1, , min_k

l l tX h  and
2 , , min_k

l l tX h  . For max' ~t t t , let

1 , ' min_ , k

l tI h  .
2 , ' min_k

l tI h  . The constraint representation of this case is

2 1

1 1 1 1

', , ', ,

', ,() ', , , , ,(1) , ', , ', , , ,' 1 ' ', ' ' 1 ' ', '

', ,

', ,() ', , ,(1) , ',', '

[] [] (, ,)
k kk k r k k k k k r k k k

l l t r l l t l l t l t l l t l l t l l t l tk l r l l l k l r l l l

k k r k k

l l t r l l t l t l l tr l l l

d X X I d X X I k l t

d X I d

 
    

 
 

       

 

      

   
1 1

2 2 2 2 2 2

', ,

, ', , 1' 1 ' ' 1 ' ', '

', , ', ,

', ,(1) ', , 1 , , ',(1) , ',(1) ,(1)' ', ' ' 1 ' ', '

 (, ,)
k k k k r k k

l l t l tk l k l r l l l

kk k r k k k k r k k

l l t r l l t l t l l t l l t l tk l r l l l k l r l l l

X I k l t

d X I d X I

  

 
       

     

      

  

     

2 2 2 2 2 2

2 2

1' 1

', , ', ,

', ,() ', , ,(1) , ', , ', , 2' 1 ' ', ' ' 1 ' ', '

', ,

', ,(1) ', , 1

 (, , 1)

 (, ,)

k

k kk k r k k k k r k k

l l t r l l t l t l l t l l t l tk l r l l l k l r l l l

k k r k

l l t r l l t l

k l t

d X I d X I k l t

d X I



 
    


  



       

 

      

 
2 2 2 2

', ,

, , ',(1) , ',(1) ,(1) 2' 1 ' ', ' ' 1 ' ', '
 (, , 1)

k kk k k r k k

t l l t l l t l tk l r l l l k l r l l l
d X I k l t

     
            

 143

6.4.3 First-Improvement Descent Local Search

Based on the structure of better neighbors, a first-improvement descent local

search is developed below.

Step 1: Let Iterpre_loop=0 and Itercurrent=0. Go to Step 2.

Step 2:

For car type k1=2 to kmax

 For car type 'k =1 to (k1 -1)

For rental period r=1 to rmax

 For rental location l=1 to lmax

 For rental location 'l =1 to lmax

 For time period t =1 to tmax

 If any better neighbor i of 1 2', , ', ,

, ', , ',(,)k k r k k r

l l t l l td h d h   is found,

move to i , Itercurrent= Itercurrent +1.

 End

 End

 End

 End

 End

 End

Step 3:

For car type k=1 to kmax

 For rental location l=1 to lmax

 144

 For rental location 'l =1 to lmax

 For time period t =1 to tmax

 If any better neighbor i of , ', ,(,)k k

l l t l tX h I h  is found, move to i ,

Itercurrent= Itercurrent +1.

 End

 End

 End

 End

Step 4:

For car type k=1 to kmax

 For rental location l=1 to lmax

 For rental location 'l =1 to lmax

 For time period t =1 to tmax

 If any better neighbor i of
1 2, , , ,(,)k k

l l t l l tX h X h  is found, move to i ,

Itercurrent= Itercurrent +1.

 End

 End

 End

 End

Step 5: If Iterpre_loop Itercurrent , let Iterpre_loop= Itercurrent and go to Step 2; otherwise, the

 whole algorithm is finished.

 145

6.5 Computing Results

This section focuses on an experiment generated by two types of experimental

factors including: the number of rental locations and (the number of time periods, the

number of rental periods). Section 6.5.1 introduces the parameter setting and the meaning

of the parameters. In section 6.5.2, the setting of factor levels and two parts of the

experiment are described, including small scale problems and large scale problems. The

software and the computer equipment used for conducting this experiment are described

in Section 6.5.3 In Section 6.5.4, experimental results are analyzed and explained.

6.5.1 Parameter Settings

The parameter settings in demand allocation and empty flow redistribution are

chosen based on the website data of Auto Rental News or the assumptions of making the

problems feasible, and are as described below.

 Demand: The demand for car type 1 from node l to node l is generated from a

uniform distribution (30, 50). The demand for car type 1 from node l to 'l is

generated from a uniform distribution (0, 20). As for the demands for car type 2 and

the higher car types, a type ratio value is generated from a uniform distribution (0.8,

1.1) for each car type. The demand for car type 2 is then generated by multiplying

the demand for car type 1 by the ratio for car type 2. The demands for the higher car

types are generated by multiplying demand for the previous car type by the

respective ratio. The demand is rounded off to an integer.

 146

 Unit Inventory Cost: The unit inventory cost of car type 1 is generated from a

uniform distribution (5, 10). As for the unit inventory costs of car type 2 and the

higher car types, a type ratio value is generated from a uniform distribution (1.0, 1.2)

for each car type. The unit inventory cost of car type 2 is then generated by

multiplying the unit inventory cost of car type 1 by the ratio for car type 2. The unit

inventory costs of the higher car types are generated by multiplying the unit

inventory cost of the previous car type by the respective ratio. The unit inventory

cost is rounded off to one decimal place.

 Unit Operational Cost of A Rental Car: The unit operational cost of a rental car of

car type 1 from location l to location 'l is generated by multiplying a random cost

level, generated from an uniform distribution (30, 50), by rental period r. If location

'l l , a location ratio, generated from an uniform distribution (1.5, 3.0) is multiplied

by the cost. As for the unit operational cost of a rental car of car type 2 and the

higher car types, a type ratio value is generated from a uniform distribution (1.2, 1.4)

for each car type. The unit operational cost of a rental car of car type 2 is then

generated by multiplying the unit rental car cost of car type 1 by the ratio for car

type 2. The unit operational costs of a rental car of the higher car types are generated

by multiplying unit operational cost of a rental car of the previous car type by the

respective ratio. The unit operational cost of a rental car is rounded off to one

decimal place.

 Unit Operational Cost of An Empty Car: The unit empty car cost of car type 1 is

generated by multiplying a random distance between two locations, generated from

the uniform distribution (0, 100), by a location ratio, generated from a uniform

 147

distribution (0.3, 0.7). As for the unit empty car cost of car type 2 and the higher car

types, a type ratio value is generated from a uniform distribution (1.2, 1.4) for each

car type. As for the unit rental car cost of car type 2 and the higher car types, a type

ratio value is generated from a uniform distribution (1.2, 1.4) for each car type. The

unit empty car cost of car type 2 is then generated by multiplying the unit empty car

cost of car type 1 by the ratio for car type 2. The unit empty car costs of the higher

car types are generated by multiplying the unit empty car cost of the previous car

type by the respective ratio. The unit empty car cost is rounded off to one decimal

place.

 Ratio of Satisfying Exact Demand without Upgrading: In this problem, the ratio

of satisfying exact demand without upgrading is set to be 0.5, which means at least

50% of the demand need to be satisfied without upgrading any car type. If this ratio

is set to be higher, car rental companies will need to own more cars and many cars

will be idle stored as the inventory. If this ratio is set to be lower, service level will

be not important. Hence, we assume this ratio to be 50% as an average in this

problem.

 Initial Inventory: The initial inventory of car type 1 is generated from a uniform

distribution (0, 20). As for the initial inventory of car type 2 and the higher car types,

a type ratio value is generated from a uniform distribution (0.9, 1.1) for each car

type. The initial inventory of car type 2 is then generated by multiplying the initial

inventory of car type 1 by the ratio for car type 2. The initial inventories of the

higher car types are generated by multiplying the initial inventory of the previous

car type by the respective ratio. The initial inventory is rounded off to an integer.

 148

 Initial Rental Car Flow: The initial rental car flow 1 2

1 2

, ,

, ,() 0_ k k r

l l t rd pre
  is generated

based on the following rule. _1ratio and _ 2ratio are generated from the uniform

distributions (0.8, 1.1) and (0.2, 0.5), individually. The initial rental car flow is

rounded off to an integer.

If 'l l ,

 If 1 1k 

 If 2 1k  , let 1 2

1 2

, ,

, ,_ k k r

l l td pre =uniform (30,50);

If 2 1k  , 1 2

1 2

, ,

, ,_ k k r

l l td pre = _ 2ratio uniform (20,40).

 Otherwise, if 1 2k k , 1 2 1 2

1 2 1 2

, , , 1,

, , , ,_ _1 _k k r k k r

l l t l l td pre ratio d pre    .

 If 1 2k k , 1 2 1 2

1 2 1 2

, , 1, ,

, , , ,_ _1 _k k r k k r

l l t l l td pre ratio d pre   

 Otherwise, If 1 1k 

 If 2 1k  , let 1 2

1 2

, ,

, ,_ k k r

l l td pre =uniform (0,20);

If 2 1k  , 1 2

1 2

, ,

, ,_ k k r

l l td pre = _ 2ratio uniform (0,20).

 Otherwise, if 1 2k k , 1 2 1 2

1 2 1 2

, , 1, 1,

, , , ,_ _1 _k k r k k r

l l t l l td pre ratio d pre     .

 If 1 2k k , 1 2 1 2

1 2 1 2

, , 1, ,

, , , ,_ _1 _k k r k k r

l l t l l td pre ratio d pre   

 149

 If r t , let 1 2

1 2

, ,

, ,() 0_ k k r

l l t rd pre
  = 1 2, ,

, ',()_ k k r

l l r td pre
 .

6.5.2 Factor Levels

Two parts of the experiment are exploited in demand allocation and empty flow

redistribution. In part 1, the first-improvement descent local search is tested and

compared to the branch-and-bound algorithm by the computing time and solution gap. In

part 2, the algorithm time is tested in large scale problems in order to understand how

large of a problem size this algorithm can solve.

Based on the experiment in part 1, the following 2 factors are tested. The number of

car types is fixed at 10.

 Number of Locations: Three factor levels are set to be 6, 8, and 10, which are the

maximal number of pools that can be solved by the branch-and-bound method

through LINGO Software.

 (Number of Time Periods, Number of Rental Periods): Three factor levels are

set to be (4, 4), (6, 6), and (8, 8).

In part 2, the large scale problems are tested to understand how large of a problem

size this algorithm can solve and how long it will take. Normally a pool region includes

10~20 rental locations in a rental company and the planning periods is between 7~21.

Hence, the problem size is assumed to be (number of nodes, number of time periods,

number of rental periods). The problem sizes tested are (12,12,12),(15,15,15),(18,18,18),

and (21,21,21).

 150

6.5.3 Experimental Platform

This experiment uses the software Visual C++ to compile the computer coding of

the best-improvement descent local search and uses the optimization software LINGO 9.0

to solve the optimal solution. The computer equipment for conducting this experiment

includes an Intel Core 2 Duo E7400 2.80 GHz CPU and 6 GB memory.

6.5.4 Experimental Analysis

The experiment is divided into two parts. Small scale problems are generated to

compare the computing times and the solution gaps between the first-improvement

descent local search and the branch-and-bound method in part 1. Each factor contains

three factor levels and each factor level uses three replications based on different random

seeds. Hence, 3 factor levels of the number of locations  3 factor levels of the number

of time periods/rental periods  3 random seeds = 27 independent trials in part 1.

