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Abstract 

In the United States, consumption capacity in tourism is poised to grow significantly, 

and transportation is one of the essential elements in tourism. Airplanes and car rentals are 

the most typical modes of public travel. While air transport has earned significant scholarly 

attention and there exist abundant studies, fleet planning in the car rental business is 

discussed only minimally in operations research. Therefore, the purpose of this research is 

not only to build a thorough analytical framework for car rental fleet planning in different 

time phases, but also to develop practical algorithmic procedures. 

 In long-term planning, pool segmentation and hub selection are studied. All rental 

locations are split into different pools and a hub is selected within each pool. The proposed 

clustering-based iterative algorithm offers a reliable clustering method to quickly find an 

initial solution with a small solution gap and an iterative method to gradually approach a 

near-optimum. In mid-term planning, inter-pool moves and asset replacement are distributed 

among different pools based on the change of seasonal demand. Numerical results have 

shown that the best-improvement descent local search with the structure of better neighbors 

has very good performance and can obtain a satisfactory solution in an extremely short time. 

In short-term planning, vehicle imbalance at different locations forces empty vehicles to be 

redistributed. Daily planning of demand allocation and empty flow redistribution is addressed 

in the same pool. Car upgrade policy and service level are also considered. A first-

improvement descent local search is developed. Computing results demonstrate that the first-

improvement descent local search not only obtains relatively good solutions in quite a short 

time but also solves very large scale integer programming problems easily. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Research Origin and Motivation 

In the United States, consumption capacity in tourism is poised to grow significantly. 

Within tourism, transportation is one of the essential elements and the most typical modes of 

public travel are airplanes and car rentals. International and long-distance travel relies on 

airplanes, but post-flight excursions and trips depend upon car rentals.  

In order to rent a car, consumers pay a car rental company a fee to rent an automobile 

for a short period of time, ranging from a few hours to several weeks. A car rental company 

is comprised of numerous local branches located within airports or throughout urban areas. 

Not only do car rental companies offer online reservations, but also many on-line travel 

agencies including Priceline, Expedia, and others, offer price comparisons between 

companies. Car rental companies primarily serve customers who make excursions or 

business trips and they offer customers a choice of economy, compact, medium, or luxury 

cars to meet customers’ needs. Therefore, car rental companies presumably own a large 

number of fleet vehicles, and their rental facilities are widely distributed to easily schedule 

the vehicles. Moreover, car rental companies enter into agreements with vehicle 

manufacturers, including Ford, Chrysler, and Dodge, to purchase cars at extremely low prices. 

As such, larger car rental companies are generally more competitive than smaller ones 
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because these larger companies have more rental facilities, more fleet vehicles, and more car 

types, and therefore can decrease operational and maintenance costs and provide their 

customers a convenient, cheap, and diverse car rental environment. 

While air transport has earned significant scholarly attention (Doy and Pope 1985; 

Jenkins 1987; Marker 1991; Aykin 1995; Goodovitch 1996; Orlady 2002; Barnhart et al. 

2003; Janic 2003;Donohue 2006; Khoury et al. 2007; Baxley et al. 2008) and there exist 

abundant studies on the planning of flight routes (Yan and Young 1996; Rosenthal and 

Walsh 1996; Barnett 2000; Hsu and Wen 2000), flight schedules (Jarrah et al. 1993; Yan and 

Tu 1997; Cao and Kanafani 2000), flight fares(Chatwin 1996; Chatwin 1998; Nero and Black 

1998; Subramanian et al. 1999), and aviation rights(Stickle et al. 1991; Dodgson 1994), fleet 

planning in the car rental business(Pachon 2000) is discussed only minimally in operations 

research even though car rental fleet planning possesses economic value. Moreover, in the 

past, most of the effort in car rental fleet planning was devoted to small scale problems. 

Hence, more effort and research in car rental fleet planning is essential to continued 

improvement in the competitive environment. 

1.2  Research Purpose 

Since more effort in car rental fleet planning is essential, the purpose of this study is not 

only to build a thorough analytical framework for car rental fleet planning in different time 

phases, but also to develop practical algorithmic procedures, which can solve the problems in 

actual problem sizes. Ultimately, these practical algorithms will build a complete, rapid, and 

accurate plan of vehicle distribution in order to effectively reduce staff misjudgment and 

workloads in the car rental company. 
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1.3  Problem Statement 

In order to successfully manage the fleet planning of a large car rental company, the 

first step is to assess the market, so that the demand can be carefully evaluated and forecasted. 

The yearly demand and profit potential in different parts of the country help determine the 

locations of rental facilities as well as the number of initial fleet vehicles needed. Due to the 

large number of rental facilities, the locations are split into several pools and one location 

from each pool is designated as the hub of the pool. The hub is responsible for seasonal 

vehicle distribution, depreciation, and procurement among different pools.  To manage rental 

facilities within the same region, car allocation and empty vehicle redistribution need to be 

considered. Moreover, when the reserved car type is not available, it needs to be upgraded 

without an additional cost to the customer. Since a car rental company charges for the 

reserved car type’s expense even if upgrading to another car type, the upgrade policy is an 

important task in the problem of car rental operation. 

Focusing on the above issues, this study develops three fleet operation plans: long-term, 

mid-term, and short-term. In long-term planning, this study assumes that the location and the 

yearly demand of each rental facility are known. The rental facilities are split into different 

pools based on yearly demand, distance, hub costs, and car upgrade policy. Additionally, a 

clustering-based iterative algorithm is devised to find a suitable solution. In mid-term 

planning, a hub represents each pool, and seasonal demand is distributed among different 

pools, which are called inter-pool moves. This study also considers the procurement of new 

cars, the depreciation of old cars, and car upgrade policy, and develops a best-improvement 

descent local search, embedded with the structure of better neighbors, to obtain satisfactory 
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solutions. In short-term planning, daily demand is assumed to be known and a car upgrade 

policy is employed. In the same pool, unused cars can be redistributed on the same night. A 

first-improvement descent local search is proved to be very effective in solving this problem. 

The overall problem related to car rental operations is outlined in Figure 1.1. 

   

Figure 1.1. The problem of car rental operations 
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1.4  Dissertation Framework 

This dissertation is organized into seven chapters. Chapter 2 provides the car rental 

business profile in the United States by discussing the history of the development of the car 

rental business, the statistics of the market, and the functions of car rental software. Chapter 3 

discusses car rental problems and fleet planning literature. Then, Chapter 4 introduces the 

model of pool segmentation and hub selection. A clustering-based iterative algorithm is 

proposed and is proven to be very effective. Chapter 5 provides an overview of mid-term 

fleet planning, which deals with inter-pool moves and asset replacement. A best-

improvement descent local search is developed and validated. The short-term fleet planning, 

which deals with demand allocation and empty flow redistribution, is introduced in Chapter 6. 

An analytical model is developed and a first-improvement descent local search is used to 

solve this problem. Finally, Chapter 7 outlines the concluding remarks and presents 

directions for further extensions and research. An overview of the research framework of this 

dissertation is shown in Figure 1.2. 
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Figure 1.2. Overview of the research framework 
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CHAPTER 2 

CAR RENTAL BUSINESS PROFILE 

 

2.1 History of the U.S. Car Rental Business 

Although there is not much recorded detail about the origin of the first car rental 

company, many believe that the first car rental company was founded in 1916 by a 

Nebraskan native, Joe Saunders, who rented his Ford Model T to a traveling businessman 

and charged 10 cents per mile of use. From these humble beginnings Saunders eventually 

achieved great car rental success. By 1925, Saunders owned rental businesses in 21 states. 

Unfortunately, due to the Great Depression, Saunders’ business declared bankruptcy during 

the early 1930s. 

However, Saunders was not the only businessman who seized the car rental opportunity. 

Another businessman, Walter L. Jacobs, started renting Ford Model T cars to his customers 

in 1918. By 1923 Jacobs experienced success of over $ 1 million in annual sales and attracted 

the interest of John Hertz, who was the owner of The Yellow Cab and Yellow Truck and 

Coach Manufacturing Company. Hertz acquired Jacobs’ business and eventually sold his 

Hertz’s Yellow Truck Company to General Motors in 1929. The car rental business became 

known as the Hertz Drive-Ur-Self System. 

The reputation established previously in the car rental business was damaged during the 

Prohibition period because many believed that rental cars were frequently used by 
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bootleggers and robbers. After the 18th Amendment was repealed in 1933, the industry rebuilt 

a respectable reputation and grew considerably. 

Later, the expansion of the rail networks bolstered the car rental business for a number 

of years. Many railway companies encouraged rental car use by allocating spaces for rental 

booths at railroad stations. In addition, rail companies allowed passengers to reserve cars in 

advance of their arrivals at stations using the telegraph network. 

The car rental business grew rapidly after WWII because the boom of business travels 

in the airline industry meant that more people needed a car for their post-flight business trips. 

Car rental companies opened franchises at airports to allow passengers vehicular transport at 

their arrival destination. For example, Hertz developed the “fly-drive” car rental concept by 

opening franchises at Chicago’s Midway Airport in 1932. Avis centered all of its operations 

from airports and advertised services through the airline companies. The car rental industry 

has been very competitive since the 1960s because many small companies have competed for 

profits through small kiosks in tightly compressed airport space. 

Another main car rental company, Enterprise Rent-A-Car, which was founded in 1962, 

adopted completely different advertising strategies by appealing to customers who needed a 

replacement car or did not have a car. Enterprise opened their facilities extensively in local 

spots and offered cheaper prices, but older cars to their customers. Its business model 

continues to earn great success. 

When car rental companies began the practice of selling their old cars to the public in 

the 1970s and the 1980s, some large car rental companies, such as Hertz, became major used 
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car dealers as well. At the same time, to counter this competition, major vehicle 

manufacturing firms tried to buy used car companies in order to ensure these companies 

would primarily purchase their new cars. In fact, car rental companies accounted for about 10 

percent of all domestic auto sales in the early 1990s.  

The growth of the car rental business slowed down after the terrorist attacks on 

September 11, 2001. However, it has made a dramatic comeback in recent years. This 

renewed interest in car rentals results, at least in part, from the prevalence of the Internet, 

which has made online reservations easier than ever. In 2003, online bookings had become 

important for the industry, with 21% of the bookings coming from online agencies and 15% 

directly from the car rental companies’ web sites. The importance of online bookings is 

expected to grow even further. 

For companies to survive in this highly competitive industry, car rental companies must 

provide unrivalled service. For instance, car rental companies are increasingly employing 

satellite navigation systems for their customers. With prices increasingly forced down by 

rivals, the customer now faces possibly the widest choices of cars and affordable prices ever 

in the history of the car rental business. 
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2.2 The U.S. Car Rental Market 

According to the statistics provided by Auto Rental News*, in the last 20 years, the size 

of the fleets and the market revenue in the U.S. car rental market has progressively increased 

(see Figure 2.1). Although this trend has leveled off and stabilized since the year 2000, 

overall the size of the car fleet grew from 790,000 in 1986 to 1,813,000 in 2008. As a result 

of this growth, the market revenue has expanded from 9.7 billion dollars in 1991 to 21.88 

billion dollars in 2008. 
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Figure 2.1. The U.S. car rental fleet size and market revenue 

 

Note :  * Auto Rental New   http://www.autorentalnews.com/t_inside.cfm?action=statistics 
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Although the U.S. car rental market has been steady in recent years, there has been a 

rise in mergers and acquisitions. Enterprise, which is comprised of Enterprise Rent-A-Car, 

Alamo Rent A Car, and National Car Rental, has been the largest car rental company in 

North America since the late 1990’s. Republic Service Inc. acquired Alamo Rent A Car in 

1995 and in 1996 bought National Car Rental. Republic Service Inc., renamed AutoNation 

Inc. in 1998, spun off its unprofitable car rental unit ANC Rental Corp. in 2000. Vanguard 

Car Rental took over the bankrupt ANC Rental Corp. in 2003, and in 2007, Enterprise Rent-

A-Car bought Vanguard Car Rental to consolidate its holdings in the U.S. auto rental 

business. 

Avis Budget Group, which includes Avis Rent A Car and Budget Rent A Car, is the 

third largest car rental company after Enterprise Rent-A-Car and Hertz. HFS Incorporated 

acquired Avis Rent A Car in 1997, but Cendant Corp. merged with HFS Incorporated later 

that same year. In 2002, Cendant Corp. bought Budget Rent A Car and then approved a plan 

to separate Cendant into four independent companies, of which the car rental business 

became Avis Budget Group. Avis and Budget operate a shared fleet of cars and have the 

same back-end system. However, they operate at different locations, offer different service 

levels, and have different price structures. 

Dollar Thrifty Automotive Group, which consists of Dollar Rent A Car and Thrifty Car 

Rental, is the fourth largest car rental company in North America. Thrifty Car Rental was 

acquired by Chrysler Corp. in 1989 and then Chrysler Corp. bought Dollar Rent A Car in 

1990. In 1997, Chrysler announced that its rental car subsidiary, Dollar Thrifty Automotive 
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Group, was incorporated. The profiles of these car rental companies are obtained from the 

websites of the U.S. car rental companies and displayed in Table 2.1. 

Table 2.1. Summary of the U.S. car rental companies 

Company Year Founded Birthplace Headquarters 
Parent Company           

(Co-op Manufacturer) 

National 1947 Tulsa, OK Tulsa, OK 
Vanguard Enterprise     

(GM) 
Alamo 1974 Tampa, FL Tulsa, OK 

Enterprise 1957 St. Louis, MO St. Louis, MO Enterprise

Hertz 1918 Chicago, IL Park Ridge, NJ Hertz Group (Ford, GM) 

Avis 1946 Detroit, MI Parsippany, NJ Avis Budget Group        
(GM, Ford) Budget 1958 Los Angeles, CA Chicago, IL 

Dollar 1965 Los Angeles, CA Tulsa, OK Dollar-Thrifty Automotive  
(Chrysler) Thrifty 1950 Tulsa, OK Tulsa, OK 

         

Table 2.2 and Figure 2.2 show the number of cars and the percentage of the car fleet 

market share owned by the individual rental companies. Of all large car rental companies, 

only Enterprise Rent-A-Car grew rapidly in its size of car fleet, which increased from 

460,100 in 2000 to 627,300 in 2008; its share in the car fleet market jumped from 25.1% to 

34.6 % as well. Other car rental companies, however, continually shrank or remained stable 

over the last 7 years. In Figure 2.2, it is observed that the car rental companies can be 

separated into three groups based on the scale of the market. The first group merely includes 

Enterprise Rent-A-Car, which includes more than 30% of the market fleet. The second group 

includes Hertz, National/Alamo, Avis, Budget, and Dollar Thrifty. These companies utilize 

between 5% and 20% of the market fleet. The third group includes other medium-type 

companies, such as Advantage, U-Save, Payless, and others. Their market fleet is between 
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0.2% and 1%. In Table 2.2, other small rental companies shank from 90,000 in 2000 to 

63,000 in 2008. These companies comprise no more than 5% of the market fleet in total. 

 

Table 2.2. Summary of the number of cars by rental companies 

Company 
U.S. CARS IN SERVICE ( Thousand ) 

2000 2001 2002 2003 2004 2005 2006 2007 2008 

Enterprise Rent-A-Car 460.1 486.1 488.7 510.4 540.2 592.4 630.1 643.3 627.3 

Hertz 350.0 320.0 304.0 315.0 315.0 315.0 290.0 327.2 311.0 

National  / Alamo 322.0 271.0 250.0 220.0 209.4 209.4 208.4 232.9 226.7 

Avis Rent A Car 220.0 220.0 190.0 184.0 200.0 200.0 190.8 204.2 220.0 

Budget Rent A Car 148.0 148.0 124.0 105.0 105.0 105.0 134.2 143.6 155.0 

Dollar Thrifty Automotive 128.8 128.4 122.8 130.0 138.9 140.0 85.0 167.0 140.2 

Advantage Rent-A-Car 13.0 15.0 15.0 15.5 15.5 15.0 17.0 20.0 15.0 

U-Save Auto Rental 14.5 13.4 12.9 10.0 8.7 14.0 11.5 11.8 11.5 

Payless Car Rental 7.5 8.5 8.8 9.2 8.5 10.0 10.0 10.0 10.0 

ACE Rent A Car 8.0 8.0 7.2 10.0 12.0 12.5 11.5 9.0 9.0 

Rent-A-Wreck 12.1 11.6 14.0 11.4 9.8 8.1 6.7 7.3 5.8 

Triangle Rent-A-Car 4.2 3.9 4.4 4.0 4.6 4.8 6.0 6.0 5.5 

Fox Rent A Car N/A N/A N/A N/A 5.2 6.2 6.8 8.7 8.7 

Affordable/Sensible N/A N/A N/A N/A 4.8 5.2 5.0 5.0 4.0 

Independent (3000+) 90.0 107.2 87.5 84.3 80.0 74.3 70.5 65.5 63.0 

Totals 1,829.7 1,738.3 1,643.3 1,617.3 1,772.9 1,714.0 1,683.4 1,861.5 1,812.7 
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Figure 2.2. The percentage of car fleet market share by rental companies 
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The number of car rental facilities in different rental companies is shown in Table 2.3. 

Table 2.4 provides the car rental revenue for each rental company, and the percentage of car 

revenue market share of each rental company is given in Figure 2.3. Over the last 9 years, 

only Enterprise Rent-A-Car has grown rapidly in terms of the number of locations, rental 

revenue, and revenue market share.  

 

Table 2.3. Summary of the number of the car rental facilities by rental companies 

Company 
# U.S. Locations 

2000 2001 2002 2003 2004 2005 2006 2007 2008 

Enterprise Rent-A-Car 4,018 4,398 4,708 4,987 5,388 5,719 6,019 6,131 6,159 

Hertz 1,300 1,300 N/A N/A N/A N/A 2,875 2,850 2920 

National / Alamo 954 978 500 470 626 626 623 662 647 

Avis Rent A Car 1,000 931 975 985 1,035 1,111 1,199 1,200 1,285 

Budget Rent A Car 1,110 1,042 1,000 933 858 773 842 850 1,003 

Dollar Thrifty Automotive 835 808 673 708 620 686 575 606 609 

Advantage Rent-A-Car 150 150 150 150 150 132 100 108 45 

U-Save Auto Rental 500 463 419 344 255 359 375 390 380 

Payless Car Rental 78 85 85 91 78 43 46 41 41 

ACE Rent A Car 39 39 44 56 82 90 85 85 101 

Rent-A-Wreck 488 669 422 380 327 271 298 280 222 

Triangle Rent A Car 20 20 21 21 25 25 28 30 30 

Fox Rent A Car N/A N/A N/A N/A 20 39 28 29 29 

Affordable/Sensible N/A N/A N/A N/A 240 246 250 225 210 

Independent (3000+) 7,000 7,820 N/A N/A 7,500 7,200 6,800 3,275 6,200 

Totals 19,012 19,066 N/A N/A 17,663 17,401 20,143 16,762 19,881 
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Table 2.4. Summary of the car rental revenue by rental companies 

Company 
U.S. Rental Revenue( million USD) 

2000 2001 2002 2003 2004 2005 2006 2007 2008 

Enterprise Rent-A-Car $4500 $5100 $5250 $5490 $5830 $6400 $6800 $7100 $7,500 

Hertz $3980 $2900 $3050 $3110 $3500 $3650 $3770 $3,900 $3,860 

National / Alamo $3400 $3000 $2000 $1800 $1840 $1930 $2700 $2900 $2,900 

Avis Rent A Car $2400 $2380 $2250 $2140 $2280 $2700 $2900 $3100 $3,200 

Budget Rent A Car $1800 $1700 $1000 $940 $1130 $1400 $1500 $1,500 $1,600 

Dollar Thrifty Automotive $1480 $1430 $1500 $1560 $1680 $1390 $1460 $1,680 $1,650 

Advantage Rent-A-CarI $120 $120 $135 $139 $139 $150 $155 $220 $136 

U-Save Auto Rental $135 $148 $131 $118 $90 $95 $98 $102 $98 

Payless Car Rental $65 $72 $75 $78 $80 $90 $95 $100 $100 

ACE Rent A Car $68 $60 $62 $80 $92 $101 $110 $97 $97 

Rent-A-Wreck $102 $96 $90 $92 $78 $66 $48 $41 $36 

Triangle Rent A Car $35 $34 $33 $35 $37 $41 $45 $45 $45 

Fox Rent A Car N/A N/A N/A $31 $50 $40 $62 $78 $81 

Affordable / Sensible N/A N/A N/A $26 $33 $35 $36 $36 $36 

Independent (3000+) $1200 $1000 $785 $768 $750 $733 $635 $590 $540 

Totals $19400 $18200 $16430 $16460 $17640 $18,830 $20,413 $21,489 $21,879 
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Figure 2.3. Market share of car rental revenue 
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2.3 Car Rental Software 

The different functions of the software applications used by the car rental business are 

shown in Table 2.5. A tax function is commonly used for saving taxes such as 1031 exchange, 

which is a tax-deferred exchange. Wireless security is used for tracking the position and the 

location of the rented car. Rental management is used to manage the vehicle rental operations. 

The computerized reservation system handles internet booking. Accident management offers 

intelligent fleet solutions including accident reporting, vehicle repair, rental replacement, 

salvage, subrogation, and maintenance. 

 

Table 2.5. Functions of car rental software applications 

Software Function Companies
Tax Accruit LKE Solutions
Wireless Security AirIQ
Rental Management Bluebird, TSD, Enterprise Fleet Management
Computerized Reservation System CRX, Sabre
Accident Management Fleet Response, PAC  

 

Rental management software is used mainly in fleet planning. TSD is the top car rental 

software and its major customers include Dollar Thrifty, Budget, and Avis. Bluebird also has 

many large clients including Rent-A-Wreck, Dollar Thrifty, and U-Save. Enterprise Rent-A-

Car developed its own software, “Enterprise Fleet Management” to manage its fleet. 

“Enterprise Fleet Management” mainly includes web dashboard, maintenance management, 

insurance service, fuel savings, mileage report, full maintenance fees, vehicle acquisition, 
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state licenses, and remarketing. The functions of these rental management softwares, which 

are like database systems, are very similar to each other, and the software allows managers to 

manage their fleets based on the reports generated by the rental management software. 

Employees still need to assign the available cars to reserved customers. In addition, pool 

managers need to use forecasted demand from all locations to decide the car distribution plan 

within a pool for the next few days. These decisions are not evaluated and proved by accurate 

computations but instead require the manager’s judgment and experience. Therefore, if a 

thorough fleet planning system covering long-term, mid-term, and short-term can be created 

and a complete plan of vehicle distribution can be rapidly and accurately obtained by 

algorithmic procedures, the manager’s workloads will be largely reduced and misjudgments 

can be avoided. 
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CHAPTER 3 

LITERATURE REVIEW 

 

The literature pertaining to this dissertation is reviewed based on two main themes: (1) 

car rental problems (2) fleet planning problems. In car rental problems, three categories are 

discussed: revenue management, case studies, and fleet management. In fleet planning 

problems, long-term, mid-term, and short-term fleet planning are discussed individually. 

 

3.1  Car Rental Problems 

In a large car rental company, there are many aspects of the rental business that need to 

be addressed. The literature can be subdivided into three categories: revenue management, 

case study, and fleet management. 

Revenue management is a management strategy that balances supply and demand in 

order to maximize profit. Tainiter (1964) introduced some stochastic inventory models to 

cope with the time fluctuations in the car rental business. Caseau and Kokeny (1998) 

proposed a set of practical benchmark instances to solve the overbooking problem. Kuyumcu 

and Garcia-Diaz (2000) designed a polyhedral graph theoretical approach utilizing a cutting 

plane and a branch-and-bound procedure to deal with the joint pricing and seat allocation 
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problem in the aircraft industry and obtained significant computer time-savings compared to 

integer programming commercial software.  

Cooper (2002) used asymptotic properties of revenue management derived from a 

linear program to generate allocation policies and described counterintuitive behavior that 

could occur when allocations were updated during the booking process. Netessine et al. 

(2002) considered investing in a firm’s capacity before the demand was known and 

upgrading customers to a higher level of service at no extra cost when the reserved car was 

not available. This short-term problem assigned capacity to customers when the demand was 

realized and was formulated as a two-stage single-period stochastic program. An efficient 

algorithm was developed to obtain the optimal capacities.  

Bertsimas and Popescu (2003) designed a dynamic programming based algorithm, 

using an adaptive, non-additive bid price from a linear programming relaxation, to solve 

dynamic policies for allocating scarce inventory to stochastic demand for multi-fare classes. 

In addition, the proposed algorithm was extended to handle cancellation and no-show models 

by incorporating overbooking situations in the underlying linear programming formulation. 

Anderson et al. (2004) introduced a novel real options approach to revenue management in 

the car rental business. The proposed model generated acceptable prices and number of cars 

available for renting at a given price as a function of remaining time and inventory. This 

pricing and inventory model suggested current practices discount too deeply and too early in 

the booking cycle. However, this approach was limited to use in a single rental period and a 

single car class. Karaesmen and Ryzin (2004) formulated an overbooking problem with 
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multiple reservations and inventory classes as a two-period optimization problem and 

adopted a stochastic gradient algorithm to find the joint optimal overbooking level.  

Hong et al. (2007) described the importance of forecasting monthly revenue per unit 

(RPU), which can provide a benchmarking index for annual pricing, and introduced three 

forecasting models, including the Holt-Winters’ (HW) model, the seasonal Holt and Winters’ 

Linear Exponential Smoothing (SHW) model, and the support vector regression (SVR) 

model. The numerical results revealed that SVRIA (support vector regression with immune 

algorithm) outperformed the other two models and provided a promising method of 

forecasting RPU. Cho and Rust (2008) proposed an econometric model to evaluate the 

automobile replacement policy adopted by a large car rental company. The simulation 

experiments revealed that the suggested alternative strategy, where cars were kept longer and 

the rental rates of old vehicles were cheaper, can produce an extra profit between 6% and 

140%, depending on the car type. A summary of the research related to revenue management 

in the car rental business is presented in Table 3.1. 
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Table 3.1. Car rental literature on revenue management  
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Practical Field           

     Airline           

     Car Rental          
Considerations           

     Pricing           

     Demand Forecasting           

     Marginal Revenue           

     Multi-Fare Classes           

     Multi-Periods           

     Cancellation          
     No Show           

     Overbooking           

     Upgrade Policy           

     Auto Replacement Policy           

Modeling and Methodology           

     Stochastic Process           

     Linear Programming           

     Dynamic Programming          
     Integer Programming           

     Decision Support System           

     Real Options           

     Cutting Plane           

     Branch and Bound          
     Support Vector Regression           

     Evolutionary Algorithm           

     Inventory Model           

     Econometric Model           
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In case studies, Carroll and Grimes (1995) mainly introduced Hertz’ decision support 

modules and the experiences in the car rental business. In fleet planning, the models Hertz 

adopted to build optimal overall fleet levels were a set of linear equations using past rental 

information, including the number of cancellations, and the estimated fleet utilization to 

produce aggregate fleet requirements, vehicle costs, and revenue per car per month. 

Spreadsheets were employed at the beginning of fleet planning. These tools permitted Hertz 

to better evaluate the trade-off between contribution and market share.  

Geraghty and Johnson (1997) presented the crisis management of National Car Rental 

in 1993. National took steps to develop a revenue management program, which was a set of 

analytic models developed to manage capacity, pricing, and reservation, to avoid liquidation. 

National dramatically produced immediate results and returned National Car Rental to 

profitability in July 1993. New (2003) explored the impact of the multimedia work in Avis 

Europe on the field of operations management and offered an analysis of the experience of 

Avis Europe in developing a multimedia system for training frontline staff.  

