48

Computing Frontier: Software
Development, Staffing and Training

Conveners: D. Brown, P. Elmer
Observer: R. Pordes

D. Asner, G. Dubois-Felsmann, V. D. Elvira, R. Hatcher, C. Jones, R. Kutschke, D. Lange,
E. Sexton-Kennedy, C. Tull

Executive Summary

Success of HEP science will continue to depend critically on computing. Managing the human activities
(software development and management, training and staffing) is an important part of that. Based upon
our own experiences, and from discussions with members of the HEP community, we have identified the
following main goals for the next decade in the area of software, staffing and training:

e Goal: To maximize the scientific productivity of our community in an era of reduced resources, we must
use software development strategies and staffing models that will result in products that are generally
useful for the wider HEP community.

e Goal: We must respond to the evolving technology market, especially with respect to computer
processors, by developing and evolving software that will perform with optimal efficiency in future
computing systems.

e Goal: We must insure that our developers and users will have the training needed to create, maintain,
and use the increasingly complex software environments and computing systems that will be part of
future HEP projects.

Some specific recommendations we feel will help achieve these goals are:

e Software Management, Toolkits and Reuse

— Continue to support established toolkits (Geant4, ROOT, ...)

— Encourage the creation of new toolkits from existing successful common software (generators,
tracking, ...)

— Allow flexible funding of software experts to facilitate transfer of software and sharing of technical
expertise between projects

— Facilitate code sharing through open-source licensing and use of publicly-readable repositories.

— Consolidate and standardize software management tools to minimize cross-project “friction”

e Software Development for new Hardware Architectures



2 Computing Frontier: Software Development, Staffing and Training

— Significant investments in software are needed to adapt to the evolution of computing processors,
both as basic R&D into appropriate techniques and as re-engineering “upgrades”

— New software should be designed, and existing software re-engineered, to expose parallelism at
multiple levels

— Develop flexible software architectures that can exploit efficiently a variety of possible future
hardware options

e Staffing

— Recognize software efforts as sub-projects of the project

— Integrate computing professionals as part of the project team, over the life of the project or
collaboration

— Integrate software professionals with scientist developers to insure software meets both the tech-
nical and scientific needs of the project

e Training

— Use certification to document expertise and encourage learning new skills

— Encourage training in software and computing as a continuing physics activity
— Use mentors to spread scientific software development standards

— Involve computing professionals in the training of scientific domain experts

— Use online media to share training

— Use workbooks and wikis as evolving, interactive software documentation

— Provide young scientists with opportunities to learn computing and software skills that are
marketable for non-academic jobs

48.1 Introduction

Over time, HEP projects (experimental and theoretical) have become larger and more complex, and gen-
erate ever larger datasets, and require ever higher precision analysis. In addition, the breadth of projects
scientifically relevant to Particle Physics has increased to include fields such as observational cosmology
and deep underground experiments. In order to deal with these changes, HEP software has by necessity
become more complex. Software complexity has also increased due to evolving language standards, which
provide more options to programmers. Limitations on power consumption are changing the architecture of
computer hardware, requiring fundamental changes in software design to continue the “Moore’s law” scaling
of computing performance vs cost. Increased software complexity is measured not just in the number of
lines of code, but in the sophistication of the algorithms employed, and in the diversity and breadth of the
software technologies employed.

The increasing sophistication of HEP software has had demonstrable positive effects on the scientific output
of our field such as by improving the accuracy of simulations, and by improving the efficiency and precision
of scientific conclusions extracted from data using techniques like Multi-Variate-Analysis. Improved software
organization, management, and testing standards have also benefited scientific output by allowing coherent
and consistent data sets for analysis to be produced within hours of logging.

Increasingly complex software also has costs. For instance, software development now takes a significant
fraction of the engineering and operations resources required to perform HEP scientific research. Additionally,

COMMUNITY PLANNING STUDY: SNOWMASS 2013



48.2 Software Toolkits and Reuse 3

for scientists to make effective use of complex software, more training, and more professional-level support
are often required. Increasingly complex software can also have direct financial costs, such as requiring
more computing power to execute, through commercial software license fees, and by requiring professionally-
trained computer support personnel. The trends of increasing software sophistication, evolving hardware
platforms, and increasing reliance on software for scientific progress show no signs of reversing in the near
future. The challenge for the next decade is then to guide the development of HEP software so as to maximize
the scientific output, while respecting the real resource constraints experienced by the field.