In part 2, large scale problems are generated to determine how large of a problem

size this algorithm can solve and how long it will take. Hence, 4 factor levels of the

number of the problem sizes  3 random seeds = 12 independent trials in part 2.

6.5.4.1 Results for Small Scale Problems

The experiment in part 1 was conducted for small scale problems. The solution gaps

between the first-improvement descent local search and the branch-and-bound method

are displayed in Table 6.1. The solution gap between the optimal solution and the initial

solution is about 29%~30%. The first-improvement descent local search always obtained

 151

extremely good solutions with an average solution gap below 0.07%. The computing

times of the first-improvement descent local search and the branch-and-bound method are

shown in Table 6.2. The branch-and-bound method solves fast in extremely small

problems but takes significant amount of time when the problem size becomes larger.

Instead, the first-improvement descent local search still solves quickly even when the

problems become larger.

 152

Table 6.1. Solution gaps between the first-improvement descent local search and the

branch-and-bound method

Ex
of

Nodes

of Time
Periods /

ofRental
Periods

Seed

LINGO First-Improvement Descent Local Search

Optimal
Obj

Initial Solution Final Solution

Initial Obj Gap(%)
Avg

Gap(%)
Final Obj Gap(%)

Avg
Gap(%)

1

6

4

20 3.2309E+07 4.1964E+07 29.88%

29.70%

3.2333E+07 0.07%

0.05% 2 40 3.4189E+07 4.4420E+07 29.92% 3.4214E+07 0.07%

3 60 3.2525E+07 4.2048E+07 29.28% 3.2530E+07 0.01%

4

6

20 1.0380E+08 1.3420E+08 29.28%

29.38%

1.0388E+08 0.07%

0.05% 5 40 1.0599E+08 1.3740E+08 29.63% 1.0601E+08 0.01%

6 60 1.0077E+08 1.3023E+08 29.24% 1.0082E+08 0.05%

7

8

20 2.3093E+08 2.9955E+08 29.72%

29.75%

2.3096E+08 0.02%

0.03% 8 40 2.3814E+08 3.0927E+08 29.87% 2.3821E+08 0.03%

9 60 2.3372E+08 3.0308E+08 29.68% 2.3383E+08 0.05%

10

8

4

20 5.3724E+07 6.9344E+07 29.08%

29.30%

5.3752E+07 0.05%

0.04% 11 40 5.6239E+07 7.3007E+07 29.82% 5.6264E+07 0.04%

12 60 5.3823E+07 6.9434E+07 29.00% 5.3836E+07 0.02%

13

6

20 1.7110E+08 2.2202E+08 29.76%

29.69%

1.7113E+08 0.02%

0.03% 14 40 1.7634E+08 2.2903E+08 29.88% 1.7644E+08 0.06%

15 60 1.6923E+08 2.1902E+08 29.42% 1.6926E+08 0.02%

16

8

20 3.9696E+08 5.1580E+08 29.94%

29.91%

3.9705E+08 0.02%

0.03% 17 40 4.0018E+08 5.1908E+08 29.71% 4.0041E+08 0.06%

18 60 3.9606E+08 5.1523E+08 30.09% 3.9613E+08 0.02%

19

10

4

20 8.4138E+07 1.0909E+08 29.65%

29.73%

8.4162E+07 0.03%

0.03% 20 40 8.6324E+07 1.1219E+08 29.96% 8.6360E+07 0.04%

21 60 8.2530E+07 1.0693E+08 29.56% 8.2545E+07 0.02%

22

6

20 2.6045E+08 3.3823E+08 29.86%

29.83%

2.6052E+08 0.03%

0.03% 23 40 2.6732E+08 3.4678E+08 29.73% 2.6743E+08 0.04%

24 60 2.6203E+08 3.4041E+08 29.91% 2.6211E+08 0.03%

25

8

20 6.0258E+08 7.8454E+08 30.20%

29.97%

6.0354E+08 0.16%

0.07% 26 40 6.0613E+08 7.8695E+08 29.83% 6.0628E+08 0.02%

27 60 6.0592E+08 7.8706E+08 29.89% 6.0611E+08 0.03%

 153

Table 6.2. Computing times of the first-improvement descent local search and the

branch-and-bound method

Ex
of

Nodes

of Time
Periods/

of Rental
Periods

Seed

of
Variables

of
Constraints

LINGO
First-Improvement

Descent Local Search
Run

time(s)
Avg

Time(s)
Iterations

Avg
Iterations

Run
time(s)

Avg
Time(s)

1

6

4

20

33120 6011

4

4.0

14293

14723

5.7

5.7 2 40 4 15240 5.9

3 60 4 14637 5.6

4

6

20

73440 13331

22

20.3

32284

32895

8.7

8.8 5 40 19 33886 9.2

6 60 20 32515 8.7

7

8

20

129600 23531

78

90.7

57436

58502

13.3

13.5 8 40 95 60069 13.8

9 60 99 58002 13.5

10

8

4

20

58880 10571

10

11.0

24124

24942

7.3

7.9 11 40 12 25800 7.5

12 60 11 24902 9.1

13

6

20

130560 23531

80

77.7

55815

56398

15.8

13.9 14 40 85 58017 13.2

15 60 68 55361 12.8

16

8

20

230400 41611

511

581.3

99931

101047

20.2

21.4 17 40 619 102350 22.3

18 60 614 100861 21.8

19

10

4

20

92000 16411

30

28.0

37964

38765

10.3

10.4 20 40 28 40087 10.9

21 60 26 38244 10.2

22

6

20

204000 36611

179

211.3

85277

86557

19.5

18.9 23 40 232 88235 18.8

24 60 223 86160 18.5

25

8

20

360000 64811

1327

1309.0

154083

155619

33.0

34.2 26 40 1393 156790 39.5

27 60 1207 155985 30.0

 154

6.5.4.2 Results for Large Scale Problems

The experiment in part 2 is conducted for large scale problems. Table 6.3 represents

the algorithm time on large problem sizes. The largest cases, (21, 21 , 21), covers 10.79

million integer variables and 1.95 million constraints and the first-improvement descent

local search only takes about 23 minutes to solve. The trend chart of algorithm time and

the number of iterations for large problem sizes is presented in Figure 6.2.

Table 6.3. The algorithm time on large problem sizes

E
x

(Nodes,
Time Periods,

Rental Periods)

Seed

of Variables
(unit: million)

of
Constraints

(unit: million)

First-Improvement
Descent Local Search

of
Iterations

Avg
Iterations

Run
time(s)

Avg
Time(s)

1

(12, 12, 12)

20

1.16 0.21

497

500

135

138 2 40 504 144

3 60 499 134

4

(15, 15, 15)

20

2.82 0.51

1207

1208

412

384 5 40 1215 361

6 60 1203 377

7

(18, 18, 18)

20

5.83 1.05

2476

2483

979

926 8 40 2493 898

9 60 2479 901

10

(21, 21, 21)

20

10.79 1.95

4562

4567

1355

1353 11 40 4579 1351

12 60 4560 1355

 155

0

200

400

600

800

1000

1200

1400

1600

12 15 18 21

Problem Size

R
un

T
im

e
(s

)

0

1000

2000

3000

4000

5000

of

 I
te

ra
ti

on
s

Iterations Run Time

Figure 6.2. Computing time and iterations on large problem sizes

 156

6.6 Concluding Remarks

In this chapter, a model for daily planning of demand allocation and empty flow

redistribution was proposed. Empty cars were assumed to be redistributed the same day

in the same pool. Car upgrade policy and service level were considered. A first-

improvement descent local search with the structure of three interchange better neighbors

was introduced and validated.

Based on the numerical results, in small scale problems, the first-improvement

descent local search always obtains good solutions with an extremely small solution gap

below 0.07% and takes significantly less time than the branch-and-bound method as the

problem size increases. In large scale problems, the first-improvement descent local

search only needs 23 minutes to solve the largest cases, (21,21,21), which covers 10.79

million integer variables and 1.95 million constraints. These results show that the first-

improvement descent local search not only obtains a relatively good solution in a quite

short time, but also solves very large scale integer programming problems easily.

 157

CHAPTER 7

SUMMARY AND FUTURE RESEARCH

7.1 Summary

In this dissertation, the background knowledge of the car rental business was briefly

introduced and the entire outlook of fleet planning in the car rental business was outlined.

The car rental business profile in the United States was provided by discussing the history

of the development of the car rental business, the statistics of the U.S. car rental market,

and the functions of car rental software. Relevant problems of car rentals and fleet

planning have been presented as well as part of an in-depth literature review.

A thorough analytical framework for car rental fleet planning in different time

phases was built. In order to effectively solve different time phase problems in actual

problem sizes, three practical algorithm procedures were developed.

In long-term planning, a binary integer model of pool segmentation and hub

selection was formulated similarly to the capacitated facility location model with a single

source constraint. All locations are split into several regions and one location is selected

from each region to be the regional hub center. A clustering-based iterative algorithm,

utilizing three important modules, was proposed and validated. The clustering algorithm

uses the concept of unit demand cost to cluster nearby locations and quickly captures a

very good initial solution. The iterative procedure of an enumeration method and a

 158

modified Prim’s algorithm utilizes the concept of a convex function to achieve a near-

optimal solution. Numerical results show that the branch-and-bound method takes

100~1000 times the algorithm time to find a better solution and 100~10,000 times the

algorithm time to find an optimal solution than in the clustering-based iterative algorithm.

In addition, the solution gap of the clustering-based iterative algorithm is relatively small.

The largest case tested involves 6000 nodes and 36 million integer variables, which is

close to the level of Enterprise Rent-A-Car, the top car rental company in the United

States. The clustering-based iterative algorithm takes about 135 minutes to solve a

problem of this size. Based on the numerical results, it is clear that the clustering-based

iterative algorithm not only can obtain satisfactory solutions with small solution gaps

rapidly, but also readily solves very large scale problems.

In mid-term planning, inter-pool moves are considered, and buying/selling cars are

allocated to different pool regions based on the change of seasonal demand. An integer

programming model is developed and a best-improvement descent local search with the

structure of better neighbors was introduced. The structure of better neighbors exploits

the concept of maximal objective reduction to determine a flexible value h in the

neighbors Var h . In addition, better neighbors exploit the inventory balance constraints

to adjust other variables and largely reduce the computing time of evaluating the

constraints. The numerical results show that the solution gap normally falls below 4%.

Based on the computational results, if the problem size becomes larger, the solution gap

becomes smaller. The average time required by the branch-and-bound method is about 50

to 380 times more than the time of the best-improvement descent local search. The

largest problem size tested contains 200 pools, 46 million integer variables, and 250

 159

thousand constraints, and the best-improvement descent local search only takes 38.6

seconds to solve. These results demonstrate that the best-improvement descent local

search has very good performance and can obtain a near-optimal solution in an extremely

short time.

