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ABSTRACT 

 

USING TIME SERIES MODELS FOR DEFECT PREDICTION 

IN SOFTWARE RELEASE PLANNING 

by 

James W. Tunnell 

June 2015 

 

 To produce a high-quality software release, sufficient time should be allowed for 

testing and fixing defects. Otherwise, there is a risk of slip in the development schedule 

and/or software quality. A time series model is used to predict the number of bugs created 

during development. The model depends on the previous numbers of bugs created. The 

model also depends, in an exogenous manner, on the previous numbers of new features 

resolved and improvements resolved. This model structure would allow hypothetical 

release plans to be compared by assessing their predicted impact on testing and defect-

fixing time. The VARX time series model was selected as a reasonable approach. The 

accuracy of the model varies for different sampling periods, window sizes, and degree of 

differencing. 
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CHAPTER I 

INTRODUCTION 

Two primary concerns in software release planning are improving functionality 

and maintaining quality. Both objectives are constrained by limits on development time 

and cost. In order to respect these constraints and still pursue both objectives, the scope 

of planned work must be limited so that time is available to properly deal with the 

inevitable defects (bugs) that will arise. In this way, a software release can better ensure 

quality while also improving functionality. 

A critical step in this planning process is to factor in a suitable amount of time for 

testing and bug-fixing. Otherwise, there is a risk of slip in the development schedule 

and/or software quality. As the time and effort required for testing and bug-fixing will 

likely be a function of the number of defects introduced during development, it is 

desirable to be able to predict how many bugs can be expected as development proceeds. 

A potential application for defect prediction is to compare different release plans 

according to their estimated bug fallout and subsequent impact on testing and bug-fixing 

times. This would assist release planners in ensuring that the total development time does 

not exceed the project’s time budget for a release. The comparison of different release 

plans is integral to release plan optimization, which is the focus of The Next Release 

Problem [2] (discussed in detail in the Motivation chapter). 

Many approaches to defect prediction focus on either code analysis or historical 

defect information. To make the defect prediction model useful for comparing release 

plans, the model must depend in some way on the basic elements of the release plan: 
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planned features and improvements. The historical defect models discussed in the 

Literature Review chapter are limited in this respect, as they depend only on the past 

defects.  

An approach to defect prediction is presented using a multivariate time series 

model. This model can be applied for a proposed release, because predictions can be 

made using only information about proposed features and improvements. 

The paper is organized as follows. First, related work is presented in the 

Literature Review chapter. Then, further motivation for the use of a time series model for 

predicting defects is presented in the Motivation section. Next, an overview of time series 

modeling concepts is provided in the Background section. The methods used for data 

collection and preparation, and time series modeling are detailed in the Methods chapter. 

The results of applying these methods are then given in the Results chapter, and 

discussed in the Discussion chapter. After this, possible sources of invalidity are put forth 

in the Threats to Validity chapter, and potential avenues of future research are laid out in 

the Future Work chapter. The paper ends with the Conclusion chapter.
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CHAPTER II 

LITERATURE REVIEW 

Software defect (bug) prediction typically involves a detailed analysis of code or 

proposed design changes. Some of these analytical methods are mentioned in the next 

section. These analytical approaches require more information in more detail than might 

be available during the software release planning stage. For this reason, alternative 

approaches were sought out, and several that depend on historical data and use statistical 

methods are discussed. 

Analytical Approaches to Defect Prediction 

Akiyama [1] predicted defect counts based on lines of code (LOC), number of 

decisions, and the number of subroutine calls. Gaffney [7] likewise predicted defect count 

based on LOC. Rather than code itself, Henry and Kafura [10] define metrics that are 

based on information taken from design documents, to be used in defect prediction. 

Nagappan and Ball [14] use relative code churn (lines modified) as a metric for 

predicting the density of defects. Giger, Pinzger, and Gall [8] compare the use of code 

churn to a more fined-grained approach, capturing “. . . the exact code changes and their 

semantics down to statement level” (p. 83). 

Statistical Approaches to Defect Prediction 

Rather than requiring a detailed code analysis to predict defects, the approach 

proposed in this paper is to develop a mathematical model based on historical data on 

defect occurrences. Specifically, the proposed approach is to develop a defect prediction 

model using previous software features, improvements, and defects. 
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A related approach, used by Li, Shaw, Herbsleb, Ray, and Santhanam [12], is to 

study only the defect occurrences themselves, and attempt to develop a mathematical 

model for defect projection. In their work, functions were fitted to a time series of defect 

occurrences, and then the function parameters themselves were extrapolated for each new 

release. They found that the Weibull model fit best in 73% of the tested software releases. 

They attempted to extrapolate model parameters using naive methods, moving averages, 

and exponential smoothing, but found these techniques to be “. . . inadequate in 

extrapolating model parameters of the Weibull model for defect-occurrence projection” 

(p. 271). The reason given for this ineffectiveness is the changing nature of the software 

development system. For example, development practices, staffing levels, and usage 

patterns may all change between releases. 

In another related approach, Graves, Karr, Marron, and Siy [9] developed several 

models that predict the future distribution of software faults in a given code module. The 

basis of their predictive models is a statistical analysis of change management data, 

which describes only the changes made to code files. The best model they found was a 

weighted time damping model, where every change in the module files contributed to 

defect prediction, with time-damping to account for age of changes. They achieved a 

performance nearly as good by basing a generalized linear model on just the modules age 

and the number of past changes. They also found factors that did not improve model 

performance, based on module length, number of developers making changes in the 

module, and how often a module is changed simultaneously with another module. 
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In the final approach discussed here, by Singh, Abbas, Ahmad, and Ramaswamy 

[16], the Box-Jenkins method is applied to datasets from the Eclipse and Mozilla 

software projects, which are represented as time series data, and defect count is predicted 

using an ARIMA model. Their modeling effort is focused at the component-level, and 

they conclude that “. . . current bug count of a component is linearly related to its 

previous bug count” (p. 6). 
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CHAPTER III 

MOTIVATION 

Release planners typically rely on both their experience and project conventions 

to generate a release plan by selecting planned features and improvements such that the 

estimated time to test for and fix defects will not cause a schedule slip. 

However, if the defect estimation technique is only loosely based on past 

experience, as with a rule-of-thumb, then it may prove too coarse for comparing multiple 

release plans. Specifically, such a technique may not provide any quantitative difference 

between release plans that are similar (but not the same). For example, suppose two 

different release plans are being considered. Both include two features, but one has five 

improvements and the other has seven. A rule-of-thumb approach may provide the same 

estimate for each. Even for dissimilar release plans, such an approach still has the 

disadvantage of lacking confidence intervals to quantify prediction uncertainty. 

An alternative approach is to develop a model that will take into account the 

differences in composition of features and improvements between the release plans. In 

this case, one would expect that the predicted number of defects would vary across the 

release plans and that prediction uncertainty can be quantified by confidence intervals. 

Such a model would assume some explanatory relationship, like that shown in Figure 1. 
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Release 

Plan 1

Release 

Plan 2

Release 

Plan N
...
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Predicted
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Defects 2

Predicted

Defects N
...

 

Figure 1 Using an explanatory model for defect predictions. 

A predictive model will have some inaccuracy, but confidence levels can be used 

to quantify the uncertainty of future prediction based on past accuracy. This will allow 

release planners to assess the risk of relying on the defect prediction. A higher confidence 

level results in less risk because it encompasses a larger window for the prediction. 

Conversely, a lower confidence level results in more risk and a more narrow prediction 

window.  

The Next Release Problem 

Release plan optimization is exactly the goal of The Next Release Problem [2] 

(NRP), but there is a gap between the abstract domain of the NRP and the detailed, messy 

data found in software projects. By applying an explanatory predictive model there is a 

path toward bridging this gap, opening up the potential for using NRP optimization 

techniques in real-world release planning. In this section, first the NRP is described, then 

the gap between it and practical planning is discussed, and finally it is shown how the 

explanatory model suggested earlier would be applied to help bridge this gap. 
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Defining the NRP 

The NRP was defined by Bagnall, Rayward-Smith, and Whittley [2], and was 

shown to be NP-Hard. Being abstract in its treatment of feature cost, a broad range of 

optimization techniques can be applied to the NRP, such as integer programming, hill 

climbing, simulated annealing, genetic algorithms, etc. The NRP is the subject of 

academic research in the area of Search-Based Software Engineering [11][17][19]. 

The NRP describes the situation where software project planners, who have 

multiple customers to satisfy, would like to maximize the revenue produced from 

completing the project. This is all described mathematically as follows. 

A software project has a set 𝑅 of all possible requirements (new features and 

enhancements) that might be included in the next software release. A customer 𝑖 is 

satisfied by completing a subset 𝑅𝑖 ⊆ 𝑅. The importance of a customer 𝑖 is given by the 

weight, 𝑤𝑖 ∈ ℤ+. 

Requirements may have acyclic dependencies, or prerequisites, that must be 

completed first. A subset that includes all prerequisite requirements, recursively, is 

indicated by �̂�𝑖, and should be taken to mean 

�̂�𝑖 = 𝑅𝑖 ∪ 𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟𝑠(𝑅𝑖) 

For example, if 𝑅1 = {𝑟2}, and 𝑟1 is a prerequisite for 𝑟2, then �̂�𝑖 = {𝑟1, 𝑟2}. 

A requirement 𝑟 ∈ 𝑅 has a cost 𝑐𝑜𝑠𝑡(𝑟) ∈ ℤ+, associated with its implementation, 

not considering the cost of any prerequisite requirements. Then, the cost for some subset 

𝑅′ ⊆ 𝑅 will be 

𝑐𝑜𝑠𝑡(𝑅′) = ∑ 𝑐𝑜𝑠𝑡(𝑟)
𝑟∈�̂�′
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Once customer 𝑖 is satisfied, their weight 𝑤𝑖 contributes to the total revenue from 

the project, as in 

∑ 𝑤𝑖

𝑖∈𝑆

 

So, the NRP is posed as follows. For a group of 𝑛 customers, select the subset 

𝑆 ⊆ {1,2, … , 𝑛} that maximizes total revenue, while keeping the total cost within some 

budget constraint 𝐵. This is given by 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ 𝑤𝑖

𝑖∈𝑆

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑐𝑜𝑠𝑡 (⋃ �̂�𝑖

𝑖∈𝑆

) ≤ 𝐵 

The Gap between Abstraction and Reality 

As was discussed in the previous section, a planner would need several things to 

be able to implement a NRP-like optimization: 

1. A set of requirements that could potentially be implemented. 

2. A set of customers that are satisfied by some subset of the requirements, and have 

an associated weight. 