The primary responsibility for the scientific success of an HEP project lies with the scientists organizing and
collaborating on it. This includes the responsibility for the major software design, organization, and support
decisions which every project must make. However, no modern project can write its software completely
“from scratch”. To the extent that projects have common features, sharing of common solutions can help
reduce the cost and risk of their software development. Furthermore, the development cost of some common
software is beyond the scope of a single project, requiring a broader community of contributors to create
and maintain the software that benefits them all.

In discussions amongst ourselves and with members of the HEP community, these were the most common
themes. Put more succinctly, the larger goals for the next decade in the area of software development and
training are:

e To maximize the scientific productivity of our community in an era of reduced resources, we must
use software development strategies and staffing models that will result in products that are generally
useful for the wider HEP community.

e We must respond to the evolving technology market, especially with respect to computer processors,
by developing and evolving software that will perform with optimal efficiency in future computing
systems.

e We must insure that our developers and users will have the training needed to create, maintain, and
use the increasingly complex software environments and computing systems that will be part of future
HEP projects.

In the rest of this document we review the discussions in various areas related to software development and
make specific a number of specific recommendations to achieve these goals.

48.2 Software Toolkits and Reuse

Software is a dynamic environment, where languages, infrastructure, algorithms, and requirements are all
evolving rapidly. For scientific computing to be effective and competitive in this environment, scientific
software must therefore be continually renewed. However, just as new projects often reuse or re-‘purpose
hardware from previous projects, so too can software developers reuse earlier software.

Software reuse has several potential benefits, such as:

e Reduced development time. In particular, the lead time to having functional software on a new project
can often be greatly reduced.

e Reduced cost to the project through lower demand on software developers.

COMMUNITY PLANNING STUDY: SNOWMASS 2013



4 Computing Frontier: Software Development, Staffing and Training

e Reduced risk through use of proven algorithms and implementations.

e Preservation of detailed scientific knowledge expressed in the software implementation.
Software reuse also presents additional costs and risks, such as:

e Older code must often be refurbished to meet modern requirements, which can mean migration,
refactoring, or even a complete rewrite.

e Software developers are often reluctant to reuse code, as the effort required to understand poorly
documented or poorly-implemented code can be greater than the effort needed to write new code.

e Commitment to code reuse can place an project at risk if an external developer stops supporting the
code, or develops the code in a direction away from that project’s needs.

Software reuse only makes sense if the benefits exceed the costs. That decision will be made individually by
each new project. All current HEP projects rely upon some combination of new and reused software. The
choice of what software to reuse and which to develop new is driven by both technical and non-technical
considerations. In an era of increasingly constrained budgets, it makes sense to try to organize software
development in HEP in a way that maximizes potential future reuse across the field. This would allow
the community to reduce cost and risk as a whole, over time. We have therefore identified several models
in which HEP software development could evolve in the future to maximize the chance of future reuse, as
described below.

One obvious case of successful reuse is toolkits. Toolkits form around mature problems, where the community
has reached consensus on the major goals and methods, and so is able to work coherently on the solution.
Toolkits are supported through the “open source” model, which amortizes the cost across many projects (and
sometimes fields). This guarantees continual expert presence for maintenance and updating. It also allows
natural evolution, as the population of developers represents the interests of current users. The existing
highly-successful toolkits (ROOT, Geant, RooFit, ...) nucleated at at large institutions which provided
steady initial support. Several areas of HEP software have the potential for becoming toolkits, such as
fast Monte Carlos, Monte Carlo generators, geometry description packages, event-processing frameworks,
databases, and track reconstruction algorithms (among others). It is possible that a supportive institutional
environment could precipitate formation of a toolkit in some of these areas.

Recommendation: Continue to support established toolkits (Geant4, ROOT, ...)

Recommendation: Encourage the creation of new toolkits from existing successful common software

Another form of reuse is through software sharing. Code is often copied from one project, and modified to
serve a new, related purpose on another. While this is not as coherent and doesn’t offer as much long-term
potential benefit to the field as reuse through toolkit creation, it can still offer big benefits to specific projects.
It is also more flexible than toolkit creation, as the copied code is “owned” by the new project, which can
modify it without any external constraints.

