
CS 846 Course Project Proposal
Xinkai Li

x638li@uwaterloo.ca
University of Waterloo

Waterloo, Ontario, Canada

Xueyao Yu
x224yu@uwaterloo.ca
University of Waterloo

Waterloo, Ontario, Canada

Zhuangfei Hu
z239hu@uwaterloo.ca
University of Waterloo

Waterloo, Ontario, Canada

ACM Reference Format:
Xinkai Li, Xueyao Yu, and Zhuangfei Hu. 2021. CS 846 Course
Project Proposal. In Proceedings of ACM Conference (Conference’17).
ACM,NewYork, NY, USA, 2 pages. https://doi.org/10.1145/nnnnnnn.
nnnnnnn

1 Introduction
It is widely acknowledged that bug detection and mainte-
nance play a critical role in software engineering. There have
been abundant previous works focusing on the factors which
could affect bug frequency [1, 3–5]. However, common bugs
could be complex in nature, thus introducing difficulties for
identifying the bug-inducing factors. Karampatsis, R.M. and
Sutton, C [2] first introduced the concept of simple stupid
bugs (SStuBs), providing a convenient handle for preliminary
study on bug-inducing factors. The ManySStuBs4J dataset
[2] collects the commits which contain single-statement bugs
from popular Java Maven projects, and classifies them ac-
cording to common bug patterns in practice. Based on this
dataset, we investigate and identify factors that contribute to
the appearance of bugs. We assume that the characteristics
of the project, the contributors, the commits, and the individ-
ual source file are primary factors affecting the SStuBs, and
try to determine the effect of each factor by constructing a
statistical model with respect to SStuBs frequency. Further-
more, based on these factors, we try to build a prediction
model to estimate SStuBs frequency of given commits. We
argue that this model could help developers estimate the
risk level of given commits and workload of the code review
process, thus bringing positive impacts on the quality and
work efficiency of the projects.
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2 Datasets and Tools
Our project is based on the ManySStuBs4J dataset[2] gen-
erated by Karampatsis et al., which contains detailed infor-
mation of one-line bugs from popular Java Maven projects,
including bug location, commit identifier and correspond-
ing source code. We also utilize the GitHub platform as a
complement for the dataset. Tracing the commit identifiers
provided in the ManySStuBs4J dataset, we retrieve commit-
related and project-related information, including source
files and corresponding contributors’ profiles, with GitHub
APIs. Machine learning toolkits like PyTorch might be used
to assist data analysis and model construction.

3 Research Questions
RQ1. Is the occurrence of SStuBs affected by certain
characteristics of commit-related information?
We assume that the frequency of SStuBs is affected by

commit-related information, and hope to verify our assump-
tion.We extract commit-related information from the dataset,
including timestamps, contributor and project information,
and label them as possible factors. We then observe the sta-
tistics of each label and determine the most probable factors
affecting SStuBs frequency, including four different groups:

• Project features: project size, age and reputation.
• Contributor features: number of authors and reviewers

for the commit, as well as their corresponding experience
and reputation.

• Commit features: commit time, LOC updated.
• Source file features: source file’s size and revision times.
We hope to examine each of these factors via statistical

model, e.g. linear regression model, estimate the correspond-
ing coefficients of the factors, and provide stronger support
for our conclusion by calculating significance levels.

RQ2. Is it feasible to estimate the frequency of SStuBs
in given commits via characteristics of commit-related
information?

This research question is based on the previous question.
If positive results are obtained in RQ1, we hope to estab-
lish a prediction model for SStuBs’ frequency of individual
commits based on the verified factors in RQ1 via statistical
method or machine learning technique (e.g. artificial neural
network).
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Phase Schedule
Determine explanatory factors March 1 - March 8

Data extraction March 9 - March 18
Data analysis March 19 - March 25

Model construction March 26 - April 1
Paper submission April 2 - April 7
Table 1. Schedule of 5 milestone phases

4 Milestones
As Table 1 shows, our milestones consist of 5 phases. The
details of each phase are illustrated as below:

Phase 1. Determine explanatory factors
Numerous studies have been conducted in the field of bug

prediction, proposing a variety of fault-proneness factors
[1, 3–5]. Based on previous work and the provided dataset,
we list groups of factors that might affect the occurrence of
SStuBs, including project, contributors, commit, as well as
individual source file. (March 1 - March 8)

Phase 2. Data extraction
We extend the existing SStuBs dataset by using the commit

ID and project name to retrieve the information regarding
the research factors from GitHub REST API such as project
metadata, contributor’ expertise and commit data, etc. This
process also includes data pre-processing, which cleanups
the data by applying some filters to eliminate the outliers
and normalizes the data retrieved from GitHub API so that it
can be meaningfully interpreted and directly used for further
manipulation.

Phase 3. Data analysis
During this phase, we verify the proposed factors by qual-

itatively looking into several bugs and explaining the cause
of the occurrence, and quantitatively performing statistical
analysis such as linear regression. (March 19 - March 25)

Phase 4. Model construction
If we can validate a set of fault-proneness factors from

Phase 3, we will build a bug prediction model that can esti-
mate the bug density of a given commit.

Phase 5. Paper submission
The study will be academically recorded and organized in

a paper.

5 Threats to validity
Construct validity: As the Java projects studied in [2] are
selected by popularity, it is reasonable to assume that they are
well designed and maintained by experienced contributors
following rigorous development process, yielding relatively

low frequency of SStuBs. Thus, the generalizability of the
conclusions drawn from the ManySStuBs4J dataset could be
questionable. To solve this problem, one possible method
is to split the original ManySStuBs4J dataset into disjoint
training and testing subsets. Further study and tests on other
Java projects of various sizes would also provide stronger
promise for our results.

Classification error: The ManySStuBs4J dataset suffers
from false-negative and false-positive problems. According
to [2], the keyword filter for buggy commit reaches an ac-
curacy of 94%, but there could still exist commits falsely
classified as erroneous, or bugs that remain unnoticed. This
could be a potential threat to the validity of our conclusions.

Internal validity: Our model does not include all possi-
ble factors affecting SStuBs frequency. Certain features or
characteristics, such as coding style of developers, culture
of development team and interaction between collaborators,
are hard to quantify or retrieve and are thus excluded from
our model. The effects of these features or characteristics
could be studied qualitatively for further understanding of
primary factors affecting SStuBs frequency.

Dataset Bias: As the ManySStuBs4J dataset is focused on
commits labelled as buggy, the conclusions drawn from this
dataset cannot be directly generalized to ordinary individual
commits. Furthermore, not all buggy commits in the studied
Java project are included in this dataset. Thus, we could only
report positive risk levels for certain commits but not vice
versa. One possible way to solve this problem is to investigate
the SStuBs frequency in the provided Java projects while ex-
cluding the commits contained by the ManySStuBs4J dataset
and try to identify characteristics of bug-free commits.
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