In short-term planning, daily planning of demand allocation and empty flow

redistribution was addressed in the same pool region. The fact that the customers can rent

a car and return it either in the same or in a different location leads to the problem of

vehicle imbalance, and empty vehicles need to be redistributed. In the same pool, empty

cars can be redistributed the same day. Car upgrade policy and service level are also

considered. This problem is formulated as an integer programming model and a first-

improvement descent local search with the structure of three interchange better neighbors

is presented. The numerical results show that the first-improvement descent local search

always obtains a good solution quickly with an exceedingly small solution gap below

0.07%. The first-improvement descent local search only takes 23 minutes to solve the

largest case, (21,21,21), which covers 10.79 million integer variables and 1.95 million

constraints. These results demonstrate that the first-improvement descent local search not

only obtains a relatively good solution in a quite short time but also solves very large

scale integer programming problems easily.

 160

7.2 Directions for Further Extensions and Research

In this dissertation, a set of deterministic car rental fleet plans was developed.

However, such a set of models is a basic framework. Still other parts need to be

considered, such as demand patterns, unmet demand, random customers (i.e. walk-in

customers without prior reservations), cost and pricing structure, demand allocation and

empty flow redistribution at different pool regions.

In the design of the algorithms discussed in this dissertation, the clustering

algorithm is a simple but powerful method of the initial solution. A good feasible solution

can be obtained in an extremely short time. If the clustering algorithm and an impactful

heuristic developed can effectively be applied to a general capacitated facility location

problem, it may solve very large scale optimization problems easily. This promises to be

a very viable research direction.

The structure of better neighbors can be utilized on the problem with flow balance

constraints. In the mid-term and short-term fleet planning, the structure of better

neighbors has been used in the design of the best-improvement descent local search and

the first-improvement descent local search. The structure of better neighbors is expected

to employ on more problems with flow balance constraints and a more complete and

more general structure of better neighbors can then be integrated.

161

REFERENCES

Ahuja, R.K., Orlin, J.B., Pallottino, S., Scaparra, M.P., and Scutella, M.G., 2004. A

multi-exchange heuristic for the single-source capacitated facility location problem.

Management Science, 50(6), 749-760.

Anderson, C.K., Davison, M., and Rasmussen, H., 2004. Revenue management: a real

options approach. Naval Research Logistics, 51(5), 686-703.

Aykin, T., 1995. Networking policies for hub-and-spoke systems with application to the

air transportation system. Transportation Science, 29(3), 201-221.

Babkin, V.T., Gasretov, A.L., and Zolotukhin, V.F., 1977. Branch-and-bound algorithm

for solving the generalized problem of optimal assignment. Engineering Cybemetics,

15(6), 37-42.

Barnett, A., 2000. Free-flight and en route air safety: A first-order analysis. Operations

Research, 48(6), 833-845.

Barnhart, C., Belobaba, P., and Odoni, A.R., 2003. Applications of operations research in

the air transport industry. Transportation Science, 37(4), 368-391.

162

Baxley, B.T., Williams, D., Consigilio, M., Adams, C., and Abbott, T., 2008. Small

aircraft transportation system, higher volume operations concept and research

summary. Journal of Aircraft, 45(6), 1825-1834.

Beaujon, G.J., and Turnquist, M.A., 1991. A model for fleet sizing and vehicle allocation.

Transportation Science, 25(1), 19-45.

Bertsimas, D., and Popescu, I., 2003. Revenue management in a dynamic network

environment. Transportation Science, 37(3), 257-277.

Bojovic, N.J., 2002. A general system theory approach to rail freight car fleet sizing.

European Journal of Operational Research, 136(1), 136-172.

Cao, J.M., and Kanafani, A., 2000. Value of runway time slots for airlines. European

Journal of Operational Research, 126(3), 491-500.

Carroll, W.J., and Grimes, R.C., 1995. Evolutionary change in product management:

experiences in the car rental industry. Interfaces, 25(5), 84-104.

Caseau, Y., and Kokeny, T., 1998. An inventory management problem. Constraints, 3(4),

363-373.

163

Chatwin, R.E., 1996. Multi-period airline overbooking with multiple fare classes. Naval

Research Logistics, 43(5), 603-612.

Chatwin, R.E., 1998. Multi-period airline overbooking with a single fare class.

Operations Research, 46(6), 805-819.

Chen, C.H., and Ting, C.J., 2006. Applying multiple ant colony system to solve single

source capacitated facility location problem. Ant Colony Optimization and Swarm

Intelligence, 5th International Workshop, ANTS 2006, Brussels, Belgium, September

4-7, 2006 Proceedings, 4150, 508-509.

Cho, S., and Rust, J., 2008. Is econometrics useful for private policy making? A case

study of replacement policy at an auto rental company. Journal of Econometrics,

145(1-2), 243-257.

Cooper, W.M., 2002. Asymptotic behavior of an allocation policy for revenue

management. Operations Research, 50(4), 720-727.

Correia, I., and Captivo, M.E., 2006. Bounds for the single source modular capacitated

plant location problem. Computers & Operations Research, 33(10), 2991-3003.

164

Couillard, J., and Martel, A., 1990. Vehicle fleet planning in the road transportation

industry. IEEE Transactions on Engineering Management, 37(1), 31-36.

Dejax, P.J., and Crainic, T.G., 1987. A review of empty flows and fleet management

models in freight transportation. Transportation Science, 21(4), 227-247.

Dodgson, J.S., 1994. Competition policy and the liberalization of European aviation.

Transportation, 21(4), 355-370.

Donohue, G.L., 2006. U.S. air transportation: An approaching perfect storm. Aerospace

America, 44(8), 26-32.

Dorigo, M., Maniezzo, and V., Colorni, A., 1996. The ant system: optimization by a

colony of cooperating agents. IEEE Transactions on System, Man, and Cybernetics,

26(1), 29-41.

Doy, G., and Pope, J., 1985. Regional development and regional air transport in the

European economic community. Revue T, Revue Belge du Transport, 2, 181-185.

Du, Y., and Hall, R., 1997. Fleet sizing and empty equipment redistribution for

center-terminal transportation networks. Management Science, 43(2), 145-157.

165

Edelstein, M., and Melnyk, M., 1977. The pool control system. Interfaces, 8(1), 21-36.

Elhedhli, S., and Goffin, J.L., 2004. The integration of an interior-point cutting plane

method with a branch-and-price algorithm. Mathematical Programming, 100(2),

267-294.

Fei, H., Chu, C., Meskens, N., and Artiba, A., 2008. Solving surgical cases assignment

problem by a branch-and-price approach. International Journal of Production

Economics, 112(1), 96-108.

Feo, T., and Resende, M., 1995. Greedy randomized adaptive search procedures. Journal

of Global Optimization, 6, 109-133.

Fink, A., and Reiners, T., 2006. Modeling and solving the short-term car-rental logistics

problem. Transportation Research Part E: Logistics and Transportation Review,

42(4), 272-292.

Furth, P.G., and Nash, A.B., 1985. Vehicle pooling in transit operations. Journal of

Transportation Engineering. 111(3), 268-279.

166

Geraghty, M.K., and Johnson, E., 1997. Revenue management saves National Car Rental.

Interfaces, 27(1), 107-127.

Glover, F., 1977. Heuristics for integer programming using surrogate constraints.

Decision Sciences, 8(1), 156-166.

Glover, F., 1986. Future paths for integer programming and links to artificial intelligence.

Computer & Operations Research, 13, 533-549.

Glover, F., 1998. A template for scatter search and path relinking. Lecture Notes in

Computer Science, 1363, 13.

Goodovitch, T., 1996. Theory of air transport development. Transportation Planning and

Technology, 20(1), 1-13.

Haddadi, S., and Ouzia, H., 2004. Effective algorithm and heuristic for the generalized

assignment problem. European Journal of Operational Research, 153(1), 184-190.

Hall, R.W., 1999. Stochastic freight flow patterns: implications for fleet optimization.

Transportation Research Part A: Policy and Practice, 33(6), 449-465.

167

Holland, J., 1975. Adaptation in natural and artificial systems. Ann Arbor: University of

Michigan Press.

Holmberg, K., Ronnqvist, M., and Yuan, D., 1999. An exact algorithm for the

capacitated facility location problems with single sourcing. European Journal of

Operational Research, 113(3), 544-559.

Hong, W.C., Lai, Y.J., Pai, P.F., Lee, S.L., and Yang, S.L., 2007. Composite of support

vector regression and evolutionary algorithms in car-rental revenue forecasting. 2007

IEEE Congress on Evolutionary Computation, 2872-2878.

Hsu, C.I., and Wen, Y.H., 2000. Application of Grey theory and multiobjective

programming towards airline network design. European Journal of Operational

Research, 127(1), 44-68.

Inaba, T., 2008. Value of sparse RFID traceability information in asset tracking during

migration period. 2008 IEEE International Conference on RFID, 183-190.

Janic, M., 2003. Modelling operational, economic and environmental performance of an

air transport network. Transportation Research Part D: Transport and Environment,

8(6), 415-432.

168

Jarrah, A.I.Z., Yu, G., Krishamurthy, N., and Rakshit, A., 1993. Decision support

framework for airline flight cancellations and delays. Transportation Science, 27(3),

266-280.

Jenkins, L., 1987. Using parametric integer programming to plan the mix of an air

transport fleet. INFOR: Information Systems and Operational Research, 25(2),

117-135.

Joborn, M., Crainic, T.G., Gendreau, M., Holmberg, K., and Lundgren, J.T., 2004.

Economies of scale in empty freight car distribution in scheduled railways.

Transportation Science, 38(2), 121-134.

Karaesmen, I., and Ryzin, G., 2004. Overbooking with substitutable inventory classes.

Operations Research, 52(1), 83-104.

Kelley, J.E. Jr., 1960. The cutting-plane method for solving convex programs. Journal of

the Society for Industrial and Applied Mathematics, 8(4), 703-712.

Khoury, H.M., Kamat, V.R., and Ioannou, P.G., 2007. Evaluation of general-purpose

construction simulation and visualization tools for modeling and animating airside

airport operations. Simulation, 83(9), 663-679.

169

Kirkpatrick, S., Gelatt, C., and Vecchi, M., 1983. Optimization by simulated annealing.

Science, 220, 671-680.

Klose, A., 1999. An LP-based heuristic for two-stage capacitated facility location

problems. Journal of the Operational Research Society, 50(2), 157-166.

Kochel, P., Kunze, S., and Nielander, U., 2003. Optimal control of a distributed service

system with moving resources: application to the fleet sizing and allocation problem.

International Journal of Production Economics, 81-82, 443-459.

Kuyumcu, A., and Garcia-Diaz, A., 2000. A polyhedral graph theory approach to

revenue management in the airline industry. Computers & Industrial Engineering,

38(3), 375-396.

Li, Y., and Wang, X., 2005. Integration of fleet assignment and aircraft routing.

Transportation Research Record, 1915, 79-84.

Lines, L., Kuby, M., Schultz, R., Clancy, J., and Xie, Z., 2008. A rental car strategy for

commercialization of hydrogen in Florida. International Journal of Hydrogen Energy,

33(20), 5312-5325.

170

Lohatepanont, M., and Barnhart, C., 2004. Airline schedule planning: Integrated models

and algorithms for schedule design and fleet assignment. Transportation Science,

38(1), 19-32.

Lourenco, H.R., Martin, O.C., Stutzle, T., 2002. Iterated local search. Glover F., and

Kochenberger, G., editors, Handbook of Metaheuristics, 321-353. Kluwer Academic

Publishers.