From discussions with our constituents, it became clear that successful software sharing requires developer
continuity; at least initially, expert developers active in the previous project must be available to adapt the
copied software for the new project. This works most successfully when the developers are scientific members
of both previous and new projects. It becomes problematic when the experts are computing professionals,
supported by project funds. The need to assign the experts efforts to one or the other project’s budget

COMMUNITY PLANNING STUDY: SNOWMASS 2013



48.3 Software Development and Hardware Architecture 5

artificially compartmentalizes the problem, when the benefit is to the community as a whole. A possible way
around this would be if computing professionals could be matrixed across several projects while supporting
the transfer of software from one project to the other.

A related case arises in Monte Carlo generators, which have become a computationally intensive component
of the Monte Carlo simulation workflow on the LHC experiments. A wide range of event generators are
being developed in the US and elsewhere to meet the changing needs of experimental work, and to capture
the latest theoretical developments for use by the experiments. Because the development teams are small
(often only 1 or 2 people), they often are not able to address all the technical computational issues required
for efficient performance using GRID computing resources. In experimental software, these technical issues
are often addressed by software professionals, who are integrated with the scientific development community.
Allowing computing professionals nominally associated with the experimental program to integrate with
theorists involved in the generator development teams would be an effective way to improve computational
efficiency using existing resources.

Recommendation: Allow flexible, reliable funding of software experts to facilitate transfer of software
and sharing of technical expertise between projects

Projects typically restrict read access to their software to members, as a necessary way of protecting the
intellectual content of their work from competitors. This however makes software sharing less likely. In
particular, because non-members cannot search project code repositories, they cannot discovery existing
solutions to similar problems. One way to improve this situation would be to encourage projects to put non-
sensitive code in read-accessible repositories. Projects should also use public licensing to protect their code
and facilitate reuse. Finally, new projects should define a 'twilight’ clause in their membership agreements,
whereby all the project’s software will be made publicly read accessible at some date after the last data has
been recorded.

Recommendation: Facilitate code sharing through open-source licensing and use of publicly-readable
repositories

Use of different software management tools can form a barrier to software sharing across projects. Different
tools can also adversely affect developers and users when they transition between projects. To the extent
possible, use of common management tools and common computational environment tools will reduce these
burdens.

Recommendation: Consolidate and standardize software management tools to minimize cross-
project “friction”

48.3 Software Development and Hardware Architecture

Over the past 15 years the bulk of software development in high energy physics has shifted to programming
on commodity x86 processors with Linux as the main operating system. The software development models of
most large (and many small) projects shifted to C++ and object oriented programming, with an emphasis on
flexibility for code evolution, maintainability and in some cases the requirements of allowing larger numbers
of distributed collaborators to contribute to the code base. Most high energy physics applications are

COMMUNITY PLANNING STUDY: SNOWMASS 2013



6 Computing Frontier: Software Development, Staffing and Training

designed as simple sequential programs, many instances of which can be run in embarrassingly parallel
fashion, typically referred to as high throughput computing (HTC).

Exponential increases in luminosity and dataset sizes over the lifetime of a given experiment and/or between
successive generations of experiments is also a critical ingredient which drives our science. These increases
provide the improved statistical power necessary to perform many measurements. To perform such measure-
ments without similar increases in the cost of the computing, we have relied on the exponential increases
in computing power per unit cost (and similarly for storage, memory, etc.) famously described by Gordon
Moore (as Moore’s law). Recent years however have seen a significant change in the evolution of processor
design relative to the previous decades [I]. Realizing these exponential gains in processor performance per
unit cost will be much more difficult in the future than over the past few decades.

In recent years, technology limitations, in particular regarding power consumption, have triggered profound
changes in the evolution of computing processor technology. In the past software could be run unchanged on
successive processor generations and achieve Moore’s Law-like performance gains. This behavior has allowed
software designs based on simple, sequential programming models to scale easily through enormous increases
in performance. The era of scaling for such sequential applications is now over. The limitations on power
consumption are leading to a new era in which scalability will need to be achieved via significantly more
application parallelism and the exploitation of specialized floating point capabilities. Achieving these huge
potential increases will transform completely the processor landscape and software design. Failure to adapt
will imply an end to the exponential cost reductions for computing which have been fundamental to enabling
the progress of science in general and specifically in high energy physics.

