

1. Scope of the plan:

1.1 Overview:

The main goal of this Software Development Plan is to support the development activities of a small team of 3 - 8 people using object-oriented techniques. Open communication and good coordination between team members is expected. The small size of the development group and the use of object-oriented techniques allow a process model based on evolutionary prototypes. This document defines all the activities of the development process.

1.2 Software:

The following software will be used for development in Java of this CORBA complaint software:

· Visigenic VisiBroker.

· Symantec Cafe.

1.3 External documents:

· Gantt Chart.

· E-mail from the Client.

· Pressman, Roger S. "Software Engineering: A Practitioner's Approach", 4rd Edition, McGraw-Hill, 1997, Chapters 16-17.

· http://cliffie.nosc.mil/~ahntech/CPP_Pilot/SDP_Files/
· http://www.cc.gatech.edu/computing/classes/RWL/Process/
· http://www.airtime.co.uk/users/wysywig/
2. Team organization:

2.1 Team leader:

Thom Stevens

2.2 Team recorder:

Alvaro Carrasco

2.3 Client liaison:

Michael Konitzer

3. Schedule:

· See attached Gantt Chart

4. Risk:

The following is a list of risks identified by the team members. These are laid out with the risk area followed by the solution(s):

4.1 Not receiving enough information from the client:

4.1.1 Ask to right type of questions.

4.2 Lack of communication with the client:

4.2.1 Schedule meetings.

4.2.2 Add client to group e-mail list.

4.3 Lack of communication between team members:

4.3.1 Scheduled meetings.

4.4 Lack of equipment or development tools:

4.4.1 Based on our research and recommendation from the client we will obtain our development tools and equipment.

4.5 Lack of knowledge of the technology to be used:

4.5.1 Research, research, research.

5. Requirements:

The requirements collection process is client-driven and requires a certain level of commitment from the customer. The collection process will establish the needs of the client and include a list of mandates.

5.1 Primary requirements:

5.1.1 Discussions with the customer will yield:

· An initial requirements definition.

· The priority of requirements.

· The budget and resource plan.

· The list of deliverable items.

5.2 Derived requirements:

Object-Oriented Analysis will be employed concurrently with requirement collection. The OOA activity involves analyzing the problem domain and the system's responsibilities within that problem domain. The overall OOA approach consists of five major activities, producing five layers, ultimately producing a single OOA model. The OOA is not concerned with implementation details.

5.2.1 The five major activities of the overall OOA approach are:

· Identifying Classes and Objects.

· Determining Attributes.

· Defining Services.

· Defining Messages.

· Identifying Constraints.

The resultant decisions, descriptions and diagrams of these activities shall be documented in the Specifications Document.

5.3 Architecture requirements:

· Functional operations.

· Quantified operational characteristics (i.e., ease of use, reliability, availability, maintainability and performance).

· Interfaces that the software must deal with.

· Environments the software must accommodate.

· Other applicable design constraints.

Evolutionary prototypes dictate a level of customer commitment. Periodic reviews should be held to monitor the continually changing results of this process. These reviews shall be used to assess the feasibility of the design.

5.4 Design requirements:

In an object-oriented approach to System Design, the classes, attributes of the classes, services for each class and message for each class needs to be identified.

5.4.1 Identify Classes:

Identifying classes is an iterating process. The first group of classes identified may be neither complete nor minimum. Each class needs to be revisited to assured that the following criteria are met:

· The class is derived from the overview requirements.

· The class is needed for a complete representation and definition of the system being built.

· The class is not redundant.

· The class cannot be combined with other objects through the use of additional attributes.

· The information presented by the class is unique.

During the iteration, classes that are good candidates to be studied for possible elimination fall into one or more of the following categories:

· Have a single attribute.

· Contains only one object in the entire class.

· Have no applicable service associated with them. An applicable service is a service that, when performed, will produce external output.

· The class attributes and services hold or produce information that is not required to create a design.

· Classes with attributes that have or require no value.

5.4.2 Determining Attributes of Each Class:

The main goal of attributes of a class is to define that class to the outside world as it relates to the problem domain and the system being built. In general, class attributes do the following:

· Identify the class.