Lines et al. (2008) introduced the car rental study of a hydrogen strategy for 

transitioning from fleets to consumers in Orlando, FL. This study surveyed 435 consumers 

and the results indicated that half of all respondents were willing to pay more to rent a 

hydrogen car and that renting a pollution-free car was the most crucial deciding factor for this 

subset of customers. Then, Lines et al. pointed out the main barriers of building a hydrogen 

car fleet for a rental car company was the fleet purchase cost and proposed some practical 

solutions. A summary of case studies in the car rental business is presented in Table 3.2. 
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Table 3.2. Case studies in car rental business 
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  Yield Management     

  Revenue     

  Fleet     

  Operations     

  Supply/Demand     

  Green Fuel    
  Questionnaire     

  IT/DSS     

  Hertz     

  National     

  Avis     
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Fleet management in the car rental business covers many aspects, such as pool systems, 

fleet operations, empty flows, and others. Edelstein and Melnyk (1977) introduced the Pool 

Control System (PCS) constructed by Hertz Rent-A-Car. This system needed each city 

manager and each distribution manager to complete actual and projected data and then input 

the data to PCS in order to provide a detailed picture of the pool for the next seven days. 

Furth and Nash (1985) illustrated the benefit of a pooling operation in bus scheduling. This 

study indicated that a bus returning early can cover for a bus returning late. Dejax and 

Crainic (1987) surveyed and cataloged the empty flow problems and models in freight 

transportation. Inaba (2008) proposed a location inference model to infer the location of 

assets by using sparse RFID traceability information in the returnable transportation item 

rental service industry. A summary of fleet management in the car rental business is 

presented in Table 3.3. 

 

Table 3.3. Fleet management in car rental business 
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3.2  Fleet Planning Problems 

Fleet planning is normally separated into four groups based on transportation 

equipment---aircraft, freight, truck rental, and car rental. Aircraft fleet planning 

(Lohatepanont and Barnhart 2004; Li and Wang 2005) determines aircraft acquisition, flight 

routing, airline schedules, or the optimal utilization of aircrafts. Freight fleet includes rail 

freight (Bojovic 2002), truck freight (Hall 1999), air freight (Tyler 1986), and sea freight 

(Sambracos et al. 2004). The characteristics of truck rental (Wu et al. 2005; Martel 1990) and 

car rental (Pachon et al. 2003) are very much alike. They both must contend with fleet 

allocation and empty flow redistribution. 

In the fleet planning literature, discussion of car rentals is very sparse. Pachon (2000) 

was basically the only paper that addresses long-term, mid-term, and short-term fleet 

planning in the car rental business. Pool segmentation was treated as a Minimum Spanning 

Tree problem. Pachon proposed a modified Kruskal’s algorithm to cluster the pools in long-

term planning. In mid-term planning, Pachon formulated a strategic fleet plan into a network 

flow problem. In addition, the set of complicated constraints was relaxed to a linear 

transshipment model with side constraints and was solved to optimality using optimization 

software. In short-term planning, Pachon solved a stochastic optimization model to determine 

daily deployment of the fleet. 

All related literature has been divided into three sections for discussion. In Section 3.2.1, 

long-term planning is discussed mainly in the context of the classic location problems related 

to pool segmentation and hub selection. Section 3.2.2 addresses issues related to mid-term 

planning of car fleet operations, which solve the problem of inter-pool moves and asset 
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replacement. Demand allocation and empty flow redistribution, which is short-term car rental 

fleet planning, is presented in Section 3.2.3. 

3.2.1 Long-term --- Pool Segmentation and Hub Selection 

Pool segmentation clusters all locations into separate pools and selects one hub for each 

pool. Two classic location problems, the capacitated facility location problem with a single 

source constraint (Sridharan 1993) and the generalized assignment problem (Pentico 2007), 

are analogous to pool segmentation. A model that includes the cost of facility opening is 

called a capacitated facility location problem with a single source constraint. A single source 

constraint refers to the fact that each demand node can only be supplied by one facility. 

Models that do not include the cost of facility opening are generalized assignment problems. 

If a fixed number of districts are specified, the generalized assignment problem will simplify 

to a p-median problem (Mladenovic et al. 2007). The abundant literature offers a valuable 

direction for a solution methodology. 

Sridharan (1993) proposed a Lagrangian relaxation heuristic to solve a capacitated 

facility location problem with a single source constraint. He relaxed the capacity constraint 

and solved this problem iteratively as a single plant location problem, a single source 

transportation problem with all plants open, and a knapsack problem. Syam (1997) designed 

a Lagrangian relaxation heuristic to solve a capacitated p-facility location problem and 

investigated some logistical issues that may be involved in managerial decision-making. 

Ronnqvist et al. (1999) reformulated the capacitated facility location problem with a single 

source constraint as a series of matching problems and introduced a repeated matching 

algorithm to solve until certain convergence criteria are satisfied. The numerical results 
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showed this approach to be much better than Pirkul’s Lagrangian relaxation algorithm (1987). 

Holmberg et al. (1999) developed a class of heuristic algorithms for the capacitated facility 

location with a single source. This approach developed a repeated matching algorithm, 

incorporated into a Lagrangian heuristic and a branch-and-bound method based on a 

Lagrangian heuristic. The computational results showed the method to be very efficient. 

Klose (1999) described a linear programming-based algorithm for a two-stage capacitated 

facility location problem with a single source constraint; feasible solutions were obtained by 

utilizing linear programming and simple heuristics.  

Ahuja et al. (2004) addressed a simple large scale neighborhood search algorithm for a 

capacitated facility location problem with a single source constraint. This approach continued 

from an initial solution with a sequence of facility moves and customer moves, and iterated 

until a local optimal solution is reached. Elhedhli and Goffin (2004) proposed an integrated 

algorithm based on an interior-point cutting-plane method within a branch-and-price scheme, 

which included decomposition techniques and a branch-and-bound approach. The overall 

approach was implemented for a capacitated facility location problem with a single source 

constraint and proved much more effective than Kelly’s cutting-plane method (1960). 

Correia and Captivo (2006) presented a Lagrangian algorithm, enchanced by Tabu Search or 

local search to obtain feasible solutions. Test problems were randomly generated and showed 

this method able to obtain satisfactory solutions.  

Chen and Ting (2006) suggested two ant colony systems to construct a heuristic 

procedure. One ant colony was used to select the opening facilities while the other one was 

utilized to allocate customers to each opening facility. Osman and Ahmadi (2007) indicated 
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that, in comparison with other known approaches in the literature, a guided construction 

search, based on a periodic local search procedure or a greedy adaptive search procedure, can 

obtain extremely good solutions for a capacitated p-median problem with a single source 

constraint.  

Besides the capacitated facility location problem and the generalized assignment 

problem, Pachon (2000) simply considered the distance and formulated pool segmentation as 

a minimum spanning tree problem. A modified Kruskal’s algorithm was proposed to cluster 

the pools. In this study (Wu, 2009), the problem of pool segmentation and hub selection is 

formulated as a capacitated facility location problem with a single source constraint. The 

distance cost, the hub opening cost, and the yearly demand are considered and car upgrade 

policy is addressed along with the constraint of pool capacity. A clustering-based iterative 

algorithm is presented to find a suitable solution quickly. A summary of the research related 

to pool segmentation is presented in Table 3.4. 
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Table 3.4. Literature in pool segmentation and hub selection 
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Problem Type 

    Capacitated Facility Location           

    Capacitated Median Problem        

    Minimum Spanning Tree         

    Single Source Constraint          

    # of hubs is fixed       

    Two Echelons         
    Less than P Hubs         
    Less than m nodes in a pool          
    Car Rental Problem        

    Car Upgrade Policy        
Solution Methodology 

     Lagrangian Relaxation            
     Metaheuristic        

              Tabu Search         
              Multi-Exchang        
              Ant Colony        
             Guided Construction      

             LP-based heuristic         
     Graph Algorithm          
              Repeated Matching          
             Clustering Algorithm          

             Kruskal's Algorithm            

             Prim's Algorithm          

     Branch-and-Bound       

     Cutting-Plane Method        
     Column Generation        
     Interior-Point Method        
     Enumeration       
Optimization 

     Optimal Solution        
     Approximation Solution           
Numerical Example(max) 

     Location 50 400 150 200 50 200 10 500 150 27 6,000 

     Problem Size (unit: 1,000) 2.5 160 4.5 6 250 6 0.6 500 23  3,601 

     Number of Problems 37 24 55 71 120 71 12 22 40 1 342 
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3.2.2 Mid-term--- Inter-pool Moves and Asset Replacement 

In mid-term planning, Pachon (2000) formulated a strategic fleet plan into a network 

flow problem. In addition, the set of complicated constraints was relaxed to a linear 

transshipment model with side constraints and was solved to optimality using optimization 

software. The research proposed in this dissertation (Wu 2009) considers seasonal inter-pool 

moves and asset replacement and formulates a network flow model. A best-improvement 

descent local search, exploiting the structure of better neighbors, is proposed and validated. A 

summary of the research related to inter-pool moves and asset replacement is presented in 

Table 3.5. 

Table 3.5. Literature in inter-pool moves and asset replacement 
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Modeling Approach 

   Network Flow  
   Linear Programming    

Solution Methodology 

   Neighborhood Search  
   LP Solver    

Considerations 

   Inter-pool Moves  
   Asset Procurements and Sales  
   Different Car Types  
   Upgrade Car Type  
   Service Level  
   Leasing Contract    

Numerical Example (max) 

   # of Pools 100 200

   # of Car Types 5 8 

   # of Time Periods (season) 12 12 

   # of Car Ages (season) 12 12 

Objective 

   Max Profit  
   Min Cost   
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3.2.3 Short-term --- Demand Allocation and Empty Flow Redistribution 

Couillard and Martel (1990) introduced a mid-term seasonal stochastic model covering 

purchase, replacement, sale, and car rental. Additionally, an efficient algorithm and a 

decision support system were used to solve the model. Beaujou and Turnquist (1991) 

formulated an interactive fleet sizing and allocation model under dynamic and uncertain 

environments. An approximate network flow problem with a non-linear objective was solved 

by an interactive procedure using the Frank-Wolfe algorithm and was proved efficient 

enough to solve reasonably sized problems. Du and Hall (1997) developed decentralized 

stock control policies and an inventory approach in hub-and-spoke networks, and a 

decomposition method was utilized to find appropriate fleet size policies. Parikh (1977) 

assumed that all fleets provide a uniform level of service and adopted queueing theory to 

approximate the delay probability and the fleet size.  

Pachon (2000) and Pachon et al. (2003) proposed the formulation of daily planning and 

decomposed the model into a fleet deployment model and a transportation model. Optimal 

conditions for both sub-problems and a heuristic to reduce the gap from optimality were 

introduced. Additionally, three extensions, including the cost of unsatisfied demand, service 

level, and a general price-demand function, were presented. Kochel et al. (2003) introduced a 

simulation method with a Genetic algorithm for the fleet sizing and allocation problems. 

Joborn et al. (2004) discussed empty freight car distribution and developed a Tabu heuristic 

to solve this time-dependent capacitated network model. Wu et al. (2005) suggested a linear 

programming model, which used a time-space network and considered demand allocation, 

empty truck redistribution, and asset procurements and sales, to determine optimal fleet size 
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and mix through a two-phase solution approach. Benders decomposition with a demand-

shifting algorithm (Wu et al. 2003), was used to obtain feasible solutions in each subprogram 

in Phase I. Moreover, Phase II utilized the initial bounds and dual variables from Phase I to 

improve the solution convergence through the use of Lagrangian relaxation, resulting in 

effective solutions.  

Fink and Reiners (2006) described short-term decisions in the car rental business to 

optimize fleet utilization and maintain a high service level. The authors proposed a system 

architecture of a decision support system which included a network model, a simulation 

model, and essential practical aspects, such as multi-period planning, a country-wide network, 

fleeting and defleeting, and car groups with partial substitutability. Simulation experiments 

showed that the network flow model led to a rental service level of 99.9% and an acceptable 

upgrade ratio of 16% in a seven-day period. Song and Earl (2008) addressed a two-depot 

optimal control policy for empty vehicle redistribution and fleet sizing problems, in which 

loaded vehicles arrival at depots and redistribution times for empty vehicles were uncertain. 

A novel stochastic model was introduced, and optimal threshold values and fleet size were 

derived. In this research (Wu 2009), a network flow model for daily planning in the same 

pool is developed. Empty flow redistribution, demand allocation, and car upgrade policy are 

considered. A first-improvement descent local search, exploiting the techniques of better 

neighbors, is developed. A summary of short-term fleet planning is presented in Table 3.6. 
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Table 3.6. Literature in demand allocation and empty flow redistribution 
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Practical Field 
   Car Rental         
   Truck Rental         
   Freight       
Modelling Approach 
   Stochastic Process          
   Linear Programming          
   Decision Support System     
   Network Flow      
   Queueing         
   Inventory       
Solution Methodology 
   Stochastic Optimization       
   Decomposition Algorithm         
   Lagrangian Relaxation       
   Dynamic Programming    
   Simulation      
   Queueing         
   Nonlinear Technique       
   Metaheuristics / Neighborhood Search        
Considerations 
   Empty Flow Redistribution            
   Different Car Types         
   Upgrading Car type       
   Asset Procurements and Sales      
   Stochastic Demand           
   Unmet Demand            
   Car Age       
   Service Level       
Numerical Example (max) 
   # of Locations 1 10 2 10 6 5 50 30 500 3 100 21
   # of Time Periods 7   30 5 60 14    21
   # of Car Ages   2 3      
   # of Rental Periods              21
   # of Car Types 3 3 3 15    4 10
Objective 
   Max Profit               
   Min Cost           
   Min Fleet Size                 
   Balance the level of service                 
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CHAPTER 4 

POOL SEGMENTATION AND HUB SELECTION 

 

4.1  Problem Formulation 

In long-term planning, it is assumed that all rental facilities are known. The distance 

between the facility and the opening hub is a known deterministic distance and the triangle 

inequality is satisfied. In addition, the yearly demand for each car type in each facility, the 

hub opening costs, the pool capacity limit, and the distance costs between any two nodes are 

known. All locations are split into several regions and one location is selected from each 

region to be the regional hub center. Moreover, the pool capacity limit is satisfied and the 

total cost of the transportation and the cost of opening the hubs is minimized. An example of 

networks before and after pool segmentation is shown in Figure 4.1 and Figure 4.2, 

respectively. 
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Figure 4.1. Network before pool segmentation 

 

       

Figure 4.2. Network after pool segmentation
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4.2  Mathematical Model 

In this study, a model is formulated similarly to the capacitated facility location model 

with a single source constraint. However, an upgrade policy is included within the model. 

This pool segmentation and hub selection problem can be formulated as a binary integer 

linear programming. 

Indices 

sizecar  larger the  the, of  valuelarger the  the; car type  

location  

 location  

kkk

jj

ii





 

Parameters 

pool same at the  car type of demand for total boundlower 

pool same at the  car type of demand for total boundupper 

location at   car typefor  demand gforecastin annual

location at  hub openingfor cost  

location  and location between cost  distanceshortest 

kl

ku

ikD

jf

jid

k

k

k
i

j

ij











 

Variables 

0 otherwise, ; hub  toassigned is location at  demand  theif 1

0 otherwise, ; hub a be chosen tolocation  if 1

jix

y

ij

j




 

 

 



 

 
                                                        
 

39

The model can be expressed as: 

  

  (4.5)              ,                                                                    1,0,                

(4.4)           }{1,2,...,',',                           

(4.3)              ,                                                                                            

(4.2)                                                                                         1                  

:osubject  t

(4.1)                                                              Min            

max
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Objective (4.1) minimizes the total cost of the transportation costs plus the hub opening 

costs. Constraints (4.2) are called single source constraints. They ensure that each facility is 

assigned to exactly one hub. Constraints (4.3) address the fact that facility assignments are 

made only to open hubs. Constraints (4.4) indicate the capacity limit of regional hubs and the 

upgrade policy. The facility demand for a lower car type can be satisfied by the demand at 

the facility for a higher car type. For example, if a customer reserves a compact size car, but 

the compact size car is not available, then the car can be upgraded to an intermediate size, a 

standard size, or an even larger size car. That means that in car type 'k , the total pool 

demand for car type 'k  and higher needs to satisfy the total regional demand capacity of car 

type 'k  and higher. Constraints (4.5) are the integrality requirements. 
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4.3  Motivation 

The mathematical model was verified and the solution form was observed utilizing 

LINGO software. Figure 4.3 is an example of an optimal solution with 60 facility locations. 

Pools group the nearby facilities together, which is analogous to clustering tribes with the 

smallest distance cost. 
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     Figure 4.3. Example of an optimal solution with 60 facility locations 

Observe that in the objective function  
j

jjijij
k i j

k
i yfxdD  each facility incurs 

only one kind of cost. If a facility is not chosen to be the hub, then it will incur the distance 

cost. If a facility is chosen to be the hub, then the hub opening cost will be included. The 

distance cost is the product of the distance times the demand ( dD ) and the hub facility 

cost equals f . Figure 4.4 shows the solution form of the total cost incurred. A straight line 
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indicates that the distance cost is incurred and the black circle represents that the hub cost is 

incurred. 

 

Figure 4.4. The solution form of the total cost incurred 

Because the demands of each node are known, it is easier to evaluate the total cost if the 

hub facility cost can be adjusted to the demand description. For example, suppose that there 

are 7 nodes with 2 hubs. Nodes 1, 2, and 3 belong to pool 1, with node 2 the hub, and nodes 4, 

5, 6, and 7 are in pool 2, with node 6 the hub. Therefore, the total cost will be 

    
k k k
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k k

kk dDfdDdDdDfdD ),()( 76765654643232121  where k   represents 

the car type. To more conveniently represent the hub facility cost for the algorithmic 

procedure, let 
k

j
k
jj rDf , where jr  represents the unit demand cost of hub j . Hence, the 

total cost    
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),...,,;( 21 riiijh  represents the unit demand cost of pool j , including hub j  and nodes 

riii ,...,, 21 . The clustering algorithm tries to make the unit demand cost in each pool as small 

as possible. Hence, in pool 1, the unit demand cost is 

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 for pool 2. This resulting term is called the unit 

demand cost of the pool.  

Because of all the known demands and the idea of local optimality, the smaller the 

distance, the lower the cost. However, in this formulation, it is unknown how many hubs are 

needed; only the capacity of the pool is known. Hence, in the beginning, the minimum unit 

demand cost of each possible hub is compared. One node is specified as the hub and other 

nodes are linked to this hub node to meet two requirements: 

 Meet the lower bound of the capacity, without exceeding the upper bound 

 Meet the minimal unit demand cost of this pool 

Based on this concept, a very good initial solution can be found and the number of hubs 

is therefore close to or equivalent to the real optimal number of hubs. Table 4.1 offers a good 

validation for this rule. The clustering algorithm is described in detail in Section 4.4. 
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Table 4.1. Optimal solution vs. clustering algorithm 

Example 1 2 3 
Number of nodes 90 160 200 
Number of car types 5 10 10 

Clustering algorithm 
Cost ($) 617,785.1 3,102,533.5 4,234,375 
Number of hubs 32 24 31 

Optimal 
Cost ($) 603,013.9 3,050,300 4,212,918 
Number of hubs 32 21 29 

Solution gap (%) 2.45% 1.71% 0.51% 

In addition, Example 1 is re-solved with 90 locations, but the number of hubs is fixed. 

That makes the problem solvable as a capacitated p-facility location problem. The optimal 

solutions for different numbers of hubs are shown in Figure 4.5 and built into a convex 

function. The clustering algorithm can approach the optimal number of hubs and the optimal 

solution as the black box shows in Figure 4.5. If the number of hubs is determined, then the 

whole problem will reduce to solving the capacitated p-facility location problem. Based on 

the characteristic of a convex function, only a small number of capacitated p-facility location 

problems need to be solved. 

600000

800000

1000000

1200000

1400000

1600000

0 10 20 30 40 50 60

Total Hubs

O
bj

ec
ti

ve
 V

al
ue

 

Figure 4.5. Optimal value vs. different numbers of hubs 
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In solving a capacitated p-facility location problem, an iterative procedure is adopted to 

address the process. Each pool region, obtained from the initial solution of the clustering 

algorithm, is fixed as presented in Figure 4.6 and each hub is easily re-optimized by an 

enumeration method. Once each hub is re-allocated, the locations of the hubs are fixed and 

all the other facility locations are re-located to these fixed hubs as shown in Figure 4.7. This 

becomes a multi-resource generalized assignment problem. Although a branch-and-bound 

algorithm is widely used in multi-resource generalized assignment problems (Park et al. 1998; 

Babkin et al. 1977; Fei et al. 2008; Nauss 2004; Haddadi and Ouzia 2004), it still cannot 

solve practical problems in polynomial time. Hence, a modified Prim’s algorithm is 

implemented in order to obtain a near-optimal solution. Then these two steps are executed 

iteratively to obtain a near-optimal solution for the capacitated p-facility location problem. 

 

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100x

y

 

Figure 4.6. Fixing the pool region and re-selecting the hub 
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Figure 4.7. Fixing the hubs and re-shaping the pool regions 

After obtaining a near-optimal solution for the capacitated p-facility location problem, 

the number of hubs is adjusted using this technique, by either adding or deleting one hub, and 

the iterative procedure is re-executed. A near-optimal solution for the whole problem can be 

obtained.  

 

4.4  Algorithm Procedure 

Based on the previous motivation in Section 4.3, a clustering-based iterative algorithm 

is introduced. This algorithm mainly includes three modules: a clustering algorithm, an 

enumeration method, and a modified Prim’s algorithm. The whole rough process of the three 

phases of the algorithm is displayed in Figure 4.8. 
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Figure 4.8.  The clustering-based iterative algorithm
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The processes of the three important modules are explained in detail below. 

4.4.1 Clustering Algorithm 

4.4.1.1 Neighbor Factor 

The neighbor factor is an integer value and it is used to calculate and extend the list of 

all candidate pool regions. If the value of a neighbor factor is m , the neighbor index is 

calculated from 1 to m. If the neighbor index is m, that means that this candidate pool region 

selects its covered nodes from the m -th closest node and the previous 1m  closet nodes are 

not covered in this pool region. For example, if the value of a neighbor index is 3, that means 

that this candidate pool region selects its covered nodes from the third closest node and the 

previous two closet nodes are not covered in this pool region. Because a value of neighbor 

factor m covers the neighbor indexes from 1 to m, it can extend the list of all candidate pool 

regions and thereby increase the possibility of obtaining a good solution. 

4.4.1.2 Tabu List 

The Tabu List (TL) is a module of Tabu Search, proposed by Fred Glover.(1977). The 

Tabu List is a memory structure used to record past moves and avoid the formation of cycle 

moves. In the Tabu List, FIFO rules are usually applied. That means that the newest move is 

added to memory and the oldest move is removed from memory. The larger the Tabu List, 

the less the possibility of falling into a local optimum. However, more computer memory 

space is needed and computing time is significantly longer. Generally speaking, the value of 

the Tabu List doesn’t have limits. It is usually decided by the characteristic of the problem. 
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4.4.1.3 Flow Chart 

The rough procedure of the clustering algorithm is presented in Figure 4.9 and Figure 

4.10. 

 

 

 
 

     Figure 4.9.  The clustering algorithm(1/2) 
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Figure 4.10.  The clustering algorithm(2/2) 
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4.4.1.4 Detailed Procedure 

Step 1: Set the neighbor index (ni) =1. For each candidate hub j , calculate the unit demand 

cost of hub j, 




k

k
j

j
j D

f
r , where k  represents the car type. Consider the distance ijd  

for all nodes ji  hub  . Rank these nodes i  in ascending order of ijd and obtain a list 

of ranked nodes { }...;,...,,,
max321max321 ,,,,,,,, jj mimimimimimimimi dddddddd  , denoted 

as 
1jL . Go to Step 3. 

Step 2: If 1ni , let },...,,{
)1(211 ,,, 


nini mimimijj dddLL . Go to Step 3. 

Step 3: For each candidate hub j , if ijj dr   for all ji  , go to Step 4; otherwise, go to Step 

5. Continue with Step 3 to check all candidate hubs; then go to Step 6. 

Step 4: Calculate the total demand of car type k  at hub j , 
r
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k
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to check other candidate hubs. If not, add nodes ri nijL  to pool j  and re-calculate 

the unit demand cost 
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Step 5: Add nodes ri nijL  to pool j  and re-calculate the unit demand cost , ;( 1ijh  
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(b) ),,...,,;(),...,,;( 12121  rrr iiiijhiiijh  

Step 6: Check if ni=neighbor factor(m). If not, let ni=ni+1 and go back to Step 2; otherwise, 

go to Step 7. 

Step 7: Based on Step 1~Step 6, one can obtain a stream of nodes with the sequence for each 

candidate hub. The pool 1j  with the smallest unit demand cost ),...,,;( 211 riiijh  is 

selected and recorded in the Tabu List. Let cycle=0. Go to Step 8. 

Step 8: For every selected pool 1j , find the node 
1j

Li  with the shortest distance 
1ijd . If 

node i  has been added to another pool region 2j , the distance 
1ijd  is compared to 

2ijd . 

If 
21 ijij dd   and 




maxmaxmax

2
'''

21 ),...,,(
k

kk

k
k

kk

k
i

k

kk
r

k
j lDiiiTD  ' car type allfor k , node i  is 

added to pool 1j , i.e. 
1j

P  ; otherwise, find the next node 
1

'
jLi   until all nodes are 

evaluated. Then the shortest distance 
1ijd  of pool 1j  is selected. That means that node 

i  is added to pool 1j . If more than one node has the smallest distance, the node with 

larger demand is picked. Go to Step 9. 
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Step 9: For the unselected candidate hubs recorded in Step 7, find the next pool '
1j , where 

nodes riii ,...,, 21  are added to '
1j , with the smallest unit demand cost.  Four possible 

cases exist: 

(a) If all nodes i pool '
1j , '

1j
P , and Si , where S is the union of all selected nodes, 

pool '
1j  is selected and its unit demand cost ),...,, ;( 21

'
1 riiijh  is recorded. Go to 

Step 10. 

(b) If any node '
1j

Pi , '
2j

Pi , Si , and 
max max max

'
2

' ' '
1 2 '

' ' '
( , ,..., )

k k k
k k k

r ijk k k k k k
TD i i i D l

  
     ' all kfor , 

calculate the unit demand cost and the total demand of pool '
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demand cost '
2

'
1 jj
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1j  is selected and the affected nodes are 

recorded. Go to Step 10. 

(c) If any node '
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Pi , '
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TN  of nodes at pool '
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number '
2j

TN of nodes at pool '
2j . If (1) '

2
'
1 jj

TNTN   and (2) 





k

k

j

k

k

j

j

j

TD

TD

UDC

UDC

'
2

'
1

'
2

'
1  or 

cycle=1, pool '
1j  is selected and the affected nodes are recorded. Go to Step 10. 

(d) If none of the three above cases exist, find the next hub until all candidate hubs 

are evaluated. 

Step 10: Compare 
1ijd  in Step 8 to ),...,,;( 21

'
1 riiijh in Step 9. If ),...,,;( 21

'
11 rij iiijhd  , node i  

is added to pool 1j . Otherwise, pool '
1j  is selected. That means that nodes riii ,...,, 21  

are added to hub '
1j . Check if a cycle is formed in the Tabu List. If yes, cycle =1. 

Update the Tabu List and Go to Step 8. Otherwise, cycle =0 and check if all nodes 

have been selected. If yes, this algorithm is complete; otherwise, update the Tabu List 

and go to Step 8. 

 

4.4.1.5 Example 

         For example, the 14 nodes, as indicated in Figure 4.11, have a distance matrix, as 

displayed in Table 4.2. The neighbor factor is assumed to be 1. 
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 Figure 4.11.  Example of 14 locations with their demands and hub opening costs 

 

Table 4.2. Distance matrix for the 14 nodes 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
1  5 3 9 8 6 3 4 5 10 9 7 13 11 
2 5  2 4 8 6 4 9 6 11 9 7 13 11 
3 3 2  6 6 4 2 7 4 9 7 5 11 9 
4 9 4 6  5 7 8 13 10 12 10 8 10 9 
5 8 8 6 5  2 5 11 7 7 5 3 5 4 
6 6 6 4 7 2  3 9 5 5 3 1 7 5 
7 3 4 2 8 5 3  6 2 7 6 4 10 8 
8 4 9 7 13 11 9 6  8 13 12 10 16 14 
9 5 6 4 10 7 5 2 8  5 7 6 12 10 

10 10 11 9 12 7 5 7 13 5  2 4 9 6 
11 9 9 7 10 5 3 6 12 7 2  2 7 4 
12 7 7 5 8 3 1 4 10 6 4 2  7 4 
13 13 13 11 10 5 7 10 16 12 9 7 7  3 
14 11 11 9 9 4 5 8 14 10 6 4 4 3  
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 [I].  