3. A cost function, to quantify the cost of each requirement. 

4. A cost budget that should not be exceeded. 

Having all these in hand, a planner could proceed to optimize the subset of 

requirements planned for the next release. One difficulty with this that can be highlighted 

is in the definition of a cost function. It might be suggested that the estimated time to 

implement a requirement alone might be used to determine cost, but there is a practical 
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detail that prevents this: in order to maintain quality software the total cost of any 

requirement should take into consideration both the cost of implementation and the cost 

of fixing associated defects. Otherwise, a release plan would appear to be within budget, 

when there is a risk that the budget will be exceeded when defect costs are also 

considered. 

Bridging the Gap 

We use the explanatory model to address the need to consider defect cost. Such a 

model, given some subset of proposed requirements, can be used to predict defects and to 

find additional cost which should be considered. This use of the predictive model is 

illustrated in Figure 2. 

Requirements 

Subset

Predictive 

Model

Predicted

Defects

Requirements 

Cost Function

Defect Cost 

Function
Total Cost

Σ

 

Figure 2 Applying the defect prediction model to estimate overall cost. 

Since predictive models cannot be perfectly accurate, instead we would expect 

that any forecasting would include confidence levels. Taking into account the confidence 

of a prediction allows planners to account for risk in the use of the defect prediction. If 
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more risk is acceptable, then planners will get a narrower prediction window, and in 

exchange take more of a chance that the prediction is inaccurate. A wider prediction 

window means, though, that when the defect prediction is used to determine requirements 

cost, that potential cost range will also be wider.
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CHAPTER IV 

BACKGROUND 

In this section, time series models are introduced, and then further concepts 

related to modeling, exogeneity and stationarity, are discussed. 

Time Series Models 

A time series is a collection of observations that occur in order. The process 

underlying a time series is assumed to be stochastic, so the model must correspondingly 

be probabilistic. Critically, the sequence of observations cannot be re-arranged, as each 

observation is typically dependent on one or more previous observation. This dependence 

is termed autocorrelation and accounting for it is one of the primary functions of a time 

series model. 

Autoregressive Models 

A basic autoregressive (AR) model is formed as a linear combination of previous 

values, plus a white noise term that accounts for random variations (the stochastic 

portion). An 𝐴𝑅(𝑝) model for predicting a value 𝑋 at time 𝑡 can be written as 

𝑋𝑡 = 𝑐 + ∑ 𝜑𝑡𝑋𝑡−1

𝑝

𝑖=1

+ 𝜀𝑡 

where 𝜑1, 𝜑2, …, 𝜑𝑝 are the 𝑝 parameters, 𝑐 is a constant, and 𝜀𝑡 is the white noise term. 

Multivariate Models 

When the AR model is extended to the multivariate case (i.e. allowing for 

multiple time series), a Vector AR (VAR) model is formed. This model will support a 
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time series for defect count and also time series for the two release plan variables 

(improvements and new features). 

Endogeneity and Exogeneity 

Under the VAR model, the behavior of each time series is explained by both its 

own past values and the past values of the other time series. This makes the variables 

endogenous. 

The alternative is that a time series should not be explained by itself, and is only 

used to explain other time series. This type of explanatory variable is called exogenous, 

and could be considered an input. 

By also considering exogenous variables, a VAR model would become a VARX 

model. This model meets the requirements of the explanatory model described in the 

Motivation section, since it would allow release plan variables to be kept exogenous and 

used only to explain defect count. 

Trends and Stationarity 

AR, VAR, and VARX models do not account for non-stationary data. If a time 

series is not stationary, differencing may produce a stationary series. Trending time series 

are challenging to analyze, because the summary statistics of mean, variance, and 

autocovariance vary over time, and are therefore not interpretable [6]. Deterministic and 

stochastic trend types are discussed here. 

A deterministic trend will move upward or downward, meaning that the time 

series mean is non-constant. However, the time series will be constant according to a 

deterministic function and the time series movements will generally follow the 



14 

 

deterministic function, with non-permanent fluctuations above or below. Such a time 

series is said to be stationary around a deterministic trend. 

In contrast, a stochastic trend shows permanent effects whenever random 

variations occur, and the series will not necessarily fluctuate only close to the area of a 

deterministic function. The application of differencing can be used to remove a stochastic 

trend.  

Stationarity can be strict or weak (of some order). Strict stationarity occurs when 

statistical properties are invariant with respect to shifts of the time origin [13]. 

Alternatively, a weak stationarity (of second order) can be established, and from this 

strict stationarity can be established by then assuming normality [4]. 

For a multivariate time series, stationarity holds if all the component univariate 

time series are stationary [18], so the goal of stationarity testing will be to establish 

second-order stationarity for each univariate time series component, and then show that 

the assumption of normality is reasonable. This will establish the stationarity of the 

multivariate time series as a whole. Next, tests are discussed for assessing if a 

deterministic or stochastic trend is present. 

Unit Root and Stationarity Testing 

A time series that contains a stochastic trend is non-stationary. A pure auto-

regressive (AR) model of such a time series contains a unit root [6]. Testing for the 

presence of a unit root can therefore be used to test for non-stationarity. A unit-root test 

poses as the null hypothesis that an AR model has a unit root. Then, a test statistic is 

measured. If the p-value is below some significance, the null hypothesis can be rejected, 



15 

 

and it is established that the time series does not have a stochastic trend. The Augmented 

Dickey Fuller (ADF) test is often used for unit root testing. 

On the other hand, a stationarity test uses the null hypothesis that a time series is 

stationary around a deterministic trend. If the test statistic shows that this hypothesis can 

be rejected at some significance level then a stochastic trend should be considered by the 

unit root test. The Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test can be applied for 

testing stationarity.
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CHAPTER V 

METHODS 

In this chapter, we consider methods for both obtaining time series data (data 

methods) and for obtaining a model using that data (modeling methods). 

Data Methods 

In this section, the data sources and the rationale for their selection are discussed. 

Then the methods used for preparing data for modeling, by cleansing, sampling, 

stationarity testing, and windowing, are described. The procedure used is summarized in 

Figure 3. 

Extraction & Cleansing

Sampling

Stationarity Testing & 
Differencing

Windowing

Modeling

Issue Tracking 

System

Issue Data

Time Series
Stationary Time 

Series

Windowed, 

Stationary Time 

Series

...

 

Figure 3 An overview of data methods. 
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Data Sources 

The empirical datasets used to establish predictive models came from several 

software projects’ historical data, and were taken from their issue tracking systems
1
. To 

be considered for selection, it was required that a project 

 Has been actively developed for at least several years 

 Has openly available issue tracking system data 

 Distinguishes between defects and other issue types 

The projects selected by these criteria were 

 MongoDB
2
: core server product 

 Hibernate
3
: orm product 

 NetBeans
4
: platform and java  products 

The MongoDB software project has been actively developed since 2009. 

MongoDB uses JIRA
5
 for issue tracking. Issue data for core server product was exported 

from the project's JIRA web interface
6
. 

The Hibernate software project has been actively developed since 2003, and also 

uses JIRA for issue tracking. Issue data for the orm product was exported from the 

project’s JIRA web interface
7
. 

                                                 
1
An issue tracking system can be used to track bugs, new features, improvements, etc.  

2
 MongoDB is a scalable document-oriented database system (http://www.mongodb.org/). 

3
 Hibernate is an object-relational mapping (ORM) framework for the Java language. 

4
 NetBeans is a software development platform written in Java 

5
 JIRA is an issue tracking and project management system made by Atlassian 

6
 The project’s JIRA web interface is at https://jira.mongodb.org/browse/SERVER 

7
 The project’s JIRA web interface is at https://hibernate.atlassian.net/projects/HHH 
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The Netbeans software project has been actively developed as an open source 

project since 2000. The project uses Bugzilla for issue tracking. Issue data for the 

platform and java products was obtained using a 2010 dump of the Bugzilla database. 

This database was made available as part of the mining challenge for the 2011 conference 

for Mining Software Repositories
8
.  

Data Preparation 

The datasets need some preparation before a time series modeling procedure is 

run. Preparatory steps include cleansing, sampling, stationarity testing and differencing, 

and windowing. These steps are now explained below. 

Data Cleansing 

Not all the data were preserved for modeling. The modification or removal of data 

is discussed next. 

First, only issues with resolutions such as fixed, complete, or done were kept. 

Issues with other resolutions, such as unresolved, won't fix, duplicate, etc. were counted 

as unfixed and were not kept. This was done because the proposed model structure 

assumes that bug creation is explained by software changes. Therefore, issues that do not 

result in any change were not included in the dataset.  

Next, issues that are categorized as sub-tasks were converted to be the same issue 

type as the parent issue. Those sub-tasks whose parent issue is not in the dataset are 

considered orphans and discarded.  

                                                 
8
 The mining challenge data is available at http://2011.msrconf.org/msr-challenge.html 
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Data Sampling 

Data were sampled at regular periods to measure the number of improvements 

resolved, the number of features resolved, and the number of bugs created. As an 

example, this sampling process is illustrated in Figure 4, with the outcome of sampling 

the example data shown in Table 1.  

Bug

Bug

Bug

Improvement

Improvement

New Feature

Period 1 Period 2 Period 3 …

 

Figure 4  Sampling example issue data. 

 

Table 1 The results of sampling example issues. 

Period Improvements 

Resolved 

New Features 

Resolved 

Bugs 

Created 

1 0 0 1 

2 1 1 1 

3 1 0 1 
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Stationarity Testing & Differencing 

To establish stationarity, we first need to see if we can rule out the presence of a 

stochastic trend by applying the ADF test. If we can indeed rule out a stochastic trend, we 

should be able to confirm stationarity by applying the KPSS test. Or, if a stochastic trend 

cannot be ruled out, then KPSS test should be applied to check that trend stationarity is 

also rejected. If data is found to have a stochastic trend, it should be differenced and then 

retested to confirm (trend) stationarity. In both tests, it will be assumed that the 

deterministic component is constant, with an intercept but no trend.  The ur.df and 

ur.kpss functions from the urca
9
 library were used to perform the ADF and KPSS 

tests, respectively. 