Previously one could expect to take a given code, and often the same binary executable, and run it with
greater computational performance on newer generations of processors with roughly exponential gains over
time as described by Moore’s Law. A combination of increased instruction level parallelism and (in particular)
processor clock frequency increases insured that expectations of such gains could be met in generation after
generation of processors. Over the past 10 years, however, processors have begun to hit scaling limits, largely
driven by overall power consumption.

The first large change in commercial processor products as a result of these limits was the introduction of
“multi-core” CPUs, with more than one functional processor on a chip. At the same time clock frequencies
ceased to increase with each processor generation and indeed were often reduced relative to the peak. The
result of this was one could no longer expect that single, sequential applications would run faster on newer
processors. However in the first approximation, the individual cores in the multi-core CPUs appeared more
or less like the single standalone processors used previously. Most large scientific applications (HPC/parallel
or high throughput) run in any case on clusters and the additional cores are often simply scheduled as if they
were additional nodes in the cluster. This allows overall throughput to continue to scale even if that of a
single application does not. It has several disadvantages, though, in that a number of things that would have
been roughly constant over subsequent purchasing generations in a given cluster (with a more or less fixed
number of rack slots, say) now grow with each generation of machines in the computer center. This includes
the total memory required in each box, the number of open files and/or database connections, increasing
number of independent (and incoherent) I/O streams, the number of jobs handled by batch schedulers,
etc. The specifics vary from application to application, but potential difficulties in continually scaling these
system parameters puts some pressure on applications to make code changes in response, for example by
introducing thread-level parallelism where it did not previously exist.

There is moreover a more general expectation that the limit of power consumption on future Moore’s Law
scaling will lead to more profound changes going forward. In particular, the power hungry x86-64 “large”
cores of today will likely be replaced wholly or in part by simpler and less power hungry “small” cores.
These smaller cores effectively dial back some of the complexity added, at the expense of increased power,

COMMUNITY PLANNING STUDY: SNOWMASS 2013



48.3 Software Development and Hardware Architecture 7

in the period when industry was still making single core performance scale with Moore’s Law. The result
is expected to be ever greater numbers of these smaller cores, perhaps with specialized functions like large
vector units, and typically with smaller memory caches than the “large” cores. Exploiting these devices fully
will also push applications to make larger structural code changes to introduce significantly more fine-grained
parallelism.

Recommendation: Significant investments in software are needed to adapt to the evolution of
computing processors, both as basic R&D into appropriate techniques and as re-engineering “upgrades”

Recommendation: New software should be designed, and existing software re-engineered, to expose
parallelism at multiple levels

Although it is very hard to predict precisely where the market will wind up in the long run, we already see
several concrete examples which give indications as to the kinds of things that we will see going forward,
such as Intel’s MIC architecture, increased interest in low power ARM processors for the server market,
and General Purpose Graphics Processing Units (GPGPU’s or GPU’s). Overall the market is likely to
see significantly more heterogeneity in products than in the past couple of decades. Effectively exploiting
these newer architectures will require changes in the software to exhibit significantly more parallelism at
all levels, much improved locality of access to data in memory and attention to maximize floating point
performance. Most of the scientific software and algorithms in use today in projects was designed for the
sequential processor model in use for many decades and require significant re-engineering to exploit properly
these new architectures.

Most physics algorithm-level software for projects is written by physicists, rather than by software profes-
sionals. Adapting to this new reality of hardware heterogeneity, and complex programming models will be
a challenge for many physicists who do not have the time nor expertise to optimize their code to multiple
hardware architectures

Recommendation: Develop flexible software architectures that can exploit efficiently a variety of
possible future hardware options

Recommendation: Support investigation and development of tools that allow user-level code to run
on multiple, diverse hardware architectures

A broad and balanced mix of effort on a number of elements will be required [3], including general inves-
tigations into newer processor architectures and programming models, the simulation, pattern recognition
algorithms in the experiment trigger and reconstruction, tools and systems and analysis techniques. Many
aspects of the areas to investigate are not unique to HEP, but as always the needs of our scientific research
program compel us to work at the leading edge of progress in computing technology. As deviations from
Moore’s Law cost scaling are already becoming visible, we expect that the efforts will require concrete
upgrades to projects already in the next few years, as well as R&D for the longer term eventually aimed
at efficient scalability of our applications through order of magnitude increases in processor power over the
next decade.