The demand bound for the pool region = (200, 800). Calculate all possible hubs: 

 Demand Distance Cost 
Total 
cost 

Total demand 
Unit demand 

cost  
Meet the 
capacity 

Min 

Hub 1 100 0 300 300 100 3 No  
Node 7 80 3 240 540 180 3 No  
Node 3 40 3 120 660 220 3 Yes Yes 

Node 8  
4  

(4>3) 
     No 

 
 

 Demand Distance Cost 
Total 
cost 

Total demand 
Unit demand 

cost  
Meet the 
capacity 

Min 

Hub 2 300 0 1000 1000 300 3.33 Yes  
Node 3 40 2 80 1080 340 3.176 Yes Yes 

Node 7  
4 

(4>3.176) 
     No 

 
 

 Demand Distance Cost 
Total 
cost 

Total demand 
Unit demand 

cost 
Meet the 
capacity 

Min 

Hub 3 40 0 2000 2000 40 50 No  
Node 2 300 2 600 2600 340 7.647 Yes  
Node 7 80 2 160 2760 420 6.571 Yes  
Node 1 100 3 300 3060 520 5.885 Yes  
Node 9 200 4 800 3860 720 5.361 Yes Yes 

Node 6 120 4   
840 

(840>800) 
 No  

Node 12 150 5   
870 

(870>800) 
 No  

Node 5 60 
6 

(6>5.361) 
     No 

 
 

 Demand Distance Cost 
Total 
cost 

Total demand 
Unit demand 

cost 
Meet the 
capacity 

Min 

Hub 4 50 0 800 800 50 16 No  
Node 2 300 4 1200 2000 350 5.714 Yes  
Node 5 60 5 300 2300 410 5.610 Yes Yes  

Node 3  
6 

(6>5.610) 
     No 

 
 

 Demand Distance Cost 
Total 
cost 

Total demand 
Unit demand 

cost  
Meet the 
capacity 

Min 

Hub 5 60 0 600 600 60 10 No  
Node 6 120 2 240 840 180 4.667 No  
Node 12 150 3 450 1290 330 3.909 Yes Yes 

Node 14  
4 

(4>3.909) 
     No 
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 Demand Distance Cost 
Total 
cost 

Total demand 
Unit demand 

cost  
Meet the 
capacity 

Min 

Hub 6 120 0 2500 2500 120 20.83 No  
Node 12 150 1 150 2650 270 9.815 Yes  
Node 5 60 2 120 2770 330 8.394 Yes  
Node 11 400 3 1200 3970 730 5.438 Yes  

Node 7 80 3   
810 

(810>800) 
8.394 No  

Node 3 40 4 160 4130 770 5.364 Yes Yes  

Node 14 600 5   
1370 

(1370>800) 
 No  

Node 10 500 5   
1270 

(1270>800) 
 No  

Node 9 200 5   
970 

(970>800) 
 No  

Node 2  
6 

(6>5.364) 
     No 

 
 

 Demand Distance Cost 
Total 
cost 

Total demand 
Unit demand 

cost  
Meet the 
capacity 

Min 

Hub 7 80 0 2100 2100 80 26.25 No  
Node 9 200 2 400 2500 280 8.929 Yes  
Node 3 40 2 80 2580 320 8.063 Yes  
Node 6 120 3 360 2940 440 6.682 Yes  
Node 1 100 3 300 3240 540 6 Yes  

Node 2 300 4 1200 4440 
840 

(840>800) 
 No  

Node 12 150 4 600 3840 690 5.565 Yes  
Node 5 60 5 300 4140 750 5.52 Yes Yes 

Node 11 400 
6 

(6>5.52) 
     No 

 
 

 Demand Distance Cost 
Total 
cost 

Total demand 
Unit demand 

cost  
Meet the 
capacity 

Min 

Hub 8 90 0 1400 1400 90 15.556 No  
Node 1 100 4 400 1800 190 9.474 No  
Node 7 80 6 480 2280 270 8.444 Yes  
Node 3 40 7 280 2560 310 8.258 Yes  
Node 9 200 8 1600 4160 510 8.157 Yes Yes 

Node 2  
9 

(9>8.157) 
     No 

 
 

 Demand Distance Cost 
Total 
cost 

Total demand 
Unit demand 

cost  
Meet the 
capacity 

Min 

Hub 9 200 0 1200 1200 200 6 Yes  
Node 7 80 2 160 1360 280 4.857 Yes  
Node 3 40 4 160 1520 320 4.75 Yes Yes 

Node 10  
5 

(5> 4.75) 
     No 

 
 

 Demand Distance Cost 
Total 
cost 

Total demand 
Unit demand 

cost  
Meet the 
capacity 

Min 

Hub 10 500 0 800 800 500 1.6 Yes Yes 

Node 11  
2 

(2>1.6) 
     No 
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 Demand Distance Cost 
Total 
cost 

Total demand 
Unit demand 

cost  
Meet the 
capacity 

Min 

Hub 11 400 0 400 400 400 1 Yes Yes 

Node 10  
2 

(2>1) 
     No 

 
 

 Demand Distance Cost 
Total 
cost 

Total demand 
Unit demand 

cost  
Meet the 
capacity 

Min 

Hub 12 150 0 900 900 150 6 No  
Node 6 120 1 120 1020 270 3.778 Yes  
Node 11 400 2 800 1820 670 2.716 Yes Yes 

Node 5  
3 

(3>2.716) 
     No 

 
 

 Demand Distance Cost 
Total 
cost 

Total demand 
Unit demand 

cost  
Meet the 
capacity 

Min 

Hub 13 90 0 600 600 90 6.667 No  
Node 14 600 3 1800 2400 690 3.478 Yes Yes 

Node 5  
5 

(5>3.478) 
     No 

 
 

 Demand Distance Cost 
Total 
cost 

Total demand 
Unit demand 

cost  
Meet the 
capacity 

Min 

Hub 14 600 0 1200 1200 600 2 Yes Yes 

Node 13  
3 

(3>2) 
     No 
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  Once all possible hubs are calculated, a ranking list of all candidate pool regions is 

obtained as shown in Table 4.3. 

Table 4.3. A ranking list of all candidate pool regions 

Ranking Unit demand cost Hub Connecting Nodes Total Demand 

1 1 11   400 

2 1.6 10   500 

3 2 14   600 

4 2.716 12 6,11 670 

5 3 1 7,3 220 

6 3.176 2 3 340 

7 3.33 2   300 

8 3.478 13 14 690 

9 3.778 12 6 270 

10 3.909 5 6,12 330 

11 4.75 9 7,3 320 

12 4.857 9 7 280 

13 5.361 3 2,7,1,9 720 

14 5.364 6 12,5,11,3 770 

15 5.438 6 12,5,11 730 

16 5.52 7 9,3,6,1,12,5 750 

17 5.565 7 9,3,6,1,12 690 

18 5.61 4 2,5 410 

19 5.714 4 2 350 

20 5.885 3 2,7,1 520 

21 6 7 9,3,6,1 540 

22 6 9   200 

23 6.571 3 2,7 420 

24 6.682 7 9,3,6 440 

25 7.647 3 2 340 

26 8.063 7 9,3 320 

27 8.157 8 1,7,3,9 510 

28 8.258 8 1,7,3 310 

29 8.394 6 12,5 330 

30 8.444 8 1,7 270 

31 8.929 7 9 280 

32 9.815 6 12 270 
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Select the hub with the smallest unit demand cost ( 11r =1). Node 11 is chosen to be a 

hub as shown in Figure 4.12. 
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Figure 4.12.  Node 11 is selected to be a hub 
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 [II]  

Compare the two possible choices and choose the smallest. 

(1)  Add one node with the shortest distance to the selected hub. However, the demand 

capacity for the pool still needs to be satisfied. Otherwise, check the next available 

node. 

(2) Check other possible hubs from Table 4.3. Choose the next available pool region with 

the smallest unit demand cost. If a node has not been selected, check the unit demand 

cost. 

For (1), the shortest distance for hub 11 is 212,11 d  and as a result, node 12 is selected 

for possible addition to the hub 11 pool, 11P . For (2), the smallest unit demand cost is 

10r 1.6 and hub 10 is selected for possible additional node. Since 12,1110 dr  , node 10 is 

selected to be a hub, as shown in Figure 4.13. 
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Figure 4.13. Node 10 is selected to be a hub 
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[III]  

This procedure is the same as [II]. Two possible choices exist.  

For (1), the possible selection for the shortest distance for hub 11 is 212,11 d , and hub 

10 is 412,10 d . Since 12,1012,11 dd  , node 12 is selected for possible addition to the hub 11 

pool, 11P . For (2), the smallest unit demand cost is 214 r  and hub 14 is selected for possible 

additional node. Since 1412,11 rd  , node 12 is connected to hub 11 and node 14 is selected to 

be a hub, as displayed in Figure 4.14. If these two are the same node, this same node is 

selected to be a hub. 
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Figure 4.14. Node 12 is connected to hub 11 and node 14 is selected to be a hub 
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 [IV]  

For (1), the possible selection for the shortest distance for hub 11 is 36,11 d , hub 10 is 

59,10 d , and hub 14 is 313,14 d . Since 9,1013,146,11 ddd  , node 6 and node 13 are selected 

for possible additional nodes.  

For (2), the smallest unit demand cost is )11 6, ;12(h =2.716 and pool 12 is picked first. 

Pool region 12, including hub 12, node 6, and node 11, has the smallest value, 2.716. 

However, nodes 12 and 11 have been previously selected. The lower bound of pool 11 is not 

satisfied. Based on Step 9 (c), the total number of nodes at pool 12, 12TN , is 3 (hub 12, node 

6, node 11), and at pool 11, 11TN , is 2 (hub11, node 12).  Since 1112 TNTN  , 






k

k

j

k

k

j

j

j

TD

TD

UDC

UDC

'
2

'
1

'
2

'
1  needs to be inspected. The value of

11

12

UDC

UDC
 is equal to  









)(
)(

)(
)(

1211

12,111211

11612

11,12116,12612

DD
dDf

DDD
dDdDf

)150400(
)2150400(

716.2




 .134.2  The value of 



k

k
k

k

TD

TD

11

12

 is 

150400

400120150

1211

11612








DD

DDD
218.1 . Since 2.134 >1.218, )11 6, ;12(h  cannot be 

selected. Hence, the next candidate hub is sought. Pool region 1, which includes hub1, node 7, 

and node 3, and has the unit demand cost )3 7, ;1(h =3, is found and selected for possible 

additional nodes.  

Since 3) 7, ;1(13,146,11 hdd   and all of them include different nodes, all of them are 

selected, as displayed in Figure 4.15. 
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Figure 4.15.  Node 6 is connected to hub 11, node 13 is connected  

to hub 14, and node 1 is selected to be a hub 
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 [V]  

For (1), the possible selection for the shortest distance for hub 11 is 55,11 d , hub 10 is 

59,10 d , hub 14 is 45,14 d , and hub 1 is 48,1 d . Since 9,105,118,15,14 dddd  , node 5 

and node 8 are selected for possible additional nodes.  

For (2), the smallest unit demand cost is 176.3)3 ;2( h  and hub 2 is picked first. Pool 

region 2, including hub 2 and node3, has the smallest value = 3.176. However, if )3 ;2(h  is 

selected, that will cause hub 1 not to satisfy the lower bound. Based on Step 9(c), the total 

number of nodes at pool 2, 2TN , is 2 (hub2, node 3), and at pool 1, 1TN , is 3 (hub1, node 3, 

node 7). Since 12 TNTN  , )3 ;2(h  cannot be selected. The next candidate pool, which only 

includes hub 2 and its unit demand cost 2r  is 3.33, is selected.  

Since 8,15,142 ddr  , node 2 is selected to be a hub, as shown in Figure 4.16. 
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Figure 4.16. Node 2 is chosen to be a hub 
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 [VI].  

For (1), the possible selection for the shortest distance for hub 11 is 55,11 d , hub 10 is 

59,10 d , hub 14 is 45,14 d , hub 1 is 48,1 d , and hub 2 is 44,2 d . (Note: node 3 is not 

connected to hub 2 because that will cause hub 1 to violate its lower bound.) Since 

9,105,114,28,15,14 ddddd  , nodes 5, 8, and 4 are selected for possible additional nodes.  

For (2), the smallest unit demand cost is 478.3)14 ;13( h  and hub 13 is picked first. 

Pool region 13, including hub 13 and node 14, has the smallest value=3.478. However, if 

)14 ;13(h  is selected, that will cause hub 14 not to satisfy the lower bound. Based on Step 

9(c), the total number of nodes at pool 13, 13TN , is 2 (hub13, node 14), and at pool 14, 14TN , 

is 2 (hub 14, node 13). Since 1413 TNTN  , 




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1 . Since 1.633 >1, )14 ;13(h  cannot be selected.  

Hence, the next candidate hub is sought. Pool region 12, which includes hub 12 and 

node 6, and its unit demand cost 778.3)6 ;12( h . If )6 ;12(h  is selected, hub 11 still satisfies 

the lower bound. Based on Step 9 (b), 

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The next candidate pool region with the smallest unit demand cost is 909.3)12 6, ;5( h . 

Pool region 5, including hub 5, node 6, and node 12, has the smallest value=3.909. Based on 

Step 9(b), selecting 6,12) ;5(h does not affect the lower bound for hub 11 but the value of 
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(400 600 120 2 150 3) / (400 60 120 150) (400 60 120 150)
1.463 1.090 0.373 0.

(400 120 3 150 2) / (400 120 150) (400 120 150)

          
     

       
 

Hence, 6,12) ;5(h  cannot be selected.  

The next available pool region 9 is found, which includes hub 9, node 7, and node 3 and 

its unit demand cost 7,3) ;9(h =4.75. This value is greater than 5,14d , 8,1d , and 4,2d , which 

have the same value 4. Hence, node 5 is connected to hub 14, node 8 is connected to hub 1, 

and node 4 is connected to hub 2, as displayed in Figure 4.17. 
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Figure 4.17. Node 5 is connected to hub 14, node 8 is connected to  

hub 1, and node 4 is connected to hub 2. 
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 [VII]  

For (1), the possible selection for the shortest distance for hub 11 is 79,11 d , hub 10 is 

59,10 d , hub 14 is 109,14 d , hub 1 is 59,1 d , and hub 2 is 23,2 d . Since 3,2d  has the 

shortest distance, node 3 is selected for the possible additional node.  

For (2), the smallest unit demand cost is 75.4)3 7, ;9( h  and hub 9 is selected for the 

possible additional node.  

Since 3,2)3 7, ;9( dh  , node 3 is connected to hub 2, as displayed in Figure 4.18. 
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Figure 4.18. Node 3 is connected to hub 2 
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[VIII].  

For (1), the possible selection for the shortest distance for hub 11 is 79,11 d , hub 10 is 

59,10 d , hub 14 is 109,14 d , hub 1 is 59,1 d , and hub 2 is 69,2 d . Since 9,10d  and 9,1d  

have the same shortest distance, they both are selected for possible additional nodes.  

For (2), the smallest unit demand cost is 75.4)3 7, ;9( h  and hub 9 is picked first. Pool 

region 9, including hub 9, node 7, and node 3, has the value of 4.75. However, if pool region 

9 is chosen, that will result in hub 1 violating its lower bound but hub 3 still satisfies the 

lower bound. Based on Step 9(c), the total number of nodes at pool 9 and pool 2, 29TN , is 5 

(hub 9, node 7, node 3, hub 2, node 4), and at pool 1 and pool 2, 21TN , is 6 (hub1, node 7, 

node 8, hub 2, node 3, node 4). Since 2129   TNTN , )3 7, ;9(h  is not selected.  

The next available pool region includes hub 9 and node 7 and its unit demand cost 

7) ;9(h  equals 4.857. However, it also will result in hub 1 violating its lower bound. Based 

on 9(c), the total number of nodes at pool 9, 9TN , is 2 (hub 9, node 7), and at pool 1, 1TN , is 

3 (hub 1, node 7, node 8). Since 19 TNTN  , 7) ;9(h  is also not selected.  

The next available pool region includes hub 3, node 2, node 7, node 1, and node 9, and 

its unit demand cost is 9) 1, 7, 2, ;3(h  equals 5.361. However, it also will result in hub 1 and 

hub 2 violating the lower bound. Based on 9(c), the total of nodes at pool 3, 3TN , is 5 (hub 3, 

node 2, node 7, node 1, node 9), and at pool 1 and pool 2, 21TN , is 6 (hub 1, node 7, node 8, 

hub 2, node 3, node 4). Since 213  TNTN , 9) 1, 7, 2, ;3(h is not selected. 
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Since 59) 1, 7, 2, ;3( 9,19,10  ddh , the next available pool region does not need to be 

checked. Either 9,10d  or 9,1d  is chosen. Hence, node 9 is connected to hub 10, as shown in 

Figure 4.19, or connected to hub 1, as shown in Figure 4.20. Either one can be selected for 

the next procedure. However, all nodes have been chosen, which means that either Figure 

4.19 or Figure 4.20 is the solution. Both of them have the same smallest cost.  

LINGO was utilized to verify the quality of this small example; the result shows that 

the solution from the clustering algorithm is the same as the optimal solution. 
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Figure 4.19. Node 9 is connected to hub 10 

 



 

 

72

8

7

12

6

2

5

3

1

14
11

9

10

4

13

D=100, f=300
D=300 , f=1000

D=40 , f=2000

D=50 , f=800

D=60 , f=600D= 120 , f=2500

D=80 , f=2100

D=90 , f=1400

D=200 , f=1200

D=500 , f=800 D=400 , f=400

D=150, f=900
D=90 , f=600

D=600 , f=1200

Hub Capacity Limit = [ 200, 800]

2

3

3

3

2

4

4
4

5

 
 

Figure 4.20. Node 9 is connected to hub 1 

 

4.4.2 Enumeration Method 

In this phase, the hubs j are unknown, but the pool regions are known. One hub is 

selected from each pool region. The total cost is calculated for each possible hub and then the 

hub with the lowest cost is chosen. The same rule is followed until all hubs are chosen. 
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4.4.3 Modified Prim’s Algorithm 

Step 1: For all nodes i excluding hub j , sort the total demand 


max

1

k

k

k
iD  and rank these nodes i  

in descending order of 


max

1

k

k

k
iD , denoted as .DL  

Step 2: For each node i  excluding hub j , sort the distance ijd  and rank these hubs j  in 

ascending order of ijd  , denoted as idL . 

Step 3: For these nodes which are not yet selected from DL , select the node i  with the 

largest demand 


max

1

k

k

k
iD  and assign it to the hub j  with the shortest distance ijd , 

selected from idL . The upper capacity needs to be satisfied simultaneously. 

Otherwise, select the next available hub from idL . Continue Step 3 until all nodes are 

assigned. 

Step 4: Check if the lower capacity is satisfied for each pool region. If pool region 1j (hub 1j ) 

is not satisfied, for nodes i  unassigned to pool region 1j , find the assigned pool 

region 2j  of node i and calculate the cost difference for node i ,  )(
21 ijiji dddiff  




max

1

k

k

k
iD . Sort the cost difference idiff  and rank these nodes i  in ascending order of 

idiff , denoted as diffL . The upper capacity needs to be maintained simultaneously for 

pool region 2j . Otherwise, select the next available node from diffL . Continue Step 4 

until the lower and upper capacities are satisfied for all pool regions. 
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4.5  Computing Results 

This section focuses on an experimental design generated by four types of experimental 

factors including: the number of car types, the number of locations, pool capacity, and hub 

opening costs. Section 4.5.1 introduces the parameter settings and the meaning of the 

parameters. In Section 4.5.2, the setting of factor levels and three parts of the experiment are 

described. This description includes the problem size in practice and the problem size which 

can be solved optimally in a reasonable computing time by a branch-and-bound algorithm. 

The computer equipment used for conducting this experiment is introduced in Section 4.5.3. 

In Section 4.5.4, experimental results are analyzed through a three-part experiment. 

4.5.1 Parameter Settings 

The parameter settings in pool segmentation and hub selection are chosen based on the 

website data of Auto Rental News or the assumptions of making the problems feasible, and 

are as described below. 

 Distance: The facility locations are randomly generated within a square space of 

100100. The Euclidean distance between two nodes is taken as the shortest distance in 

this experiment and is rounded off to five decimal places. Thus, the distances 

automatically satisfy the triangle inequality and are symmetric. 

 Demand: The demand is a parameter in this experiment. Because the demand for small 

sized cars is normally higher than for the larger models at the same location, the 

demands for different sizes have the characteristic of this dependence. Hence, when a 

problem is generated based on a specified demand level, which equals 40, based on the 
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website data of Auto Rental News in 2007, the demand for car type 1 at each location is 

generated by multiplying this specified demand level by a random number generated 

from a uniform distribution (0.4, 5). As for the demands for car type 2 and the higher car 

types, a similar ratio value is generated from a uniform distribution (0.5, 1.2) for each 

car type. The demand for car type 2 is then generated by multiplying the demand of car 

type 1 by the ratio for car type 2. The demands for the higher car types are generated by 

multiplying the demand for the previous car type by the respective ratio. The demand is 

rounded off to an integer. 

 Lower Pool Capacity: The lower pool capacity of car type 1 is set to be the specified 

demand level, 40. The lower capacity bound of other car types is generated by 

multiplying the demand for each car type by a random number generated from a 

uniform distribution (0.8, 1). This value is set to be low in order to make the feasible 

region larger. The lower pool capacity is rounded off to an integer. 

 Hub Opening Cost: The ratio of hub opening cost to the demand is a factor in this 

experiment. Hence, when a problem is generated based on a specified demand level, 40, 

and a specified factor level of the ratio of hub opening cost to the demand, the hub 

opening cost is generated by multiplying the demand for car type 1 by a random number 

generated from a uniform distribution (0.5, 2) along with the ratio of hub opening cost to 

the demand. The hub opening cost is rounded off to an integer. 

 Neighbor Factor: Because a value of neighbor factor m covers the neighbor indexes 

from 1 to m, a larger neighbor factor can extend the ranking list of all candidate pool 

regions. However, a larger neighbor factor also takes more computing time. Hence, it is 

important to strike a balance between the computing time and a larger ranking list. In 
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this experiment, the neighbor factor is set to be 5 in parts 1 and 3, but it is set to be 1 for 

the large cases in part 2. 

 Tabu List: The Tabu List is set to be 200 based on the results after testing for several 

examples. 

4.5.2 Factor Levels 

Three parts of the experimental designs are utilized in pool segmentation and hub 

selection. In part 1, the large problem sizes are tested to determine which factors can 

significantly affect the algorithm time. In part 2, the number of locations in practical problem 

sizes is tested and compared to the algorithm time. In part 3, the problem size, which can be 

solved optimally in a reasonable time by a branch-and-bound algorithm, is tested to compare 

the solution quality and computing times of the clustering-based iterative algorithm and the 

optimal solution. 

Based on the experimental design in part 1, the following 4 factors are tested to 

determine if the computing time is significantly affected. 

 Number of Locations:  Three factor levels are set to be 300, 600, and 1200. These 

numbers are close to the levels of the top 8, top 6, top 3 rental companies in the United 

States.  

 Number of Car Types: Based on the website data of large car rental companies, three 

factor levels are set to be 4, 8, and 12. 

 Ratio of Pool Capacity to the Demand (R_Capacity): The lower capacity bound is 

fixed to be the base demand for car type 1 at one location. The upper capacity bound is 
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set to be 10 times, 25 times, and 62.5 times the lower capacity. Three factor levels are 

set to be 10, 25, and 62.5. 

 Ratio of Hub Opening Cost to the Demand (R_Hub Cost): Three factor levels are set 

to be 300, 600, and 1200. 

In part 2, the number of locations in practical problem sizes is tested and compared to 

the algorithm time. The number of car types, the ratio of pool capacity to the demand, and the 

ratio of hub opening cost to the demand are fixed to be 8, 25 and, 600. The numbers of 

locations tested are 1000, 2000, 3000, 4000, 5000, and 6000. The number 6000 is close to the 

factor level of the number of locations of Enterprise Rent-A-Car, the top car rental company 

in the United States. 

In part 3, the solution quality of the clustering-based iterative algorithm is compared to 

the optimal solution solved by a branch-and-bound algorithm. In addition, the computing 

time of the clustering-based iterative algorithm is compared. The problem size is assumed to 

be solved in a reasonable time by a branch-and-bound algorithm because the computing time 

of branch-and-bound is time-consuming. Three factors are tested and the number of car types 

is assumed to be 8. 

 Number of Locations:  Three factor levels are set to be 30, 60, and 90.  

 Ratio of Pool Capacity to the Demand: The lower capacity bound is fixed to be the 

base demand for car type 1 at one location. The upper capacity bound is set to be 10 

times, 15 times, and 20 times the lower capacity. Three factor levels are set to be 10, 15, 

and 20. 

 Ratio of Hub Opening Cost to the Demand: Three factor levels are set to be 300, 600, 
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and 1200. 

4.5.3 Experimental Platform 

This experiment uses the software Visual C++ to compile the computer coding of the 

clustering-based iterative algorithm and uses the optimization software LINGO 9.0 to find an 

optimal solution. The computer equipment utilized to conduct this experiment includes an 

Intel Core 2 Duo E7400 2.80 GHz CPU and 6 GB memory.  

4.5.4 Experimental Analysis 

The experiment is divided into three parts. Four types of experimental factors are 

utilized to test which factors affect the computing time in part 1. Each factor contains three 

levels and each factor level uses three replications based on different random seeds. Hence, 3 

factor levels of the number of locations 3 factor levels of the number of car types   3 factor 

levels of the ratio of the capacity to the demand   3 factor levels of the ratio of hub opening 

cost to the demand   3 random seeds   243 independent trials in part 1. 

In part 2, the number of locations is the only experimental factor and it contains six 

factor levels. Hence, 6 factor levels of the number of locations   3 random seeds = 18 

independent trials in part 2. 

In part 3, an experiment is conducted with the problem size that was solved in a 

reasonable time by the branch-and-bound algorithm. The clustering-based iterative algorithm 

is compared to the optimal solution solved by the branch-and-bound algorithm. Three types 

of experimental factors are utilized to test which factors affect the solution quality of the 
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algorithm. Each factor contains three levels and each factor level conducts three replications 

based on different random seeds. Hence, 3 factor levels of the number of locations    3 

factor levels of the ratio of the capacity to the demand   3 factor levels of the ratio of hub 

opening cost to the demand   3 random seeds   81 independent trials in part 3. 

The Statistics Software Minitab is used to implement a General Linear Model to run the 

Analysis of Variance (ANOVA) in order to analyze the experimental factors versus the 

algorithm time and the solution gap. The significance level is set to be 5%. If the main effect 

of a specific experimental factor is significant, this means that the algorithm time has a 

significant difference among different levels of this specific experimental factor. Hence, the 

Tukey’s test is conducted to find which means are significantly different from one another in 

this specific experimental factor. 

4.5.4.1 Impact Analysis on Experimental Factors versus Algorithm Time 

 In the results of part 1, the statistical distribution of the residuals of the algorithm time 

is not a normal distribution. Data transformation of the logarithm of the algorithm time is 

applied to resemble a normal distribution. Hence, the logarithm of the algorithm time is used 

as the response. The original results of this part can be referenced in Appendix A.  