Marker, J.L., 1991. Flight operations safety management. SAE Transactions, 100(1),

2433-2442.

Martel, A., 1990. Vehicle fleet planning in the road transportation industry. IEEE

Transactions on Engineering Management, 37(1), 31-36.

Mladenovic, N., and Hansen, P., 1997. Variable neighborhood search. Computers &

Operations Research, 24(11), 1097-1100.

Mladenovic, N., Brimberg, J., Hansen, P., and Moreno-Perez, J.A., 2007. The p-median

problem: a survey of metaheuristic approaches. European Journal of Operational

Research, 179(3), 927-939.

171

Moscato, P., 1989. On evolution search optimization, genetic algorithms and martial arts:

towards memetic algorithms. Technical Report Caltech Concurrent Computation

Program, Report. 826. Pasadena, CA: California Institute of Technology.

Nauss, R.M., 2004. The elastic generalized assignment problem. Journal of the

Operational Research Society, 55(12), 1333-1341.

Nero, G., and Black, J.A., 1998. Hub-and-spoke networks and the inclusion of

environmental costs on airport pricing. Transportation Research Part D: Transport

and Environment, 3(5), 275-296.

Netessine, S., Dobson, G., and Shumsky, R.A., 2002. Flexible service capacity: optimal

investment and the impact of demand correlation. Operations Research, 50(2),

375-388.

New, S., 2003. Multimedia for international operations: a case study. International

Journal of Operations & Production Management, 23(1), 125-137.

Orlady, H.W., and Orlady, L.M., 2002. Human factors in multi-crew flight operations.

Aeronautical Journal, 106(1060), 321-324.

172

Osman, I., and Ahmadi, S., 2007. Guided construction search metaheuristics for the

capacitated p-median problem with single source constraint. Journal of the

Operational Research Society, 58(1), 100-114.

Pachon, J.E., 2000. Strategic and tactical fleet planning for the car rental industry. Ph.D.

Dissertation, University of Miami, Coral Gables, Florida.

Pachon, J.E., Iakovou, E., IP, C., and Aboudi, R., 2003. A synthesis of tactical fleet

planning models for the car rental industry. IIE Transactions, 35(9), 907-916.

Parikh, S.C., 1977. On a fleet sizing and allocation problem. Management Science, 23(9),

972-977.

Park, J.S., Lim, B.H., and Lee, Y., 1998. Lagrangian dual-based branch-and-bound

algorithm for the generalized multi-assignment problem. Management Science,

44(12), 271-282.

Pentico, D.W., 2007. Assignment problems: a golden anniversary survey. European

Journal of Operational Research, 176(2), 774-793.

173

Pirkul, H., 1987. Efficient algorithm for the capacitated concentrator location problem.

Computers & Operations Research, 14(3), 197-208.

Ronnqvist, M., Tragantalerngsak, S., and Holt, J., 1999. A repeated matching heuristic

for the single-source capacitated facility location problem. European Journal of

Operational Research, 116(1), 51-68.

Rosenthal, R.E., and Waslsh, W.J., 1996. Optimizing flight operations for an aircraft

carrier in transit. Operations Research, 44(2), 305-312.

Sambracos, E., Paravantis, J.A., Tarantilis, C.D., and Kiranoudis, C.T., 2004.

Dispatching of small containers via coastal freight liners: the case of the Aegean

Sea. European Journal of Operational Research, 152(2), 365-381.

Shi, L., Olafsson, S., 2000. Nested partitions method for global optimization. Operations

Research, 48(3), 390-407.

Song, D.P., and Earl, C.F., 2008. Optimal empty vehicle repositioning and fleet-sizing

for two-depot service systems. European Journal of Operational Research, 185(2),

760-777.

174

Sridharan, R., 1993. A Lagrangian heuristic for the capacitated plant location problem

with single source constraints. European Journal of Operational Research, 66(3),

305-312.

Stickle, J.W., Stewart, R.J., and Holmes, B.J., 1991. Aerospace America, 29(9), 56-58.

Subramanian, J., Stidham Jr., S., and Lautenbacher, C.J., 1999. Airline yield

management with overbooking, cancellations, and no-shows. Transportation Science,

33(2), 147-167.

Syam, S.S., 1997. Model for the capacitated p-facility location problem in global

environments. Computers & Operations Research, 24(11), 1005-1016.

Tainiter, M., 1964. Some stochastic inventory models for rental situations. Management

Science, 11(2), 316-326.

Tyler, J.E. Jr., 1986. Maximizing the physical capacity of a fleet of aircraft and

containers handling mixed freight. SAE Technical Paper Series.

175

Voudouris, C., and Tsang, E., 1996. Partial constraint problems and guided local search.

Proceeding of the Second International Conference on the Practical Application of

Constraint Technology, 337-356.

Wu, G.H., 2009. Fleet planning in the car rental business. Working Ph.D. Dissertation,

The Pennsylvania State University, State College, Pennsylvania.

Wu, P., Hartman, J.C., and Wilson, G.R., 2003. A demand-shifting feasibility algorithm

for Benders decomposition. European Journal of Operational Research, 148(3),

570-583.

Wu, P., Hartman, J.C., and Wilson, G.R., 2005. An integrated model and solution

approach for fleet sizing with heterogeneous assets. Transportation Science, 39(1),

87-103.

Yan, S., and Young, H.F., 1996. Decision support framework for multi-fleet routing and

multi-stop flight scheduling. Transportation Research Part A: Policy and Practice,

30(5), 379-398.

Yan, S., and Tu, Y.P., 1997. Multifleet routing and multistop flight scheduling for

schedule perturbation. European Journal of Operational Research, 103(1), 155-169.

176

APPENDIX A

Original Data on Experimental Factors versus Algorithm Time in Chapter 4

177

EX
of

Types
of

Locations
Seed # R_Hubcost R_Cap Obj Time

1 4 300 20 300 10 1,275,865.630 1.713
2 4 300 20 300 25 852,556.630 1.507
3 4 300 20 300 62.5 834,005.310 1.786
4 4 300 20 600 10 2,133,898.750 3.408
5 4 300 20 600 25 1,173,806.880 1.726
6 4 300 20 600 62.5 1,097,309.250 3.142
7 4 300 20 1200 10 3,797,481.750 5.460
8 4 300 20 1200 25 1,737,567.880 1.928
9 4 300 20 1200 62.5 1,432,009.750 4.636
10 4 300 40 300 10 1,275,151.380 1.686
11 4 300 40 300 25 889,750.310 1.584
12 4 300 40 300 62.5 880,294.130 1.981
13 4 300 40 600 10 2,117,378.500 2.697
14 4 300 40 600 25 1,220,462.000 1.745
15 4 300 40 600 62.5 1,169,976.130 3.305
16 4 300 40 1200 10 3,709,916.250 5.522
17 4 300 40 1200 25 1,823,104.500 2.142
18 4 300 40 1200 62.5 1,519,524.500 4.825
19 4 300 60 300 10 1,126,611.380 1.384
20 4 300 60 300 25 816,238.060 1.443
21 4 300 60 300 62.5 804,893.940 1.816
22 4 300 60 600 10 1,797,369.250 2.177
23 4 300 60 600 25 1,115,333.250 1.598
24 4 300 60 600 62.5 1,060,959.380 2.839
25 4 300 60 1200 10 3,177,877.750 4.865
26 4 300 60 1200 25 1,652,163.380 1.871
27 4 300 60 1200 62.5 1,384,964.880 4.343
28 4 600 20 300 10 2,172,480.250 15.276
29 4 600 20 300 25 1,387,468.250 10.990
30 4 600 20 300 62.5 1,346,308.750 16.054
31 4 600 20 600 10 3,773,232.000 36.243
32 4 600 20 600 25 1,966,396.380 10.885
33 4 600 20 600 62.5 1,717,856.500 22.500
34 4 600 20 1200 10 6,935,220.500 64.000
35 4 600 20 1200 25 2,998,268.250 11.930
36 4 600 20 1200 62.5 2,317,366.750 23.623
37 4 600 40 300 10 2,076,626.500 10.122
38 4 600 40 300 25 1,384,667.880 10.246
39 4 600 40 300 62.5 1,378,016.630 15.173
40 4 600 40 600 10 3,524,143.250 28.207
41 4 600 40 600 25 1,939,269.500 10.994
42 4 600 40 600 62.5 1,788,635.000 21.939
43 4 600 40 1200 10 6,460,248.000 53.785
44 4 600 40 1200 25 2,919,466.500 14.622
45 4 600 40 1200 62.5 2,265,393.000 25.986
46 4 600 60 300 10 2,458,591.250 23.408
47 4 600 60 300 25 1,413,733.630 10.583
48 4 600 60 300 62.5 1,317,975.880 16.138
49 4 600 60 600 10 4,335,933.500 47.505
50 4 600 60 600 25 2,081,489.380 10.389

178

EX
of

Types
of

Locations
Seed # R_Hubcost R_Cap Obj Time

51 4 600 60 600 62.5 1,720,150.880 20.353
52 4 600 60 1200 10 8,169,460.000 88.887
53 4 600 60 1200 25 3,274,164.750 18.767
54 4 600 60 1200 62.5 2,270,872.250 19.893
55 4 1200 20 300 10 3,932,258.000 189.136
56 4 1200 20 300 25 2,281,679.500 71.539
57 4 1200 20 300 62.5 2,179,808.000 122.751
58 4 1200 20 600 10 7,016,587.500 549.429
59 4 1200 20 600 25 3,285,557.250 85.235
60 4 1200 20 600 62.5 2,798,644.000 163.030
61 4 1200 20 1200 10 12,923,384.000 1,015.197
62 4 1200 20 1200 25 5,136,709.000 139.627
63 4 1200 20 1200 62.5 3,647,079.750 168.660
64 4 1200 40 300 10 4,345,223.500 250.551
65 4 1200 40 300 25 2,403,136.250 74.700
66 4 1200 40 300 62.5 2,234,461.500 121.361
67 4 1200 40 600 10 7,777,016.000 597.769
68 4 1200 40 600 25 3,549,647.000 85.036
69 4 1200 40 600 62.5 2,929,204.750 165.108
70 4 1200 40 1200 10 14,662,852.000 1,089.421
71 4 1200 40 1200 25 5,569,483.500 162.416
72 4 1200 40 1200 62.5 3,825,088.500 153.360
73 4 1200 60 300 10 4,089,390.250 204.641
74 4 1200 60 300 25 2,435,587.500 80.682
75 4 1200 60 300 62.5 2,303,455.250 135.860
76 4 1200 60 600 10 7,232,989.500 460.928
77 4 1200 60 600 25 3,536,960.750 102.001
78 4 1200 60 600 62.5 2,873,689.000 157.488
79 4 1200 60 1200 10 13,500,923.000 854.174
80 4 1200 60 1200 25 5,517,274.000 161.292
81 4 1200 60 1200 62.5 3,708,450.500 157.422
82 8 300 20 300 10 1,412,112.380 1.598
83 8 300 20 300 25 1,077,365.500 1.324
84 8 300 20 300 62.5 1,070,129.500 1.565
85 8 300 20 600 10 2,306,782.000 2.510
86 8 300 20 600 25 1,503,237.130 1.667
87 8 300 20 600 62.5 1,437,789.130 2.310
88 8 300 20 1200 10 4,028,794.250 4.364
89 8 300 20 1200 25 2,094,002.130 1.738
90 8 300 20 1200 62.5 1,867,862.130 3.462
91 8 300 40 300 10 1,236,389.130 1.096
92 8 300 40 300 25 1,067,265.000 1.435
93 8 300 40 300 62.5 1,066,851.500 1.667
94 8 300 40 600 10 1,896,165.130 1.661
95 8 300 40 600 25 1,444,201.750 1.980
96 8 300 40 600 62.5 1,426,330.750 2.349
97 8 300 40 1200 10 3,161,869.500 2.518
98 8 300 40 1200 25 2,000,696.630 2.162
99 8 300 40 1200 62.5 1,848,918.130 4.147
100 8 300 60 300 10 1,145,600.000 1.262