Time Windowing 

It is assumed that the software development process underlying a given project 

might change over time. Rather than developing a model that also changes over time, 

data will be kept for modeling only if it occurs within a time window. This will limit the 

amount of process change the model is exposed to. Taking this approach means that the 

modeling methods will be executed for each time-windowed part of the data. See an 

illustration of a window in Figure 5. 

                                                 
9
 The urca library (http://cran.r-project.org/web/packages/urca) provides tests for time series data, and 

is freely available as a package for the R computing environment. 
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Figure 5 An illustration of time-windowing. 

It will be necessary to advance the time window after modeling data within the 

window, so that the entire time series can take part in the modeling. This notion of 

applying modeling data within the window, advancing the window by one sample, and 

then repeating until the end of the time series is reached, is called herein a sliding 

window.  

Modeling Methods 

The typical method for building time series models involves specification, 

estimation, and diagnostics checking [4]. Once specified and estimated, the diagnostic 

checking step ensures that only valid models are considered for selection. The final step 

of modeling would be selection, where models are compared by some model selection 

criterion [4]. The next sections present the approach used to specify, estimate, check, and 

select a VARX model to be used for defect prediction. 

Model Specification & Estimation 

Specification of a 𝑉𝐴𝑅𝑋(𝑝) model is accomplished by choosing an order 𝑝, 

which is the number of autoregressive terms to include in the model. Once an order is 
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specified, the model parameters can be estimated by a procedure such as least squares 

regression. 

The model order will directly affect the number of parameters included in the 

model. One goal of specification will be to avoid having too many parameters relative to 

the number of observations. The following derivation will lead to a simple rule for 

limiting the model order in this respect. First, let 𝑛 be the number of time samples in a 

time series. When there are 𝑚 time series, each sample contains 𝑚 observations, so there 

are 𝑚𝑛 total observations for all time series. Next, for a 𝑉𝐴𝑅𝑋(𝑝) model of the 𝑚 time 

series variables, there are 𝑚2𝑝 unknown parameters to be estimated. Let the ratio of 

observations to parameters be denoted by 

𝐾 =
𝑚𝑛

𝑚2𝑝
=

𝑛

𝑚𝑝
 

To keep 𝐾 at or above some minimum ratio 𝐾𝑚𝑖𝑛, so there are not too few 

observations per parameter, we form the inequality 

𝐾𝑚𝑖𝑛 ≤ 𝐾 =
𝑛

𝑚𝑝
 

In terms of 𝑝 this becomes 

𝑝 ≤
𝑛

𝑚𝐾𝑚𝑖𝑛
 

Then, for a fixed value of 𝐾𝑚𝑖𝑛, an upper bound on the model order would be 

𝑝𝑚𝑎𝑥 = ⌊
𝑛

𝑚𝐾𝑚𝑖𝑛
⌋ 



23 

 

With this upper bound, model specification will include the generation of models 

having order 1, 2,..., 𝑝𝑚𝑎𝑥. These models, with their estimated parameters, will be 

candidates for final model selection after undergoing diagnostic checking.  

The estVARXar function of the dse
10

 library was used to estimate the 

parameters of a VARX model. 

Diagnostics Checking 

Diagnostic checking is performed to verify that a model can be accepted. This 

step includes testing for model stability, inadequacy, and normality. 

Stability Test 

For an autoregressive model to be stable, the roots of the process characteristic 

equation must lie outside the unit circle [4]. Equivalently, the inverse of the roots must lie 

inside the unit circle. The stability function from the dse library was used to perform 

this stability test. 

Portmanteau Test 

For an adequate ARMA model, it can be shown that “As the series length 

increases, the [model residuals] become close to the white noise . . .” [4, p. 338]. For this 

reason, there are model inadequacy tests formed around a study of the residuals. 

One of these tests, the Ljung-Box test, forms a statistic from the autocorrelation of 

the residuals (up to some lag). In this test, the null hypothesis is that residuals are 

                                                 
10

 The dse library (http://cran.r-project.org/web/packages/dse) provides tools for time series models, 

and is freely available as a package for the R computing environment. 
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independent, so their autocorrelation is not high enough to be distinguished from a white 

noise series. To support this hypothesis, the test p-value should be above some level of 

significance. The Box.test function from the stats
11

 library was used for performing 

the Ljung-Box inadequacy test, with a 5% significance level. 

Normality Test 

To form a prediction interval for the model forecast, it is assumed that model 

residuals are normal. Therefore, models with non-normal residuals violate this 

assumption. Normality of model residuals are tested using the Jarque-Bera (JB) adjusted 

Lagrange multiplier (ALM) test, which is very precise for a wide range of sample sizes 

[5]. The JB test in general is testing that sample skewness and kurtosis matches that of a 

normal distribution. The jbTest function from the fBasics
12

 library was used to perform 

the JB ALM normality test, with a 5% significance level. 

Model Selection 

Model selection criteria are used to compare models according to their fit, by 

penalizing for residual error and the number of parameters. There are a number of 

different selection criteria, including Akaike Information Criterion (AIC), AIC with 

correction (AICc), and Bayesian Information Criterion (BIC). Bisgaard and Kulahci 

noted that “. . . [t]he penalty for introducing unnecessary parameters is more severe for 

                                                 
11

 The stats library (http://stat.ethz.ch/R-manual/R-patched/library/stats/html/00Index.html) provides 

core statistics functions, and is freely available as a package for the R computing environment. 
12

 The fBasics library (http://cran.r-project.org/web/packages/fBasics/index.html) was prepared for 

teaching computational finance, and is freely available as a package for the R computing 

environment. 
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BIC and AICC than for AIC” [3]. A less severe penalty for the number of parameters 

would be preferred in this case, since we are already limiting the number of parameters in 

the model specification step, and because additional parameters may in fact be necessary 

to account for time series autocorrelations with higher lags. Therefore, AIC was chosen 

as the selection criterion. The bestTSestModel function from the dse library was 

used to perform model selection with the AIC criterion.
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CHAPTER VI 

RESULTS 

The data and modeling methods described in the Methods chapter were applied to 

the four datasets: MongoDB core server, Hibernate orm, NetBeans platform and 

NetBeans java. The results of applying the methods are described in the following 

sections. The code that was developed to apply the methods is contained in two 

repositories: 

 https://github.com/jamestunnell/thesis 

 https://github.com/jamestunnell/defectPrediction 

The thesis repository contains scripts that are used for data extraction and cleansing. The 

defectPrediction repository contains code for an R package. This package contains 

functions used for sampling, for stationarity testing, and for modeling with a sliding 

window. 

Data Results 

Data were collected from project issue tracking systems, as described in the Data 

Sources section. Table 2 shows the range of dates over which data were collected for 

each project product, and the number of issues that were collected as a result, both before 

and after data cleansing. See the Data Cleansing section for an explanation of why certain 

issues were excluded. It is worth noting that none of the datasets contained many 

orphaned subtasks. The highest number found was 80 in the Hibernate orm dataset. 

  



27 

 

 
Table 2  The date ranges of data collected, and the number issues that resulted. 

Project Product Name Date Range Initial Issue 

Count 

Final Issue Count 

MongoDB core server Apr, 2009 – Jan, 2015 7,007 6,971 

Hibernate orm Apr, 2003 – Apr, 2015 14,262 8,278 

NetBeans platform Jan, 2001 – Jun, 2010 24,745 11,335 

NetBeans java Jan, 2001 – Jun, 2010 18,313 8,699 

 

Sampling Results 

The collected datasets were then sampled to create time series. Not knowing 

which sampling period would work best, sampling was performed for three different 

sampling periods: 7 days, 14 days, and 30 days. The resulting time series are shown in 

Appendix A: Time Series Data Plots. 

Stationarity Testing & Differencing Results 

The resulting time series were then tested for stationarity. The time series were 

found to be non-stationary, with the exception of the Hibernate orm dataset, which was 

stationary when using a 30-day sampling period. Differencing was found to remove non-

stationarity, but not knowing how differencing would affect model accuracy, data 

differencing of degrees of 0, 1, and 2 were made available for the modeling phase. The 

stationarity testing results for non-differenced and differenced time series data can be 

found in Appendix B: Stationarity Testing Results. 
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Windowing Results 

Not knowing which window size would work best for the sliding window, a range 

of window sizes were selected for each sampling period, as shown in Table 3. 

 
Table 3 The sliding windows sizes to be used for each sampling period 

Sampling Period Sliding Window Sizes 

7 days 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 75, 78 

14 days 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54 

30 days 12, 15, 18, 21, 24, 27, 30, 33, 36 

 

Modeling Results 

The modeling methods were first applied to the datasets using the sliding window 

approach. This was done in an exploratory fashion in which the whole procedure was 

repeated using various values for the parameters. The hope was to find the parameter 

values which could provide the best results. The results of this exercise are discussed first 

in the next section. Then, with the results of the exploratory modeling to guide in 

selecting parameter values, the sliding window approach is applied once to each dataset, 

and these final results are presented. 

Exploratory Sliding Window Results 

The parameters for the sliding window approach are sampling period, window 

sizes, and degree of differencing. These parameters were varied for each data set. Several 

metrics are used to evaluate the results: 
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 The none-valid proportion, which is the proportion of windows with no valid 

model (all models fail either the stability or inadequacy test). 

 The non-normal proportion, which is the proportion of windows, having a valid 

model, where model residuals are non-normal (fail the normality test). 

 The root-mean-square error (RMSE) of the forecast errors from all windows used 

for prediction. Each error value comes from a forecast made in one window. The 

RMSE of these errors is computed by 

𝑅𝑀𝑆𝐸(�̂�) = √𝑀𝑆𝐸(�̂�) = √
1

𝑛
∑ (�̂�𝑖 − 𝑌𝑖)2

𝑛

𝑖=1
 

where 𝑌 and �̂� are 𝑛 size vectors for the actual and predicted values, respectively. 

The RMSE value is the standard deviation of the error distribution. 