Specifically, investments will be needed in common toolkits like Geant4, ROOT and event generators to
make them scalable and efficient on the newer architectures. Indeed some efforts are already underway at
FNAL [4] (Geant4 and ROOT) and at SLAC [5] (Geant4), for example. The experience from these efforts
will likely guide the way for other projects.

COMMUNITY PLANNING STUDY: SNOWMASS 2013



8 Computing Frontier: Software Development, Staffing and Training

In addition existing project specific codes, for example for triggering and event reconstruction software, will
likely need to evolve. In some cases, where the time scales and dataset size increases will be large, they may
need to be re-engineered and/or rewritten.

To summarize, the evolution of processor technology will have a major impact on software development over
the next decade.

48.4 Staffing

Two decades ago during the running of LEP, CLEO and the Run 1 Tevatron experiments the dominant
programming language was Fortran. Most professors in the community knew how to program well enough in
it, and it was easy to train new graduate students to use the language and tools, like CERNLIB, of that time.
Staffing of software efforts for the core software of the projects came from laboratories like CERN, FNAL,
and Cornell. In addition to framework skeletons and foundation libraries each project had a small team of
people that would integrate and debug the contributions to applications from university personnel. In the
early 1990s as the complexity of these software applications grew problems caused by the deficiencies of the
language, and the tool sets available for it, developed. New projects like BaBar and the 4 LHC experiments
were designing C++ applications from scratch with the help of hired software engineering efforts. More
attention was paid to the training of postdocs and graduate students. However there were some who did
not see software development as their primary task. These people along with many of their professors were
left behind by this transition. It was no longer the case that anyone could contribute to software efforts.
Software engineering skills and an ability to contribute to large, multi-million line, projects was required.
The transition was lead by key people within the projects with many years of domain expertise that made
an effort to learn the new programming model and language and spread that knowledge to their peers. It
should be noted that in some frontiers like the cosmic and intensity frontiers the above transition is still
ongoing.

We are now on the threshold of a new transition, from a serial programming model to a concurrent model.
We as a field should examine the lessons learned from the previous transition by looking at the efforts that
were most successful and not repeating the mistakes.

In preparation for writing this report, software leaders and representatives from many projects from the
energy, intensity, and cosmic frontiers were interviewed. All gave the same advice, based on their experience,
regardless of which stage in the above transition or adoption of software engineering techniques they are in.
These are summarized in the following principles:

Recommendation: Recognize software efforts as sub-projects of the project.

Many past and existing projects have Software and Computing organizations, however much of the effort
comes from students or postdocs who were hired to work on detector projects or to work on analysis at a
University, and whose software contributions are incidental. They may learn software engineering because
they are interested in it, and see it as a marketable skill, but many do not. As the technology trends raise
the bar on required skills to effectively contribute, software can no longer be treated as something you do
after you’ve built a detector or before you process and analysis dataset. It is key to have people who can
reliably estimate the level of effort needed for the project over the lifetime of the project; both to be able to
explain that need to the collaboration, and to international funding agencies.

In our surveys we have identified three types of people that contribute to software efforts: domain experts
who know very little about software and computing, computing professionals, and most importantly the

COMMUNITY PLANNING STUDY: SNOWMASS 2013



48.5 Training 9

bridge people who usually came from the field but took a career path that allowed them to get staff positions
as computational physicists. Computing professional input into the implementation of the frameworks and
algorithms is very important. However we know of no team of isolated computing professionals who delivered
software of lasting value. Computing professionals need to be integrated as part of the project team over
the life time of the project and they should be grouped with and lead by the bridge people identified above.
These people can effectively communicate requirements and speak the same language as the computing
professionals when implementation problems (bugs) need to be solved. They can also speak to the domain
experts, encouraging them to write pseudo-code for how they would solve the algorithmic problem, then
help the computing professional understand, and rewrite that code in the most efficient way for the targeted
programming model. This model will not be intuitive or natural, so it seems that forming these teams is the
only way to produce high quality implementations that meet the technical and physics requirements of the
projects.

Recommendation: Integrate computing professionals as part of the project team over the life of the
project

Recommendation: Integrate software professionals with scientist developers to insure software meets
both the technical and physics performance needs of the project

User support staffing is very important for projects. It accelerates the ability of new people to contribute.
The best model we have found is to form a triage system for user support. An individual that is dedicated to
user support is identified to field questions from the collaboration. Through time that individual will learn
enough to be able to handle most questions by him or herself without distracting the expert programmers.
When needed the user support person can redirect questions to the appropriate expert group or individual.