· Define the special characteristics of the class.

· Define the state of the class.

· Identify the behavior of the class.

5.4.3 Defining Services for Each Class:

Operations or services performed by classes can be found by examining the problem statement associated with each object. By examining the following three categories, services can be defined for a class:

· Manipulation of data and control items for each class.

· Computational operations.

· Monitoring operations.

5.4.4 Defining Messages for Each Class:

A message is sent from an object (an instance of a class) to another object to perform certain services. A message may carry with it the external input needed to execute services required. It also may return some of the external outputs. One of the objectives of messages is to create communication among objects without creating side effects. The following two characteristics can determine the messages for each class:

· Services defined in object 'A' that is used by other object.

· Services in object 'A' where execution requires data from other objects.

5.4.5 Identifying Constraints (e.g., execution time, storage limit):

The constraints specify how the non-functional requirements of the system relate to each module. Usually the constraints are the decomposition of the non-functional requirements of the total system.

5.5 Code Implementation requirements:

The objectives of this section are to insure that all team members will:

· Develop code according to an accepted design that satisfies a consistent and accepted set of requirements.

· Develop code in the programming languages prescribed by the project.

· Develop code using specific techniques or software automation tools prescribed by the project.

· Develop code that conforms to the coding standards prescribed by the project.

· Measure their progress and provide these measures (time, SLOC, etc.) back to the project manager so that the progress of the project can be tracked and appropriate planning changes made. These measures are also critical to the proper planning of future projects.

5.6 Requirement coverage:

The team members should develop code in the prescribed language(s) according to the prescribed coding standards following the detailed design for the module. The team members will keep accurate logs of the implementation. These logs should record the duration of the implementation activity, the number of lines of code, the problems encountered, etc. The team members will also participate in weekly project status meetings, and present a status report for the development of the module.

6. Architecture and design documentation:

6.1 Specifications Document

6.2 Project Proposal

6.3 Formal Design Review

6.4 Design Document

7. Software development process:

The team will use OMT for the duration of the development process. The key milestones for this process are the development of the various models; refer to the Gantt chart for the breakdown.

8. Software configuration management plan:

Each source file shall be informally peer-reviewed for conformance to coding standards and successful completion of testing as described in the Test Plan (9).

9. Test plan and test independence:

Two levels of testing will be conducted: testing of classes before inclusion in the class library and testing of the application software. Development and test activities will be separated to avoid conflicts of interest and produce more comprehensive test results. Another benefit of separating test from development is confirming that format standards are followed, leading to correct document production.

9.1 Test Stubs:

Test stubs shall be generated for each manageable set of classes before inclusion in the class library. These tests will be placed under configuration control and will therefore be reusable by other testers, eliminating duplication of effort.

9.2 Application Tests:

The tests to run on application software will be documented in the Test Plan. Errors discovered during testing will be documented within the final version of the Test Plan and the customer shall decide whether the product is acceptable for delivery. These tests will be placed under configuration control and will therefore be reusable by other testers, eliminating duplication of effort.

9.3 Completion of Testing:

Determining when a Test Plan is complete is a very difficult problem. In fact, Pressman only mentions three possible answers:

· It's never complete. You just pass your testing onto the customer.

· When you run out of money.

· By using a complex formula whereby you prove that you have "95 percent confidence in the probability of 1000 CPU hours of failure free operation in a probabilistically defined environment is at least 0.995".

The first two options are comical, while the last is largely unrealistic. However, by following the test strategies outlined in the specific sections a fairly robust level of testing can be achieved. Also, by tracking how much testing was done and how many bugs were detected later a better understanding of how much testing to perform can be gained.

9.4 Tools and environment:

10. Client up to date:

10.1 E-mail:

· Upon the approval of the client, the client will be added to the team mailing list.

10.2 Personal meetings:

· To be arranged.

10.3 Regular tele-conferences:

· The team will meet with the client in this manner on a weekly basis.

Motorola Group

Software Development Plan

Revision 1.2

Team leader:

Thom Stevens

Team recorder:

Alvaro Carrasco

Client liaison:

Michael Konitzer