 The in-interval proportion, which is the proportion of windows with forecasted 

values within the given prediction interval.  

The first two metrics, the none-valid and non-normal proportions, measure the 

frequency of cases where the forecasting step is not reached. These metrics will be 

grouped together and called the validity metrics. The next two metrics, RMSE and the in-

interval proportion, measure the model accuracy. These metrics form a basis for choosing 

sliding windows parameter values, and will be called together the accuracy metrics. 

The results from running the sliding window with a range of parameters are listed 

in Appendix C: Exploratory Modeling Results. In these results, data is separated first by 

dataset, then by sampling period, and finally by the degree of differencing. From there, 

the window size is varied and metrics are recorded for each. 
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The significance of these results is now discussed, first from the standpoint of 

validity and then accuracy. Following this, a procedure is outlined for the selection of 

sliding window parameter values. 

Effects on Validity 

The validity metrics indicate that there are trends as the window size increases. 

See the plot in Figure 6 below, for example.  However, these trends are not consistent for 

different sampling periods and across datasets, so no attempt will be made to generalize 

them. But for a given dataset and sampling period they should provide empirical 

justification for choosing one window size over another, to minimize the number of 

invalid cases encountered over the course of the sliding window. 

 

Figure 6 The none-valid proportion, using the MongoDB core server dataset. 
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Effects on Accuracy 

The accuracy metrics indicate that a higher degree of differencing results in lower 

model accuracy. See the plot in Figure 7 below, for example. The undifferenced data, 

unfortunately cannot be used because it is non-stationarity. It is not clear whether the 

window size has a consistent effect on accuracy that can be generalized, but again it may 

provide an empirical justification for choosing a window size to maximize accuracy, once 

a sampling period and degree of differencing are chosen. 

 

Figure 7 The in-interval proportion, using the MongoDB core server dataset. 

The accuracy metrics also indicate that a smaller sampling period has a different 

effect on accuracy, depending on the degree of differencing. For an undifferenced time 

series, smaller sampling periods results in better accuracy. For time series that have one 

or two degrees of differencing, the effect of sampling period is inconsistent, and so 

should be checked empirically to obtain the best accuracy according to the choice in 

sample period. 
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Parameter Value Selection 

Based on the observations made in the previous two sections, a procedure can be 

outlined to establish sliding window parameter values. First, the smallest degree of 

differencing is used, as stationarity allows. Next, if data is undifferenced then chose a 7-

day (small) sampling period. Otherwise, try several sampling periods to see which results 

in accuracy trend lines that are highest. Last, try several window sizes in order to 

maximize validity and accuracy. 

This procedure is applied using the validity and accuracy results from Appendix 

C: Exploratory Modeling Results. First, since all of the time series require differencing, 

the degree of differencing chosen is 1 for all. Next, the sampling period and windows size 

are chosen to to try and maximize both validity and accuracy. The values chosen for these 

and the other parameters are shown in Table 4. 

 

Table 4 The parameter values selected from exploratory modeling. 

Dataset Degree of 

Differencing 

Period Window 

MongoDB core server 1 14 24 

Hibernate orm 1 30 24 

NetBeans platform 1 14 27 

NetBeans java 1 14 30 

  

Final Sliding Window Results 

The sliding window approach was applied for each dataset using the parameters 

arrived at during exploratory modeling (see Table 4). The results from this final modeling 
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step will be presented and discussed next. For each dataset, several aspects of the results 

will be discussed: 

 The none-valid and non-normal proportions 

 The distribution of actual compared to the distribution of predicted number of 

bugs 

 The distribution of forecast errors, where each error is the difference between the 

predicted and actual number of bugs for one window. 

 The in-interval proportion for a 75% or a 90% prediction interval 

The comparison of actual and predicted number of bugs will be in the form of 

kernel density plots of the two distributions, shown together. The distribution of forecast 

mean errors will be presented in terms of shape, using a Q-Q plot, and also by scale, 

using the RMSE. 

MongoDB core server Results 

The MongoDB core server dataset was processed using a difference degree of 1, a 

sampling period of 14 days, and a window size of 24. Of the 126 windows used in the 

sliding window, no valid model could be found for 3 (2.38%) of them. All of the 

remaining 123 windows had normal residuals. 

The distributions of actual bugs and predicted bugs are quite similar in 

appearance, shown together in Figure 8. The distribution of errors between predicted and 

actual bug counts is shown in Figure 9. The scale of this distribution can be summarized 

by the RMSE value of 14.723.  
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Figure 8 The actual and predicted distributions of the number of bugs. 

 

Figure 9 Histogram of forecast mean errors over sliding window.  
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The shape of this distribution is visualized using the Q-Q plot in Figure 10. This plot 

shows that both the left- and right-tail portions of the distribution are non-normal. Of the 123 

prediction windows, 45 (36.59%) were within a 90% prediction interval, and 34 (27.64%) 

were within a 75% prediction interval. 

 

Figure 10 Q-Q plot of forecast mean errors. 

Hibernate orm Results 

The Hibernate orm dataset was processed using a difference degree of 1, a 

sampling period of 30 days, and a window size of 24. Of the 121 windows used in the 

sliding window, no valid model could be found for 5 (4.13%) of them. And of the 

remaining 116 windows with valid models, the model residuals were non-normal for 1 

(0.86%) of them. This left 115 windows that were used to make predictions. 
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The distributions of actual bugs and predicted bugs are quite similar in 

appearance, shown together in Figure 11.  

 

Figure 11 The actual and predicted distributions of the number of bugs. 

The distribution of errors between predicted and actual bug counts is shown in 

Figure 12. The scale of this distribution can be summarized by the RMSE value of 10.27. 

The shape of this distribution is visualized using the Q-Q plot in Figure 13. This plot shows 

some right- and left-tail portions are non-normal. Of the 115 prediction windows, 62 

(53.91%) were within a 90% prediction interval, and 52 (45.22%) were within a 75% 

prediction interval. 
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Figure 12 Histogram of forecast mean errors over sliding window.  

 

Figure 13 Q-Q plot of forecast mean errors. 
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NetBeans platform Results 

The NetBeans platform dataset was processed using a difference degree of 1, a 

sampling period of 14 days, and a window size of 27. Of the 219 windows used in the 

sliding window, no valid model could be found for 21 (9.59%) of them. And of the 

remaining 198 windows with valid models, the model residuals were non-normal for 5 

(2.53%) of them. This left 193 windows that were used to make predictions. 

The distributions of actual bugs and predicted bugs are quite similar in 

appearance, shown together in Figure 14. 

 

Figure 14 The actual and predicted distributions of the number of bugs. 

The distribution of errors between predicted and actual bug counts is shown in 

Figure 15. The scale of this distribution can be summarized by the RMSE value of 

15.2702. The shape of this distribution is visualized using the Q-Q plot in Figure 16. This plot 

shows that many of the tail values are outside of the confidence bands, especially on the left side. 
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Figure 15 Histogram of forecast mean errors over sliding window.  

 

Figure 16 Q-Q plot of forecast mean errors. 
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Of the 193 prediction windows, 89 (46.11%) were within a 90% prediction 

interval, and 76 (39.38%) were within a 75% prediction interval. 

NetBeans java Results 

The NetBeans java dataset was processed using a difference degree of 1, a 

sampling period of 14 days, and a window size of 30. Of the 216 windows used in the 

sliding window, no valid model could be found for 28 (12.96%) of them. And of the 

remaining 188 windows with valid models, the model residuals were non-normal for 28 

(14.89%) of them. This left 160 windows that were used to make predictions. 

The distributions of actual bugs and predicted bugs are quite similar in 

appearance, shown together in Figure 17. 

 

Figure 17 The actual and predicted distributions of the number of bugs. 
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The distribution of errors between predicted and actual bug counts is shown in 

Figure 18. The scale of this distribution can be summarized by the RMSE value of 

18.0469. The shape of this distribution is visualized using the Q-Q plot in Figure 19. This plot 

shows strong non-normality at the tails, with almost all of the tail values outside of the confidence 

bands. 

Of the 160 prediction windows, 69 (43.125%) were within a 90% prediction 

interval, and 49 (30.625%) were within a 75% prediction interval. 

 

Figure 18 Histogram of forecast mean errors over sliding window.  
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Figure 19 Q-Q plot of forecast mean errors. 

A summary of all the final results is presented in Table 5, which is convenient for 

making a comparison. 

Table 5 A comparison of the final modeling results across datasets. 

Dataset 

Window 

Count 

None-valid 

Proportion 

Non-normal 

Proporation RMSE 

In-interval Proportion 

90% Conf. 75% Conf. 

MongoDB 

core server 

126 2.38% 0% 14.7230 36.59% 27.64% 

Hibernate 

orm 

121 4.13% 0.86% 10.2685 53.91% 45.22% 

NetBeans 

platform 

219 9.59% 2.53% 15.2702 46.11% 39.38% 

NetBeans 

java 

216 12.96% 14.89% 18.0469 43.13% 30.63% 
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CHAPTER VII 

DISCUSSION 

The validity of modeling results was evaluated by the none-valid and non-normal 

proportions. These measures both varied by window size, so windowing could be used to 

improve them. For the datasets and windowing parameters used, the none-valid 

proportions were between 2% and 13%, and the non-normal proportions were between 

0% and 15%. Together, these proportions represent the risk that for any given sample 

window there will be no valid course for making a prediction. 

The accuracy of model predictions was evaluated with RMSE and in-interval 

proportion. These measures both varied by window size, so windowing could be used to 

improve them. For the datasets and windowing parameters used, the in-interval 

proportions at a 90% prediction interval were between 36% and 54%, and the in-interval 

proportions at a 75% prediction interval were between 27% and 46%. 

Evaluating a dataset with a sliding window does not only provide control over 

validity and accuracy, it also conveys a picture of how a model can generally be expected 

to perform for any given window in the future. In the cases where the none-valid and 

non-normal proportions were quite low, this would lead to an expectation that for any 

given window in the future, there will likely be a valid model available, having normal 

residuals. Since the in-interval proportions were often far below the level of their 

prediction intervals, this would lead to an expectation that in many cases a model 

prediction would not be within the prediction interval. Such an expectation might 
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discourage the model’s use for defect prediction. On the other hand, if a low RMSE value 

is obtained, the model may still be considered useful for defect prediction. 
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CHAPTER VIII 

THREATS TO VALIDITY 

The historical data used to form models and make predictions is taken from actual 

software projects’ issue tracking systems. Though the data exists independently from the 

work of this thesis, there are still potential threats to the validity of the thesis results 

which may be due to the way data were originally recorded in the issue tracking system. 