Observe in Table 4.4 that all p-values of these four factors are less than 0.05. That 

means that the effects of these four factors are all significant. Hence, the number of car types, 

the number of locations, the ratio of pool capacity to the demand, and the ratio of hub cost to 

the demand can affect the computing time of the algorithm.  
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Table 4.4. ANOVA table on four factors versus algorithm time 

Source DF SSE MSE F value p value 
Car Types 
Locations 

R_Capacity 
R_HubCost 

Error 

2 
2 
2 
2 

234 

0.777 
136.097 
3.157 
3.926 
4.500 

0.389 
68.049 
1.578 
1.963 
0.019 

20.22 
3538.75 
82.09 
102.08 

0.0 
0.0 
0.0 
0.0 

 
Total 242 148.457    

Next, Tukey’s test is conducted to compare different factor levels on each experimental 

factor. The original results of Tukey’s test are represented in Appendix B. The summary data 

are shown from Table 4.5 to Table 4.8. The levels of experimental factors are represented in 

Column 1. Column 2 is the number of experimental trials. Column 3 shows whether or not 

the responses on different levels of the factors are significantly different. If the responses on 

different levels of the factors are divided into different groups, this means that their responses 

are significantly different. The group type of the algorithm time is named in alphabetical 

order. The closer to A the letter is in the alphabet, the faster the algorithm time, and that is 

... CBA . If two factor levels are divided into the same group, this means that there is 

not a significant difference between the algorithm times of these two factor levels. The value 

of the group A, B, C is the average logarithm algorithm time in the level of experimental 

factor. The smaller the value, the faster the algorithm time. 

Tukey’s test on different numbers of car types is represented in Table 4.5. In Table 4.5, 

there are significant differences in the algorithm time between the numbers of car types, 4 

and 8, or, 4 and 12. The algorithm time of car type 4 is slower than the algorithm time of car 

type 8 or 12. However, there seems not to be any difference in the algorithm time between 

the numbers of car type 8 and 12. 
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Table 4.5. Tukey test on different numbers of car types 

Car Type # of Trials 
Group (log time) 
A B 

4 81  1.3246 
8 81 1.2110  
12 81 1.1991            

Tukey’s test on different numbers of locations is represented in Table 4.6. From Table 

4.6, the greater the number of locations, the slower the algorithm time. 

Table 4.6. Tukey test on different numbers of locations 

Locations # of Trials 
Group (log time) 

A B C 
300 81 0.3318   
600 81  1.2381  
1200 81   2.1649 

Tukey’s test on different ratios of pool capacity to the demand is represented in Table 

4.7. From Table 4.7, the tight pool capacity seems to make the algorithm time much longer. 

In addition, the loose pool capacity results in a longer algorithm time. 

Table 4.7. Tukey test on different ratios of pool capacity to the demand 

R_Capacity # of Trials 
Group (log time) 

A B C 
10 81   1.3646 
25 81 1.0915   

62.5 81  1.2786  
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Tukey’s test on different ratios of hub cost to the demand is represented in Table 4.8. 

From Table 4.8, the larger the ratio of pool capacity to the demand, the slower the algorithm 

time. 

Table 4.9. Tukey test on different ratios of hub cost to the demand 

R_HubCost # of Trials 
Group (log time) 

A B C 
300 81 1.0910   
600 81  1.2415  
1200 81   1.4023 

 

The figures of average logarithm time on different levels of these four experimental 

factors are summarized as in Figure 4.21  

       

   Figure 4.21. Average logarithm time on different levels of experimental factors 
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4.5.4.2 Impact Analysis on Locations in Practical Problem Size versus Algorithm 

Time 

The experiment of part 2 is the impact analysis on the number of locations in practical 

problem size versus algorithm time. The number of locations is the most important 

experimental factor in this problem because it affects how large of a problem size this 

algorithm can solve. Table 4.9 represents the algorithm time and the number of integer 

variables on different numbers of locations and its trend chart is presented in Figure 4.22. 

The largest case, 6000, is similar to the number of locations in the top rental company in the 

United States, Enterprise Rent-A-Car. Thirty-six million integer variables are covered in this 

case and the algorithm takes about 135 minutes to solve. 

Table 4.9. The algorithm time on the number of locations  

of practical problem size 

Example 
#  
of 

locations 

# of  integer 
variables 
(millions) 

Seed 
# 

Time 
(sec) 

Avg 
time 
(sec) 

1 
1,000 1 

20 23 
20 2 40 18 

3 60 19 
4 

2,000 4 
20 171 

169 5 40 200 
6 60 138 
7 

3,000 9 
20 800 

645 8 40 590 
9 60 545 

10 
4,000 16 

20 2,183 
1,564 11 40 1,297 

12 60 1,211 
13 

5,000 25 
20 4,490 

3,340 14 40 2,943 
15 60 2,588 
16 

6,000 36 
20 10,301 

8,112 17 40 7,111 
18 60 6,924 
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Figure  4.22. The trend chart of algorithm time on the number of locations 

of practical problem size 

4.5.4.3 Impact Analysis on Experimental Factors versus Solution Gap 

In the ANOVA table of part 3 shown in Table 4.10, all p-values of these three factors 

are less than 0.05. The effects of these four factors are all significant. Hence, the number of 

locations, the ratio of pool capacity to the demand, and the ratio of hub cost to the demand, 

can affect the solution gap. The original results of part 3 can be referenced in Appendix C.  

 

Table 4.10. ANOVA table on three factors versus solution gap 

Source DF SSE MSE F value p value 
Locations 

R_Capacity 
R_HubCost 

Error 

2 
2 
2 
74 

0.0052972
0.0061696
0.0049541
0.0223130

0.0026486
0.0030848
0.0024771
0.0003015

8.78 
10.23 
8.22 

 

0.000 
0.000 
0.001 

 
Total 80 0.0387339    
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Tukey’s test is conducted to compare different levels of each experimental factor. The 

original results of Tukey’s test are represented in Appendix D. The illustration of this process 

can be reference in Section 4.5.4.1. 

Tukey’s test on different numbers of locations is represented in Table 4.11. In Table 

4.11, there are significant differences in the solution gaps between the numbers of locations, 

30 and 60, or, 30 and 90. The solution gap of the number of locations, 30, is smaller than the 

solution gap of the number of locations 60 or 90. However, there seems not to be any 

significant difference in the solution gap between the numbers of locations 60 and 90. 

Table 4.11. Tukey test on different numbers of locations 

Locations # of Trials 
Group (Solution Gap) 

A B 
30 27 1.10%  
60 27  2.46% 
90 27  3.03% 

Tukey’s test on different ratios of pool capacity to the demand is represented in Table 

4.12. From Table 4.12, there are significant differences in the solution gap between the ratios, 

10 and 15, or, between the ratio, 10 and 20. The solution gap of the ratio of pool capacity to 

the demand, 10, is larger than the solution gap of the ratio of pool capacity to the demand, 15 

or 20. However, there seems not to be any significant difference in the solution gaps between 

the ratio 15 and 20. 
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Table 4.12. Tukey test on different ratios of pool capacity to the demand 

R_Capacity # of Trials 
Group (Solution Gap) 

A B 
10 27  3.41% 
15 27 1.80%  
20 27 1.39%  

 

Tukey’s test on different ratios of hub cost to the demand is represented in Table 4.13. 

From Table 4.13, there is a significant difference in the solution gap between the ratios, 300 

and 1200. The solution gap of the ratio of hub cost to the demand, 300, is smaller than the 

solution gap of the ratio of hub cost to the demand, 1200. However, there seems not to be any 

significant difference in the solution gap between the ratios, 300 and 600, or, 600 and 900. 

Table 4.13. Tukey test on different ratios of hub cost to the demand 

R_HubCost # of Trials 
Group (Solution Gap) 

A B C 
300 27 1.28%   
600 27 2.13% 2.13%  
1200 27  3.19% 3.19% 

The figures of average solution gap on different levels of these three experimental 

factors are summarized as in Figure 4.23.  
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   Figure 4.23. Average solution gap on different levels of experimental factors 

 

4.5.4.4 Comparison of Computing Time Between the Clustering-Based Iterative 

Algorithm and the Branch-and-Bound Method 

In order to more easily measure the computing time of different problems, the 

computing time and the objective value is standardized. The computing time *t  of the best 

solution found by the branch-and-bound method in LINGO Software in each problem is set 

to be 6)*(10log
*

*
6

10 
t

t
. Other computing times t  can be transformed to standardized 

logarithm time )*10(log
*

6
10 t

t
. This time setting can avoid the value of standardized 

logarithm time to be negative and the scale of logarithm time is easily compared to multiple 

solutions, especially shown in the same plot. In this problem, Algorithm Solution, BetterSolu, 

and BestSolu are included. 
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If the optimal objective value found by the branch-and-bound method is *Z and the 

objective value of the clustering-based iterative algorithm is Z , the solution gap is calculated 

by  %100
*

*



Z

ZZ
. These standardized data are used in the following observations and 

analysis. 

The comparison of the computing time between the clustering-based iterative algorithm 

and the branch-and-bound method is presented in Table 4.14. In Table 4.14, three kinds of 

computing times are recorded. Algorithm times in Column 5 and Column 8 represent average 

times and average logarithm times of the clustering-based iterative algorithm, respectively. 

BetterSolu time is recorded when a better solution than in the clustering-based iterative 

algorithm is found in LINGO. BetterSolu times in Column 6 and Column 9 represent average 

times and average logarithm times when a better solution found. BestSolu time *t  represents 

the time of the optimal solution found in LINGO.  

If the gap of two logarithm times is 1, this means that the gap of these two computing 

times is 10 times. In Table 4.14, the overall results show that the average gaps of the 

logarithm times between the algorithm time and better solution fall between 2 and 3 and the 

average gaps of the logarithm times between the algorithm time and best solution fall 

between 2 and 4. This means that the branch-and-bound method usually takes 100~1,000 

times the algorithm time to find a better solution and 100~10,000 times the algorithm time to 

find an optimal solution than in the clustering-based iterative algorithm. 
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Table 4.14. Computing time of the clustering-based iterative algorithm and the  

branch-and-bound method 

Locations R_Cap 

 
Ratio 

Hubcost 
 

# of 
trials 

Avg Time (sec) Avg Log Time 
Solution 

Gap 
(%) 

Algorithm 
Time 

BetterSolu   
Time 

BestSolu    
Time 

Algorithm 
Time 

BetterSolu 
Time 

30 

10 
300 3 0.065 2.667 2.667 4.03  6.00  0.46% 
600 3 0.025 5.667 7.000 3.39  5.93  3.50% 
1200 3 0.075 5.333 8.667 3.63  5.85  2.27% 

15 
300 3 0.011 3.000 3.000 3.52  6.00  0.16% 
600 3 0.012 2.333 2.333 3.71  6.00  0.52% 
1200 3 0.025 4.333 4.667 3.56  5.97  1.08% 

20 
300 3 0.011 2.667 2.667 3.56  6.00  0.16% 
600 3 0.012 2.667 2.667 3.63  6.00  1.08% 
1200 3 0.008 2.333 2.333 3.51  6.00  0.72% 

60 

10 
300 3 0.095 10.000 10.667 3.84  5.98  1.14% 
600 3 0.047 18.667 22.667 3.30  5.92  1.99% 
1200 3 0.042 24.667 261.667 2.40  5.20  5.79% 

15 
300 3 0.027 7.667 7.667 3.56  6.00  0.64% 
600 3 0.027 19.000 24.667 3.07  5.91  2.39% 
1200 3 0.022 20.000 338.333 2.49  5.43  4.17% 

20 
300 3 0.029 7.667 7.667 3.58  6.00  1.33% 
600 3 0.023 8.000 8.000 3.50  6.00  2.82% 
1200 3 0.025 14.000 28.667 3.10  5.80  1.90% 

90 

10 
300 3 0.247 59.667 512.333 2.78  5.19  4.44% 
600 3 0.271 82.333 5309.667 2.05  4.58  3.78% 
1200 3 0.254 108.667 80826.333 0.53  3.17  7.32% 

15 
300 3 0.144 33.333 36.333 3.53  5.96  1.35% 
600 3 0.099 51.000 142.000 2.93  5.64  2.10% 
1200 3 0.048 69.000 3230.333 1.98  5.09  3.80% 

20 
300 3 0.074 13.333 13.333 3.73  6.00  1.85% 
600 3 0.044 20.000 22.000 3.36  5.98  0.96% 
1200 3 0.047 35.000 58.667 2.92  5.79  1.66% 

 

The comparisons of logarithm time between the clustering-based iterative algorithm 

and the branch-and-bound method are represented from Figure 4.24 to Figure 4.26. Figure 

4.24 is based on different numbers of locations. Figure 4.25 is based on different ratios of 

pool capacity to the demand. Figure 4.26 is based on different ratios of hub cost to the 

demand. From these three figures, the computing time of the clustering-based iterative 

algorithm seems always 100 times faster than the computing time of BetterSolu time.  
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In Figure 4.24, the greater the number of locations, the smaller the logarithm time of 

the clustering-based iterative algorithm and the BetterSolu. As a result of the proportional 

scale characteristic of the logarithm time )*10(log
*

6
10 t

t
 compared to BestSolu time *t , the 

logarithm time becomes less as the number of locations increases. This means that the 

efficiency of the clustering-based iterative algorithm is much better than the branch-and-

bound method as the number of locations increases. 
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Figure 4.24 Comparison of logarithm time between the clustering-based  

iterative algorithm and the branch-and-bound method on  

different numbers of locations 
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In Figure 4.25, the larger the ratio of pool capacity to the demand, the larger the 

logarithm time of the clustering-based iterative algorithm and the BetterSolu. The means that 

the efficiency of the clustering-based iterative algorithm is much better than the branch-and-

bound method as the ratio of pool capacity versus demand decreases. 
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Figure 4.25 Comparison of logarithm time between the clustering-based  

iterative algorithm and the branch-and-bound method on  

different ratio of pool capacity to the demand 

 

 

 

 

 



 

 

92

In Figure 4.26, the larger the ratio of hub cost to the demand, the smaller the 

logarithm time of the clustering-based iterative algorithm and the BetterSolu  This means that 

the efficiency of the clustering-based iterative algorithm is much better than the branch-and-

bound method as the ratio of hub cost versus demand increases. 
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Figure 4.26 Comparison of logarithm time between the clustering-based  

iterative algorithm and the branch-and-bound method on  

different ratios of hub cost to the demand 
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4.6  Concluding Remarks 

In this chapter, a model of pool segmentation and hub selection was introduced and a 

clustering-based iterative algorithm was proposed and validated. This algorithm utilizes three 

important modules. The clustering algorithm uses the concept of unit demand cost to cluster 

nearby locations and quickly captures a very good initial solution. The iterative procedure of 

an enumeration method and a modified Prim’s algorithm utilizes the concept of a convex 

function to obtain a near-optimal solution.  

Based on the numerical results, the computing time of the clustering-based iterative 

algorithm is sensitive to all experimental factors. Fewer car types, more locations, tight or 

loose ratios of pool capacity to the demand, and larger ratios of hub cost to the demand will 

lead to longer computing time. The algorithm times on different numbers of locations in 

practical problem sizes were also compared. The largest case was tested for 6000 nodes and 

36 million integer variables, which is close to the level of Enterprise Rent-A-Car, the top car 

rental company in the United States. This algorithm takes about 135 minutes to solve.  

Compared to the optimal solution solved by the branch-and-bound method, the branch-

and-bound method needs 100~1,000 times the algorithm time to find a better solution and 

100 ~10,000 times to find an optimal solution than in the clustering-based iterative algorithm. 

In addition, the solution gap of the clustering-based iterative algorithm is relatively small 

with an average gap of 2.22%. The numerical results show that the clustering-based iterative 

algorithm achieves a near-optimal solution in an extremely short time.  



 94

CHAPTER 5 

INTER-POOL MOVES AND ASSET REPLACEMENT 

 

5.1 Problem Formulation 

In Chapter 4, all locations are allocated to different pools and one hub is selected for 

each pool based on the yearly demand, the distance cost, and the hub opening cost. When the 

job of pool segmentation and hub selection is accomplished for long-term planning, the next 

task is to distribute the inter-pool moves and asset replacement, which is selling and buying 

cars among different pool regions based on the change of seasonal demand. Seasonal 

demands, selling prices, buying prices, inventory costs, and transportation costs are assumed 

to be known. The inter-pool moves, and buying/selling cars are allocated to different pool 

regions as shown in Figure 5.1. In addition, the service level concerning the fraction of 

demand satisfied for different car types needs to be achieved. 
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Figure 5.1. Network for inter-pool moves and asset replacement 
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5.2 Mathematical Model 

In this section, the framework of a mathematical model for seasonal inter-pool moves, 

asset replacement (buying/selling cars), service level, and upgrade policy is proposed. This 

problem is formulated as an integer programming model. 
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Variables 
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The model can be expressed as: 
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Objective (5.1) is to minimize the total cost of inter-pool moves plus asset replacement. 

Constraints (5.2) indicate that at least the fraction 'k of demand for car type 'k  and higher 

car types is satisfied. Constraints (5.3) and (5.4) are the inventory balance constraints. 

Constraints (5.5) are the integrality requirements and initial inventory levels are given in 

Constraints (5.6). 
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5.3 Motivation 

In the design of the algorithm procedures in a very large scale integer programming 

problem, two kinds of algorithms should be considered. One type of algorithmic procedure, 

such as Benders’ decomposition or Lagrangian relaxation, decomposes the complicating 

variables or constraints to obtain a solution bound or a LP solution. Due to the simplification 

of the original problem, the problem is easier to solve; however, if the original problem after 

decomposing is still a NP-hard or NP-complete problem, it will need other algorithmic 

procedures or meta-heuristics to solve the problem successfully. Another class of algorithms 

used for large scale problems is meta-heuristics. Due to the large number of integer variables, 

a possible direction is to exploit meta-heuristics to solve this combinatorial optimization 

problem. Some traditional meta-heuristics, such as Tabu Search (Glover 1986), Simulated 

Annealing (Kirkpatrick et al. 1983), Genetic Algorithms (Holland 1975), Memetic 

Algorithms (Moscato 1989), and Ant Colony Optimization (Dorigo et al. 1996) are widely 

used. In recent years, other search mechanisms, such as Scatter Search (Glover 1998), 

Variable Neighborhood Search (Mladenovic and Hansen 1997), Guided Local Search 

(Voudouris and Tsang 1996), Greedy Randomized Adaptive Search Procedure (Feo and 

Resende 1995), Iterated Local Search (Lourenc et al. 2002), and Nested Partition Method 

(Shi and Olafsson 2000) have also been developed. Most of the meta-heuristics are 

implemented in binary integer programming problems and their neighborhood structures are 

normally designed for binary variables by different moves, such as swap moves and insert 

moves. However, all variables in this study are non-binary integer variables, and are not 

suitable for swap or insert moves.  
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Therefore, to solve this problem in this study, a new neighborhood structure hVar   

called “better neighbors” is proposed. The better neighbors are obtained from the value of a 

specific variable Var adding/subtracting a flexible value h, and are only adopted for those 

which have better objectives than the current solution. A flexible value h is decided based on 

the maximal reduction of the objective. If a fixed value h is adopted for the design of a 

neighborhood structure, it will only reduce a fixed objective value in each iteration and need 

more iterations in the same type of neighbor. However, a flexible value h will reduce the 

number of iterations in the same type of neighbor because h is decided by the maximal 

reduction of the objective. 

Among the four kinds of variables, ak
tllX ,
,',  includes five parameter indices, ak

tlS ,
,  and 

ak
tlI ,
,  have four, and k

tlB ,  has three. If one large problem covers 8 car types, 12 car ages, 12 

seasonal periods, and 200 pool regions, there will be 8×12×200×(200-1)×12=45,849,600 

integers variables in ak
tllX ,
,', , 8×12×200×12=230,400 integer variables in ak

tlS ,
,  and ak

tlI ,
,  

respectively, and 8×200×12=19,200 integer variables in k
tlB , . Of all integer variables, ak

tllX ,
,',  

utilize 98.96%, ak
tlS ,
,  and ak

tlI ,
, utilize 0.50% each, and k

tlB , only utilize 0.04%. However, k
tlB ,  

has the largest impact on the objective. Next is ak
tlS ,
, ,  and ak

tlI ,
,  and ak

tllX ,
,',  have the smallest 

impact on the objective. Their impacts on the objective are in inverse proportion to the 

numbers of integer variables. 

Since the change of any integer variables will force other integer variables to change 

because of the inventory balance constraints, the design of this algorithm will be based on the 

change of a single integer variable. All neighbors of ak
tll

ak
tl

k
tl XSB ,

,',
,

,, ,,  are not calculated and 
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evaluated at the same iteration because that will take an enormous amount of time to 

compute. Instead, the neighbors of the variables k
tlB , , which have the largest impact on the 

objective, are first evaluated. k
tlB ,  is evaluated based first on the highest car type, which is 

normally the most expensive car type. ak
tlS ,
,  is evaluated secondly, and ak

tllX ,
,',  is evaluated last. 

However, ak
tlI ,
,  is not included. The change of ak

tlI ,
, will affect at least the inventory balance 

constraints in two different seasonal periods and make the structure of better neighbors 

complicated. Furthermore, each move in ak
tll

ak
tl

k
tl XSB ,

,',
,

,, ,,  has forced ak
tlI ,
,  to change its value. 

Since the change of a single variable forces other variables to change and the maximal 

reduction of the objective is adopted for h , some cases may not happen. Based on several 

trials, the better neighbors of hX ak
tll ,
,',  never happen, and the better neighbors of hX ak

tll ,
,',  

normally happen in one case and only 4 times in another case, which affected the objective 

very minimally. Moreover, more cases of hX ak
tll ,
,', will result in an extremely heavy 

computing burden. Hence, all cases in hX ak
tll ,
,',  and all cases in hX ak

tll ,
,',  except one case are 

removed. Because ak
tllX ,
,',  utilize 98.96% of all integer variables, this removal largely reduces 

the burden of the computing and almost does not affect the objective. 

Based on the previous example, there will be 8×12×200=19,200 constraints for the 

service level and 8×12×200×12=230,400 constraints for inventory balance. Of all 

constraints, the service level utilizes 7.69%, and the inventory balance utilizes 92.31%. The 

structure of better neighbors is designed based on the inventory balance constraints. When 

the single variable changes, exploiting the inventory balance constraints adjusts other 

changed variables and finds possible cases, which can maintain the inventory balance 
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constraints automatically and improve the objective. It will not be necessary to evaluate 

whether the inventory balance constraints, which utilize 92.31% of all constraints, are 

violated. Furthermore, in such a neighborhood structure, most of the service level 

constraints also will be automatically satisfied and no additional evaluation is needed. Only 

3 cases out of all 10 cases of better neighbors are needed to examine whether one or two of 

their service level constraints are satisfied. Such a design structure can save at least 99% of 

the computing time of constraint evaluations.  
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5.4  Algorithm Procedure 

The process of obtaining a feasible initial solution is introduced in Section 5.4.1.In 

addition, based on the previous motivation in Section 5.3, the structure of better neighbors 

and the best-improvement descent local search are proposed in Section 5.4.2 and Section 

5.4.3.  

 

5.4.1 Initial Solution 

The initial solution is generated for an almost worst case and given based on four basic 

rules as follows.  

 If possible, set 0,
, ak
tlS , 0,

,', ak
tllX  

 If possible, set k
tl

k
tl dB ,,   

 Calculate ak
tlI ,
,  based on the inventory balance constraints 

 Slightly adjust ak
tll

ak
tl

ak
tl

k
tl XISB ,

,',
,

,
,

,, ,,, if still infeasible 

Basically,  ,
,',
ak
tllX is set to be 0 except in Step 6. The inventory balance constraints 

become constraints 5.7 and 5.8. 
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The detailed procedure of finding an initial feasible solution is listed in the following 

steps. 

Step 1: For lktta ,),1(~1,1 max  , let .,0,0, ,
1,

,
1,

,',
1,

,,,
k
tl

ak
tl
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tll
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tl

k
tl

k
tl dIXSdB     

            When all are assigned, go to Step 2. 

Step 2: For lktta ,,,1 max  , because  known, is 1,
, max

ak
tlI  

               .,let  , if 1,
,,
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            When all are assigned, go to Step 3. 
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Step 5: For  ,,,~2, 1maxmax lkaatt    because known, is ,
, max
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             When all are assigned, the feasible initial solution is done. 

 

 

 

 

 

 

 

 

 

 



 105

5.4.2 The Structure of Better Neighbors 

The neighborhood structure of this problem includes five types of variable changes 

based on the change of single variables, ak
tll

ak
tl

k
tl XSB ,

,',
,

,, or  ,, . The better neighbors are obtained 

from the value of a specific variable adding/subtracting a flexible value h and are only 

adopted for those which have better objectives than the current solution. A flexible value h is 

decided based on the maximal reduction of the objective. Several possible cases are covered 

for each type of variable changes. In addition, the structure of better neighbors is designed 

based on the inventory balance constraints. These five types of better neighbors include 

hBk
tl , , hBk

tl , , hS ak
tl ,
, , hS ak

tl ,
, , and hX ak

tll ,
,', . The detailed structure is introduced below.  

1) hBk
tl , : 

The prerequisite for this type of better neighbor is 0, 
k
tlB  

 Case 1: 
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tl

ak
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 Case 2: 

Let .1a  For any ll ' , if 0,
,' ak
tlS  and the difference of the objective objdiff    

0,
,'

,
,,',  ak

tl
ak
tll

k
tl strb , then }, min{ ,

,',
ak
tl

k
tl SBh  . Let ,, ,

,,'
,
,,',, hXXhBB ak

tll
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k
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k
tl   
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tl  ,

,'
,
,' . The constraint representation of this case is  
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 Case 3: 
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2) hBk
tl ,  

 Case 1:  

Let .1a  For any ll ' , if 0,' k
tlB and the difference of the objective 

k
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k
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4) hS ak
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   } 

   The constraint representation of this case is  
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 Case 3: 
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5.4.3 Best-Improvement Descent Local Search 

Based on the structure of better neighbors, a simple algorithm called best-improvement 

descent local search is proposed and introduced. 

Step 1: Let Iterpre_loop=0 and Itercurrent=0. Go to Step 2. 

Step 2:  

For car type k=kmax to 1 

              For pool l=1 to lmax 

                        For period t=1 to tmax 

                                  Step 2.1: Calculate diffobj for all better neighbors i of hBhB k
tl

k
tl  ,,  , . 

                        Step 2.2: Rank these neighbors i in descending order of diffobj  and obtain a             

                                        list of ranked neighbors, denoted as LBi . 

                        Step 2.3: Pick a neighbor *i  from LBi and check if constraints (5.2) are  

                                       satisfied. If yes, move to *i , Itercurrent= Itercurrent +1, and go  

                                       to Step 2.1; if not, choose the next available from LBi until all  

                                       neighbors are checked.  

                  End 

             End 

        End 

        Go to Step 3. 

Step 3: 

For car type k=kmax to 1 

              For pool l=1 to lmax 

                        For period t=1 to tmax 
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                            For car age a=1 to amax 

                                        Step 3.1: Calculate diffobj for all better neighbors i of hShS ak
tl

ak
tl  ,

,
,

,  , . 

                           Step 3.2: Rank these neighbors i in descending order of diffobj  and obtain  

                                           a list of ranked neighbors, denoted as LSi . 

                           Step 3.3: Pick a neighbor *i  from LSi and check if constraints (5.2) are  

                                       satisfied. If yes, move to *i , Itercurrent= Itercurrent +1, and go  

                                       to Step 3.1; if not, choose the next available from LSi until all  

                                       neighbors are checked.  

                       End 

                   End 

              End 

         End 

         Go to Step 4. 

Step 4: 

For car type k=kmax to 1 

              For pool l=1 to lmax 

                        For period t=1 to tmax 

                            For car age a=1 to amax 

                           For pool l’=1 to lmax 

                                               Step 4.1: Calculate diffobj for all better neighbors i of hX ak
tl ,
, . 

                                Step 4.2: Rank these neighbors i in descending order of diffobj  and  

                                               obtain a list of ranked neighbors, denoted as LXi . 