Staffing for the future challenges imposed by the changing technologies discussed in previous sections will
require a change in the way we do business. This reality needs to be taken into account for any future new
or upgraded projects.

48.5 Training

We give our thoughts on training based on discussions within the sub-panel and with others. The thinking
is based not only on experience but also on the trends in the changing needs of the field, the educational
courses given to physics students at university, and also the opportunity to benefit to those needing to
eventually find jobs outside of the field. There is consensus that activities and investment in computational
skill development and training of the high energy workforce has, and should continue to have, a highly
productive impact on the scientific outcomes. It is also clear that having training that best matches the
needs across the field is a challenge.

We are facing: An increasingly dynamic, evolving and innovative technology landscape; The need for
computing and software developments to be more closely tied into the development of the physics codes
- especially in the areas of concurrency and diversity of hardware resources to be used; And an increasingly
transient workforce due to the total cost of the program and budgetary constraints. We are also persuaded of
the value of exploring a range of training activities and mechanisms - including university, on-job, mentorship,
commercial and online. We do not cover the traditional, static, documentation as a means of training. We
see utility in more focus on real-world based exercises, embedded expertise-based joint work, and the broader
set of interactions available through virtual presence.

COMMUNITY PLANNING STUDY: SNOWMASS 2013



10 Computing Frontier: Software Development, Staffing and Training

The people doing computing in physics collaborations today span a range of responsibilities and roles,
each of which has particular, and often specific, training needs. We identify the following categories:
Physics algorithm and method development and validation; Scientific computing framework, workflow data
management and distributed system development; Advanced computing hardware and software architecture
and engineering; And production system deployment, integration, and support.

We give a list of suggested training components in the rest of this section. Within each category thought is
needed to decide how tailored each training activity should be.

Recommendation: Use certification to document expertise and encourage learning new skills.

We see benefit in encouraging formal learning and measurement of computing skills for physics undergraduate
and graduate students. One way of doing this is to provide means for certification in software engineering,
design and languages as an offered, encouraged, and perhaps eventually required part of degrees in high
energy physics - just as for instrumentation and electronics.

Many universities have created, or are creating, computational science and/or research courses, often multi-
disciplinary and some offered specifically as part of a domain science curriculum. Existing programs known to
the authors include Indiana’s PhD minor in Scientific Computing [I0] and the Princeton University graduate
computational certificate [2]. Such programs exist at many universities today and should be connected as
directly as possible into the needs of the particle and astro physics programs.

Recommendation: Encourage training in software and computing as a continuing physics activity

We (at BaBar, Belle, Fermi, LEP, LHC, RHIC, SDSS, SLAC, Tevatron etc) have seen positive results from
continuing training (which includes making sure there are no barriers to contribution) including both initial
training of incoming software developers and regular forums and materials to update and extend the training
taken.

It is beneficial to plan and provide working environments to ensure that such activities follow through the
whole lifetime of a project.

Recommendation: Use mentors to spread scientific software development standards

In recent years projects have taken specific steps to embed trained software architects and engineers within
the physics development groups and activities. This ongoing expert guidance and feedback results in better
initial designs and, as importantly, continued attention and eyes on the quality and process of changes as
they are made - many times quickly and under time pressure.

Recommendation: Involve computing professionals in the training of scientific domain experts

Giving computing professionals a role in training scientific domain experts as well as continuous engagement
in reviewing and guiding the outcomes provides additional attention to aspects like quality and sustainability
of the products. Separation of responsibilities can provide for most combined benefit from individual skills
and expertise. A representative example is for the domain experts to write pseudo-code of the physics
algorithms and analyses followed by computing experts making it efficient for the targeted environment, new
hardware technologies etc. Another example is targeted attention to structure, design and documentation
of codes to improve their robustness against change in functionality as well as in the actual people working
on them, throughout the lifetime of the product.

COMMUNITY PLANNING STUDY: SNOWMASS 2013



48.5 Training 11

Recommendation: Use online media to share training

There has been an explosion in the availability, quality and ease of use of web-based and streaming videos,
collaborative tools, and other multi-media technologies and content. These are already part of the common,
daily expectation of the emerging generation of scientific and professional workforce. Examples that should be
investigated for principles, strengths and lessons learned are: The TED program [6]; The Kahn Academy [7];
And current University online course offerings.