Also, the way data were treated before being uses in modeling, as well as the 

relationships that are assumed to exist between the data variables may be threats to 

validity. In the following sections, potential threats to internal validity and external 

validity are identified and discussed.  

Internal Validity 

Threats to internal validity serve to undermine the causal relationships that are 

assumed. Throughout this paper, bugs created have been held as a dependent variable, 

with improvements resolved and features resolved being held as independent variables. It 

is also assumed that there exists some causality between the independent variables and 

the dependent variable. Several threats to this assumption are discussed next. 

Ambiguous Temporal Precedence 

The threat of ambiguous temporal precedence exists when it is not clear that one 

variable only occurs before another. Using the chosen model structure, the resolution of 

features and improvement s should occur before bugs are reported. But through visual 

inspection of the available time series data, it was such a temporal precedence was not 
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clear. This confirms that internal validity is threatened by ambiguous temporal 

precedence. 

Confounding 

Confounding may arise due to the existence of an additional variable which 

affects the dependent variable, and whose behavior is related to that of an independent 

variable. The software development process is hugely complicated, both in the number of 

actors and in the ways that an actor can participate in the process. Because the thesis 

work relies only on data from an issue tracking system, there are likely other variables 

which may play into the creation of software defects. The existence of unmeasured or 

unconsidered variables makes confounding a definite, but also probably inevitable, threat 

to internal validity. 

History 

The effects of external events, outside of the scope of software development, may 

contribute to the behavior of the dependent variable. For example, team attrition, team 

reorganization, and negative quality reports may all affect current and future development 

activities. With such large changes, development teams may be forced to change focus in 

the areas of quality or functionality. Such changes may disrupt historical behavioral 

patterns and relationships between variables. This threat to validity is perhaps 

unavoidable in long-term consideration of historical data. The approach taken to counter 

this threat to validity is to window data such that models are less exposed to structural 

changes.  
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External Validity 

There are two types of generalizability that are sought for in this thesis work: 

generalizability across software projects and generalizability across time windows. 

Threats to these types are discussed in the next sections. 

Generalizability across Software Projects 

For results to be generalizable across software projects, they must be inferred 

from many datasets. So far only four datasets have been used. This small number of 

datasets limits how well the results can be generalized to other software projects. Also, by 

design the selected projects were all open source. This makes the datasets and project 

information available to all researchers, but might also threaten the generalizability to 

projects that are not open source. 

Generalizability across Time Windows 

For a particular project dataset, results will vary for each of the time windows. To 

provide a result that can be generalized across time windows within the data set, a sliding 

window is applied over the entire dataset and several measurements are obtained. These 

measurements are proportions that indicate how probable it is that any given time 

window will produce a valid, accurate model. Additionally, the distribution of forecast 

errors across time windows is presented for each dataset, to characterize the probability 

of obtaining any given range of forecast error. 
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CHAPTER IX 

FUTURE WORK 

An improvement to the current methods is mentioned: excluding time windows 

that contain outliers. Additionally, two lines of potential future research are proposed: 

modeling with undifferenced data using birth-death process models and making use of 

change management data in a time series model. 

Exclusion of Outliers 

With each dataset, a distribution of the forecast errors was shown as a histogram. 

There appears to be one or more outliers present in each of these histograms. The 

presence of an outlier may indicate that a time window contains data whose behavior 

significantly deviates from the rest of the time series. Such deviations could be caused by 

unaccounted-for externalities, as is suggested in the History subsection from the Threats 

to Validity chapter. Because such externalities would not be accounted for by the model, 

it would be desirable to prevent their influence from confounding any time series model 

under consideration. The presence of outliers in the forecast error distribution can be 

established by statistical testing. Once a window is identified as containing an outlier, it 

may be necessary to exclude all samples in that window from the sliding window 

process. Or, a detailed inspection of the time series may reveal which portion of the data 

should be excluded. 

For the datasets with the worst results, NetBeans java, a large outlier was present 

in the sliding window forecast errors. These errors are shown by window in Figure 20, 

revealing the location of the outlier at window 43, which includes samples 43 through 72.  
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Figure 20 Forecast errors by window reveal the location of an outlier. 

When the sliding window method is applied to samples after this window, starting 

at sample 73, the results improved over those obtained using the entire sample range, 

suggesting that outlier occurrence may provide good guidance for which portion of the 

sample range is usable for modeling. A comparison of the full and restricted results is 

shown in Table 6.  

Table 6 Comparison of the results for full and restricted sample ranges. 

Sample 

Range 

Window 

Count 

None-valid 

Proportion 

Non-normal 

Proporation RMSE 

In-interval Proportion 

90% Conf. 75% Conf. 

Full 216 12.96% 14.89% 18.0469 43.13% 30.63% 

Restricted 144 11.81% 7.87% 16.2761 49.57% 34.19% 

 

Modeling with Birth-death Processes 

The exploratory modeling results showed much better model accuracy when using 

the undifferenced time series data, with in-interval proportions near the level of the 



50 

 

prediction interval. If a model could be used that operates on the undifferenced data 

without violating the model assumptions, then much better accuracy could be obtained. 

The model may need to take into account the special nature of the issue tracking system 

data. This data will always be non-negative, since it is count data. And due to the 

irregular flurries of software development activity, this means that the count data tends to 

spike and then return to a low, zero or near-zero value. The plot of undifferenced time 

series data in Figure 21 illustrates this tendency. Increasing the sampling period will 

smooth the sharp features somewhat, but not greatly, and at the loss of feature detail. 

 

Figure 21 Undifferenced time series data from the Hibernate orm dataset. 

Rather than smoothing or differencing the data to make it valid for a conventional 

time series model, another approach is to choose a model that is suitable for handling 

count data. It is proposed that a birth-death process be used as a model of this kind. In a 

birth-death process, the state transitions whenever a birth or death occurs, and count is 
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incremented or decremented, respectively. The birth and death in this case would be the 

creation and resolution of a software issue. 

Modeling with Change Management Data 

A problem with the use of issue tracking system (ITS) data is that it is 

disconnected from the actual changes made to the software. This is a problem for two 

reasons. First, because there is a time lag between when a software change is committed 

and when the software change is reported in the ITS. Fortunately, if this lag time were 

characterized then a suitable sampling period can be chosen to minimize any negative 

effect. The other reason why a disconnect is problematic is that the issue tracking data 

does not contain direct information as to the magnitude of the software changes made, 

nor to which software subsystem the changes were made. 

To overcome this lack of information, it is proposed that change management 

(CM) data be used as the exogenous input to a time series model, in place of the new 

feature and improvement data currently being used. CM data can provide information to 

both the time and magnitude of a change. Coupled with the existing bug report data from 

the ITS, such a model could capture the varying degree to which a software change might 

be likely to lead to bug reports, based on factors such as the magnitude of the change, 

location in the codebase, and the author. 
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CHAPTER X 

CONCLUSION 

The data and modeling methods described allowed issue tracking system data to 

be used to form a time series model for defect prediction. These methods were applied to 

datasets from several open-source software projects.  

The data methods that were employed helped to improve the modeling results. To 

begin with, non-stationarity was removed by differencing. This allowed the data to be 

used by the model, when non-stationary data could not be used. Then, validity and 

accuracy were improved by windowing. This was accomplished by choosing windows 

with a low proportion of invalid models, a low RMSE, and a high proportion of forecasts 

values within a prediction interval. Without windowing, a model would need to account 

for an entire dataset, even where structural changes may occur.  

The modeling methods were used to select model order and to estimate 

parameters. Additionally, the modeling methods allowed for diagnostic testing to identify 

invalid models or models with non-normal residuals. The proportion of windows with 

unusable models varies by window size, so being able to identify such unusable models 

and also to control the window size gives some control over this proportion.
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APPENDIXES 

Appendix A: Time Series Data Plots 

Plots of the time series data obtained from sampling the software project datasets 

are illustrated in the figures below. 

 

Figure 22 Time series resulting from sampling the MongoDB core server dataset with a 7-

day sampling period. 
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Figure 23 Time series resulting from sampling the MongoDB core server dataset with a 14-

day sampling period. 

 

Figure 24 Time series resulting from sampling the MongoDB core server dataset with a 30-

day sampling period. 
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Figure 25 Time series resulting from sampling the Hibernate orm dataset with a 7-day 

sampling period. 

 

Figure 26 Time series resulting from sampling the Hibernate orm dataset with a 14-day 

sampling period. 
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Figure 27 Time series resulting from sampling the Hibernate orm dataset with a 30-day 

sampling period. 

 

Figure 28 Time series resulting from sampling the NetBeans platform dataset with a 7-day 

sampling period. 
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Figure 29 Time series resulting from sampling the NetBeans platform dataset with a 14-

day sampling period. 

 

Figure 30 Time series resulting from sampling the NetBeans platform dataset with a 30-

day sampling period.
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Figure 31 Time series resulting from sampling the NetBeans java dataset with a 7-day 

sampling period. 

 

Figure 32 Time series resulting from sampling the NetBeans java dataset with a 14-day 

sampling period. 
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Figure 33 Time series resulting from sampling the NetBeans java dataset with a 30-day 

sampling period 

Appendix B: Stationarity Testing Results 

The results of stationarity testing are contained in the following tables, both for 

differenced and non-differenced data, and for each sampling period used (7-day, 14-day, 

and 30-day). The Augmented Dickey Fuller (ADF) and Kwiatkowski–Phillips–Schmidt–

Shin (KPSS) tests were both run. 
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Table 7  Stationarity test results for the MongoDB core server time series data, with a 

sampling period of 7 days. 