                                 Step 4.3: Pick a neighbor *i  from LXi and check if constraints (5.2)  
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                                                are satisfied. If yes, move to *i , Itercurrent= Itercurrent +1,   

                                                and go to Step 4.1; if not, choose the next available from LXi  

                                                until all neighbors are checked.  

                             End 

                        End 

                   End 

              End 

         End 

         Go to Step 5. 

Step 5: If Iterpre_loop Itercurrent , let Iterpre_loop= Itercurrent and go to Step 2; otherwise, the  

             whole algorithm is finished. 
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5.5  Computing Results 

This section focuses on an experimental design generated by three types of 

experimental factors including: the number of car types, the number of pools, and the number 

of seasonal periods/car ages. Section 5.5.1 introduces the parameter setting and the meaning 

of the parameters. In section 5.5.2, the setting of factor levels and the two parts of the 

experiment are described, including small scale problems and large scale problems. The 

software and the computer equipment for conducting this experiment are described in Section 

5.5.3 In Section 5.5.4, experimental results are analyzed and explained.  

5.5.1 Parameter Settings 

The parameter settings in inter-pool moves and asset replacement are chosen based on 

the website data of Auto Rental News or the assumptions of making the problems feasible, 

and are as described below. 

 Demand: Because the demand for small-sized cars is normally higher than that of the 

larger models at the same location, the demands for different sizes have the 

characteristic of this dependence. Hence, the demand for car type 1 in each season at 

each pool is generated by multiplying a random demand level, generated from a uniform 

distribution (40, 60), by a random time ratio, generated from a uniform distribution (0.5, 

1.5). As for the demands for car type 2 and the higher car types, a type ratio value is 

generated from a uniform distribution (0.6, 1.2) for each car type. The demand for car 

type 2 is then generated by multiplying the demand for car type 1 by the ratio for car 
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type 2. The demands for the higher car types are generated by multiplying the demand 

for the previous car type by the respective ratio. The demand is rounded off to an integer. 

 Unit Price of Buying A Car: The unit price of buying a car with a car type 1 in each 

season at each pool is generated by multiplying a random unit price level, generated 

from a uniform distribution (12000, 13000), by a random time ratio generated from a 

uniform distribution (0.9, 1.1). As for the unit buying price of car type 2 and the higher 

car types, a type ratio value is generated from a uniform distribution (2.0, 2.1) for each 

car type. The unit buying price of car type 2 is then generated by multiplying the 

demand for car type 1 by the ratio for car type 2. The unit buying prices of the higher 

car types are generated by multiplying the demand for the previous car type by the 

respective ratio. The unit price of buying a car is rounded off to four decimal places. 

 Unit Price of Selling A Car: The unit price of selling a car for each car type in each 

season at each pool is generated by multiplying its unit price of buying a car by a 

random car age ratio generated from a uniform distribution (0.5, 0.6). The unit price of 

selling a car is rounded off to four decimal places. 

 Unit Inventory Cost: The unit inventory cost for car type 1, car age 1 in each season at 

each pool is generated by multiplying a random unit inventory level, generated from a 

uniform distribution (15, 70), by a random time ratio generated from a uniform 

distribution (0.8, 1.2). As for the unit inventory cost for car type 2 and the higher car 

types, a type ratio value 1.1 is generated. The type ratio for car type k  equals )1(1.1 k . 

The unit inventory cost for car age 2 and higher, an age ratio value 1.1 is generated. The 

car age ratio for car age a  equals )1(1.1 k . The unit inventory cost of car type k , car age 

a  is then generated by multiplying the unit inventory cost of car type 1, car age 1 by the 
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type ratio for car type k  and the age ratio for car age a . The unit inventory cost is 

rounded off to four decimal places. 

 Transportation Cost: The unit transportation cost from pool l  to pool 'l  for car type 1, 

car age 1 in each season at each pool is generated by multiplying a random unit 

transportation cost level, generated from a uniform distribution (1, 3), by a random time 

ratio generated from a uniform distribution (0.9, 1.1). As for the unit transportation cost 

for car type 2 and the higher car types, a type ratio value 1.1 is generated. The type ratio 

for car type k  equals )1(1.1 k . The unit transportation cost for car age 2 and higher car 

ages, a age ratio value 1.05 is generated. The car age ratio for car age a  equals )1(05.1 k . 

The unit transportation cost from pool l  to pool 'l  for car type k , car age a  is then 

generated by multiplying the unit transportation cost from pool l  to pool 'l  for car type 

1, car age 1 by the type ratio for car type k  and the age ratio for car age a . The 

transportation cost is rounded off to four decimal places. 

 Initial Inventory: The initial inventory of car type 1 in each car age within each pool is 

generated by multiplying a random initial inventory level, generated from a uniform 

distribution (40, 60), by a random time ratio, generated from a uniform distribution (0.8, 

1.2). As for the initial inventory of car type 2 and the higher car types, a type ratio value 

is generated from a uniform distribution (0.6, 1.2) for each car type. The initial 

inventory of car type 2 is then generated by multiplying the initial demand for car type 1 

by the ratio for car type 2. The initial demands for the higher car types are generated by 

multiplying the demand for the previous car type by the respective ratio. The initial 

inventory is rounded off to an integer. 
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 Final Inventory: The parameter setting for the final inventory is the same as the initial 

inventory. 

 Service Ratio: In this problem, the service ratio is set to be 1, which means all demands 

need to be satisfied. 

5.5.2 Factor Levels 

Two parts of the experimental designs are exploited in inter-pool moves and asset 

replacement. In part 1, small scale problems are tested and compared to the branch-and-

bound algorithm, to determine which factor can significantly affect the solution quality and 

the algorithm time. In part 2, the algorithm time is tested and compared in large scale 

problems.  

Based on the experimental design in part 1, the following 3 factors are tested to 

determine if the solution quality and the computing time are significant affected. 

 Number of Pools:  Three factor levels are set to be 10, 20, and 30, which are the 

maximal number of pools available to solve by the branch-and-bound through LINGO 

Software. 

 Number of Car Types:  Three factor levels are set to be 4, 5, and 6. 

 (Number of Car Ages, Number of Seasonal Periods): Three factor levels are set to be 

(4, 4), (5, 5), and (6, 6). 

In part 2, the large scale problems are tested to understand how large of a problem size 

this algorithm can solve and how long it will take. The number of car types and the number 
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of car ages/seasonal periods are fixed to be 8 and 12. Only the numbers of pools are tested 

for 6, 9, 12, 50, 100, 150, and 200.  

5.5.3 Experimental Platform 

This experiment uses the software Visual C++ to compile the computer coding of the 

best-improvement descent local search and uses the optimization software LINGO 9.0 to 

solve the optimal solution. The computer equipment for conducting this experiment includes 

an Intel Core 2 Duo E7400 2.80 GHz CPU and 6 GB memory.  

5.5.4 Experimental Analysis 

The experiment is divided into two parts. Three types of experimental factors are 

utilized to test which factors affect the computing time and the solution quality in part 1. 

Each factor contains three factor levels and each factor level uses three replications based on 

different random seeds. Hence, 3 factor levels of the number of pools 3 factor levels  of the 

number of car types   3 factor levels of the number of car ages/seasonal periods   3 random 

seeds   81 independent trials in part 1. 

In part 2, the number of pools is the only experimental factor and it contains seven 

factor levels. Hence, 7 factor levels of the number of pools   3 random seeds = 21 

independent trials in part 2. 

The illustration of the Analysis of Variance (ANOVA) and Tukey test conducted can be 

referenced in Section 4.5.4   
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5.5.4.1    Impact Analysis on Experimental Factors versus Solution Gap 

The ANOVA table on three factors versus the solution gap is shown in Table 5.1. 

Observe in Table 5.1 that only the p-value of the number of ages/seasons is less than 0.05. 

This means that the factor effect of the number of ages/seasons is significant. Hence, the 

number of ages/seasons can affect the solution quality of the algorithm. The original results 

of this part can be reference in Appendix E. 

Table 5.1. ANOVA table on three factors versus solution gap 

Source DF SSE MSE F value p value 
Car Types 

Ages/Seasons 
Pools 
Error 

2 
2 
2 
74 

0.0002070
0.0092451
0.0000083
0.0054295

0.0001035
0.0046226
0.0000042
0.0000734

1.41 
63.00 
0.06 

 

0.251 
0.000 
0.945 

 
Total 80 0.0148899    

Tukey’s test on different numbers of car ages/seasonal periods is represented in Table 

5.2. The original results of Tukey’s test on the number of ages/seasons are represented in 

Appendix F. In Table 5.2, there are significant differences in the solution gap among the 

numbers of car ages/seasonal periods. The average solution gaps of car ages/seasonal periods 

4, 5, and 6 are 3.34%, 1.47%, and 0.82%, respectively. The larger the number of 

ages/seasons, the smaller the solution gap.  

Table 5.2. Tukey test on different numbers of ages/seasons 

Ages/Seasons # of Trials 
Group (solution gap) 

A B C 
4 27 3.34%   
5 27  1.47%  
6 27   0.82% 

 



 120

The figures of average solution gap on different levels of these three experimental 

factors are summarized as in Figure 5.2. 
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Figure 5.2. Average solution gaps on different levels of experimental factors 
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5.5.4.2    Impact Analysis on Experimental Factors versus Computing Time 

In this section, two ANOVA tables on three factors versus the algorithm time and the 

time solved by the branch-and-bound method are represented in Table 5.3 and Table 5.4. The 

original results of this part can be referenced in Appendix E. Note from Table 5.3 and Table 

5.4 that all p-values of these three factors are less than 0.05. That means that the effects of 

these three factors are all significant. Hence, the number of car types, the number of car 

ages/seasonal periods, and the number of pools can affect the computing time of the 

algorithm and the computing time of the branch-and-bound method.  

Table 5.3. ANOVA table on three factors versus the algorithm time 

Source DF SSE MSE F value p value 
Car Types 

Ages/Seasons 
Pools 
Error 

2 
2 
2 
74 

0.22465 
0.18063 
1.45017 
0.12324 

0.11233 
0.09032 
0.72508 
0.00167 

67.45 
54.23 
435.38 

 

0.000 
0.000 
0.000 

 
Total 80 1.97869    

 

Table 5.4. ANOVA table on three factors versus the time solved by the  

                  branch- and-bound method 

Source DF SSE MSE F value p value 
Car Types 

Ages/Seasons 
Pools 
Error 

2 
2 
2 
74 

59959 
122894 
440060 
182755 

29979 
61447 
220030 
2470 

12.14 
24.88 
89.08 

 

0.000 
0.000 
0.000 

 
Total 80 805668    
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Next, Tukey’s test is conducted to compare different factor levels on each experimental 

factor. The original results of Tukey’s test are represented in Appendix G.  

Tukey’s tests for the algorithm time and the time solved by the branch-and-bound 

method on different numbers of car types are represented in Table 5.5 and Table 5.6. In 

Table 5.5, there are significant differences in the algorithm time among different numbers of 

car types. The fewer the number of car types, the less the algorithm time. In Table 5.6, there 

seems not to be any difference in the time solved by the branch-and-bound method between 

the numbers of car type 4 and 5. However, there are significant differences in the time solved 

by the branch-and-bound method between the numbers of car types, 4 and 6, or, 5 and 6. The 

time solved by the branch-and-bound method is normally 200 to 300 times more than the 

algorithm time.   

Table 5.5. Tukey test of the algorithm time on different numbers of car types 

Car Types # of Trials 
Group (algorithm time(sec)) 

A B C 
4 27 0.247   
5 27  0.312  
6 27   0.376 

 

Table 5.6. Tukey test of the time solved by the branch-and-bound method on  

different numbers of car types 

Car Types # of Trials 
Group (LINGO time(sec)) 

A B 
4 27 50  
5 27 78  
6 27  116 
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Tukey’s tests for the algorithm time and the time solved by the branch-and-bound 

method on different numbers of car ages/seasonal periods are represented in Table 5.7 and 

Table 5.8. In Table 5.7 and Table 5.8, there are significant differences in the algorithm time 

and in the time solved by the branch-and-bound among different numbers of car 

ages/seasonal periods, respectively. The fewer the number of car ages/seasonal periods, the 

less the algorithm time or the less the time solved by the branch-and-bound method. The time 

solved by the branch-and-bound method is normally 150 to 350 times more than the 

algorithm time.   

Table 5.7. Tukey test of the algorithm time on different numbers of car  

ages/seasonal periods 

Ages/Seasons # of Trials 
Group (algorithm time(sec)) 

A B C 
4 27 0.254   
5 27  0.311  
6 27   0.370 

 

Table 5.8. Tukey test of the time solved by the branch-and-bound method on  

different numbers of car ages/seasonal periods 

Ages/Seasons # of Trials 
Group (LINGO time(sec)) 

A B C 
4 27 37   
5 27  75  
6 27   132 
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Tukey’s tests for the algorithm time and the time solved by the branch-and-bound 

method on different numbers of pools are represented in Table 5.9 and Table 5.10. In Table 

5.9 and Table 5.10, there are significant differences in the algorithm time and in the time 

solved by the branch-and-bound among different numbers of pools, respectively. The fewer 

the number of pools, the less the algorithm time or the less the time solved by the branch-

and-bound method. The time solved by the branch-and-bound method is normally 50 to 380 

times more than the algorithm time.   

Table 5.9. Tukey test of the algorithm time on different numbers of pools 

Pools # of Trials 
Group (algorithm time(sec)) 

A B C 
10 27 0.152   
20 27  0.303  
30 27   0.479 

 

Table 5.10. Tukey test of the time solved by the branch-and-bound method on  

different numbers of pools 

Pools # of Trials 
Group (algorithm time(sec)) 

A B C 
10 27 7.5   
20 27  54.8  
30 27   182.0 
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The figures of average algorithm time and average time solved by the branch-and-

bound method on different levels of these three experimental factors are summarized as in 

Figure 5.3 and Figure 5.4. 
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Figure 5.3. Average algorithm times on different levels of experimental factors 

 

      

654

200

150

100

50

0
654

302010

200

150

100

50

0

Type

M
ea

n

age/season

pool

Main Effects Plot for lingo time
Fitted Means

 

                   Figure 5.4. Average time solved by the branch-and-bound method 

on different levels of experimental factors 
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5.5.4.3    Impact Analysis on Large Number of pools versus Computing Time 

The experiment of part 2 is the impact analysis on the large number of pools versus 

algorithm time. The number of pools is the most important experimental factor in this 

problem because it affects how large of a problem size this algorithm can solve. Table 5.11 

represents the algorithm time and the number of integer variables on different numbers of 

pools and its trend chart is presented in Figure 5.5. The branch-and-bound method has the 

problem of memory overflow in the large case and cannot obtain their results. The largest 

case, 200, covers 46 million integer variables and 250 thousand constraints and the algorithm 

takes only 38.6 seconds to solve. 

Table 5.11. The algorithm time on the large number of pools 

EX 
# of 

Pools 
# of  

Integer Var 
# of 

Constraints
Seed 

# 

Algorithm Branch-and-Bound
solution 
gap(%) 

Avg 
solution 
gap (%)

Time 
(sec) 

Avg 
Time(sec)

Time
(sec) 

Avg 
Time(sec)

1 
6 48,960 7,489

20 0.28 
0.270  

55 
55.0  

0.23% 
0.20% 2 40 0.265 54 0.14% 

3 60 0.265 56 0.22% 

4 
9 104,544 11,233

20 0.422 
0.432  

195 
194.3  

0.15% 
0.14% 5 40 0.437 195 0.12% 

6 60 0.437 193 0.14% 

7 
12 180,864 14,977

20 0.608 
0.608  

452 
448.7  

0.24% 
0.20% 8 40 0.578 442 0.19% 

9 60 0.639 452 0.17% 

10 
50 2,942,400 62,401

20 3.541  
3.458  

Memory 
Overflow 

 

  

11 40 3.339  

12 60 3.494  

13 
100 11,644,800 124,801

20 9.375 
9.968  14 40 10.686 

15 60 9.843 

16 
150 26,107,200 187,201

20 19.781 
20.020  17 40 21.512 

18 60 18.767 

19 
200 46,329,600 249,601

20 38.485 
38.631  20 40 38.907 

21 60 38.501 
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Figure  5.5. The trend chart of algorithm time on the large number of pools 
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Figure 5.6 is the trend chart of the algorithm time in example 25 ( The number of pools 

is 200 and seed # is 20). The solution gap is calculated by %100


final

finalcurrent

Z

ZZ
 and it 

decreases rapidly from 45% to 10% in the first 5 seconds. Several Steep points as the dashed 

circles fall at the start of Step 2, Step 3, and Step 4 of the best-improvement descent local 

search. The solution gap decreases to almost 0% after 30 seconds. 
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Figure  5.6. The trend chart of the algorithm time in Example 25 
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5.6 Concluding Remarks 

In this chapter, an integer model of inter-pool moves and asset replacement was 

introduced and a best-improvement descent local search with the structure of better neighbors 

was proposed and validated. The structure of better neighbors exploits the concept of the 

maximal objective reduction to decide a flexible value h  in the neighbors hVar  . 

Compared to a fixed value h, this reduces the number of iterations in the same type of 

neighbor. In addition, the better neighbors exploit the inventory balance constraints to adjust 

other variables and largely reduce the computing time of evaluating the constraints. In this 

algorithm, k
tlB , , ak

tlS ,
, , and ak

tllX ,
,',  are evaluated in the order of their impacts on the objective. 

This design enables the algorithm to quickly decrease the objective early in the computing 

process. 

Based on the numerical results, the number of car ages/seasonal periods can affect the 

solution gap but the number of car types and the number of pools do not. The larger the 

number of car ages/seasonal periods, the smaller the solution gap. The solution gap normally 

falls below 4%. If the problem size becomes larger, the solution gap normally becomes 

smaller. This result demonstrates that the best-improvement descent local search will have 

better results as the problem size becomes larger. While observing the computing times of 

the algorithm and the branch-and-bound method, all three experimental factors can affect the 

computing times in these two methods. The average time solved by the branch-and-bound 

method is about 50 to 380 times more than the algorithm time. The largest problem tested in 

this algorithm contains 200 pools, 46 million integer variables, and 250 thousand constraints 

and the best-improvement descent local search only takes 38.6 seconds to solve. These 
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numerical results show that the best-improvement descent local search has very good 

performance and can obtain a near-optimal solution in an extremely short time.  
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CHAPTER 6 

DEMAND ALLOCATION AND  

EMPTY FLOW REDISTRIBUTION  

 

6.1 Problem Formulation 

In Chapter 4, all locations are allocated to pool regions and hubs are selected based 

on the yearly demand. In Chapter 5, seasonal inter-pool moves and asset replacement are 

implemented. However, it is necessary to address daily planning in the same pool region. 

The fact that the customers can rent a car and return it either in the same or in a different 

location leads to the problem of vehicle imbalance, and empty vehicles need to be 

redistributed to meet demand at individual locations. In the same pool, empty cars can be 

redistributed the same day. Moreover, the car upgrade policy and service level are 

considered. The network flow of demand allocation and empty flow redistribution is 

presented in Figure 6-1. 
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Figure 6.1. Demand allocation and empty flow redistribution 
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6.2 Mathematical Model 

This section introduces a mathematical model to solve the problem of demand 

allocation and empty flow redistribution. In addition, the upgrade policy and a specific 

service ratio of satisfying the exact demand are included. This problem is formulated as 

an integer programming model. 

Indices 

rr

kk

tt

ll

 period rental

 car type

 period time

location 






 

Parameters 

tl

lrkd rk
tll

 period at time 'location             

  tolocation  from move  to period rental and  car typefor  demand,
,', 

,

,

, ',

   unit inventory cost for an idle car of type  at location  at time period 

operatonal and maintenance cost for a rental car of type  and rental period  

          from location 

k

l t

k r

l l t

m k l t

v k r

l





, ',

 to location '  at time period 

operational and maintenance cost for an empty car of type  from location  

           to  location '  at time period 

ratio of satisfying exact demand for 

k

l l t

k

l t

c k l

l t





 car type  without upgradingk
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Variables 

tllr

kkd

tlkI

tllkX

rkk
tll

k
tl

k
tll

 period at time 'location   tolocation  from  period               

 rental and  car typefor  demand serving '  typeof flowcar  rental

 period  timeof end at the location at  held  car type ofinventory 

 period at time 'location   tolocation  from  car type of flowempty 

,',
,',

,

,',








 

The model can be expressed as: 

, ', ,

, ', , ', , ', , ', , ,', ' '  ' 1
                                  (6.1)

kk k k r k k r k k

l l t l l t l l t l l t l t l tt k l l l l t k l l k r t k l
Min c X v d m I

 
               

max max max
1 2 1

1 2 1 1

, , ,

, ', , ',

', ,

', ,( ) ', ,' 1 ' ', '

  :

                                                           , ', , ,      (6.2)

   

k k kk k r k r

l l t l l tk k k k k k

k k k r k

l l t r l l t lk l r l l l

subject to

d d l l t r k

d X I



  


 

  

   

 

  ', ,

,( 1) , ', , ', ,', ' ' 1 '

, , ,

, ', , ',' '

, ',

      , ,      (6.3)

                                       , , ,  0 1    (6.4)

     ar

kk k k k r k

t l l t l l t l tl l l k l r

k k r k k r k

l l t l l tt r l l t r l l

k

l l t

X d I k l t

d d k l t

X

 


  



   

       

   

    

, ',

, ', ,

e integers                                                             , , ', , '    (6.5)

    ,   are integers                                                     , ', , , ',  k k r k

l l t l t

k l l t l l

d I k k r l l t

 



, ', 0

, ',

, 0 , ',( ) 0

    (6.6)

     are given                                                               , , ', , '    (6.7)

    ,   are given                                       

k

l l t

k k k r

l t l l t r

X k l l t l l

I d




  

 

           , ', , ', ,      (6.8)k k l l t r

 

In Objective (6.1), the objective function is to minimize the operational and 

maintenance cost of empty car flow, rental car flow, and inventory cars. Constraints (6.2) 

ensure that the demand for car type k plus higher types can always be allocated. 

Constraints (6.3) indicate that the car type k  flow of rental cars, empty cars, and 

inventory cars at location l  in time period t  needs to be balanced. 





k

k l r

rkk
rtlld

1' '

,,'
)(,,'

 and 





k

k l r

rkk
tlld

1' '

,,'
,',

 designate the non-empty in-flow and out-flow at location l  and car type k  
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at time period t . 
lll

k
tllX

','
,,'  and 

lll

k
tllX

','
,',  designate the empty in-flow and out-flow at 

location l  and car type k  at time period t . Constraints (6.4) are used to ensure that at 

least a specific percentage of the demand for car type k is satisfied by the same car type. 

Constraints (6.5) and (6.6) are the integrality requirements and the initial levels are given 

in Constraints (6.7) and (6.8). 

6.3 Motivation 

It is not difficult to observe that the structure of this mathematical model is similar 

to the model of inter-pool moves and asset replacement. There are flow balance 

constraints and capacity constraints in both models. The variable of rental car flow 

', ,

, ',

k k r

l l td  has as many as six parameter indices. That means that if a problem covers 21 rental 

locations, 21 rental days, 21 planning days, and 10 car types, the number of integer 

variables will be up to 10.8 millions. It will be very difficult to solve to optimality. 

In solving a very large scale integer programming problem, the decomposition 

method seems not to be effective because, even after decomposing, the number of the 

variables is still too huge. It also needs a set of effective rules to transfer the LP solution 

solved by the decomposition method to a feasible IP solution. Instead, if this problem is 

solved by a neighborhood search, it needs to overcome the problem of the large 

neighborhood in this problem. In Chapter 5, the design of better neighbors obtains 

excellent performance. Hence, a suitable neighbor structure based on the concept of 

better neighbors is proposed to solve this problem. 
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6.4 Algorithm Procedure 

The rule for obtaining a feasible initial integer solution is introduced in Section 

6.4.1. In Section 6.4.2, the structure of better neighbors is proposed. A first-improvement 

descent local search is developed in Section 6.4.3. 

6.4.1 Initial Solution 

The initial solution is generated based on the following basic rule. 

Step 1: Assign , , ,

, ', , ',

k k r k k r

l l t l l td d    for all , , ', ,k l l r t . 

Step 2: For max ~ 1k k , , , ',r l l t , 

             if maxk k , , , ,

, ', , ',

k k r k r

l l t l l td d . 

             if maxk k ,for max' ( 1) ~k k k  , , ', , , ,

, ', , ', , ', max( ) / ( )k k r k r k k r

l l t l l t l l td d d k k    . 

Step 3: Assign , ', 0 for all , , ', , 'k

l l tX k l l t l l  . 

Step 4: ,

k

l tI  is obtained from Constraint (6.3). 

Step 5: Slightly adjust , ',

, , ', , ',, ,k k k k r

l t l l t l l tI X d   if , 0k

l tI  . 
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The detailed procedure of finding an initial feasible solution is listed in the 

following steps. 

Step 1: Assign , , ,

, ', , ',( )k k r k k r

l l t l l td ceil d    for all , , ', ,k l l r t , ceil function represent the  

smallest integer value which is larger than ,

, ',

k k r

l l td  . 

Step 2: For max ~ 1k k , , , ',r l l t , 

              if maxk k , , , ,

, ', , ',

k k r k r

l l t l l td d . 

              if maxk k , , , ,

, ', , ',_ 1 k r k k r

l l t l l tleft capa d d   , max_left type k k  , 

_ _ 1/ _left each left capa left type . 

                    For max' ~k k k ,  

                           If 'k k , , ',

, ', ( _ )k k r

l l td floor left each   , _ 1 ( _ )left capa floor left each  . 

Floor function represents the largest integer value which is smaller 
than _left each . 

                           Otherwise,  

if max'k k , ( _ )temp ceil left each . 
, ', , ',

, ', , ',if ( _ 1),  ;  otherwise, _ 1.k k r k k r

l l t l l ttemp left capa d temp d left capa   
 

Otherwise, , ',

, ', _ 1.k k r

l l td left capa   

                           , ',

, ',_ 1 k k r

l l tleft capa d    

                     End 

           End 

Step 3: Assign , ', 0k

l l tX   for all , , ', , 'k l l t l l . 

Step 4: For max1 ~t t  

                 For max1 ~k k  
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                     For max1 ~l l  

                                   ', , ', ,

, ', ,( ) ,( 1) , ',' 1 ' ' 1 '

k kk k k r k k k r

l t l l t r l t l l tk l r k l r
I d I d 

  
        . 

                          End 

                 End 

           End 

Step 5: For max1 ~t t  

                 For max1 ~k k  

                     For max1 ~l l ,  

                         If , 0k

l tI  , ,min_ k

l th I  . 

 for max,' 1 ~  'l l l l   

     for max' ~t t t  

                                  If ', 0k

l tI  ,  go back to forloop;  

Otherwise, if ', min_k

l tI h  , let ',min_ k

l th I . 

                             End 

                             ', , min_k

l l tX h . 

                              for max' ~t t t , ', ' , 'min_ , min_k k

l t l tI h I h     

                              if , 0k

l tI  , go back to forloop, otherwise, jump out from forloop. 

                     End 

                End 

End 

End 
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Step 6: if , 0,  , ,k

l tI t k l  , 

             For max1 ~r r  

                For max' 1 ~l l  

                      For max' 1 ~k k  

                               If capa1( ', , , , 'k r t l l )>0,  ', ,

, ', ,min_ { 1,  ,  ( )}k k r k

l l t l th capa d I  . Then adjust 

other related I . Let 1 min_capa h  , ', ,

, ', min_k k r

l l td h   , 

, min_k

l tI h  . 

                       End 

             End 

           End 

Step 7: if , 0,  , ,k

l tI t k l  , 

                 For ' 1 ~k k  

                     For max1 ~r r  

                             If ', ,

, , 0k k r

l l td   , ', ,

, , ,min_ { , ( )}k k r k

l l t l th d I  . Let ', ,

, , min_k k r

l l td h    and ,

k

l tI     

min_ h . Then adjust other related I . 