179

EX
of

Types
of

Locations
Seed # R_Hubcost R_Cap Obj Time

101 8 300 60 300 25 988,155.940 1.601
102 8 300 60 300 62.5 979,013.250 1.765
103 8 300 60 600 10 1,765,742.880 1.601
104 8 300 60 600 25 1,346,354.250 2.062
105 8 300 60 600 62.5 1,317,505.250 2.467
106 8 300 60 1200 10 2,879,823.250 2.318
107 8 300 60 1200 25 1,820,087.880 2.229
108 8 300 60 1200 62.5 1,715,591.130 4.117
109 8 600 20 300 10 2,415,228.750 9.607
110 8 600 20 300 25 1,793,424.630 10.807
111 8 600 20 300 62.5 1,770,259.130 12.234
112 8 600 20 600 10 3,891,424.750 17.776
113 8 600 20 600 25 2,421,775.500 11.855
114 8 600 20 600 62.5 2,327,846.750 19.771
115 8 600 20 1200 10 6,770,243.500 33.581
116 8 600 20 1200 25 3,420,722.000 10.675
117 8 600 20 1200 62.5 3,070,621.500 25.036
118 8 600 40 300 10 2,374,296.250 12.246
119 8 600 40 300 25 1,734,667.750 10.131
120 8 600 40 300 62.5 1,712,053.630 12.369
121 8 600 40 600 10 3,852,031.500 23.958
122 8 600 40 600 25 2,357,085.250 10.244
123 8 600 40 600 62.5 2,270,525.000 16.309
124 8 600 40 1200 10 6,677,481.500 41.213
125 8 600 40 1200 25 3,361,483.000 11.614
126 8 600 40 1200 62.5 2,896,619.000 22.919
127 8 600 60 300 10 2,478,868.250 10.744
128 8 600 60 300 25 1,733,622.000 11.633
129 8 600 60 300 62.5 1,700,210.500 13.537
130 8 600 60 600 10 4,091,903.000 25.565
131 8 600 60 600 25 2,364,766.500 10.342
132 8 600 60 600 62.5 2,216,887.000 18.884
133 8 600 60 1200 10 7,357,203.500 45.831
134 8 600 60 1200 25 3,490,734.750 10.707
135 8 600 60 1200 62.5 2,902,789.750 23.011
136 8 1200 20 300 10 4,148,498.500 81.936
137 8 1200 20 300 25 2,869,331.750 76.203
138 8 1200 20 300 62.5 2,819,495.250 97.658
139 8 1200 20 600 10 6,860,668.500 199.323
140 8 1200 20 600 25 3,943,211.750 72.759
141 8 1200 20 600 62.5 3,684,010.250 135.968
142 8 1200 20 1200 10 12,343,418.000 460.461
143 8 1200 20 1200 25 5,739,109.000 82.128
144 8 1200 20 1200 62.5 4,840,069.000 173.298
145 8 1200 40 300 10 4,049,488.000 113.631
146 8 1200 40 300 25 2,398,389.250 83.222
147 8 1200 40 300 62.5 2,846,925.000 101.661
148 8 1200 40 600 10 6,720,026.000 167.110
149 8 1200 40 600 25 3,922,173.250 69.803
150 8 1200 40 600 62.5 3,735,393.250 136.463

180

EX
of

Types
of

Locations
Seed # R_Hubcost R_Cap Obj Time

151 8 1200 40 1200 10 11,882,505.000 453.498
152 8 1200 40 1200 25 5,728,484.000 91.826
153 8 1200 40 1200 62.5 4,796,652.000 182.439
154 8 1200 60 300 10 4,122,614.000 103.129
155 8 1200 60 300 25 2,941,193.750 82.884
156 8 1200 60 300 62.5 2,899,947.750 90.330
157 8 1200 60 600 10 6,762,479.500 229.744
158 8 1200 60 600 25 4,033,366.000 78.466
159 8 1200 60 600 62.5 3,822,913.750 153.579
160 8 1200 60 1200 10 12,118,775.000 485.505
161 8 1200 60 1200 25 5,907,992.000 95.687
162 8 1200 60 1200 62.5 4,879,494.000 185.915
163 12 300 20 300 10 1,422,569.130 1.299
164 12 300 20 300 25 1,174,683.880 1.398
165 12 300 20 300 62.5 1,169,707.130 1.686
166 12 300 20 600 10 2,232,768.250 1.922
167 12 300 20 600 25 1,556,225.880 1.708
168 12 300 20 600 62.5 1,521,768.750 2.251
169 12 300 20 1200 10 3,679,094.750 3.749
170 12 300 20 1200 25 2,119,424.750 2.143
171 12 300 20 1200 62.5 1,972,698.250 3.186
172 12 300 40 300 10 1,245,022.880 1.208
173 12 300 40 300 25 1,170,244.880 1.358
174 12 300 40 300 62.5 1,170,244.880 1.533
175 12 300 40 600 10 1,903,513.880 1.531
176 12 300 40 600 25 1,573,169.380 2.102
177 12 300 40 600 62.5 1,553,434.500 2.287
178 12 300 40 1200 10 3,056,058.000 2.316
179 12 300 40 1200 25 2,111,616.250 2.227
180 12 300 40 1200 62.5 2,066,684.130 3.696
181 12 300 60 300 10 1,267,594.500 1.294
182 12 300 60 300 25 1,107,888.750 1.462
183 12 300 60 300 62.5 1,107,888.750 1.995
184 12 300 60 600 10 1,935,130.130 1.919
185 12 300 60 600 25 1,461,961.880 1.976
186 12 300 60 600 62.5 1,461,961.880 2.229
187 12 300 60 1200 10 3,011,663.750 2.479
188 12 300 60 1200 25 1,934,336.880 2.188
189 12 300 60 1200 62.5 1,902,988.250 3.216
190 12 600 20 300 10 2,210,059.500 9.929
191 12 600 20 300 25 1,863,698.630 12.480
192 12 600 20 300 62.5 1,862,705.130 12.959
193 12 600 20 600 10 3,515,978.250 13.147
194 12 600 20 600 25 2,522,754.000 14.491
195 12 600 20 600 62.5 2,420,109.500 19.129
196 12 600 20 1200 10 5,794,048.500 30.682
197 12 600 20 1200 25 3,485,482.500 15.286
198 12 600 20 1200 62.5 3,098,109.750 28.280
199 12 600 40 300 10 2,419,706.000 11.692
200 12 600 40 300 25 1,886,373.130 10.892

181

EX
of

Types
of

Locations
Seed # R_Hubcost R_Cap Obj Time

201 12 600 40 300 62.5 1,869,586.500 11.985
202 12 600 40 600 10 3,770,711.250 17.024
203 12 600 40 600 25 2,521,190.500 11.829
204 12 600 40 600 62.5 2,434,287.500 15.742
205 12 600 40 1200 10 6,424,507.500 32.766
206 12 600 40 1200 25 3,484,714.500 12.640
207 12 600 40 1200 62.5 3,239,986.000 25.432
208 12 600 60 300 10 2,510,865.000 11.455
209 12 600 60 300 25 1,901,206.500 13.333
210 12 600 60 300 62.5 1,867,358.500 14.326
211 12 600 60 600 10 4,047,076.500 19.166
212 12 600 60 600 25 2,577,008.000 13.522
213 12 600 60 600 62.5 2,430,793.750 19.647
214 12 600 60 1200 10 6,881,237.500 32.528
215 12 600 60 1200 25 3,649,370.000 13.178
216 12 600 60 1200 62.5 3,167,485.250 26.571
217 12 1200 20 300 10 3,937,353.750 122.024
218 12 1200 20 300 25 3,036,538.500 84.433
219 12 1200 20 300 62.5 3,023,474.500 97.986
220 12 1200 20 600 10 6,335,782.000 126.737
221 12 1200 20 600 25 4,074,255.500 86.526
222 12 1200 20 600 62.5 3,934,305.000 147.214
223 12 1200 20 1200 10 10,827,004.000 384.420
224 12 1200 20 1200 25 5,742,784.000 83.003
225 12 1200 20 1200 62.5 5,154,536.500 202.710
226 12 1200 40 300 10 3,897,252.750 62.880
227 12 1200 40 300 25 3,124,812.250 84.982
228 12 1200 40 300 62.5 3,112,074.250 94.947
229 12 1200 40 600 10 6,288,969.500 141.249
230 12 1200 40 600 25 4,156,829.750 90.287
231 12 1200 40 600 62.5 4,042,869.500 134.463
232 12 1200 40 1200 10 10,735,915.000 344.684
233 12 1200 40 1200 25 5,742,784.000 87.381
234 12 1200 40 1200 62.5 5,208,971.500 207.083
235 12 1200 60 300 10 3,971,105.500 63.806
236 12 1200 60 300 25 3,243,790.500 82.666
237 12 1200 60 300 62.5 3,221,854.000 94.919
238 12 1200 60 600 10 6,410,867.500 103.092
239 12 1200 60 600 25 4,302,685.500 88.989
240 12 1200 60 600 62.5 4,185,199.750 146.470
241 12 1200 60 1200 10 10,853,386.000 287.913
242 12 1200 60 1200 25 6,009,011.000 98.122
243 12 1200 60 1200 62.5 5,448,110.500 217.851

182

APPENDIX B

Tukey Tests on Four Factors versus Algorithm Time in Chapter 4

183

Tukey 95.0% Simultaneous Confidence Intervals

Response Variable log(time)

All Pairwise Comparisons among Levels of Type

Type = 4 subtracted from:

Type Lower Center Upper ---------+---------+---------+-------

 8 -0.1651 -0.1136 -0.06218 (--------*--------)

12 -0.1769 -0.1255 -0.07400 (-------*--------)

 ---------+---------+---------+-------

 -0.120 -0.060 0.000

Type = 8 subtracted from:

Type Lower Center Upper ---------+---------+---------+-------

12 -0.06328 -0.01182 0.03964 (--------*--------)

 ---------+---------+---------+-------

 -0.120 -0.060 0.000

Tukey Simultaneous Tests

Response Variable log(time)

All Pairwise Comparisons among Levels of Type

Type = 4 subtracted from:

 Difference SE of Adjusted

Type of Means Difference T-Value P-Value

 8 -0.1136 0.02179 -5.215 0.0000

12 -0.1255 0.02179 -5.758 0.0000

Type = 8 subtracted from:

 Difference SE of Adjusted

Type of Means Difference T-Value P-Value

12 -0.01182 0.02179 -0.5425 0.8504

184

Tukey 95.0% Simultaneous Confidence Intervals

Response Variable log(time)

All Pairwise Comparisons among Levels of Location

Location = 300 subtracted from:

Location Lower Center Upper --+---------+---------+---------+----

 600 0.8549 0.9063 0.9578 (-*-)

1200 1.7816 1.8331 1.8846 (-*-)

 --+---------+---------+---------+----

 0.90 1.20 1.50 1.80

Location = 600 subtracted from:

Location Lower Center Upper --+---------+---------+---------+----

1200 0.8753 0.9268 0.9782 (-*-)

 --+---------+---------+---------+----

 0.90 1.20 1.50 1.80

Tukey Simultaneous Tests

Response Variable log(time)

All Pairwise Comparisons among Levels of Location

Location = 300 subtracted from:

 Difference SE of Adjusted

Location of Means Difference T-Value P-Value

 600 0.9063 0.02179 41.59 0.0000

1200 1.8331 0.02179 84.13 0.0000

Location = 600 subtracted from:

 Difference SE of Adjusted

Location of Means Difference T-Value P-Value

1200 0.9268 0.02179 42.53 0.0000

185

Tukey 95.0% Simultaneous Confidence Intervals

Response Variable log(time)

All Pairwise Comparisons among Levels of R_Capacity

R_Capacity = 10.0 subtracted from:

R_Capacity Lower Center Upper +---------+---------+---------+------

25.0 -0.3245 -0.2730 -0.2216 (--*--)

62.5 -0.1374 -0.0860 -0.0345 (---*--)

 +---------+---------+---------+------

 -0.32 -0.16 0.00 0.16

R_Capacity = 25.0 subtracted from:

R_Capacity Lower Center Upper +---------+---------+---------+------

62.5 0.1356 0.1871 0.2385 (---*--)

 +---------+---------+---------+------

 -0.32 -0.16 0.00 0.16

Tukey Simultaneous Tests

Response Variable log(time)

All Pairwise Comparisons among Levels of R_Capacity

R_Capacity = 10.0 subtracted from:

 Difference SE of Adjusted

R_Capacity of Means Difference T-Value P-Value

25.0 -0.2730 0.02179 -12.53 0.0000

62.5 -0.0860 0.02179 -3.95 0.0003

R_Capacity = 25.0 subtracted from:

 Difference SE of Adjusted

R_Capacity of Means Difference T-Value P-Value

62.5 0.1871 0.02179 8.584 0.0000

186

Tukey 95.0% Simultaneous Confidence Intervals

Response Variable log(time)

All Pairwise Comparisons among Levels of R_HubCost

R_HubCost = 300 subtracted from:

R_HubCost Lower Center Upper --------+---------+---------+--------

 600 0.09901 0.1505 0.2019 (------*-----)

1200 0.25983 0.3113 0.3628 (------*-----)

 --------+---------+---------+--------

 0.160 0.240 0.320

R_HubCost = 600 subtracted from:

R_HubCost Lower Center Upper --------+---------+---------+--------

1200 0.1094 0.1608 0.2123 (-----*------)

 --------+---------+---------+--------

 0.160 0.240 0.320

Tukey Simultaneous Tests

Response Variable log(time)

All Pairwise Comparisons among Levels of R_HubCost

R_HubCost = 300 subtracted from:

 Difference SE of Adjusted

R_HubCost of Means Difference T-Value P-Value

 600 0.1505 0.02179 6.906 0.0000

1200 0.3113 0.02179 14.286 0.0000

R_HubCost = 600 subtracted from:

 Difference SE of Adjusted

R_HubCost of Means Difference T-Value P-Value

1200 0.1608 0.02179 7.380 0.0000

187

APPENDIX C

Original Data on Experimental Factors versus Solution Gap in Chapter 4

188

EX
of

Locations
Seed

R_Hub

cost
R_Cap

Algorithm Lingo
Solution

Gap
(%)

Logarithm
Time

Obj Time Obj
Better
Time

Best
Time

Algori
Time

Lingo
Better
Time

1 30 20 300 10 207764.40 0.016 207764.40 3 3 0.00% 3.73 6.00

2 30 20 300 15 199699.50 0.009 199078.30 3 3 0.31% 3.48 6.00

3 30 20 300 20 199699.50 0.008 199078.30 3 3 0.31% 3.43 6.00

4 30 20 600 10 318907.19 0.008 310236.60 7 11 2.79% 2.86 5.80

5 30 20 600 15 274327.31 0.016 273300.80 2 2 0.38% 3.90 6.00

6 30 20 600 20 274327.31 0.014 272202.00 3 3 0.78% 3.67 6.00

7 30 20 1200 10 458048.81 0.023 449142.50 5 5 1.98% 3.66 6.00

8 30 20 1200 15 398911.88 0.057 398549.20 5 5 0.09% 4.06 6.00

9 30 20 1200 20 382738.41 0.007 380205.00 3 3 0.67% 3.37 6.00

10 30 40 300 10 238876.63 0.170 237177.40 3 3 0.72% 4.75 6.00

11 30 40 300 15 228264.25 0.006 227911.40 3 3 0.15% 3.30 6.00

12 30 40 300 20 228264.25 0.006 227911.40 2 2 0.15% 3.48 6.00

13 30 40 600 10 364078.88 0.007 346693.20 7 7 5.01% 3.00 6.00

14 30 40 600 15 330004.41 0.007 327386.10 2 2 0.80% 3.54 6.00

15 30 40 600 20 330004.41 0.007 322119.90 2 2 2.45% 3.54 6.00

16 30 40 1200 10 530525.19 0.006 514963.10 8 17 3.02% 2.55 5.67

17 30 40 1200 15 480897.69 0.007 467389.50 5 6 2.89% 3.07 5.92

18 30 40 1200 20 455894.63 0.005 449158.80 2 2 1.50% 3.40 6.00

19 30 60 300 10 197417.13 0.008 196130.90 2 2 0.66% 3.60 6.00

20 30 60 300 15 195397.70 0.018 195397.70 3 3 0.00% 3.78 6.00

21 30 60 300 20 195397.70 0.018 195397.70 3 3 0.00% 3.78 6.00

22 30 60 600 10 294470.84 0.061 286790.00 3 3 2.68% 4.31 6.00

23 30 60 600 15 280128.88 0.014 279095.00 3 3 0.37% 3.67 6.00

24 30 60 600 20 275570.00 0.014 275570.00 3 3 0.00% 3.67 6.00

25 30 60 1200 10 432310.81 0.197 424630.00 3 4 1.81% 4.69 5.88

26 30 60 1200 15 396462.63 0.011 395394.00 3 3 0.27% 3.56 6.00

27 30 60 1200 20 388577.00 0.012 388577.00 2 2 0.00% 3.78 6.00

28 60 20 300 10 330258.63 0.058 325200.00 8 8 1.56% 3.86 6.00

29 60 20 300 15 325320.63 0.031 320169.00 7 7 1.61% 3.65 6.00

30 60 20 300 20 321592.75 0.024 317553.00 6 6 1.27% 3.60 6.00

31 60 20 600 10 464595.47 0.055 461580.00 20 25 0.65% 3.34 5.90

32 60 20 600 15 446895.00 0.030 430841.00 19 19 3.73% 3.20 6.00

33 60 20 600 20 448773.69 0.027 426348.00 5 5 5.26% 3.73 6.00

34 60 20 1200 10 756541.69 0.065 711437.00 26 628 6.34% 2.01 4.62

35 60 20 1200 15 613135.63 0.016 599092.00 16 16 2.34% 3.00 6.00

36 60 20 1200 20 583096.44 0.022 583097.00 6 6 0.00% 3.56 6.00

37 60 40 300 10 365384.06 0.197 361739.00 14 16 1.01% 4.09 5.94

38 60 40 300 15 375636.22 0.028 374489.00 10 10 0.31% 3.45 6.00

39 60 40 300 20 363073.09 0.037 353437.00 11 11 2.73% 3.53 6.00

40 60 40 600 10 576982.94 0.059 552586.00 21 27 4.42% 3.34 5.89

189

EX
of

Locations
Seed

R_Hub

cost
R_Cap

Algorithm Lingo
Solution

Gap
(%)