Time Series 
Un-differenced data Differenced data 

ADF (𝜏2) ADF(𝜑1) KPSS ADF (𝜏2) ADF(𝜑1) KPSS 

Bugs -5.009168 

(< 1%) 

12.59583 

(< 1%) 

2.810561 

(< 1%) 

-17.5075 

(< 1%) 

153.2578 

(< 1%) 

0.01125 

(> 10%) 

Improvements -5.851094 

(< 1%) 

17.15104 

(< 1%) 

2.43306 

(< 1%) 

-20.2816 

(< 1%) 

205.6782 

(< 1%) 

0.01561 

(> 10%) 

New Features -10.80503 

(< 1%) 

58.37575 

(< 1%) 

0.1376936 

(> 10%) 

-21.1322 

(< 1%) 

223.2843 

(< 1%) 

0.01278 

(> 10%) 

 

Table 8  Stationarity test results for the MongoDB core server time series data, with a 

sampling period of 14 days. 

Time Series 
Un-differenced data Differenced data 

ADF (𝜏2) ADF(𝜑1) KPSS ADF (𝜏2) ADF(𝜑1) KPSS 

Bugs -3.954806 

(< 1%) 

7.903041 

(< 1%) 

1.977684 

(< 1%) 

-9.9046 

(< 1%) 

49.0530 

(< 1%) 

0.01552 

(> 10%) 

Improvements -3.708167 

(< 1%) 

6.93959 

(< 1%) 

1.613534 

(< 1%) 

-12.8286 

(< 1%) 

82.2958 

(< 1%) 

0.02771 

(> 10%) 

New Features -6.47668 

(< 1%) 

20.974 

(< 1%) 

0.10850 

(> 10%) 

-15.2122 

(< 1%) 

115.7057 

(< 1%) 

0.01891 

(> 10%) 
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Table 9  Stationarity test results for the MongoDB core server time series data, with a 

sampling period of 30 days. 

Time Series 
Un-differenced data Differenced data 

ADF (𝜏2) ADF(𝜑1) KPSS ADF (𝜏2) ADF(𝜑1) KPSS 

Bugs -3.858221 

(< 1%) 

7.500749 

(< 1%) 

1.413058 

(< 1%) 

-9.25577 

(< 1%) 

42.88765 

(< 1%) 

0.039097 

(> 10%) 

Improvements -2.543267 

(> 10%) 

3.315932 

(> 10%) 

1.056792 

(< 1%) 

-7.90954 

(< 1%) 

31.31153 

(< 1%) 

0.037643 

(> 10%) 

New Features -4.57232 

(< 1%) 

10.47271 

(< 1%) 

0.0928971 

(> 10%) 

-8.24411 

(< 1%) 

33.98363 

(< 1%) 

0.03578 

(> 10%) 

 

Table 10  Stationarity test results for the Hibernate orm time series data, with a 

sampling period of 7 days. 

Time Series 
Un-differenced data Differenced data 

ADF (𝜏2) ADF(𝜑1) KPSS ADF (𝜏2) ADF(𝜑1) KPSS 

Bugs -9.891018 

(< 1%) 

48.91804 

(< 1%) 

0.5578149 

(> 2.5%) 

-28.932 

(< 1%) 

418.5303 

(< 1%) 

0.010707 

(> 10%) 

Improvements -10.61357 

(< 1%) 

56.33118 

(< 1%) 

2.818589 

(< 1%) 

-28.7815 

(< 1%) 

414.1865 

(< 1%) 

0.007084 

(> 10%) 

New Features -13.57442 

(< 1%) 

92.14123 

(< 1%) 

0.4729388 

(> 2.5%) 

-27.0919 

(< 1%) 

366.9867 

(< 1%) 

0.015379 

(> 10%) 
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Table 11  Stationarity test results for the Hibernate orm time series data, with a 

sampling period of 14 days. 

Time Series 
Un-differenced data Differenced data 

ADF (𝜏2) ADF(𝜑1) KPSS ADF (𝜏2) ADF(𝜑1) KPSS 

Bugs -5.601016 

(< 1%) 

15.68603 

(< 1%) 

0.3742806 

(> 5%) 

-17.2864 

(< 1%) 

149.4123 

(< 1%) 

0.020300 

(> 10%) 

Improvements -6.266768 

(< 1%) 

19.65349 

(< 1%) 

1.913421 

(< 1%) 

-18.8948 

(< 1%) 

178.5101 

(< 1%) 

0.012008 

(> 10%) 

New Features -9.058437 

(< 1%) 

41.03137 

(< 1%) 

0.3597925 

(> 5%) 

-19.4734 

(< 1%) 

189.6103 

(< 1%) 

0.016904 

(> 10%) 

 

Table 12  Stationarity test results for the Hibernate orm time series data, with a 

sampling period of 30 days. 

Time Series 
Un-differenced data Differenced data 

ADF (𝜏2) ADF(𝜑1) KPSS ADF (𝜏2) ADF(𝜑1) KPSS 

Bugs -4.09404 

(< 1%) 

8.381815 

(< 1%) 

0.2431273 

(> 10%) 

-13.9911 

(< 1%) 

97.87568 

(< 1%) 

0.044111 

(> 10%) 

Improvements -4.566302 

(< 1%) 

10.4551 

(< 1%) 

1.26875 

(< 1%) 

-12.6055 

(< 1%) 

79.4494 

(< 1%) 

0.020981 

(> 10%) 

New Features -6.141746 

(< 1%) 

18.86246 

(< 1%) 

0.2832424 

(> 10%) 

-12.1244 

(< 1%) 

73.50509 

(< 1%) 

0.028846 

(> 10%) 
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Table 13  Stationarity test results for the NetBeans platform time series data, with a 

sampling period of 7 days. 

Time Series 
Un-differenced data Differenced data 

ADF (𝜏2) ADF(𝜑1) KPSS ADF (𝜏2) ADF(𝜑1) KPSS 

Bugs -6.8546 

(< 1%) 

23.4952 

(< 1%) 

1.9320 

(< 1%) 

-22.9636 

(< 1%) 

263.6646 

(< 1%) 

0.02620 

(> 10%) 

Improvements -13.9027 

(< 1%) 

96.64276 

(< 1%) 

0.06701 

(> 10 %) 

-23.9283 

(< 1%) 

286.2845 

(< 1%) 

0.00844 

(> 10%) 

New Features -10.0169 

(< 1%) 

50.1686 

(< 1%) 

2.4783 

(< 1%) 

-26.1357 

(< 1%) 

341.5365 

(< 1%) 

0.01208 

(> 10%) 

 

Table 14  Stationarity test results for the NetBeans platform time series data, with a 

sampling period of 14 days. 

Time Series 
Un-differenced data Differenced data 

ADF (𝜏2) ADF(𝜑1) KPSS ADF (𝜏2) ADF(𝜑1) KPSS 

Bugs -4.78601 

(< 1%) 

11.4690 

(< 1%) 

1.1625 

(< 1%) 

-14.3822 

(< 1%) 

103.4296 

(< 1%) 

0.03728 

(> 10%) 

Improvements -10.4056 

(< 1%) 

54.1394 

(< 1%) 

0.06183 

(> 10%) 

-19.4647 

(< 1%) 

189.4367 

(< 1%) 

0.01729 

(> 10%) 

New Features -5.7482 

(< 1%) 

16.5211 

(< 1%) 

1.5325 

(< 1%) 

-17.1666 

(< 1%) 

147.3461 

(< 1%) 

0.02806b 

(> 10%) 
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Table 15  Stationarity test results for the NetBeans platform time series data, with a 

sampling period of 30 days. 

Time Series 
Un-differenced data Differenced data 

ADF (𝜏2) ADF(𝜑1) KPSS ADF (𝜏2) ADF(𝜑1) KPSS 

Bugs -4.0439 

(< 1%) 

8.2138 

(< 1%) 

0.8163 

(< 1%) 

-8.7011 

(< 1%) 

37.8870 

(< 1%) 

0.04038 

(> 10%) 

Improvements -6.8425 

(< 1%) 

23.4209 

(< 1%) 

0.05968 

(> 10%) 

-11.7327 

(< 1%) 

68.8281 

(< 1%) 

0.03475 

(> 10%) 

New Features -4.1963 

(< 1%) 

8.8044 

(< 1%) 

1.0125 

(< 1%) 

-11.5676 

(< 1%) 

66.9154 

(< 1%) 

0.08033 

(> 10%) 

 

Table 16  Stationarity test results for the NetBeans java time series data, with a 

sampling period of 7 days. 

Time Series 
Un-differenced data Differenced data 

ADF (𝜏2) ADF(𝜑1) KPSS ADF (𝜏2) ADF(𝜑1) KPSS 

Bugs -6.2924 

(< 1%) 

19.7971 

(< 1%) 

1.4979 

(< 1%) 

-22.5341 

(< 1%) 

253.8932 

(< 1%) 

0.02850 

(> 10%) 

Improvements -14.2133 

(< 1%) 

101.0122 

(< 1%) 

0.1397 

(> 10%) 

-25.8415 

(< 1%) 

333.8919 

(< 1%) 

0.00801 

(> 10%) 

New Features -12.5811 

(< 1%) 

79.1419 

(< 1%) 

1.6665 

(< 1%) 

-27.8207 

(< 1%) 

386.9947 

(< 1%) 

0.00922 

(> 10%) 

 

  



67 

 
Table 17  Stationarity test results for the NetBeans java time series data, with a 

sampling period of 14 days. 

Time Series 
Un-differenced data Differenced data 

ADF (𝜏2) ADF(𝜑1) KPSS ADF (𝜏2) ADF(𝜑1) KPSS 

Bugs -4.1489 

(< 1%) 

8.6086 

(< 1%) 

1.7996 

(< 1%) 

-14.8878 

(< 1%) 

110.8247 

(< 1%) 

0.04114 

(> 10%) 

Improvements -10.6512 

(< 1%) 

56.7236 

(< 1%) 

0.62672 

(< 1%) 

-20.0450 

(< 1%) 

200.9024 

(< 1%) 

0.01392 

(> 10%) 

New Features -8.3221 

(< 1%) 

34.6290 

(< 1%) 

0.57192 

(> 2.5%) 

-20.9486 

(< 1%) 

219.4221 

(< 1%) 

0.02217 

(> 10%) 

 

Table 18  Stationarity test results for the NetBeans java time series data, with a 

sampling period of 30 days. 