                       End 

                End 

 

6.4.2 The Structure of Better Neighbors 

There are three types of better neighbors in this problem based on the interchange 

of a single variable, 1 2', , ', ,

, ', , ',( , )k k r k k r

l l t l l td h d h   , , ', ,( , )k k

l l t l tX h I h  , and 
1 2, , , ,( , )k k

l l t l l tX h X h  . 

The better neighbors are obtained from the value of a specific variable adding/subtracting 
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a flexible value r and are only adopted for those which have better objectives than current 

solution. A flexible value r is decided based on the maximal reduction of the objective. 

The detailed structure is introduced below. 

1) 1 2', , ', ,

, ', , ',( , )k k r k k r

l l t l l td h d h    

     The prerequisite for this type of better neighbor is 1', ,

, ', 0k k r

l l td   , 1 2k k . 

1', ,

, ',min_ k k r

l l th d  .  1 2, ,

, ', , ',

k r k r

obj l l t l l tdiff v v   

     For max' ~t t r t  , if 1

', ' 0k

l tI  , 1 2

', ' ', '

k k

obj obj l t l tdiff diff m m    

                                                    If 1

', ' min_k

l tI h , 1

', 'min_ k

l th I .  

                                           If 1

', ' 0k

l tI  , this neighbor is not selected. 

            For max' ~t t t , if 2

, ' 0k

l tI  , 2 1

, ' , '

k k

obj obj l t l tdiff diff m m    

                                                    If 2

, ' min_k

l tI h , 2

, 'min_ k

l th I . 

                                        If 2

, ' 0k

l tI  , this neighbor is not selected. 

If   0objdiff  , let 1', ,

, ', min_k k r

l l td h   , For max' ~t t r t  , let 1

', ' min_ ,  k

l tI h  . 

2

', ' min_k

l tI h  . The constraint representation of this case is  

1 1
1 1 1 1 1 1

1 1 1

', , ', ,

', ,( ) ', , ,( 1) , ', , ', , 1' 1 ' ', ' ' 1 ' ', '

', ,

', ,( 1) ', , 1 ,', '

                       ( , , )
k kk k r k k k k r k k

l l t r l l t l t l l t l l t l tk l r l l l k l r l l l

k k r k k

l l t r l l t l tr l l l

d X I d X I k l t

d X I d

 
    


  

       

 

     

   1 1
1 1 1

1 1 1 1 1

', ,

, ',( 1) , ',( 1 ,( 1) 1' 1 ' ' 1 ' ', '

', , ' ', , '

, ',( ') , ',( ) ',( 1) ', ,( ) ', ,( )' , ' ' ,

             ( , , 1)
k k k k r k k

l l t l l t l tk l k l r l l l

k k r k k k k r k

l l t r r l l t r l t r l l t r l l t rr l l l l r l

X I k l t

d X I d X


    

 
      

     

   

   

    1 1
1

1 1
1 1 1 1 1 1

',( ) 1' 1 ' 1 '

', , ' ', , '

, ',( ' 1) , ',( 1) ',( ) ', ,( 1) ', ,( 1) ',( 1)' 1 ' , ' ' 1 ' , '

  ( , ', )

 

      

k k k

l t rk l k l l

k kk k r k k k k r k k

l l t r r l l t r l t r l l t r l l t r l t rk l r l l l k l r l l l

I k l t r

d X I d X I

  

 
              

   

       

  

      

1                                                                                                             ( , ', 1)k l t r 
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2 2
2 2 2 2 2 2

2 2 2

', , ', ,

', ,( ) ', , ,( 1) , ', , ', , 2' 1 ' ', ' ' 1 ' ', '

', ,

', ,( 1) ', , 1 ,', '

                      ( , , )
k kk k r k k k k r k k

l l t r l l t l t l l t l l t l tk l r l l l k l r l l l

k k r k k

l l t r l l t l t lr l l l

d X I d X I k l t

d X I d

 
    


  

       

 

      

   2 2
2 2 2

2 2 2 2 2

', ,

, ',( 1) , ',( 1 ,( 1) 2' 1 ' ' 1 ' ', '

', , ' ', , '

, ',( ') , ',( ) ',( 1) ', ,( ) ', ,( )' , ' ' ,

           ( , , 1)
k k k k r k k

l t l l t l tk l k l r l l l

k k r k k k k r k

l l t r r l l t r l t r l l t r l l t rr l l l l r l l l

X I k l t

d X I d X


    

 
       

     

   

   

    2 2
2

2 2
2 2 2 2 2 2

',( ) 2' 1 ' 1 '

', , ' ', , '

, ',( ' 1) , ',( 1) ',( ) ', ,( 1) ', ,( 1) ',( 1)' 1 ' , ' ' 1 ' , '

  ( , ', )

 

         

k k k

l t rk l k

k kk k r k k k k r k k

l l t r r l l t r l t r l l t r l l t r l t rk l r l l l k l r l l l

I k l t r

d X I d X I

 

 
              

   

       

  

      

2                                                                                                         ( , ', 1)k l t r 

 

2) , ', ,( , )k k

l l t l tX h I h   

The prerequisite for this type of better neighbor is , ', 0k

l l tX  , 'l l . , ',min_ k

l l th X . 

, ',

k

obj l l tdiff c   

For max' ~t t t , if ', 0k

l tI  , ', ' , '

k k

obj obj l t l tdiff diff m m   . 

                                   If ', ' min_k

l tI h , let ', 'min_ k

l th I . 

                            Otherwise, this neighbor is not selected. 

If   0objdiff  , let , ', min_k

l l tX h  , For max' ~t t t , let ', ' min_ ,  k

l tI h  . 

, ' min_k

l tI h  . The constraint representation of this case is  

', , ', ,

', ,( ) ', , ,( 1) , ', , ', ,' 1 ' ', ' ' 1 ' ', '

', , ', ,

', ,( 1) ', , 1 , , ',( 1)', '

                  ( , , )
k kk k r k k k k r k k

l l t r l l t l t l l t l l t l tk l r l l l k l r l l l

k k r k k k k r

l l t r l l t l t l l tr l l l r

d X I d X I k l t

d X I d

 
    

 
   

       

 

      

    , ',( 1) ,( 1)' 1 ' ' 1 ' ', '

', , ', ,

, ',( ) , ', ',( 1) ', , ', , ',' 1 , ' ' 1 , '

      ( , , 1)

                   ( , ', )

k k k k

l l t l tk l k l l l l

k kk k r k k k k r k k

l l t r l l t l t l l t l l t l tk l r l l l k l r l l l

l

X I k l t

d X I d X I k l t

d

   

 
    

     

       

   

      

', , ', ,

, ',( 1) , ', 1 ', ', ,( 1) ', ,( 1) ',( 1)' 1 , ' ' 1 , '
      ( , ', 1)

k kk k r k k k k r k k

l t r l l t l t l l t l l t l tk l r l l l k l r l l l
X I d X I k l t 

        
              
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3) 
1 2, , , ,( , )k k

l l t l l tX h X h   

The prerequisite for this type of better neighbor is 
1, , 0k

l l tX   and 
2 , , 0k

l l tX  . 

1 2, , , ,min_ min{ , }k k

l l t l l th X X . 
1 2, , , ,

k k

obj l l t l l tdiff c c   . 

For max' ~t t t , if 
1 , ' 0k

l tI  , 
1 2, ' , '

k k

obj obj l t l tdiff diff m m   .  

                                   If 
1 , ' min_k

l tI h , let 
1 , 'min_ k

l th I  

                        Otherwise, this neighbor is not selected. 

If   0objdiff  , let 
1, , min_k

l l tX h  and 
2 , , min_k

l l tX h  . For max' ~t t t , let 

1 , ' min_ ,  k

l tI h  . 
2 , ' min_k

l tI h  . The constraint representation of this case is  

2 1

1 1 1 1

', , ', ,

', ,( ) ', , , , ,( 1) , ', , ', , , ,' 1 ' ', ' ' 1 ' ', '

', ,

', ,( ) ', , ,( 1) , ',', '

[ ] [ ]      ( , , )
k kk k r k k k k k r k k k

l l t r l l t l l t l t l l t l l t l l t l tk l r l l l k l r l l l

k k r k k

l l t r l l t l t l l tr l l l

d X X I d X X I k l t

d X I d

 
    

 
 

       

 

      

   
1 1

2 2 2 2 2 2

', ,

, ', , 1' 1 ' ' 1 ' ', '

', , ', ,

', ,( 1) ', , 1 , , ',( 1) , ',( 1) ,( 1)' ', ' ' 1 ' ', '

                     ( , , )
k k k k r k k

l l t l tk l k l r l l l

kk k r k k k k r k k

l l t r l l t l t l l t l l t l tk l r l l l k l r l l l

X I k l t

d X I d X I

  

 
       

     

      

  

     

2 2 2 2 2 2

2 2

1' 1

', , ', ,

', ,( ) ', , ,( 1) , ', , ', , 2' 1 ' ', ' ' 1 ' ', '

', ,

', ,( 1) ', , 1

      ( , , 1)

                     ( , , )

k

k kk k r k k k k r k k

l l t r l l t l t l l t l l t l tk l r l l l k l r l l l

k k r k

l l t r l l t l

k l t

d X I d X I k l t

d X I



 
    


  



       

 

      

 
2 2 2 2

', ,

, , ',( 1) , ',( 1) ,( 1) 2' 1 ' ', ' ' 1 ' ', '
      ( , , 1)

k kk k k r k k

t l l t l l t l tk l r l l l k l r l l l
d X I k l t

     
            
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6.4.3 First-Improvement Descent Local Search 

Based on the structure of better neighbors, a first-improvement descent local  

search is developed below. 

Step 1: Let Iterpre_loop=0 and Itercurrent=0. Go to Step 2. 

Step 2:  

For car type k1=2  to kmax 

              For car type 'k =1  to (k1 -1)                       

For rental period r=1 to rmax 

                         For rental location l=1  to lmax                    

                              For rental location 'l =1  to lmax    

                                                    For time period t =1  to tmax  

                                                            If any better neighbor i  of 1 2', , ', ,

, ', , ',( ,  )k k r k k r

l l t l l td h d h    is found, 

move to i , Itercurrent= Itercurrent +1.   

                                     End 

                             End 

                        End 

                   End 

               End 

        End 

Step 3:  

For car type k=1  to kmax 

             For rental location l=1  to lmax                    
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                  For rental location 'l =1  to lmax    

                                  For time period t =1  to tmax  

                                              If any better neighbor i  of , ', ,( ,  )k k

l l t l tX h I h   is found, move to i ,  

Itercurrent= Itercurrent +1.   

                      End 

                End 

           End 

     End 

Step 4:  

For car type k=1  to kmax 

             For rental location l=1  to lmax                    

                  For rental location 'l =1  to lmax    

                                  For time period t =1  to tmax  

                                              If any better neighbor i  of 
1 2, , , ,( ,  )k k

l l t l l tX h X h   is found, move to i ,  

Itercurrent= Itercurrent +1.   

                      End 

                End 

           End 

     End 

Step 5: If Iterpre_loop Itercurrent , let Iterpre_loop= Itercurrent and go to Step 2; otherwise, the  

             whole algorithm is finished. 
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6.5 Computing Results 

This section focuses on an experiment generated by two types of experimental 

factors including: the number of rental locations and (the number of time periods, the 

number of rental periods). Section 6.5.1 introduces the parameter setting and the meaning 

of the parameters. In section 6.5.2, the setting of factor levels and two parts of the 

experiment are described, including small scale problems and large scale problems. The 

software and the computer equipment used for conducting this experiment are described 

in Section 6.5.3 In Section 6.5.4, experimental results are analyzed and explained.  

6.5.1 Parameter Settings 

The parameter settings in demand allocation and empty flow redistribution are 

chosen based on the website data of Auto Rental News or the assumptions of making the 

problems feasible, and are as described below. 

 Demand: The demand for car type 1 from node l  to node l  is generated from a 

uniform distribution (30, 50). The demand for car type 1 from node l  to 'l  is 

generated from a uniform distribution (0, 20). As for the demands for car type 2 and 

the higher car types, a type ratio value is generated from a uniform distribution (0.8, 

1.1) for each car type. The demand for car type 2 is then generated by multiplying 

the demand for car type 1 by the ratio for car type 2. The demands for the higher car 

types are generated by multiplying demand for the previous car type by the 

respective ratio. The demand is rounded off to an integer. 
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 Unit Inventory Cost: The unit inventory cost of car type 1 is generated from a 

uniform distribution (5, 10). As for the unit inventory costs of car type 2 and the 

higher car types, a type ratio value is generated from a uniform distribution (1.0, 1.2) 

for each car type. The unit inventory cost of car type 2 is then generated by 

multiplying the unit inventory cost of car type 1 by the ratio for car type 2. The unit 

inventory costs of the higher car types are generated by multiplying the unit 

inventory cost of the previous car type by the respective ratio. The unit inventory 

cost is rounded off to one decimal place. 

 Unit Operational Cost of A Rental Car: The unit operational cost of a rental car of 

car type 1 from location l  to location 'l  is generated by multiplying a random cost 

level, generated from an uniform distribution (30, 50), by rental period r. If location 

'l l , a location ratio, generated from an uniform distribution (1.5, 3.0) is multiplied 

by the cost. As for the unit operational cost of a rental car of car type 2 and the 

higher car types, a type ratio value is generated from a uniform distribution (1.2, 1.4) 

for each car type. The unit operational cost of a rental car of car type 2 is then 

generated by multiplying the unit rental car cost of car type 1 by the ratio for car 

type 2. The unit operational costs of a rental car of the higher car types are generated 

by multiplying unit operational cost of a rental car of the previous car type by the 

respective ratio. The unit operational cost of a rental car is rounded off to one 

decimal place. 

 Unit Operational Cost of An Empty Car: The unit empty car cost of car type 1 is 

generated by multiplying a random distance between two locations, generated from 

the uniform distribution (0, 100), by a location ratio, generated from a uniform 
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distribution (0.3, 0.7). As for the unit empty car cost of car type 2 and the higher car 

types, a type ratio value is generated from a uniform distribution (1.2, 1.4) for each 

car type. As for the unit rental car cost of car type 2 and the higher car types, a type 

ratio value is generated from a uniform distribution (1.2, 1.4) for each car type. The 

unit empty car cost of car type 2 is then generated by multiplying the unit empty car 

cost of car type 1 by the ratio for car type 2. The unit empty car costs of the higher 

car types are generated by multiplying the unit empty car cost of the previous car 

type by the respective ratio. The unit empty car cost is rounded off to one decimal 

place. 

 Ratio of Satisfying Exact Demand without Upgrading: In this problem, the ratio 

of satisfying exact demand without upgrading is set to be 0.5, which means at least 

50% of the demand need to be satisfied without upgrading any car type. If this ratio 

is set to be higher, car rental companies will need to own more cars and many cars 

will be idle stored as the inventory. If this ratio is set to be lower, service level will 

be not important. Hence, we assume this ratio to be 50% as an average in this 

problem. 

 Initial Inventory: The initial inventory of car type 1 is generated from a uniform 

distribution (0, 20). As for the initial inventory of car type 2 and the higher car types, 

a type ratio value is generated from a uniform distribution (0.9, 1.1) for each car 

type. The initial inventory of car type 2 is then generated by multiplying the initial 

inventory of car type 1 by the ratio for car type 2. The initial inventories of the 

higher car types are generated by multiplying the initial inventory of the previous 

car type by the respective ratio. The initial inventory is rounded off to an integer. 
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 Initial Rental Car Flow: The initial rental car flow 1 2

1 2

, ,

, ,( ) 0_ k k r

l l t rd pre
   is generated 

based on the following rule. _1ratio  and _ 2ratio  are generated from the uniform 

distributions (0.8, 1.1) and (0.2, 0.5), individually. The initial rental car flow is 

rounded off to an integer. 

If 'l l ,  

     If 1 1k   

          If 2 1k  , let 1 2

1 2

, ,

, ,_ k k r

l l td pre =uniform (30,50);  

If 2 1k  , 1 2

1 2

, ,

, ,_ k k r

l l td pre = _ 2ratio uniform (20,40). 

              Otherwise, if 1 2k k , 1 2 1 2

1 2 1 2

, , , 1,

, , , ,_ _1 _k k r k k r

l l t l l td pre ratio d pre    . 

                                If 1 2k k , 1 2 1 2

1 2 1 2

, , 1, ,

, , , ,_ _1 _k k r k k r

l l t l l td pre ratio d pre     

 Otherwise,   If 1 1k   

          If 2 1k  , let 1 2

1 2

, ,

, ,_ k k r

l l td pre =uniform (0,20);  

If 2 1k  , 1 2

1 2

, ,

, ,_ k k r

l l td pre = _ 2ratio uniform (0,20). 

              Otherwise, if 1 2k k , 1 2 1 2

1 2 1 2

, , 1, 1,

, , , ,_ _1 _k k r k k r

l l t l l td pre ratio d pre     . 

                                If 1 2k k , 1 2 1 2

1 2 1 2

, , 1, ,

, , , ,_ _1 _k k r k k r

l l t l l td pre ratio d pre     
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       If r t , let 1 2

1 2

, ,

, ,( ) 0_ k k r

l l t rd pre
  = 1 2, ,

, ',( )_ k k r

l l r td pre
 . 

6.5.2 Factor Levels 

Two parts of the experiment are exploited in demand allocation and empty flow 

redistribution. In part 1, the first-improvement descent local search is tested and 

compared to the branch-and-bound algorithm by the computing time and solution gap. In 

part 2, the algorithm time is tested in large scale problems in order to understand how 

large of a problem size this algorithm can solve.  

Based on the experiment in part 1, the following 2 factors are tested. The number of 

car types is fixed at 10. 

 Number of Locations:  Three factor levels are set to be 6, 8, and 10, which are the 

maximal number of pools that can be solved by the branch-and-bound method 

through LINGO Software. 

  (Number of Time Periods, Number of Rental Periods): Three factor levels are 

set to be (4, 4), (6, 6), and (8, 8). 

In part 2, the large scale problems are tested to understand how large of a problem 

size this algorithm can solve and how long it will take.  Normally a pool region includes 

10~20 rental locations in a rental company and the planning periods is between 7~21. 

Hence, the problem size is assumed to be (number of nodes, number of time periods, 

number of rental periods). The problem sizes tested are (12,12,12),(15,15,15),(18,18,18), 

and (21,21,21). 
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6.5.3 Experimental Platform 

This experiment uses the software Visual C++ to compile the computer coding of 

the best-improvement descent local search and uses the optimization software LINGO 9.0 

to solve the optimal solution. The computer equipment for conducting this experiment 

includes an Intel Core 2 Duo E7400 2.80 GHz CPU and 6 GB memory.  

6.5.4 Experimental Analysis 

The experiment is divided into two parts. Small scale problems are generated to 

compare the computing times and the solution gaps between the first-improvement 

descent local search and the branch-and-bound method in part 1. Each factor contains 

three factor levels and each factor level uses three replications based on different random 

seeds. Hence, 3 factor levels of the number of locations   3 factor levels of the number 

of time periods/rental periods   3 random seeds = 27 independent trials in part 1. 

In part 2, large scale problems are generated to determine how large of a problem 

size this algorithm can solve and how long it will take. Hence, 4 factor levels of the 

number of the problem sizes   3 random seeds = 12 independent trials in part 2. 

6.5.4.1 Results for Small Scale Problems 

The experiment in part 1 was conducted for small scale problems. The solution gaps 

between the first-improvement descent local search and the branch-and-bound method 

are displayed in Table 6.1. The solution gap between the optimal solution and the initial 

solution is about 29%~30%. The first-improvement descent local search always obtained 
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extremely good solutions with an average solution gap below 0.07%. The computing 

times of the first-improvement descent local search and the branch-and-bound method are 

shown in Table 6.2. The branch-and-bound method solves fast in extremely small 

problems but takes significant amount of time when the problem size becomes larger. 

Instead, the first-improvement descent local search still solves quickly even when the 

problems become larger. 
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Table 6.1. Solution gaps between the first-improvement descent local search and the 

branch-and-bound method 

Ex 
# of 

Nodes 

# of Time 
Periods /  

# ofRental 
Periods 

Seed 
# 

LINGO First-Improvement Descent Local Search 

 

Optimal 
Obj 

Initial Solution Final Solution 

Initial Obj Gap(%)
Avg 

Gap(%)
Final Obj Gap(%)

Avg 
Gap(%) 

1 

6 

4 

20 3.2309E+07 4.1964E+07 29.88%

29.70%

3.2333E+07 0.07% 

0.05% 2 40 3.4189E+07 4.4420E+07 29.92% 3.4214E+07 0.07% 

3 60 3.2525E+07 4.2048E+07 29.28% 3.2530E+07 0.01% 

4 

6 

20 1.0380E+08 1.3420E+08 29.28%

29.38%

1.0388E+08 0.07% 

0.05% 5 40 1.0599E+08 1.3740E+08 29.63% 1.0601E+08 0.01% 

6 60 1.0077E+08 1.3023E+08 29.24% 1.0082E+08 0.05% 

7 

8 

20 2.3093E+08 2.9955E+08 29.72%

29.75%

2.3096E+08 0.02% 

0.03% 8 40 2.3814E+08 3.0927E+08 29.87% 2.3821E+08 0.03% 

9 60 2.3372E+08 3.0308E+08 29.68% 2.3383E+08 0.05% 

10 

8 

4 

20 5.3724E+07 6.9344E+07 29.08%

29.30%

5.3752E+07 0.05% 

0.04% 11 40 5.6239E+07 7.3007E+07 29.82% 5.6264E+07 0.04% 

12 60 5.3823E+07 6.9434E+07 29.00% 5.3836E+07 0.02% 

13 

6 

20 1.7110E+08 2.2202E+08 29.76%

29.69%

1.7113E+08 0.02% 

0.03% 14 40 1.7634E+08 2.2903E+08 29.88% 1.7644E+08 0.06% 

15 60 1.6923E+08 2.1902E+08 29.42% 1.6926E+08 0.02% 

16 

8 

20 3.9696E+08 5.1580E+08 29.94%

29.91%

3.9705E+08 0.02% 

0.03% 17 40 4.0018E+08 5.1908E+08 29.71% 4.0041E+08 0.06% 

18 60 3.9606E+08 5.1523E+08 30.09% 3.9613E+08 0.02% 

19 

10 

4 

20 8.4138E+07 1.0909E+08 29.65%

29.73%

8.4162E+07 0.03% 

0.03% 20 40 8.6324E+07 1.1219E+08 29.96% 8.6360E+07 0.04% 

21 60 8.2530E+07 1.0693E+08 29.56% 8.2545E+07 0.02% 

22 

6 

20 2.6045E+08 3.3823E+08 29.86%

29.83%

2.6052E+08 0.03% 

0.03% 23 40 2.6732E+08 3.4678E+08 29.73% 2.6743E+08 0.04% 

24 60 2.6203E+08 3.4041E+08 29.91% 2.6211E+08 0.03% 

25 

8 

20 6.0258E+08 7.8454E+08 30.20%

29.97%

6.0354E+08 0.16% 

0.07% 26 40 6.0613E+08 7.8695E+08 29.83% 6.0628E+08 0.02% 

27 60 6.0592E+08 7.8706E+08 29.89% 6.0611E+08 0.03% 
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Table 6.2. Computing times of the first-improvement descent local search and the 

branch-and-bound method 

Ex 
# of 

Nodes 

# of Time 
Periods/ 

# of Rental 
Periods 

Seed 
# 

# of 
Variables

# of 
Constraints

LINGO 
First-Improvement 

Descent Local Search 
Run 

time(s)
Avg 

Time(s)
Iterations

Avg 
Iterations 

Run 
time(s) 

Avg 
Time(s)

1 

6 

4 

20 

33120 6011 

4 

4.0 

14293 

14723 

5.7 

5.7 2 40 4 15240 5.9 

3 60 4 14637 5.6 

4 

6 

20 

73440 13331 

22 

20.3 

32284 

32895 

8.7 

8.8 5 40 19 33886 9.2 

6 60 20 32515 8.7 

7 

8 

20 

129600 23531 

78 

90.7 

57436 

58502 

13.3 

13.5 8 40 95 60069 13.8 

9 60 99 58002 13.5 

10 

8 

4 

20 

58880 10571 

10 

11.0 

24124 

24942 

7.3 

7.9 11 40 12 25800 7.5 

12 60 11 24902 9.1 

13 

6 

20 

130560 23531 

80 

77.7 

55815 

56398 

15.8 

13.9 14 40 85 58017 13.2 

15 60 68 55361 12.8 

16 

8 

20 

230400 41611 

511 

581.3

99931 

101047 

20.2 

21.4 17 40 619 102350 22.3 

18 60 614 100861 21.8 

19 

10 

4 

20 

92000 16411 

30 

28.0 

37964 

38765 

10.3 

10.4 20 40 28 40087 10.9 

21 60 26 38244 10.2 

22 

6 

20 

204000 36611 

179 

211.3

85277 

86557 

19.5 

18.9 23 40 232 88235 18.8 

24 60 223 86160 18.5 

25 

8 

20 

360000 64811 

1327

1309.0

154083

155619 

33.0 

34.2 26 40 1393 156790 39.5 

27 60 1207 155985 30.0 
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6.5.4.2 Results for Large Scale Problems 

The experiment in part 2 is conducted for large scale problems. Table 6.3 represents 

the algorithm time on large problem sizes. The largest cases, (21, 21 , 21), covers 10.79 

million integer variables and 1.95 million constraints and the first-improvement descent 

local search only takes  about 23 minutes to solve. The trend chart of algorithm time and 

the number of iterations for large problem sizes is presented in Figure 6.2. 

 

Table 6.3. The algorithm time on large problem sizes 

E
x 

(Nodes,      
Time Periods, 

Rental Periods) 

Seed 
# 

# of Variables 
(unit: million) 

# of 
Constraints 

(unit: million)

First-Improvement 
Descent Local Search 

# of 
Iterations

Avg 
Iterations 

Run 
time(s) 

Avg 
Time(s)

1 

(12, 12, 12) 

20 

1.16 0.21 

497 

500 

135 

138 2 40 504 144 

3 60 499 134 

4 

(15, 15, 15) 

20 

2.82 0.51 

1207 

1208 

412 

384 5 40 1215 361 

6 60 1203 377 

7 

(18, 18, 18) 

20 

5.83 1.05 

2476 

2483 

979 

926 8 40 2493 898 

9 60 2479 901 

10 

(21, 21, 21) 

20 

10.79 1.95 

4562 

4567 

1355 

1353 11 40 4579 1351 

12 60 4560 1355 
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Figure 6.2. Computing time and iterations on large problem sizes 
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6.6 Concluding Remarks 

In this chapter, a model for daily planning of demand allocation and empty flow 

redistribution was proposed. Empty cars were assumed to be redistributed the same day 

in the same pool. Car upgrade policy and service level were considered. A first-

improvement descent local search with the structure of three interchange better neighbors 

was introduced and validated. 

Based on the numerical results, in small scale problems, the first-improvement 

descent local search always obtains good solutions with an extremely small solution gap 

below 0.07% and takes significantly less time than the branch-and-bound method as the 

problem size increases. In large scale problems, the first-improvement descent local 

search only needs 23 minutes to solve the largest cases, (21,21,21), which covers 10.79 

million integer variables and 1.95 million constraints. These results show that the first-

improvement descent local search not only obtains a relatively good solution in a quite 

short time, but also solves very large scale integer programming problems easily. 
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CHAPTER 7 

SUMMARY AND FUTURE RESEARCH 

 

7.1 Summary 

In this dissertation, the background knowledge of the car rental business was briefly 

introduced and the entire outlook of fleet planning in the car rental business was outlined. 

The car rental business profile in the United States was provided by discussing the history 

of the development of the car rental business, the statistics of the U.S. car rental market, 

and the functions of car rental software. Relevant problems of car rentals and fleet 

planning have been presented as well as part of an in-depth literature review.  

A thorough analytical framework for car rental fleet planning in different time 

phases was built. In order to effectively solve different time phase problems in actual 

problem sizes, three practical algorithm procedures were developed. 