Logarithm
Time

Obj Time Obj
Better
Time

Best
Time

Algori
Time

Lingo
Better
Time

41 60 40 600 15 536698.63 0.027 525667.00 25 40 2.10% 2.83 5.80

42 60 40 600 20 490258.28 0.022 475974.00 13 13 3.00% 3.23 6.00

43 60 40 1200 10 909921.50 0.037 859141.00 24 94 5.91% 2.60 5.41

44 60 40 1200 15 823938.75 0.024 760436.00 31 978 8.35% 1.39 4.50

45 60 40 1200 20 706180.56 0.024 683344.00 19 57 3.34% 2.62 5.52

46 60 60 300 10 342885.03 0.030 340003.00 8 8 0.85% 3.57 6.00

47 60 60 300 15 332860.00 0.023 332860.00 6 6 0.00% 3.58 6.00

48 60 60 300 20 332860.00 0.025 332860.00 6 6 0.00% 3.62 6.00

49 60 60 600 10 513624.00 0.026 509005.00 15 16 0.91% 3.21 5.97

50 60 60 600 15 479004.03 0.023 472620.00 13 15 1.35% 3.19 5.94

51 60 60 600 20 457316.47 0.021 456422.00 6 6 0.20% 3.54 6.00

52 60 60 1200 10 815156.06 0.024 775420.00 24 63 5.12% 2.58 5.58

53 60 60 1200 15 660283.13 0.025 648452.00 13 21 1.82% 3.08 5.79

54 60 60 1200 20 640477.00 0.029 625789.00 17 23 2.35% 3.10 5.87

55 90 20 300 10 519639.53 0.362 502987.00 65 156 3.31% 3.37 5.62

56 90 20 300 15 471392.13 0.057 460477.00 24 26 2.37% 3.34 5.97

57 90 20 300 20 462598.00 0.055 453272.00 13 13 2.06% 3.63 6.00

58 90 20 600 10 731492.50 0.229 712114.00 95 1286 2.72% 2.25 4.87

59 90 20 600 15 617615.81 0.043 612819.00 40 48 0.78% 2.95 5.92

60 90 20 600 20 597467.13 0.044 590773.00 14 14 1.13% 3.50 6.00

61 90 20 1200 10 1111459.38 0.294 1071939.00 110 106885 3.69% 0.44 3.01

62 90 20 1200 15 874570.38 0.058 854487.10 68 109 2.35% 2.73 5.80

63 90 20 1200 20 825661.63 0.051 804843.80 28 34 2.59% 3.18 5.92

64 90 40 300 10 531687.13 0.163 512050.00 48 1024 3.84% 2.20 4.67

65 90 40 300 15 451588.53 0.275 445184.10 50 54 1.44% 3.71 5.97

66 90 40 300 20 451345.53 0.066 441181.10 14 14 2.30% 3.67 6.00

67 90 40 600 10 815581.75 0.452 797926.00 70 14088 2.21% 1.51 3.70

68 90 40 600 15 673235.19 0.165 642335.80 89 306 4.81% 2.73 5.46

69 90 40 600 20 617103.38 0.048 608470.40 33 39 1.42% 3.09 5.93

70 90 40 1200 10 1324506.75 0.181 1211310.00 97 97098 9.34% 0.27 3.00

71 90 40 1200 15 1020712.81 0.048 954932.50 108 9462 6.89% 0.71 4.06

72 90 40 1200 20 856337.50 0.043 852685.00 36 66 0.43% 2.81 5.74

73 90 60 300 10 553407.63 0.215 521291.00 66 357 6.16% 2.78 5.27

74 90 60 300 15 449228.59 0.100 448152.30 26 29 0.24% 3.54 5.95

75 90 60 300 20 448499.31 0.101 443178.30 13 13 1.20% 3.89 6.00

76 90 60 600 10 834707.06 0.133 784363.70 82 555 6.42% 2.38 5.17

77 90 60 600 15 645247.00 0.089 640636.90 24 72 0.72% 3.09 5.52

78 90 60 600 20 613902.44 0.040 611963.50 13 13 0.32% 3.49 6.00

79 90 60 1200 10 1341766.25 0.286 1231652.00 119 38496 8.94% 0.87 3.49

80 90 60 1200 15 983864.06 0.039 962923.10 31 120 2.17% 2.51 5.41

81 90 60 1200 20 899719.44 0.046 882357.90 41 76 1.97% 2.78 5.73

190

APPENDIX D

Tukey Test on Three Factors versus Solution Gap in Chapter 4

191

Tukey 95.0% Simultaneous Confidence Intervals

Response Variable solution gap

All Pairwise Comparisons among Levels of Location

Location = 30 subtracted from:

Location Lower Center Upper ------+---------+---------+---------+

60 0.002312 0.01361 0.02490 (-----------*----------)

90 0.007975 0.01927 0.03057 (----------*-----------)

 ------+---------+---------+---------+

 0.000 0.010 0.020 0.030

Location = 60 subtracted from:

Location Lower Center Upper ------+---------+---------+---------+

90 -0.005632 0.005663 0.01696 (-----------*----------)

 ------+---------+---------+---------+

 0.000 0.010 0.020 0.030

Tukey Simultaneous Tests

Response Variable solution gap

All Pairwise Comparisons among Levels of Location

Location = 30 subtracted from:

 Difference SE of Adjusted

Location of Means Difference T-Value P-Value

60 0.01361 0.004726 2.879 0.0143

90 0.01927 0.004726 4.078 0.0003

Location = 60 subtracted from:

 Difference SE of Adjusted

Location of Means Difference T-Value P-Value

90 0.005663 0.004726 1.198 0.4580

192

Tukey 95.0% Simultaneous Confidence Intervals

Response Variable solution gap

All Pairwise Comparisons among Levels of R_Capacity

R_Capacity = 10 subtracted from:

R_Capacity Lower Center Upper

15 -0.02738 -0.01609 -0.004790

20 -0.03153 -0.02024 -0.008942

R_Capacity ------+---------+---------+---------+

15 (---------*--------)

20 (--------*---------)

 ------+---------+---------+---------+

 -0.024 -0.012 -0.000 0.012

R_Capacity = 15 subtracted from:

R_Capacity Lower Center Upper

20 -0.01545 -0.004152 0.007143

R_Capacity ------+---------+---------+---------+

20 (---------*--------)

 ------+---------+---------+---------+

 -0.024 -0.012 -0.000 0.012

Tukey Simultaneous Tests

Response Variable solution gap

All Pairwise Comparisons among Levels of R_Capacity

R_Capacity = 10 subtracted from:

 Difference SE of Adjusted

R_Capacity of Means Difference T-Value P-Value

15 -0.01609 0.004726 -3.404 0.0031

20 -0.02024 0.004726 -4.282 0.0002

R_Capacity = 15 subtracted from:

 Difference SE of Adjusted

R_Capacity of Means Difference T-Value P-Value

20 -0.004152 0.004726 -0.8785 0.6555

193

Tukey 95.0% Simultaneous Confidence Intervals

Response Variable solution gap

All Pairwise Comparisons among Levels of R_HubCost

R_HubCost = 300 subtracted from:

R_HubCost Lower Center Upper ---+---------+---------+---------+---

 600 -0.002832 0.008463 0.01976 (----------*-----------)

1200 0.007820 0.019115 0.03041 (----------*----------)

 ---+---------+---------+---------+---

 0.000 0.010 0.020 0.030

R_HubCost = 600 subtracted from:

R_HubCost Lower Center Upper ---+---------+---------+---------+---

1200 -0.000643 0.01065 0.02195 (-----------*----------)

 ---+---------+---------+---------+---

 0.000 0.010 0.020 0.030

Tukey Simultaneous Tests

Response Variable solution gap

All Pairwise Comparisons among Levels of R_HubCost

R_HubCost = 300 subtracted from:

 Difference SE of Adjusted

R_HubCost of Means Difference T-Value P-Value

 600 0.008463 0.004726 1.791 0.1798

1200 0.019115 0.004726 4.045 0.0004

R_HubCost = 600 subtracted from:

 Difference SE of Adjusted

R_HubCost of Means Difference T-Value P-Value

1200 0.01065 0.004726 2.254 0.0689

194

APPENDIX E

Original Data of Inter-pool Moves and Asset Replacement

on Experimental Factors versus Solution Gap in Chapter 5

195

EX
of

Types

of
Ages # of

Pools
Seed

Algorithm Branch and Bound
Solution
Gap(%)

of
Integer

Var

of
Constraints# of

Times
Obj Time Obj Time

1 4 4 10 20 166177122 0.102 161768300 2 2.73% 7200 801

2 4 4 10 40 174664867 0.094 172059700 3 1.51% 7200 801

3 4 4 10 60 151305511 0.109 146165300 2 3.52% 7200 801

4 4 4 20 20 321566665 0.203 311883400 18 3.10% 27200 1601

5 4 4 20 40 317531012 0.203 309427800 16 2.62% 27200 1601

6 4 4 20 60 359055254 0.188 351431600 16 2.17% 27200 1601

7 4 4 30 20 486966866 0.312 472834500 51 2.99% 60000 2401

8 4 4 30 40 452234865 0.296 438719200 50 3.08% 60000 2401

9 4 4 30 60 472342392 0.312 456040400 51 3.57% 60000 2401

10 4 5 10 20 241868544 0.123 238688700 4 1.33% 11200 1201

11 4 5 10 40 237714073 0.125 235078400 4 1.12% 11200 1201

12 4 5 10 60 222220511 0.109 219165100 4 1.39% 11200 1201

13 4 5 20 20 443701870 0.249 437366400 31 1.45% 42400 2401

14 4 5 20 40 488453418 0.250 481641000 31 1.41% 42400 2401

15 4 5 20 60 412053386 0.249 403249400 31 2.18% 42400 2401

16 4 5 30 20 655410771 0.390 646589800 102 1.36% 93600 3601

17 4 5 30 40 686451394 0.375 678531100 103 1.17% 93600 3601

18 4 5 30 60 676298723 0.343 669210600 102 1.06% 93600 3601

19 4 6 10 20 305800201 0.125 304209700 7 0.52% 16080 1681

20 4 6 10 40 253983859 0.156 250996500 8 1.19% 16080 1681

21 4 6 10 60 253037981 0.185 250595700 7 0.97% 16080 1681

22 4 6 20 20 592708572 0.281 588150900 54 0.77% 60960 3361

23 4 6 20 40 581302890 0.265 577255700 55 0.70% 60960 3361

24 4 6 20 60 531311832 0.296 527780200 55 0.67% 60960 3361

25 4 6 30 20 822403811 0.421 814782200 182 0.94% 134640 5041

26 4 6 30 40 807894151 0.452 800560700 181 0.92% 134640 5041

27 4 6 30 60 890299895 0.452 883071200 180 0.82% 134640 5041

28 5 4 10 20 329025480 0.109 321903300 4 2.21% 9000 1001

29 5 4 10 40 370318477 0.131 361880400 4 2.33% 9000 1001

30 5 4 10 60 278725225 0.141 256276000 3 8.76% 9000 1001

31 5 4 20 20 541241862 0.266 514730000 25 5.15% 34000 2001

32 5 4 20 40 632329782 0.234 619217600 25 2.12% 34000 2001

33 5 4 20 60 608190350 0.250 588864900 25 3.28% 34000 2001

34 5 4 30 20 894654562 0.390 859611300 80 4.08% 75000 3001

35 5 4 30 40 931933260 0.421 897943000 80 3.79% 75000 3001

36 5 4 30 60 1004438577 0.390 976621000 80 2.85% 75000 3001

37 5 5 10 20 451089305 0.141 444283900 6 1.53% 14000 1501

38 5 5 10 40 416242556 0.182 409694400 7 1.60% 14000 1501

39 5 5 10 60 417904645 0.141 412482200 7 1.31% 14000 1501

40 5 5 20 20 836824263 0.296 824138500 49 1.54% 53000 3001

196

EX
of

Types

of
Ages # of

Pools
Seed

Algorithm Branch and Bound
Solution
Gap(%)