Time Series 
Un-differenced data Differenced data 

ADF (𝜏2) ADF(𝜑1) KPSS ADF (𝜏2) ADF(𝜑1) KPSS 

Bugs -3.3551 

(< 5%) 

5.6322 

(< 5%) 

0.5672 

(> 2.5%) 

-8.6438 

(< 1%) 

37.3794 

(< 1%) 

0.07085 

(> 10%) 

Improvements -6.1447 

(< 1%) 

18.8829 

(< 1%) 

0.1011 

(> 10%) 

-11.8473 

(< 1%) 

70.1811 

(< 1%) 

0.02910 

(> 10%) 

New Features -4.1530 

(< 1%) 

8.6242 

(< 1%) 

0.7231 

(> 1%) 

-13.4034 

(< 1%) 

89.8285 

(< 1%) 

0.05939 

(> 10%) 
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Appendix C: Exploratory Modeling Results 

These are the results from running exploratory modeling, where a variety of 

sliding window parameters were evaluated to determine their effect on validity and 

accuracy. 

Table 19 Results of the sliding window for various parameter values, using the MongoDB 

core server dataset, with a sampling period of 7 days. 

Window 

Size 

Diff. 

Degree 

Window 

Count 

None 

Valid  

Non-

normal 
RMSE 

In 90% 

Interval 

In 75% 

Interval 

36 0 266 0.0263 0.0425 7.1088 0.8105 0.6694 

39 0 263 0.0152 0.0386 6.7192 0.8353 0.7309 

42 0 260 0.0154 0.0547 7.0477 0.8347 0.7025 

45 0 257 0.0156 0.0593 6.8563 0.8487 0.7395 

48 0 254 0.0079 0.0595 7.0984 0.8608 0.7384 

51 0 251 0.012 0.0726 7.085 0.8478 0.7304 

54 0 248 0.0242 0.095 7.0005 0.8767 0.758 

57 0 245 0.0041 0.0984 7.0746 0.8636 0.7409 

60 0 242 0 0.0826 7.2357 0.8514 0.7027 

63 0 239 0 0.0962 7.1432 0.8565 0.75 

66 0 236 0.0085 0.0769 7.4012 0.8843 0.7361 

69 0 233 0.0129 0.0565 7.0468 0.871 0.7465 

72 0 230 0.0043 0.0611 7.1442 0.8651 0.7581 

75 0 227 0 0.0529 6.9642 0.8884 0.7907 

78 0 224 0 0.0714 7.2621 0.875 0.7788 

36 1 265 0.0038 0.053 7.3308 0.316 0.216 

39 1 262 0 0.0687 7.3186 0.3402 0.2582 

42 1 259 0 0.0888 7.2981 0.3178 0.2331 

45 1 256 0 0.0898 7.2555 0.309 0.2318 

48 1 253 0 0.0988 7.4097 0.2544 0.2061 

51 1 250 0 0.084 7.4077 0.2358 0.2096 

54 1 247 0.004 0.0772 7.4128 0.2467 0.185 

57 1 244 0.0041 0.0823 7.3926 0.2601 0.1928 

60 1 241 0.0041 0.0958 7.3429 0.2811 0.212 

63 1 238 0.0042 0.097 7.471 0.2804 0.1963 

66 1 235 0.0043 0.1154 7.5238 0.2319 0.1739 

69 1 232 0 0.1164 7.6218 0.2927 0.1854 
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Table 19 (Continued) 

Window 

Size 

Diff. 

Degree 

Window 

Count 

None 

Valid  

Non-

normal 
RMSE 

In 90% 

Interval 

In 75% 

Interval 

72 1 229 0 0.1223 7.713 0.2388 0.1741 

75 1 226 0 0.146 7.797 0.2591 0.1969 

78 1 223 0 0.1256 7.7931 0.2769 0.1846 

36 2 264 0.0341 0.0588 9.7407 0.2417 0.1625 

39 2 261 0.0421 0.08 9.5765 0.2348 0.1609 

42 2 258 0.031 0.064 9.6554 0.2692 0.2009 

45 2 255 0.0039 0.0591 9.75 0.2552 0.1674 

48 2 252 0.004 0.0558 9.538 0.2278 0.1688 

51 2 249 0.0161 0.049 9.5859 0.2747 0.1803 

54 2 246 0.0203 0.0498 9.7917 0.2533 0.1747 

57 2 243 0.0247 0.0295 9.4243 0.2826 0.2 

60 2 240 0.0208 0.0255 9.1724 0.2882 0.1921 

63 2 237 0.0169 0.0215 9.1596 0.2895 0.2018 

66 2 234 0.0085 0.0259 9.2681 0.2257 0.1814 

69 2 231 0.0043 0.0217 9.2867 0.2889 0.1956 

72 2 228 0 0.0219 9.27 0.2735 0.2108 

75 2 225 0 0.0133 9.2443 0.3063 0.2432 

78 2 222 0.0045 0.009 9.1373 0.2922 0.2237 

 

Table 20 Results of the sliding window for various parameter values, using the MongoDB 

core server dataset, with a sampling period of 14 days. 

Window 

Size 

Diff. 

Degree 

Window 

Count 

None 

Valid  

Non-

normal 
RMSE 

In 90% 

Interval 

In 75% 

Interval 

24 0 127 0.126 0.0631 12.2365 0.7019 0.5962 

27 0 124 0.1048 0.036 12.0656 0.7196 0.5888 

30 0 121 0.0744 0.0625 12.2339 0.7714 0.6381 

33 0 118 0.0508 0.0446 12.1686 0.7944 0.6355 

36 0 115 0.0087 0.0439 12.5667 0.8165 0.6789 

39 0 112 0.0089 0.045 12.251 0.8585 0.7075 

42 0 109 0.0092 0.0278 12.5108 0.8381 0.7524 

45 0 106 0 0.0377 12.7371 0.8627 0.7157 

48 0 103 0 0.0388 12.7419 0.8485 0.7475 

51 0 100 0 0.03 12.1728 0.8866 0.7732 

54 0 97 0 0 13.0601 0.8866 0.7423 
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Table 20 (Continued) 

Window 

Size 

Diff. 

Degree 

Window 

Count 

None 

Valid  

Non-

normal 
RMSE 

In 90% 

Interval 

In 75% 

Interval 

24 1 126 0.0238 0 14.723 0.3659 0.2764 

27 1 123 0.0813 0 14.6283 0.292 0.2301 

30 1 120 0.0667 0.0089 13.8263 0.2883 0.2072 

33 1 117 0.0598 0 13.7754 0.3273 0.2273 

36 1 114 0.0439 0.0092 13.721 0.2963 0.213 

39 1 111 0.036 0.0093 13.674 0.3019 0.217 

42 1 108 0.0093 0.0093 13.7645 0.2642 0.2264 

45 1 105 0.0095 0.0385 13.8128 0.26 0.22 

48 1 102 0.0196 0.02 14.0921 0.3163 0.2143 

51 1 99 0.0808 0.011 14.6563 0.2222 0.2 

54 1 96 0.1354 0.0241 15.2364 0.2593 0.2099 

24 2 125 0.136 0 19.1918 0.2315 0.1759 

27 2 122 0.1557 0.0097 19.3405 0.2451 0.1471 

30 2 119 0.1597 0 18.7677 0.29 0.19 

33 2 116 0.181 0 18.7744 0.2 0.1474 

36 2 113 0.1681 0.0106 17.9884 0.2688 0.2151 

39 2 110 0.1364 0.0421 17.6966 0.1648 0.0989 

42 2 107 0.0935 0.0206 17.8889 0.2316 0.1684 

45 2 104 0.0481 0.0303 17.9562 0.2708 0.1667 

48 2 101 0.0198 0.0404 17.6384 0.2 0.1368 

51 2 98 0.0102 0.0825 18.1619 0.2472 0.1573 

54 2 95 0.0316 0.0978 18.7985 0.2651 0.2169 

 

Table 21 Results of the sliding window for various parameter values, using the MongoDB 

core server dataset, with a sampling period of 30 days. 

Window 

Size 

Diff. 

Degree 

Window 

Count 

None 

Valid  

Non-

normal 
RMSE 

In 90% 

Interval 

In 75% 

Interval 

12 0 58 0.1897 0.1702 30.1084 0.5385 0.4103 

15 0 55 0.1818 0.0444 29.8198 0.5349 0.4651 

18 0 52 0.25 0 29.9369 0.5128 0.3846 

21 0 49 0.2449 0.027 31.3845 0.5 0.3611 

24 0 46 0.087 0.0952 28.7562 0.6053 0.4737 

27 0 43 0.1395 0.1622 31.7467 0.5806 0.4839 

30 0 40 0.15 0.0882 30.558 0.7097 0.5161 
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Table 21 (Continued) 

Window 

Size 

Diff. 

Degree 

Window 

Count 

None 

Valid  

Non-

normal 
RMSE 

In 90% 

Interval 

In 75% 

Interval 

33 0 37 0.1892 0.2 31.319 0.5833 0.375 

36 0 34 0.0882 0.1935 32.1424 0.6 0.44 

12 1 57 0.1579 0.0833 38.4833 0.3409 0.2955 

15 1 54 0.0556 0.1765 33.5892 0.4048 0.3095 

18 1 51 0.1569 0.2326 29.4009 0.2121 0.1212 

21 1 48 0.1875 0.2308 34.4193 0.2333 0.1667 

24 1 45 0.0889 0.0732 34.4471 0.4211 0.2895 

27 1 42 0.119 0 32.8154 0.3784 0.2432 

30 1 39 0.2308 0.0333 34.0206 0.5172 0.3103 

33 1 36 0.25 0.037 35.4527 0.4231 0.2692 

36 1 33 0 0.0606 34.1955 0.4194 0.2581 

12 2 56 0.1607 0 46.1684 0.1915 0.1489 

15 2 53 0.0566 0 48.0847 0.16 0.14 

18 2 50 0.08 0 47.4011 0.2174 0.1522 

21 2 47 0.0851 0 50.933 0.186 0.093 

24 2 44 0.1136 0 49.4234 0.1795 0.1026 

27 2 41 0.1463 0 47.5708 0.1143 0.0857 

30 2 38 0.1579 0.0312 40.017 0.1935 0.0968 

33 2 35 0.2 0 43.9241 0.2143 0.1071 

36 2 32 0.0625 0 49.3429 0.0333 0.0333 

 

Table 22 Results of the sliding window for various parameter values, using the Hibernate 

orm dataset, with a sampling period of 7 days. 