Initial investments that encourage a variety of approaches and projects will help us find the most effective
ways of using multi-media in training activities.

The field can also invest in the concept of “networked training” where coverage includes a combination of
developing simple data analyses in tandem with training a set of contributors in mostly an online setting.
The global interest and engagement in the results from the Higgs search, dark matter, dark energy and other
cosmological and particle searches can be leveraged to increase interest in such programs. Existing examples
include Gaia [8] and and Chain-Reds [9]. Also LSST is currently considering such a program. Using a body
like ICFA to facilitate and oversee such a program would demonstrate the importance of training to the
health of the field and ensure broad opportunity and utility.

Recommendation: Use workbooks and wikis as evolving, interactive software documentation

Exercised-based workbooks and hands-on training workshops have shown good return on investment in
producing good quality and in the ability to repurpose and extend existing software codes:

e LHC Data analysis workshops have been a great success and are a model that can be copied and
“regularized”

e CMS and ATLAS workbooks have resulted in new entrants being able to contribute quicker and more
effectively.

e Coding scrums and fests have shown the ability for the best experts to influence a broad set of other
developers.

e The simulation and theory communities have a long, successful history of tutorials and (summer)
schools on various aspects of high performance computing [11].

e Technical writers can increase the quality of the communication of information through contributing
to the organization, review and testing of material.

Best would be an integrated program in all computing plans of workbooks that address both workshop
activities and individual learning.

The “physics job pyramid” means that many physics students and post-docs will need to find jobs outside
of the field at some point in their careers. Computing and software are hot skills for the marketplace and
there has long been a recognition that particle physics is a place where deep training and experience are
gained. We need to pay attention to the match between the tools, languages, and technologies in demand
outside of physics and those we adopt and use in the field. We can do this by increasing our adoption of
software packages used in other scientific fields and the broader society. The use of Hadoop and HDFS
for data storage and access are recent examples of such packages. Lectures, surveys, and articles covering
technologies, trends and opportunities in the marketplace help to keep the information current and personnel
engaged.

COMMUNITY PLANNING STUDY: SNOWMASS 2013



12 Computing Frontier: Software Development, Staffing and Training

Recommendation: Provide young scientists with opportunities to learn computing and software
skills that are marketable for non-academic jobs

Acknowledgements We wish to thank the many people in the HEP and Particle-astro community who took
the time to explain their views on these subjects, and who contributed many of the ideas presented here.

COMMUNITY PLANNING STUDY: SNOWMASS 2013



REFERENCES 13

References
[1] Samuel H. Fuller and Lynette I. Millett (Editors), “The Future of Computing Performance: Game Over
or Next Level?”, 2011, The National Academies Press.

[2] http://www.princeton.edu/researchcomputing/education/graduate-certificate-CIS/

[3] P. Elmer, S. Rappoccio, K. Stenson and P. Wittich, “The Need for an R&D and Upgrade Program for
CMS Software and Computing,” arXiv:1308.1247 [hep-ex], SNOW13-00105.

[4] P. Canal, D. Elvira, R. Hatcher, S. Y. Jun and S. Mrenna, “A Vision on the Status and Evolution of
HEP Physics Software Tools,” arXiv:1307.7452 [hep-ex], SNOW13-00083.

[5] M. Asai and R. Mount, “Geant4 - Current and Future: A Snowmass 2013 White Paper,” arXiv:1308.1994
[hep-ex], SNOW13-00111.

[6] http://www.ted.com
[7] http://www.khanacademy.org
[8] http://great.ast.cam.ac.uk/great-itn
[9] http://www.chain-project.eu/
[10] http://denali.physics.indiana.edu/ sg/CSE/

[11] For example see the XSEDE project course calendar at https://www.xsede.org/web/xup/course-
calendar/ and the NCSA Blue Waters Virtual School of Computational Science and Engineering
http://www.vscse.org/

COMMUNITY PLANNING STUDY: SNOWMASS 2013



	Computing Frontier: Software Development, Staffing and Training
	Introduction
	Software Toolkits and Reuse
	Software Development and Hardware Architecture
	Staffing
	Training