of
Integer

Var

of
Constraints# of

Times
Obj Time Obj Time

41 5 5 20 40 812180370 0.312 800301400 48 1.48% 53000 3001

42 5 5 20 60 873690801 0.297 861711900 49 1.39% 53000 3001

43 5 5 30 20 1173578267 0.484 1157793000 162 1.36% 117000 4501

44 5 5 30 40 1299958359 0.483 1279813000 163 1.57% 117000 4501

45 5 5 30 60 1291660430 0.468 1278317000 163 1.04% 117000 4501

46 5 6 10 20 525106422 0.172 517481700 12 1.47% 20100 2101

47 5 6 10 40 469905923 0.187 467213900 11 0.58% 20100 2101

48 5 6 10 60 584828000 0.156 580382300 12 0.77% 20100 2101

49 5 6 20 20 966982224 0.359 953773700 84 1.38% 76200 4201

50 5 6 20 40 1030603578 0.359 1019497000 84 1.09% 76200 4201

51 5 6 20 60 1007403852 0.343 1000459000 84 0.69% 76200 4201

52 5 6 30 20 1520003143 0.577 1505092000 278 0.99% 168300 6301

53 5 6 30 40 1634206173 0.546 1625960000 280 0.51% 168300 6301

54 5 6 30 60 1423337738 0.577 1409902000 280 0.95% 168300 6301

55 6 4 10 20 624933770 0.138 608119400 5 2.76% 10800 1201

56 6 4 10 40 635881361 0.125 617064400 5 3.05% 10800 1201

57 6 4 10 60 587926156 0.150 574143600 6 2.40% 10800 1201

58 6 4 20 20 1061738503 0.280 1015290000 36 4.57% 40800 2401

59 6 4 20 40 1201476903 0.312 1147053000 36 4.74% 40800 2401

60 6 4 20 60 1154576744 0.312 1129473000 37 2.22% 40800 2401

61 6 4 30 20 1755402235 0.452 1698052000 119 3.38% 90000 3601

62 6 4 30 40 1724215748 0.436 1657628000 114 4.02% 90000 3601

63 6 4 30 60 1730211315 0.500 1676334000 115 3.21% 90000 3601

64 6 5 10 20 749002718 0.193 733473500 10 2.12% 16800 1801

65 6 5 10 40 863929959 0.171 856548000 10 0.86% 16800 1801

66 6 5 10 60 769973159 0.202 757624600 9 1.63% 16800 1801

67 6 5 20 20 1476566889 0.358 1446483000 72 2.08% 63600 3601

68 6 5 20 40 1693027994 0.359 1672478000 73 1.23% 63600 3601

69 6 5 20 60 1594997420 0.359 1577586000 71 1.10% 63600 3601

70 6 5 30 20 2175945263 0.593 2114587000 236 2.90% 140400 5401

71 6 5 30 40 2093817719 0.561 2070215000 237 1.14% 140400 5401

72 6 5 30 60 2348164646 0.577 2316510000 239 1.37% 140400 5401

73 6 6 10 20 974665527 0.203 967520800 17 0.74% 24120 2521

74 6 6 10 40 1106199489 0.217 1100371000 17 0.53% 24120 2521

75 6 6 10 60 936282618 0.218 930710700 16 0.60% 24120 2521

76 6 6 20 20 2144049441 0.437 2126809000 127 0.81% 91440 5041

77 6 6 20 40 1760218799 0.437 1740476000 126 1.13% 91440 5041

78 6 6 20 60 2226210019 0.421 2215181000 122 0.50% 91440 5041

79 6 6 30 20 3222033315 0.671 3204782000 437 0.54% 201960 7561

80 6 6 30 40 2797069691 0.748 2774747000 430 0.80% 201960 7561

81 6 6 30 60 3055006311 0.718 3037558000 420 0.57% 201960 7561

197

APPENDIX F

Tukey Tests of Inter-pool Moves and Asset Replacement

on the Number of Car Ages/ Seasonal Periods versus Solution Gap in Chapter 5

198

Tukey 95.0% Simultaneous Confidence Intervals
Response Variable solution gap
All Pairwise Comparisons among Levels of age/season
age/season = 4 subtracted from:

age/season Lower Center Upper
5 -0.02426 -0.01869 -0.01312
6 -0.03078 -0.02521 -0.01964

age/season -+---------+---------+---------+-----
5 (----*-----)
6 (-----*----)
 -+---------+---------+---------+-----
 -0.030 -0.020 -0.010 0.000

age/season = 5 subtracted from:

age/season Lower Center Upper
6 -0.01209 -0.006514 -0.000943

age/season -+---------+---------+---------+-----
6 (----*-----)
 -+---------+---------+---------+-----
 -0.030 -0.020 -0.010 0.000

Tukey Simultaneous Tests
Response Variable solution gap
All Pairwise Comparisons among Levels of age/season
age/season = 4 subtracted from:

 Difference SE of Adjusted
age/season of Means Difference T-Value P-Value
5 -0.01869 0.002331 -8.02 0.0000
6 -0.02521 0.002331 -10.81 0.0000

age/season = 5 subtracted from:

 Difference SE of Adjusted
age/season of Means Difference T-Value P-Value
6 -0.006514 0.002331 -2.794 0.0180

199

APPENDIX G

Tukey Tests of Inter-pool Moves and Asset Replacement

on Three Factors versus Computing Time in Chapter 5

200

Tukey 95.0% Simultaneous Confidence Intervals
Response Variable algorithm time
All Pairwise Comparisons among Levels of Type
Type = 4 subtracted from:

Type Lower Center Upper ---------+---------+---------+-------
5 0.03816 0.06470 0.09125 (------*-------)
6 0.10245 0.12900 0.15555 (-------*------)
 ---------+---------+---------+-------
 0.070 0.105 0.140

Type = 5 subtracted from:

Type Lower Center Upper ---------+---------+---------+-------
6 0.03775 0.06430 0.09084 (------*-------)
 ---------+---------+---------+-------
 0.070 0.105 0.140

Tukey Simultaneous Tests
Response Variable algorithm time
All Pairwise Comparisons among Levels of Type
Type = 4 subtracted from:

 Difference SE of Adjusted
Type of Means Difference T-Value P-Value
5 0.06470 0.01111 5.826 0.0000
6 0.12900 0.01111 11.614 0.0000

Type = 5 subtracted from:

 Difference SE of Adjusted
Type of Means Difference T-Value P-Value
6 0.06430 0.01111 5.789 0.0000

201

Tukey 95.0% Simultaneous Confidence Intervals
Response Variable algorithm time
All Pairwise Comparisons among Levels of age/season
age/season = 4 subtracted from:

age/season Lower Center Upper -+---------+---------+---------+-----
5 0.03027 0.05681 0.08336 (------*-------)
6 0.08912 0.11567 0.14221 (-------*-------)
 -+---------+---------+---------+-----
 0.035 0.070 0.105 0.140

age/season = 5 subtracted from:

age/season Lower Center Upper -+---------+---------+---------+-----
6 0.03231 0.05885 0.08540 (-------*------)
 -+---------+---------+---------+-----
 0.035 0.070 0.105 0.140

Tukey Simultaneous Tests
Response Variable algorithm time
All Pairwise Comparisons among Levels of age/season
age/season = 4 subtracted from:

 Difference SE of Adjusted
age/season of Means Difference T-Value P-Value
5 0.05681 0.01111 5.115 0.0000
6 0.11567 0.01111 10.414 0.0000

age/season = 5 subtracted from:

 Difference SE of Adjusted
age/season of Means Difference T-Value P-Value
6 0.05885 0.01111 5.299 0.0000

202

Tukey 95.0% Simultaneous Confidence Intervals
Response Variable algorithm time
All Pairwise Comparisons among Levels of pool
pool = 10 subtracted from:

pool Lower Center Upper --+---------+---------+---------+----
20 0.1242 0.1507 0.1773 (---*--)
30 0.3009 0.3274 0.3540 (---*---)
 --+---------+---------+---------+----
 0.140 0.210 0.280 0.350

pool = 20 subtracted from:

pool Lower Center Upper --+---------+---------+---------+----
30 0.1501 0.1767 0.2032 (---*---)
 --+---------+---------+---------+----
 0.140 0.210 0.280 0.350

Tukey Simultaneous Tests
Response Variable algorithm time
All Pairwise Comparisons among Levels of pool
pool = 10 subtracted from:

 Difference SE of Adjusted
pool of Means Difference T-Value P-Value
20 0.1507 0.01111 13.57 0.0000
30 0.3274 0.01111 29.48 0.0000

pool = 20 subtracted from:

 Difference SE of Adjusted
pool of Means Difference T-Value P-Value
30 0.1767 0.01111 15.91 0.0000

203

Tukey 95.0% Simultaneous Confidence Intervals
Response Variable lingo time
All Pairwise Comparisons among Levels of Type
Type = 4 subtracted from:

Type Lower Center Upper -+---------+---------+---------+-----
5 -4.363 27.96 60.29 (---------*----------)
6 34.044 66.37 98.70 (----------*----------)
 -+---------+---------+---------+-----
 0 30 60 90

Type = 5 subtracted from:

Type Lower Center Upper -+---------+---------+---------+-----
6 6.081 38.41 70.73 (----------*----------)
 -+---------+---------+---------+-----
 0 30 60 90

Tukey Simultaneous Tests
Response Variable lingo time
All Pairwise Comparisons among Levels of Type
Type = 4 subtracted from:

 Difference SE of Adjusted
Type of Means Difference T-Value P-Value
5 27.96 13.53 2.067 0.1037
6 66.37 13.53 4.907 0.0000

Type = 5 subtracted from:

 Difference SE of Adjusted
Type of Means Difference T-Value P-Value
6 38.41 13.53 2.840 0.0159

204

Tukey 95.0% Simultaneous Confidence Intervals
Response Variable lingo time
All Pairwise Comparisons among Levels of age/season
age/season = 4 subtracted from:

age/season Lower Center Upper --------+---------+---------+--------
5 5.266 37.59 69.92 (--------*--------)
6 62.415 94.74 127.07 (--------*--------)
 --------+---------+---------+--------
 35 70 105

age/season = 5 subtracted from:

age/season Lower Center Upper --------+---------+---------+--------
6 24.82 57.15 89.47 (--------*---------)
 --------+---------+---------+--------
 35 70 105

Tukey Simultaneous Tests
Response Variable lingo time
All Pairwise Comparisons among Levels of age/season
age/season = 4 subtracted from:

 Difference SE of Adjusted
age/season of Means Difference T-Value P-Value
5 37.59 13.53 2.779 0.0187
6 94.74 13.53 7.005 0.0000

age/season = 5 subtracted from:

 Difference SE of Adjusted
age/season of Means Difference T-Value P-Value
6 57.15 13.53 4.225 0.0002

205

Tukey 95.0% Simultaneous Confidence Intervals
Response Variable lingo time
All Pairwise Comparisons among Levels of pool
pool = 10 subtracted from:

pool Lower Center Upper -------+---------+---------+---------
20 15.01 47.33 79.66 (----*----)
30 142.23 174.56 206.88 (----*----)
 -------+---------+---------+---------
 60 120 180

pool = 20 subtracted from:

pool Lower Center Upper -------+---------+---------+---------
30 94.90 127.2 159.5 (----*-----)
 -------+---------+---------+---------
 60 120 180

Tukey Simultaneous Tests
Response Variable lingo time
All Pairwise Comparisons among Levels of pool
pool = 10 subtracted from:

 Difference SE of Adjusted
pool of Means Difference T-Value P-Value
20 47.33 13.53 3.500 0.0023
30 174.56 13.53 12.906 0.0000

pool = 20 subtracted from:

 Difference SE of Adjusted
pool of Means Difference T-Value P-Value
30 127.2 13.53 9.406 0.0000

Vita

Gen-Han Wu

Gen-Han Wu was born on December 21, 1973, in Tainan, Taiwan, and lived there

until finishing high school. In June 1997, he received a B.S. degree in Industrial

Engineering from the National Tsing Hua University, Taiwan. He also obtained a M.S.

degree in Industrial Engineering and Engineering Management from the National Tsing

Hua University, Taiwan in July 2000. Then, he worked for Wistron Corporation as a

senior industrial engineer, conducting a series of desktop computer assemblies. In April

2002, he joined United Microelectronic Corp. (UMC) as a production controller, where

he conducted the capacity planning and new product implementation of a 300mm

semiconductor wafer foundry. In January 2004, Mr. Wu joined the Department of

Industrial and Manufacturing Engineering at the Pennsylvania State University as a Ph.D.

student. His research interests include facility location, applied operations research,

meta-heuristics, and service enterprise optimization. He has presented his research at the

PSU engineering research symposium, the MOPTA, the CORS-INFORMS, the

INFORMS Annual Meeting and served as a session chair at INFORMS Annual Meeting.

His full paper submitted to the APIEMS Conference in December, 2009 has been

accepted. He is also a member of INFORMS.

	coverpage1.pdf
	Abstract
	TABLEOFCONTENTS2
	acknowledgements
	Ch1toCh3
	Ch41
	Ch5
	Ch6
	Ch7
	REFERENCES
	appendix
	Vita