In long-term planning, a binary integer model of pool segmentation and hub 

selection was formulated similarly to the capacitated facility location model with a single 

source constraint. All locations are split into several regions and one location is selected 

from each region to be the regional hub center. A clustering-based iterative algorithm, 

utilizing three important modules, was proposed and validated. The clustering algorithm 

uses the concept of unit demand cost to cluster nearby locations and quickly captures a 

very good initial solution. The iterative procedure of an enumeration method and a 
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modified Prim’s algorithm utilizes the concept of a convex function to achieve a near-

optimal solution. Numerical results show that the branch-and-bound method takes 

100~1000 times the algorithm time to find a better solution and 100~10,000 times the 

algorithm time to find an optimal solution than in the clustering-based iterative algorithm. 

In addition, the solution gap of the clustering-based iterative algorithm is relatively small. 

The largest case tested involves 6000 nodes and 36 million integer variables, which is 

close to the level of Enterprise Rent-A-Car, the top car rental company in the United 

States. The clustering-based iterative algorithm takes about 135 minutes to solve a 

problem of this size. Based on the numerical results, it is clear that the clustering-based 

iterative algorithm not only can obtain satisfactory solutions with small solution gaps 

rapidly, but also readily solves very large scale problems. 

In mid-term planning, inter-pool moves are considered, and buying/selling cars are 

allocated to different pool regions based on the change of seasonal demand. An integer 

programming model is developed and a best-improvement descent local search with the 

structure of better neighbors was introduced. The structure of better neighbors exploits 

the concept of maximal objective reduction to determine a flexible value h  in the 

neighbors Var h . In addition, better neighbors exploit the inventory balance constraints 

to adjust other variables and largely reduce the computing time of evaluating the 

constraints. The numerical results show that the solution gap normally falls below 4%. 

Based on the computational results, if the problem size becomes larger, the solution gap 

becomes smaller. The average time required by the branch-and-bound method is about 50 

to 380 times more than the time of the best-improvement descent local search. The 

largest problem size tested contains 200 pools, 46 million integer variables, and 250 
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thousand constraints, and the best-improvement descent local search only takes 38.6 

seconds to solve. These results demonstrate that the best-improvement descent local 

search has very good performance and can obtain a near-optimal solution in an extremely 

short time. 

In short-term planning, daily planning of demand allocation and empty flow 

redistribution was addressed in the same pool region. The fact that the customers can rent 

a car and return it either in the same or in a different location leads to the problem of 

vehicle imbalance, and empty vehicles need to be redistributed. In the same pool, empty 

cars can be redistributed the same day. Car upgrade policy and service level are also 

considered. This problem is formulated as an integer programming model and a first-

improvement descent local search with the structure of three interchange better neighbors 

is presented. The numerical results show that the first-improvement descent local search 

always obtains a good solution quickly with an exceedingly small solution gap below 

0.07%. The first-improvement descent local search only takes 23 minutes to solve the 

largest case, (21,21,21), which covers 10.79 million integer variables and 1.95 million 

constraints. These results demonstrate that the first-improvement descent local search not 

only obtains a relatively good solution in a quite short time but also solves very large 

scale integer programming problems easily. 
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7.2 Directions for Further Extensions and Research 

In this dissertation, a set of deterministic car rental fleet plans was developed. 

However, such a set of models is a basic framework. Still other parts need to be 

considered, such as demand patterns, unmet demand, random customers (i.e. walk-in 

customers without prior reservations), cost and pricing structure, demand allocation and 

empty flow redistribution at different pool regions. 

In the design of the algorithms discussed in this dissertation, the clustering 

algorithm is a simple but powerful method of the initial solution. A good feasible solution 

can be obtained in an extremely short time. If the clustering algorithm and an impactful 

heuristic developed can effectively be applied to a general capacitated facility location 

problem, it may solve very large scale optimization problems easily. This promises to be 

a very viable research direction. 

The structure of better neighbors can be utilized on the problem with flow balance 

constraints.  In the mid-term and short-term fleet planning, the structure of better 

neighbors has been used in the design of the best-improvement descent local search and 

the first-improvement descent local search. The structure of better neighbors is expected 

to employ on more problems with flow balance constraints and a more complete and 

more general structure of better neighbors can then be integrated. 
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APPENDIX A 

 

Original Data on Experimental Factors versus Algorithm Time in Chapter 4 
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EX 
# of 

Types 
# of 

Locations 
Seed # R_Hubcost R_Cap Obj Time 

1 4 300 20 300 10 1,275,865.630 1.713 
2 4 300 20 300 25 852,556.630 1.507 
3 4 300 20 300 62.5 834,005.310 1.786 
4 4 300 20 600 10 2,133,898.750 3.408 
5 4 300 20 600 25 1,173,806.880 1.726 
6 4 300 20 600 62.5 1,097,309.250 3.142 
7 4 300 20 1200 10 3,797,481.750 5.460 
8 4 300 20 1200 25 1,737,567.880 1.928 
9 4 300 20 1200 62.5 1,432,009.750 4.636 
10 4 300 40 300 10 1,275,151.380 1.686 
11 4 300 40 300 25 889,750.310 1.584 
12 4 300 40 300 62.5 880,294.130 1.981 
13 4 300 40 600 10 2,117,378.500 2.697 
14 4 300 40 600 25 1,220,462.000 1.745 
15 4 300 40 600 62.5 1,169,976.130 3.305 
16 4 300 40 1200 10 3,709,916.250 5.522 
17 4 300 40 1200 25 1,823,104.500 2.142 
18 4 300 40 1200 62.5 1,519,524.500 4.825 
19 4 300 60 300 10 1,126,611.380 1.384 
20 4 300 60 300 25 816,238.060 1.443 
21 4 300 60 300 62.5 804,893.940 1.816 
22 4 300 60 600 10 1,797,369.250 2.177 
23 4 300 60 600 25 1,115,333.250 1.598 
24 4 300 60 600 62.5 1,060,959.380 2.839 
25 4 300 60 1200 10 3,177,877.750 4.865 
26 4 300 60 1200 25 1,652,163.380 1.871 
27 4 300 60 1200 62.5 1,384,964.880 4.343 
28 4 600 20 300 10 2,172,480.250 15.276 
29 4 600 20 300 25 1,387,468.250 10.990 
30 4 600 20 300 62.5 1,346,308.750 16.054 
31 4 600 20 600 10 3,773,232.000 36.243 
32 4 600 20 600 25 1,966,396.380 10.885 
33 4 600 20 600 62.5 1,717,856.500 22.500 
34 4 600 20 1200 10 6,935,220.500 64.000 
35 4 600 20 1200 25 2,998,268.250 11.930 
36 4 600 20 1200 62.5 2,317,366.750 23.623 
37 4 600 40 300 10 2,076,626.500 10.122 
38 4 600 40 300 25 1,384,667.880 10.246 
39 4 600 40 300 62.5 1,378,016.630 15.173 
40 4 600 40 600 10 3,524,143.250 28.207 
41 4 600 40 600 25 1,939,269.500 10.994 
42 4 600 40 600 62.5 1,788,635.000 21.939 
43 4 600 40 1200 10 6,460,248.000 53.785 
44 4 600 40 1200 25 2,919,466.500 14.622 
45 4 600 40 1200 62.5 2,265,393.000 25.986 
46 4 600 60 300 10 2,458,591.250 23.408 
47 4 600 60 300 25 1,413,733.630 10.583 
48 4 600 60 300 62.5 1,317,975.880 16.138 
49 4 600 60 600 10 4,335,933.500 47.505 
50 4 600 60 600 25 2,081,489.380 10.389 
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EX 
# of 

Types 
# of 

Locations 
Seed # R_Hubcost R_Cap Obj Time 

51 4 600 60 600 62.5 1,720,150.880 20.353 
52 4 600 60 1200 10 8,169,460.000 88.887 
53 4 600 60 1200 25 3,274,164.750 18.767 
54 4 600 60 1200 62.5 2,270,872.250 19.893 
55 4 1200 20 300 10 3,932,258.000 189.136 
56 4 1200 20 300 25 2,281,679.500 71.539 
57 4 1200 20 300 62.5 2,179,808.000 122.751 
58 4 1200 20 600 10 7,016,587.500 549.429 
59 4 1200 20 600 25 3,285,557.250 85.235 
60 4 1200 20 600 62.5 2,798,644.000 163.030 
61 4 1200 20 1200 10 12,923,384.000 1,015.197 
62 4 1200 20 1200 25 5,136,709.000 139.627 
63 4 1200 20 1200 62.5 3,647,079.750 168.660 
64 4 1200 40 300 10 4,345,223.500 250.551 
65 4 1200 40 300 25 2,403,136.250 74.700 
66 4 1200 40 300 62.5 2,234,461.500 121.361 
67 4 1200 40 600 10 7,777,016.000 597.769 
68 4 1200 40 600 25 3,549,647.000 85.036 
69 4 1200 40 600 62.5 2,929,204.750 165.108 
70 4 1200 40 1200 10 14,662,852.000 1,089.421 
71 4 1200 40 1200 25 5,569,483.500 162.416 
72 4 1200 40 1200 62.5 3,825,088.500 153.360 
73 4 1200 60 300 10 4,089,390.250 204.641 
74 4 1200 60 300 25 2,435,587.500 80.682 
75 4 1200 60 300 62.5 2,303,455.250 135.860 
76 4 1200 60 600 10 7,232,989.500 460.928 
77 4 1200 60 600 25 3,536,960.750 102.001 
78 4 1200 60 600 62.5 2,873,689.000 157.488 
79 4 1200 60 1200 10 13,500,923.000 854.174 
80 4 1200 60 1200 25 5,517,274.000 161.292 
81 4 1200 60 1200 62.5 3,708,450.500 157.422 
82 8 300 20 300 10 1,412,112.380 1.598 
83 8 300 20 300 25 1,077,365.500 1.324 
84 8 300 20 300 62.5 1,070,129.500 1.565 
85 8 300 20 600 10 2,306,782.000 2.510 
86 8 300 20 600 25 1,503,237.130 1.667 
87 8 300 20 600 62.5 1,437,789.130 2.310 
88 8 300 20 1200 10 4,028,794.250 4.364 
89 8 300 20 1200 25 2,094,002.130 1.738 
90 8 300 20 1200 62.5 1,867,862.130 3.462 
91 8 300 40 300 10 1,236,389.130 1.096 
92 8 300 40 300 25 1,067,265.000 1.435 
93 8 300 40 300 62.5 1,066,851.500 1.667 
94 8 300 40 600 10 1,896,165.130 1.661 
95 8 300 40 600 25 1,444,201.750 1.980 
96 8 300 40 600 62.5 1,426,330.750 2.349 
97 8 300 40 1200 10 3,161,869.500 2.518 
98 8 300 40 1200 25 2,000,696.630 2.162 
99 8 300 40 1200 62.5 1,848,918.130 4.147 
100 8 300 60 300 10 1,145,600.000 1.262 
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EX 
# of 

Types 
# of 

Locations 
Seed # R_Hubcost R_Cap Obj Time 

101 8 300 60 300 25 988,155.940 1.601 
102 8 300 60 300 62.5 979,013.250 1.765 
103 8 300 60 600 10 1,765,742.880 1.601 
104 8 300 60 600 25 1,346,354.250 2.062 
105 8 300 60 600 62.5 1,317,505.250 2.467 
106 8 300 60 1200 10 2,879,823.250 2.318 
107 8 300 60 1200 25 1,820,087.880 2.229 
108 8 300 60 1200 62.5 1,715,591.130 4.117 
109 8 600 20 300 10 2,415,228.750 9.607 
110 8 600 20 300 25 1,793,424.630 10.807 
111 8 600 20 300 62.5 1,770,259.130 12.234 
112 8 600 20 600 10 3,891,424.750 17.776 
113 8 600 20 600 25 2,421,775.500 11.855 
114 8 600 20 600 62.5 2,327,846.750 19.771 
115 8 600 20 1200 10 6,770,243.500 33.581 
116 8 600 20 1200 25 3,420,722.000 10.675 
117 8 600 20 1200 62.5 3,070,621.500 25.036 
118 8 600 40 300 10 2,374,296.250 12.246 
119 8 600 40 300 25 1,734,667.750 10.131 
120 8 600 40 300 62.5 1,712,053.630 12.369 
121 8 600 40 600 10 3,852,031.500 23.958 
122 8 600 40 600 25 2,357,085.250 10.244 
123 8 600 40 600 62.5 2,270,525.000 16.309 
124 8 600 40 1200 10 6,677,481.500 41.213 
125 8 600 40 1200 25 3,361,483.000 11.614 
126 8 600 40 1200 62.5 2,896,619.000 22.919 
127 8 600 60 300 10 2,478,868.250 10.744 
128 8 600 60 300 25 1,733,622.000 11.633 
129 8 600 60 300 62.5 1,700,210.500 13.537 
130 8 600 60 600 10 4,091,903.000 25.565 
131 8 600 60 600 25 2,364,766.500 10.342 
132 8 600 60 600 62.5 2,216,887.000 18.884 
133 8 600 60 1200 10 7,357,203.500 45.831 
134 8 600 60 1200 25 3,490,734.750 10.707 
135 8 600 60 1200 62.5 2,902,789.750 23.011 
136 8 1200 20 300 10 4,148,498.500 81.936 
137 8 1200 20 300 25 2,869,331.750 76.203 
138 8 1200 20 300 62.5 2,819,495.250 97.658 
139 8 1200 20 600 10 6,860,668.500 199.323 
140 8 1200 20 600 25 3,943,211.750 72.759 
141 8 1200 20 600 62.5 3,684,010.250 135.968 
142 8 1200 20 1200 10 12,343,418.000 460.461 
143 8 1200 20 1200 25 5,739,109.000 82.128 
144 8 1200 20 1200 62.5 4,840,069.000 173.298 
145 8 1200 40 300 10 4,049,488.000 113.631 
146 8 1200 40 300 25 2,398,389.250 83.222 
147 8 1200 40 300 62.5 2,846,925.000 101.661 
148 8 1200 40 600 10 6,720,026.000 167.110 
149 8 1200 40 600 25 3,922,173.250 69.803 
150 8 1200 40 600 62.5 3,735,393.250 136.463 
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EX 
# of 

Types 
# of 

Locations 
Seed # R_Hubcost R_Cap Obj Time 

151 8 1200 40 1200 10 11,882,505.000 453.498 
152 8 1200 40 1200 25 5,728,484.000 91.826 
153 8 1200 40 1200 62.5 4,796,652.000 182.439 
154 8 1200 60 300 10 4,122,614.000 103.129 
155 8 1200 60 300 25 2,941,193.750 82.884 
156 8 1200 60 300 62.5 2,899,947.750 90.330 
157 8 1200 60 600 10 6,762,479.500 229.744 
158 8 1200 60 600 25 4,033,366.000 78.466 
159 8 1200 60 600 62.5 3,822,913.750 153.579 
160 8 1200 60 1200 10 12,118,775.000 485.505 
161 8 1200 60 1200 25 5,907,992.000 95.687 
162 8 1200 60 1200 62.5 4,879,494.000 185.915 
163 12 300 20 300 10 1,422,569.130 1.299 
164 12 300 20 300 25 1,174,683.880 1.398 
165 12 300 20 300 62.5 1,169,707.130 1.686 
166 12 300 20 600 10 2,232,768.250 1.922 
167 12 300 20 600 25 1,556,225.880 1.708 
168 12 300 20 600 62.5 1,521,768.750 2.251 
169 12 300 20 1200 10 3,679,094.750 3.749 
170 12 300 20 1200 25 2,119,424.750 2.143 
171 12 300 20 1200 62.5 1,972,698.250 3.186 
172 12 300 40 300 10 1,245,022.880 1.208 
173 12 300 40 300 25 1,170,244.880 1.358 
174 12 300 40 300 62.5 1,170,244.880 1.533 
175 12 300 40 600 10 1,903,513.880 1.531 
176 12 300 40 600 25 1,573,169.380 2.102 
177 12 300 40 600 62.5 1,553,434.500 2.287 
178 12 300 40 1200 10 3,056,058.000 2.316 
179 12 300 40 1200 25 2,111,616.250 2.227 
180 12 300 40 1200 62.5 2,066,684.130 3.696 
181 12 300 60 300 10 1,267,594.500 1.294 
182 12 300 60 300 25 1,107,888.750 1.462 
183 12 300 60 300 62.5 1,107,888.750 1.995 
184 12 300 60 600 10 1,935,130.130 1.919 
185 12 300 60 600 25 1,461,961.880 1.976 
186 12 300 60 600 62.5 1,461,961.880 2.229 
187 12 300 60 1200 10 3,011,663.750 2.479 
188 12 300 60 1200 25 1,934,336.880 2.188 
189 12 300 60 1200 62.5 1,902,988.250 3.216 
190 12 600 20 300 10 2,210,059.500 9.929 
191 12 600 20 300 25 1,863,698.630 12.480 
192 12 600 20 300 62.5 1,862,705.130 12.959 
193 12 600 20 600 10 3,515,978.250 13.147 
194 12 600 20 600 25 2,522,754.000 14.491 
195 12 600 20 600 62.5 2,420,109.500 19.129 
196 12 600 20 1200 10 5,794,048.500 30.682 
197 12 600 20 1200 25 3,485,482.500 15.286 
198 12 600 20 1200 62.5 3,098,109.750 28.280 
199 12 600 40 300 10 2,419,706.000 11.692 
200 12 600 40 300 25 1,886,373.130 10.892 
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EX 
# of 

Types 
# of 

Locations 
Seed # R_Hubcost R_Cap Obj Time 

201 12 600 40 300 62.5 1,869,586.500 11.985 
202 12 600 40 600 10 3,770,711.250 17.024 
203 12 600 40 600 25 2,521,190.500 11.829 
204 12 600 40 600 62.5 2,434,287.500 15.742 
205 12 600 40 1200 10 6,424,507.500 32.766 
206 12 600 40 1200 25 3,484,714.500 12.640 
207 12 600 40 1200 62.5 3,239,986.000 25.432 
208 12 600 60 300 10 2,510,865.000 11.455 
209 12 600 60 300 25 1,901,206.500 13.333 
210 12 600 60 300 62.5 1,867,358.500 14.326 
211 12 600 60 600 10 4,047,076.500 19.166 
212 12 600 60 600 25 2,577,008.000 13.522 
213 12 600 60 600 62.5 2,430,793.750 19.647 
214 12 600 60 1200 10 6,881,237.500 32.528 
215 12 600 60 1200 25 3,649,370.000 13.178 
216 12 600 60 1200 62.5 3,167,485.250 26.571 
217 12 1200 20 300 10 3,937,353.750 122.024 
218 12 1200 20 300 25 3,036,538.500 84.433 
219 12 1200 20 300 62.5 3,023,474.500 97.986 
220 12 1200 20 600 10 6,335,782.000 126.737 
221 12 1200 20 600 25 4,074,255.500 86.526 
222 12 1200 20 600 62.5 3,934,305.000 147.214 
223 12 1200 20 1200 10 10,827,004.000 384.420 
224 12 1200 20 1200 25 5,742,784.000 83.003 
225 12 1200 20 1200 62.5 5,154,536.500 202.710 
226 12 1200 40 300 10 3,897,252.750 62.880 
227 12 1200 40 300 25 3,124,812.250 84.982 
228 12 1200 40 300 62.5 3,112,074.250 94.947 
229 12 1200 40 600 10 6,288,969.500 141.249 
230 12 1200 40 600 25 4,156,829.750 90.287 
231 12 1200 40 600 62.5 4,042,869.500 134.463 
232 12 1200 40 1200 10 10,735,915.000 344.684 
233 12 1200 40 1200 25 5,742,784.000 87.381 
234 12 1200 40 1200 62.5 5,208,971.500 207.083 
235 12 1200 60 300 10 3,971,105.500 63.806 
236 12 1200 60 300 25 3,243,790.500 82.666 
237 12 1200 60 300 62.5 3,221,854.000 94.919 
238 12 1200 60 600 10 6,410,867.500 103.092 
239 12 1200 60 600 25 4,302,685.500 88.989 
240 12 1200 60 600 62.5 4,185,199.750 146.470 
241 12 1200 60 1200 10 10,853,386.000 287.913 
242 12 1200 60 1200 25 6,009,011.000 98.122 
243 12 1200 60 1200 62.5 5,448,110.500 217.851 
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APPENDIX B 

 

Tukey Tests on Four Factors versus Algorithm Time in Chapter 4 
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Tukey 95.0% Simultaneous Confidence Intervals 

Response Variable log(time) 

All Pairwise Comparisons among Levels of Type 

Type =  4  subtracted from: 

 

Type    Lower   Center     Upper  ---------+---------+---------+------- 

 8    -0.1651  -0.1136  -0.06218   (--------*--------) 

12    -0.1769  -0.1255  -0.07400  (-------*--------) 

                                  ---------+---------+---------+------- 

                                        -0.120    -0.060     0.000 

 

 

Type =  8  subtracted from: 

 

Type     Lower    Center    Upper  ---------+---------+---------+------- 

12    -0.06328  -0.01182  0.03964                    (--------*--------) 

                                   ---------+---------+---------+------- 

                                         -0.120    -0.060     0.000 

 

 

Tukey Simultaneous Tests 

Response Variable log(time) 

All Pairwise Comparisons among Levels of Type 

Type =  4  subtracted from: 

 

      Difference       SE of           Adjusted 

Type    of Means  Difference  T-Value   P-Value 

 8       -0.1136     0.02179   -5.215    0.0000 

12       -0.1255     0.02179   -5.758    0.0000 

 

 

Type =  8  subtracted from: 

 

      Difference       SE of           Adjusted 

Type    of Means  Difference  T-Value   P-Value 

12      -0.01182     0.02179  -0.5425    0.8504 
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Tukey 95.0% Simultaneous Confidence Intervals 

Response Variable log(time) 

All Pairwise Comparisons among Levels of Location 

Location =  300  subtracted from: 

 

Location   Lower  Center   Upper  --+---------+---------+---------+---- 

 600      0.8549  0.9063  0.9578  (-*-) 

1200      1.7816  1.8331  1.8846                                 (-*-) 

                                  --+---------+---------+---------+---- 

                                  0.90      1.20      1.50      1.80 

 

 

Location =  600  subtracted from: 

 

Location   Lower  Center   Upper  --+---------+---------+---------+---- 

1200      0.8753  0.9268  0.9782   (-*-) 

                                  --+---------+---------+---------+---- 

                                  0.90      1.20      1.50      1.80 

 

 

Tukey Simultaneous Tests 

Response Variable log(time) 

All Pairwise Comparisons among Levels of Location 

Location =  300  subtracted from: 

 

          Difference       SE of           Adjusted 

Location    of Means  Difference  T-Value   P-Value 

 600          0.9063     0.02179    41.59    0.0000 

1200          1.8331     0.02179    84.13    0.0000 

 

 

Location =  600  subtracted from: 

 

          Difference       SE of           Adjusted 

Location    of Means  Difference  T-Value   P-Value 

1200          0.9268     0.02179    42.53    0.0000 
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Tukey 95.0% Simultaneous Confidence Intervals 

Response Variable log(time) 

All Pairwise Comparisons among Levels of R_Capacity 

R_Capacity = 10.0  subtracted from: 

 

R_Capacity    Lower   Center    Upper     +---------+---------+---------+------ 

25.0        -0.3245  -0.2730  -0.2216     (--*--) 

62.5        -0.1374  -0.0860  -0.0345                (---*--) 

                                          +---------+---------+---------+------ 

                                       -0.32     -0.16      0.00      0.16 

 

 

R_Capacity = 25.0  subtracted from: 

 

R_Capacity   Lower  Center   Upper     +---------+---------+---------+------ 

62.5        0.1356  0.1871  0.2385                                 (---*--) 

                                       +---------+---------+---------+------ 

                                    -0.32     -0.16      0.00      0.16 

 

 

Tukey Simultaneous Tests 

Response Variable log(time) 

All Pairwise Comparisons among Levels of R_Capacity 

R_Capacity = 10.0  subtracted from: 

 

            Difference       SE of           Adjusted 

R_Capacity    of Means  Difference  T-Value   P-Value 

25.0           -0.2730     0.02179   -12.53    0.0000 

62.5           -0.0860     0.02179    -3.95    0.0003 

 

 

R_Capacity = 25.0  subtracted from: 

 

            Difference       SE of           Adjusted 

R_Capacity    of Means  Difference  T-Value   P-Value 

62.5            0.1871     0.02179    8.584    0.0000 
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Tukey 95.0% Simultaneous Confidence Intervals 

Response Variable log(time) 

All Pairwise Comparisons among Levels of R_HubCost 

R_HubCost =  300  subtracted from: 

 

R_HubCost    Lower  Center   Upper  --------+---------+---------+-------- 

 600       0.09901  0.1505  0.2019  (------*-----) 

1200       0.25983  0.3113  0.3628                      (------*-----) 

                                    --------+---------+---------+-------- 

                                          0.160     0.240     0.320 

 

 

R_HubCost =  600  subtracted from: 

 

R_HubCost   Lower  Center   Upper  --------+---------+---------+-------- 

1200       0.1094  0.1608  0.2123    (-----*------) 

                                   --------+---------+---------+-------- 

                                         0.160     0.240     0.320 

 

 

Tukey Simultaneous Tests 

Response Variable log(time) 

All Pairwise Comparisons among Levels of R_HubCost 

R_HubCost =  300  subtracted from: 

 

           Difference       SE of           Adjusted 

R_HubCost    of Means  Difference  T-Value   P-Value 

 600           0.1505     0.02179    6.906    0.0000 

1200           0.3113     0.02179   14.286    0.0000 

 

 

R_HubCost =  600  subtracted from: 

 

           Difference       SE of           Adjusted 

R_HubCost    of Means  Difference  T-Value   P-Value 

1200           0.1608     0.02179    7.380    0.0000 
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APPENDIX C 

 

Original Data on Experimental Factors versus Solution Gap in Chapter 4 
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EX 
# of 

Locations 
Seed 

# 
R_Hub 

cost 
R_Cap 

Algorithm Lingo 
Solution 

Gap 
(%) 

Logarithm  
Time 

Obj Time Obj 
Better 
Time

Best   
Time 

Algori 
Time 

Lingo 
Better 
Time

1 30 20 300 10 207764.40 0.016 207764.40 3 3 0.00% 3.73 6.00 

2 30 20 300 15 199699.50 0.009 199078.30 3 3 0.31% 3.48 6.00 

3 30 20 300 20 199699.50 0.008 199078.30 3 3 0.31% 3.43 6.00 

4 30 20 600 10 318907.19 0.008 310236.60 7 11 2.79% 2.86 5.80 

5 30 20 600 15 274327.31 0.016 273300.80 2 2 0.38% 3.90 6.00 

6 30 20 600 20 274327.31 0.014 272202.00 3 3 0.78% 3.67 6.00 

7 30 20 1200 10 458048.81 0.023 449142.50 5 5 1.98% 3.66 6.00 

8 30 20 1200 15 398911.88 0.057 398549.20 5 5 0.09% 4.06 6.00 

9 30 20 1200 20 382738.41 0.007 380205.00 3 3 0.67% 3.37 6.00 

10 30 40 300 10 238876.63 0.170 237177.40 3 3 0.72% 4.75 6.00 

11 30 40 300 15 228264.25 0.006 227911.40 3 3 0.15% 3.30 6.00 

12 30 40 300 20 228264.25 0.006 227911.40 2 2 0.15% 3.48 6.00 

13 30 40 600 10 364078.88 0.007 346693.20 7 7 5.01% 3.00 6.00 

14 30 40 600 15 330004.41 0.007 327386.10 2 2 0.80% 3.54 6.00 

15 30 40 600 20 330004.41 0.007 322119.90 2 2 2.45% 3.54 6.00 

16 30 40 1200 10 530525.19 0.006 514963.10 8 17 3.02% 2.55 5.67 

17 30 40 1200 15 480897.69 0.007 467389.50 5 6 2.89% 3.07 5.92 

18 30 40 1200 20 455894.63 0.005 449158.80 2 2 1.50% 3.40 6.00 

19 30 60 300 10 197417.13 0.008 196130.90 2 2 0.66% 3.60 6.00 

20 30 60 300 15 195397.70 0.018 195397.70 3 3 0.00% 3.78 6.00 

21 30 60 300 20 195397.70 0.018 195397.70 3 3 0.00% 3.78 6.00 

22 30 60 600 10 294470.84 0.061 286790.00 3 3 2.68% 4.31 6.00 

23 30 60 600 15 280128.88 0.014 279095.00 3 3 0.37% 3.67 6.00 

24 30 60 600 20 275570.00 0.014 275570.00 3 3 0.00% 3.67 6.00 

25 30 60 1200 10 432310.81 0.197 424630.00 3 4 1.81% 4.69 5.88 

26 30 60 1200 15 396462.63 0.011 395394.00 3 3 0.27% 3.56 6.00 

27 30 60 1200 20 388577.00 0.012 388577.00 2 2 0.00% 3.78 6.00 

28 60 20 300 10 330258.63 0.058 325200.00 8 8 1.56% 3.86 6.00 

29 60 20 300 15 325320.63 0.031 320169.00 7 7 1.61% 3.65 6.00 

30 60 20 300 20 321592.75 0.024 317553.00 6 6 1.27% 3.60 6.00 

31 60 20 600 10 464595.47 0.055 461580.00 20 25 0.65% 3.34 5.90 

32 60 20 600 15 446895.00 0.030 430841.00 19 19 3.73% 3.20 6.00 

33 60 20 600 20 448773.69 0.027 426348.00 5 5 5.26% 3.73 6.00 

34 60 20 1200 10 756541.69 0.065 711437.00 26 628 6.34% 2.01 4.62 

35 60 20 1200 15 613135.63 0.016 599092.00 16 16 2.34% 3.00 6.00 

36 60 20 1200 20 583096.44 0.022 583097.00 6 6 0.00% 3.56 6.00 

37 60 40 300 10 365384.06 0.197 361739.00 14 16 1.01% 4.09 5.94 

38 60 40 300 15 375636.22 0.028 374489.00 10 10 0.31% 3.45 6.00 

39 60 40 300 20 363073.09 0.037 353437.00 11 11 2.73% 3.53 6.00 

40 60 40 600 10 576982.94 0.059 552586.00 21 27 4.42% 3.34 5.89 

 



 

 

189

 

EX 
# of 

Locations 
Seed 

# 
R_Hub 

cost 
R_Cap 

Algorithm Lingo 
Solution 

Gap 
(%) 

Logarithm  
Time 

Obj Time Obj 
Better 
Time

Best   
Time 

Algori 
Time 

Lingo 
Better 
Time

41 60 40 600 15 536698.63 0.027 525667.00 25 40 2.10% 2.83 5.80 

42 60 40 600 20 490258.28 0.022 475974.00 13 13 3.00% 3.23 6.00 

43 60 40 1200 10 909921.50 0.037 859141.00 24 94 5.91% 2.60 5.41 

44 60 40 1200 15 823938.75 0.024 760436.00 31 978 8.35% 1.39 4.50 

45 60 40 1200 20 706180.56 0.024 683344.00 19 57 3.34% 2.62 5.52 

46 60 60 300 10 342885.03 0.030 340003.00 8 8 0.85% 3.57 6.00 

47 60 60 300 15 332860.00 0.023 332860.00 6 6 0.00% 3.58 6.00 

48 60 60 300 20 332860.00 0.025 332860.00 6 6 0.00% 3.62 6.00 

49 60 60 600 10 513624.00 0.026 509005.00 15 16 0.91% 3.21 5.97 

50 60 60 600 15 479004.03 0.023 472620.00 13 15 1.35% 3.19 5.94 

51 60 60 600 20 457316.47 0.021 456422.00 6 6 0.20% 3.54 6.00 

52 60 60 1200 10 815156.06 0.024 775420.00 24 63 5.12% 2.58 5.58 

53 60 60 1200 15 660283.13 0.025 648452.00 13 21 1.82% 3.08 5.79 

54 60 60 1200 20 640477.00 0.029 625789.00 17 23 2.35% 3.10 5.87 

55 90 20 300 10 519639.53 0.362 502987.00 65 156 3.31% 3.37 5.62 

56 90 20 300 15 471392.13 0.057 460477.00 24 26 2.37% 3.34 5.97 

57 90 20 300 20 462598.00 0.055 453272.00 13 13 2.06% 3.63 6.00 

58 90 20 600 10 731492.50 0.229 712114.00 95 1286 2.72% 2.25 4.87

59 90 20 600 15 617615.81 0.043 612819.00 40 48 0.78% 2.95 5.92 

60 90 20 600 20 597467.13 0.044 590773.00 14 14 1.13% 3.50 6.00 

61 90 20 1200 10 1111459.38 0.294 1071939.00 110 106885 3.69% 0.44 3.01 

62 90 20 1200 15 874570.38 0.058 854487.10 68 109 2.35% 2.73 5.80 

63 90 20 1200 20 825661.63 0.051 804843.80 28 34 2.59% 3.18 5.92 

64 90 40 300 10 531687.13 0.163 512050.00 48 1024 3.84% 2.20 4.67 

65 90 40 300 15 451588.53 0.275 445184.10 50 54 1.44% 3.71 5.97 

66 90 40 300 20 451345.53 0.066 441181.10 14 14 2.30% 3.67 6.00 

67 90 40 600 10 815581.75 0.452 797926.00 70 14088 2.21% 1.51 3.70 

68 90 40 600 15 673235.19 0.165 642335.80 89 306 4.81% 2.73 5.46 

69 90 40 600 20 617103.38 0.048 608470.40 33 39 1.42% 3.09 5.93 

70 90 40 1200 10 1324506.75 0.181 1211310.00 97 97098 9.34% 0.27 3.00 

71 90 40 1200 15 1020712.81 0.048 954932.50 108 9462 6.89% 0.71 4.06 

72 90 40 1200 20 856337.50 0.043 852685.00 36 66 0.43% 2.81 5.74 

73 90 60 300 10 553407.63 0.215 521291.00 66 357 6.16% 2.78 5.27 

74 90 60 300 15 449228.59 0.100 448152.30 26 29 0.24% 3.54 5.95 

75 90 60 300 20 448499.31 0.101 443178.30 13 13 1.20% 3.89 6.00 

76 90 60 600 10 834707.06 0.133 784363.70 82 555 6.42% 2.38 5.17 

77 90 60 600 15 645247.00 0.089 640636.90 24 72 0.72% 3.09 5.52 

78 90 60 600 20 613902.44 0.040 611963.50 13 13 0.32% 3.49 6.00 

79 90 60 1200 10 1341766.25 0.286 1231652.00 119 38496 8.94% 0.87 3.49 

80 90 60 1200 15 983864.06 0.039 962923.10 31 120 2.17% 2.51 5.41 

81 90 60 1200 20 899719.44 0.046 882357.90 41 76 1.97% 2.78 5.73 
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APPENDIX D 

 

Tukey Test on Three Factors versus Solution Gap in Chapter 4 
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Tukey 95.0% Simultaneous Confidence Intervals 

Response Variable solution gap 

All Pairwise Comparisons among Levels of Location 

Location = 30  subtracted from: 

 

Location     Lower   Center    Upper  ------+---------+---------+---------+ 

60        0.002312  0.01361  0.02490          (-----------*----------) 

90        0.007975  0.01927  0.03057                (----------*-----------) 

                                      ------+---------+---------+---------+ 

                                          0.000     0.010     0.020     0.030 

 

 

Location = 60  subtracted from: 

 

Location      Lower    Center    Upper  ------+---------+---------+---------+ 

90        -0.005632  0.005663  0.01696  (-----------*----------) 

                                        ------+---------+---------+---------+ 

                                            0.000     0.010     0.020     0.030 

 

 

Tukey Simultaneous Tests 

Response Variable solution gap 

All Pairwise Comparisons among Levels of Location 

Location = 30  subtracted from: 

 

          Difference       SE of           Adjusted 

Location    of Means  Difference  T-Value   P-Value 

60           0.01361    0.004726    2.879    0.0143 

90           0.01927    0.004726    4.078    0.0003 

 

 

Location = 60  subtracted from: 

 

          Difference       SE of           Adjusted 

Location    of Means  Difference  T-Value   P-Value 

90          0.005663    0.004726    1.198    0.4580 
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Tukey 95.0% Simultaneous Confidence Intervals 

Response Variable solution gap 

All Pairwise Comparisons among Levels of R_Capacity 

R_Capacity = 10  subtracted from: 

 

R_Capacity     Lower    Center      Upper 

15          -0.02738  -0.01609  -0.004790 

20          -0.03153  -0.02024  -0.008942 

 

R_Capacity  ------+---------+---------+---------+ 

15             (---------*--------) 

20          (--------*---------) 

            ------+---------+---------+---------+ 

               -0.024    -0.012    -0.000     0.012 

 

 

R_Capacity = 15  subtracted from: 

 

R_Capacity     Lower     Center     Upper 

20          -0.01545  -0.004152  0.007143 

 

R_Capacity  ------+---------+---------+---------+ 

20                       (---------*--------) 

            ------+---------+---------+---------+ 

               -0.024    -0.012    -0.000     0.012 

 

 

Tukey Simultaneous Tests 

Response Variable solution gap 

All Pairwise Comparisons among Levels of R_Capacity 

R_Capacity = 10  subtracted from: 

 

            Difference       SE of           Adjusted 

R_Capacity    of Means  Difference  T-Value   P-Value 

15            -0.01609    0.004726   -3.404    0.0031 

20            -0.02024    0.004726   -4.282    0.0002 

 

 

R_Capacity = 15  subtracted from: 

 

            Difference       SE of           Adjusted 

R_Capacity    of Means  Difference  T-Value   P-Value 

20           -0.004152    0.004726  -0.8785    0.6555 
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Tukey 95.0% Simultaneous Confidence Intervals 

Response Variable solution gap 

All Pairwise Comparisons among Levels of R_HubCost 

R_HubCost =  300  subtracted from: 

 

R_HubCost      Lower    Center    Upper  ---+---------+---------+---------+--- 

 600       -0.002832  0.008463  0.01976  (----------*-----------) 

1200        0.007820  0.019115  0.03041             (----------*----------) 

                                         ---+---------+---------+---------+--- 

                                          0.000     0.010     0.020     0.030 

 

 

R_HubCost =  600  subtracted from: 

 

R_HubCost      Lower   Center    Upper  ---+---------+---------+---------+--- 

1200       -0.000643  0.01065  0.02195    (-----------*----------) 

                                        ---+---------+---------+---------+--- 

                                         0.000     0.010     0.020     0.030 

 

 

Tukey Simultaneous Tests 

Response Variable solution gap 

All Pairwise Comparisons among Levels of R_HubCost 

R_HubCost =  300  subtracted from: 

 

           Difference       SE of           Adjusted 

R_HubCost    of Means  Difference  T-Value   P-Value 

 600         0.008463    0.004726    1.791    0.1798 

1200         0.019115    0.004726    4.045    0.0004 

 

 

R_HubCost =  600  subtracted from: 

 

           Difference       SE of           Adjusted 

R_HubCost    of Means  Difference  T-Value   P-Value 

1200          0.01065    0.004726    2.254    0.0689 
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APPENDIX E 

 

Original Data of Inter-pool Moves and Asset Replacement  

on Experimental Factors versus Solution Gap in Chapter 5 
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EX 
# of 

Types 

# of 
Ages # of 

Pools
Seed 

# 

Algorithm Branch and Bound 
Solution 
Gap(%)

# of 
Integer   

Var 

# of 
Constraints# of 

Times 
Obj Time Obj Time

1 4 4 10 20 166177122 0.102 161768300 2 2.73% 7200 801

2 4 4 10 40 174664867 0.094 172059700 3 1.51% 7200 801

3 4 4 10 60 151305511 0.109 146165300 2 3.52% 7200 801

4 4 4 20 20 321566665 0.203 311883400 18 3.10% 27200 1601

5 4 4 20 40 317531012 0.203 309427800 16 2.62% 27200 1601

6 4 4 20 60 359055254 0.188 351431600 16 2.17% 27200 1601

7 4 4 30 20 486966866 0.312 472834500 51 2.99% 60000 2401

8 4 4 30 40 452234865 0.296 438719200 50 3.08% 60000 2401

9 4 4 30 60 472342392 0.312 456040400 51 3.57% 60000 2401

10 4 5 10 20 241868544 0.123 238688700 4 1.33% 11200 1201

11 4 5 10 40 237714073 0.125 235078400 4 1.12% 11200 1201

12 4 5 10 60 222220511 0.109 219165100 4 1.39% 11200 1201

13 4 5 20 20 443701870 0.249 437366400 31 1.45% 42400 2401

14 4 5 20 40 488453418 0.250 481641000 31 1.41% 42400 2401

15 4 5 20 60 412053386 0.249 403249400 31 2.18% 42400 2401

16 4 5 30 20 655410771 0.390 646589800 102 1.36% 93600 3601

17 4 5 30 40 686451394 0.375 678531100 103 1.17% 93600 3601

18 4 5 30 60 676298723 0.343 669210600 102 1.06% 93600 3601

19 4 6 10 20 305800201 0.125 304209700 7 0.52% 16080 1681

20 4 6 10 40 253983859 0.156 250996500 8 1.19% 16080 1681

21 4 6 10 60 253037981 0.185 250595700 7 0.97% 16080 1681

22 4 6 20 20 592708572 0.281 588150900 54 0.77% 60960 3361

23 4 6 20 40 581302890 0.265 577255700 55 0.70% 60960 3361

24 4 6 20 60 531311832 0.296 527780200 55 0.67% 60960 3361

25 4 6 30 20 822403811 0.421 814782200 182 0.94% 134640 5041

26 4 6 30 40 807894151 0.452 800560700 181 0.92% 134640 5041

27 4 6 30 60 890299895 0.452 883071200 180 0.82% 134640 5041

28 5 4 10 20 329025480 0.109 321903300 4 2.21% 9000 1001

29 5 4 10 40 370318477 0.131 361880400 4 2.33% 9000 1001

30 5 4 10 60 278725225 0.141 256276000 3 8.76% 9000 1001

31 5 4 20 20 541241862 0.266 514730000 25 5.15% 34000 2001

32 5 4 20 40 632329782 0.234 619217600 25 2.12% 34000 2001

33 5 4 20 60 608190350 0.250 588864900 25 3.28% 34000 2001

34 5 4 30 20 894654562 0.390 859611300 80 4.08% 75000 3001

35 5 4 30 40 931933260 0.421 897943000 80 3.79% 75000 3001

36 5 4 30 60 1004438577 0.390 976621000 80 2.85% 75000 3001

37 5 5 10 20 451089305 0.141 444283900 6 1.53% 14000 1501

38 5 5 10 40 416242556 0.182 409694400 7 1.60% 14000 1501

39 5 5 10 60 417904645 0.141 412482200 7 1.31% 14000 1501

40 5 5 20 20 836824263 0.296 824138500 49 1.54% 53000 3001
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EX 
# of 

Types 

# of 
Ages # of 

Pools
Seed 

# 

Algorithm Branch and Bound 
Solution 
Gap(%)

# of 
Integer   

Var 

# of 
Constraints# of 

Times 
Obj Time Obj Time

41 5 5 20 40 812180370 0.312 800301400 48 1.48% 53000 3001

42 5 5 20 60 873690801 0.297 861711900 49 1.39% 53000 3001

43 5 5 30 20 1173578267 0.484 1157793000 162 1.36% 117000 4501

44 5 5 30 40 1299958359 0.483 1279813000 163 1.57% 117000 4501

45 5 5 30 60 1291660430 0.468 1278317000 163 1.04% 117000 4501

46 5 6 10 20 525106422 0.172 517481700 12 1.47% 20100 2101

47 5 6 10 40 469905923 0.187 467213900 11 0.58% 20100 2101

48 5 6 10 60 584828000 0.156 580382300 12 0.77% 20100 2101

49 5 6 20 20 966982224 0.359 953773700 84 1.38% 76200 4201

50 5 6 20 40 1030603578 0.359 1019497000 84 1.09% 76200 4201

51 5 6 20 60 1007403852 0.343 1000459000 84 0.69% 76200 4201

52 5 6 30 20 1520003143 0.577 1505092000 278 0.99% 168300 6301

53 5 6 30 40 1634206173 0.546 1625960000 280 0.51% 168300 6301

54 5 6 30 60 1423337738 0.577 1409902000 280 0.95% 168300 6301

55 6 4 10 20 624933770 0.138 608119400 5 2.76% 10800 1201

56 6 4 10 40 635881361 0.125 617064400 5 3.05% 10800 1201

57 6 4 10 60 587926156 0.150 574143600 6 2.40% 10800 1201

58 6 4 20 20 1061738503 0.280 1015290000 36 4.57% 40800 2401

59 6 4 20 40 1201476903 0.312 1147053000 36 4.74% 40800 2401

60 6 4 20 60 1154576744 0.312 1129473000 37 2.22% 40800 2401

61 6 4 30 20 1755402235 0.452 1698052000 119 3.38% 90000 3601

62 6 4 30 40 1724215748 0.436 1657628000 114 4.02% 90000 3601

63 6 4 30 60 1730211315 0.500 1676334000 115 3.21% 90000 3601

64 6 5 10 20 749002718 0.193 733473500 10 2.12% 16800 1801

65 6 5 10 40 863929959 0.171 856548000 10 0.86% 16800 1801

66 6 5 10 60 769973159 0.202 757624600 9 1.63% 16800 1801

67 6 5 20 20 1476566889 0.358 1446483000 72 2.08% 63600 3601

68 6 5 20 40 1693027994 0.359 1672478000 73 1.23% 63600 3601

69 6 5 20 60 1594997420 0.359 1577586000 71 1.10% 63600 3601

70 6 5 30 20 2175945263 0.593 2114587000 236 2.90% 140400 5401

71 6 5 30 40 2093817719 0.561 2070215000 237 1.14% 140400 5401

72 6 5 30 60 2348164646 0.577 2316510000 239 1.37% 140400 5401

73 6 6 10 20 974665527 0.203 967520800 17 0.74% 24120 2521

74 6 6 10 40 1106199489 0.217 1100371000 17 0.53% 24120 2521

75 6 6 10 60 936282618 0.218 930710700 16 0.60% 24120 2521

76 6 6 20 20 2144049441 0.437 2126809000 127 0.81% 91440 5041

77 6 6 20 40 1760218799 0.437 1740476000 126 1.13% 91440 5041

78 6 6 20 60 2226210019 0.421 2215181000 122 0.50% 91440 5041

79 6 6 30 20 3222033315 0.671 3204782000 437 0.54% 201960 7561

80 6 6 30 40 2797069691 0.748 2774747000 430 0.80% 201960 7561

81 6 6 30 60 3055006311 0.718 3037558000 420 0.57% 201960 7561
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APPENDIX F 

 

Tukey Tests of Inter-pool Moves and Asset Replacement 

on the Number of Car Ages/ Seasonal Periods versus Solution Gap in Chapter 5 
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Tukey 95.0% Simultaneous Confidence Intervals 
Response Variable solution gap 
All Pairwise Comparisons among Levels of age/season 
age/season = 4  subtracted from: 
 
age/season     Lower    Center     Upper 
5           -0.02426  -0.01869  -0.01312 
6           -0.03078  -0.02521  -0.01964 
 
age/season    -+---------+---------+---------+----- 
5                    (----*-----) 
6             (-----*----) 
              -+---------+---------+---------+----- 
            -0.030    -0.020    -0.010     0.000 
 
 
age/season = 5  subtracted from: 
 
age/season     Lower     Center      Upper 
6           -0.01209  -0.006514  -0.000943 
 
age/season    -+---------+---------+---------+----- 
6                                (----*-----) 
              -+---------+---------+---------+----- 
            -0.030    -0.020    -0.010     0.000 
 
 
Tukey Simultaneous Tests 
Response Variable solution gap 
All Pairwise Comparisons among Levels of age/season 
age/season = 4  subtracted from: 
 
            Difference       SE of           Adjusted 
age/season    of Means  Difference  T-Value   P-Value 
5             -0.01869    0.002331    -8.02    0.0000 
6             -0.02521    0.002331   -10.81    0.0000 
 
 
age/season = 5  subtracted from: 
 
            Difference       SE of           Adjusted 
age/season    of Means  Difference  T-Value   P-Value 
6            -0.006514    0.002331   -2.794    0.0180 
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APPENDIX G 

 

Tukey Tests of Inter-pool Moves and Asset Replacement 

on Three Factors versus Computing Time in Chapter 5 
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Tukey 95.0% Simultaneous Confidence Intervals 
Response Variable algorithm time 
All Pairwise Comparisons among Levels of Type 
Type = 4  subtracted from: 
 
Type    Lower   Center    Upper  ---------+---------+---------+------- 
5     0.03816  0.06470  0.09125  (------*-------) 
6     0.10245  0.12900  0.15555                    (-------*------) 
                                 ---------+---------+---------+------- 
                                        0.070     0.105     0.140 
 
 
Type = 5  subtracted from: 
 
Type    Lower   Center    Upper  ---------+---------+---------+------- 
6     0.03775  0.06430  0.09084  (------*-------) 
                                 ---------+---------+---------+------- 
                                        0.070     0.105     0.140 
 
 
Tukey Simultaneous Tests 
Response Variable algorithm time 
All Pairwise Comparisons among Levels of Type 
Type = 4  subtracted from: 
 
      Difference       SE of           Adjusted 
Type    of Means  Difference  T-Value   P-Value 
5        0.06470     0.01111    5.826    0.0000 
6        0.12900     0.01111   11.614    0.0000 
 
 
Type = 5  subtracted from: 
 
      Difference       SE of           Adjusted 
Type    of Means  Difference  T-Value   P-Value 
6        0.06430     0.01111    5.789    0.0000 
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Tukey 95.0% Simultaneous Confidence Intervals 
Response Variable algorithm time 
All Pairwise Comparisons among Levels of age/season 
age/season = 4  subtracted from: 
 
age/season    Lower   Center    Upper   -+---------+---------+---------+----- 
5           0.03027  0.05681  0.08336   (------*-------) 
6           0.08912  0.11567  0.14221                   (-------*-------) 
                                        -+---------+---------+---------+----- 
                                       0.035     0.070     0.105     0.140 
 
 
age/season = 5  subtracted from: 
 
age/season    Lower   Center    Upper   -+---------+---------+---------+----- 
6           0.03231  0.05885  0.08540   (-------*------) 
                                        -+---------+---------+---------+----- 
                                       0.035     0.070     0.105     0.140 
 
 
Tukey Simultaneous Tests 
Response Variable algorithm time 
All Pairwise Comparisons among Levels of age/season 
age/season = 4  subtracted from: 
 
            Difference       SE of           Adjusted 
age/season    of Means  Difference  T-Value   P-Value 
5              0.05681     0.01111    5.115    0.0000 
6              0.11567     0.01111   10.414    0.0000 
 
 
age/season = 5  subtracted from: 
 
            Difference       SE of           Adjusted 
age/season    of Means  Difference  T-Value   P-Value 
6              0.05885     0.01111    5.299    0.0000 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

202

 
 
 
 
 
Tukey 95.0% Simultaneous Confidence Intervals 
Response Variable algorithm time 
All Pairwise Comparisons among Levels of pool 
pool = 10  subtracted from: 
 
pool   Lower  Center   Upper  --+---------+---------+---------+---- 
20    0.1242  0.1507  0.1773  (---*--) 
30    0.3009  0.3274  0.3540                           (---*---) 
                              --+---------+---------+---------+---- 
                              0.140     0.210     0.280     0.350 
 
 
pool = 20  subtracted from: 
 
pool   Lower  Center   Upper  --+---------+---------+---------+---- 
30    0.1501  0.1767  0.2032     (---*---) 
                              --+---------+---------+---------+---- 
                              0.140     0.210     0.280     0.350 
 
 
Tukey Simultaneous Tests 
Response Variable algorithm time 
All Pairwise Comparisons among Levels of pool 
pool = 10  subtracted from: 
 
      Difference       SE of           Adjusted 
pool    of Means  Difference  T-Value   P-Value 
20        0.1507     0.01111    13.57    0.0000 
30        0.3274     0.01111    29.48    0.0000 
 
 
pool = 20  subtracted from: 
 
      Difference       SE of           Adjusted 
pool    of Means  Difference  T-Value   P-Value 
30        0.1767     0.01111    15.91    0.0000 
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Tukey 95.0% Simultaneous Confidence Intervals 
Response Variable lingo time 
All Pairwise Comparisons among Levels of Type 
Type = 4  subtracted from: 
 
Type   Lower  Center  Upper  -+---------+---------+---------+----- 
5     -4.363   27.96  60.29  (---------*----------) 
6     34.044   66.37  98.70              (----------*----------) 
                             -+---------+---------+---------+----- 
                              0        30        60        90 
 
 
Type = 5  subtracted from: 
 
Type  Lower  Center  Upper  -+---------+---------+---------+----- 
6     6.081   38.41  70.73     (----------*----------) 
                            -+---------+---------+---------+----- 
                             0        30        60        90 
 
 
Tukey Simultaneous Tests 
Response Variable lingo time 
All Pairwise Comparisons among Levels of Type 
Type = 4  subtracted from: 
 
      Difference       SE of           Adjusted 
Type    of Means  Difference  T-Value   P-Value 
5          27.96       13.53    2.067    0.1037 
6          66.37       13.53    4.907    0.0000 
 
 
Type = 5  subtracted from: 
 
      Difference       SE of           Adjusted 
Type    of Means  Difference  T-Value   P-Value 
6          38.41       13.53    2.840    0.0159 
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Tukey 95.0% Simultaneous Confidence Intervals 
Response Variable lingo time 
All Pairwise Comparisons among Levels of age/season 
age/season = 4  subtracted from: 
 
age/season   Lower  Center   Upper  --------+---------+---------+-------- 
5            5.266   37.59   69.92  (--------*--------) 
6           62.415   94.74  127.07                  (--------*--------) 
                                    --------+---------+---------+-------- 
                                           35        70       105 
 
 
age/season = 5  subtracted from: 
 
age/season  Lower  Center  Upper  --------+---------+---------+-------- 
6           24.82   57.15  89.47       (--------*---------) 
                                  --------+---------+---------+-------- 
                                         35        70       105 
 
 
Tukey Simultaneous Tests 
Response Variable lingo time 
All Pairwise Comparisons among Levels of age/season 
age/season = 4  subtracted from: 
 
            Difference       SE of           Adjusted 
age/season    of Means  Difference  T-Value   P-Value 
5                37.59       13.53    2.779    0.0187 
6                94.74       13.53    7.005    0.0000 
 
 
age/season = 5  subtracted from: 
 
            Difference       SE of           Adjusted 
age/season    of Means  Difference  T-Value   P-Value 
6                57.15       13.53    4.225    0.0002 
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Tukey 95.0% Simultaneous Confidence Intervals 
Response Variable lingo time 
All Pairwise Comparisons among Levels of pool 
pool = 10  subtracted from: 
 
pool   Lower  Center   Upper  -------+---------+---------+--------- 
20     15.01   47.33   79.66  (----*----) 
30    142.23  174.56  206.88                       (----*----) 
                              -------+---------+---------+--------- 
                                    60       120       180 
 
 
pool = 20  subtracted from: 
 
pool  Lower  Center  Upper  -------+---------+---------+--------- 
30    94.90   127.2  159.5               (----*-----) 
                            -------+---------+---------+--------- 
                                  60       120       180 
 
 
Tukey Simultaneous Tests 
Response Variable lingo time 
All Pairwise Comparisons among Levels of pool 
pool = 10  subtracted from: 
 
      Difference       SE of           Adjusted 
pool    of Means  Difference  T-Value   P-Value 
20         47.33       13.53    3.500    0.0023 
30        174.56       13.53   12.906    0.0000 
 
 
pool = 20  subtracted from: 
 
      Difference       SE of           Adjusted 
pool    of Means  Difference  T-Value   P-Value 
30         127.2       13.53    9.406    0.0000 
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