Window 

Size 

Diff. 

Degree 

Window 

Count 

None 

Valid  

Non-

normal 
RMSE 

In 90% 

Interval 

In 75% 

Interval 

36 0 592 0.0338 0.0437 3.7751 0.8921 0.7971 

39 0 589 0.039 0.0424 3.8057 0.8985 0.7823 

42 0 586 0.0666 0.0256 3.7109 0.9099 0.803 

45 0 583 0.0858 0.0263 3.7575 0.9056 0.817 

48 0 580 0.0345 0.0268 3.6948 0.9156 0.811 

51 0 577 0.0347 0.0305 3.6648 0.9167 0.8167 

54 0 574 0.0505 0.0312 3.7317 0.8996 0.8239 

57 0 571 0.0578 0.0428 3.701 0.9107 0.8078 

60 0 568 0.044 0.0442 3.6616 0.9191 0.8189 
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Table 22 (Continued) 

Window 

Size 

Diff. 

Degree 

Window 

Count 

None 

Valid  

Non-

normal 
RMSE 

In 90% 

Interval 

In 75% 

Interval 

63 0 565 0.0531 0.0505 3.7796 0.9094 0.8051 

66 0 562 0.0623 0.0512 3.8422 0.908 0.818 

69 0 559 0.0716 0.0636 3.8496 0.9218 0.8333 

72 0 556 0.0629 0.0691 3.764 0.9237 0.8227 

75 0 553 0.0633 0.0714 3.7777 0.9148 0.8254 

78 0 550 0.0618 0.0659 3.7236 0.9129 0.8423 

36 1 591 0.0558 0 4.0317 0.3495 0.2455 

39 1 588 0.068 0.0036 4.0605 0.337 0.2418 

42 1 585 0.0547 0.0072 4.0237 0.3206 0.2277 

45 1 582 0.0533 0.0036 3.9689 0.3224 0.235 

48 1 579 0.0501 0.0073 3.869 0.3132 0.2418 

51 1 576 0.0556 0.0074 3.8782 0.3074 0.2352 

54 1 573 0.0593 0.0111 3.9158 0.2889 0.227 

57 1 570 0.0702 0.0132 3.8293 0.3002 0.2199 

60 1 567 0.06 0.0169 3.9171 0.3034 0.2137 

63 1 564 0.0762 0.0115 3.9501 0.3029 0.2369 

66 1 561 0.082 0.0155 3.9868 0.3097 0.2189 

69 1 558 0.0878 0.0196 3.9754 0.2866 0.2184 

72 1 555 0.0847 0.0276 3.9352 0.3097 0.2308 

75 1 552 0.0924 0.018 3.9101 0.2988 0.2134 

78 1 549 0.0838 0.0219 3.9379 0.3008 0.2276 

36 2 590 0.1746 0.0719 5.4174 0.3341 0.2456 

39 2 587 0.1942 0.0613 5.6012 0.3243 0.2117 

42 2 584 0.2089 0.0584 5.4871 0.3425 0.2345 

45 2 581 0.2306 0.0559 5.3992 0.3483 0.2607 

48 2 578 0.1972 0.0517 5.1401 0.3568 0.275 

51 2 575 0.2261 0.0764 4.9943 0.3382 0.2652 

54 2 572 0.215 0.0958 4.7969 0.3498 0.2709 

57 2 569 0.2478 0.0748 4.7112 0.3636 0.2803 

60 2 566 0.2032 0.0754 4.8994 0.3573 0.2806 

63 2 563 0.2114 0.0788 5.1818 0.3301 0.2396 

66 2 560 0.225 0.076 4.8411 0.3441 0.2718 

69 2 557 0.228 0.0651 5.0767 0.3657 0.2761 

72 2 554 0.2184 0.0785 4.9937 0.3759 0.2607 

75 2 551 0.2123 0.0876 4.9523 0.3409 0.2449 

78 2 548 0.2172 0.0816 4.9851 0.3477 0.2335 
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Table 23 Results of the sliding window for various parameter values, using the Hibernate 

orm dataset, with a sampling period of 14 days. 

Window 

Size 

Diff. 

Degree 

Window 

Count 

None 

Valid  

Non-

normal 
RMSE 

In 90% 

Interval 

In 75% 

Interval 

24 0 290 0.0655 0.0185 6.0408 0.8271 0.7368 

27 0 287 0.0732 0.0338 6.2294 0.821 0.7198 

30 0 284 0.088 0.0463 6.3016 0.8381 0.7368 

33 0 281 0.0712 0.0345 6.1508 0.877 0.75 

36 0 278 0.0432 0.0338 6.0623 0.8833 0.7588 

39 0 275 0.0473 0.0573 6.0728 0.8907 0.7571 

42 0 272 0.0772 0.0797 6.1146 0.8918 0.7619 

45 0 269 0.0855 0.1057 6.2106 0.8727 0.7409 

48 0 266 0.0489 0.1186 5.9274 0.8969 0.7578 

51 0 263 0.0456 0.1315 5.8937 0.8853 0.7569 

54 0 260 0.0462 0.1411 6.2151 0.8873 0.7418 

24 1 289 0.0692 0.0297 6.0855 0.3563 0.2644 

27 1 286 0.0629 0.0187 5.9908 0.365 0.2586 

30 1 283 0.0777 0.0192 5.9715 0.4062 0.293 

33 1 280 0.0893 0.0314 5.977 0.3887 0.2996 

36 1 277 0.0903 0.0278 6.0303 0.3878 0.2898 

39 1 274 0.0985 0.0324 6.0421 0.3891 0.2929 

42 1 271 0.1181 0.0418 6.1093 0.4148 0.3144 

45 1 268 0.1194 0.0254 6.0003 0.4174 0.2913 

48 1 265 0.1472 0.0531 5.9811 0.3598 0.2664 

51 1 262 0.1489 0.0807 6.0572 0.3561 0.2537 

54 1 259 0.1622 0.0922 6.0686 0.3655 0.264 

24 2 288 0.2014 0.0304 8.8933 0.2691 0.1973 

27 2 285 0.1544 0.0456 8.6314 0.2565 0.1783 

30 2 282 0.1773 0.069 8.6628 0.2685 0.1806 

33 2 279 0.1828 0.0658 8.3941 0.2394 0.1549 

36 2 276 0.0942 0.04 8.3626 0.275 0.1958 

39 2 273 0.1209 0.0167 8.6061 0.2627 0.2119 

42 2 270 0.1704 0.0089 8.3573 0.2387 0.1622 

45 2 267 0.1723 0.0136 8.3428 0.2202 0.133 

48 2 264 0.178 0.023 8.2138 0.2547 0.1981 

51 2 261 0.1992 0.0144 7.9015 0.267 0.1748 

54 2 258 0.2209 0.0199 8.0545 0.3046 0.2132 

 



74 

 
Table 24 Results of the sliding window for various parameter values, using the Hibernate 

orm dataset, with a sampling period of 30 days. 

Window 

Size 

Diff. 

Degree 

Window 

Count 

None 

Valid  

Non-

normal 
RMSE 

In 90% 

Interval 

In 75% 

Interval 

12 0 134 0.2537 0.05 10.5601 0.8105 0.7474 

15 0 131 0.2137 0.0291 9.5438 0.85 0.72 

18 0 128 0.2266 0.0404 9.5969 0.8421 0.6947 

21 0 125 0.264 0.0217 10.2667 0.8111 0.7 

24 0 122 0.0656 0.0702 9.6204 0.8396 0.7075 

27 0 119 0.0756 0.0636 9.7352 0.767 0.6505 

30 0 116 0.0862 0.0849 9.9829 0.7835 0.7113 

33 0 113 0.0973 0.0588 9.1539 0.8646 0.75 

36 0 110 0.0455 0.1143 9.5042 0.8817 0.7204 

12 1 133 0.1654 0 11.1269 0.4775 0.4144 

15 1 130 0.1692 0 11.1249 0.463 0.3333 

18 1 127 0.1969 0 10.9949 0.4216 0.3333 

21 1 124 0.2339 0.0105 10.5803 0.4787 0.383 

24 1 121 0.0413 0.0086 10.2685 0.5391 0.4522 

27 1 118 0.0339 0.0175 10.8562 0.4732 0.4375 

30 1 115 0.0435 0.0182 10.3656 0.537 0.4259 

33 1 112 0.0446 0.0187 10.4198 0.4667 0.3619 

36 1 109 0.0183 0.0093 10.3279 0.4434 0.3302 

12 2 132 0.2348 0.099 16.3225 0.3736 0.2857 

15 2 129 0.2248 0.08 18.469 0.3261 0.2283 

18 2 126 0.2778 0.0769 17.1721 0.3214 0.2738 

21 2 123 0.3496 0.0625 16.7591 0.3733 0.3067 

24 2 120 0.2167 0.0532 15.9745 0.2697 0.2135 

27 2 117 0.265 0.0349 15.4464 0.2289 0.1687 

30 2 114 0.2719 0.0361 15.8677 0.1875 0.1375 

33 2 111 0.2523 0.0361 14.4222 0.25 0.2 

36 2 108 0.1574 0.0549 14.6457 0.2674 0.1512 

 

  



75 

 
Table 25 Results of the sliding window for various parameter values, using the NetBeans 

platform dataset, with a sampling period of 7 days. 

Window 

Size 

Diff. 

Degree 

Window 

Count 

None 

Valid  

Non-

normal 
RMSE 

In 90% 

Interval 

In 75% 

Interval 

36 0 459 0.0654 0.0909 9.86 0.8897 0.7949 

39 0 456 0.0636 0.0913 9.5371 0.8995 0.8093 

42 0 453 0.0574 0.1148 9.5295 0.9074 0.8228 

45 0 450 0.0667 0.1357 9.7326 0.8981 0.8402 

48 0 447 0.0805 0.1484 9.9171 0.8943 0.8257 

51 0 444 0.0901 0.1683 9.6058 0.9137 0.8304 

54 0 441 0.093 0.1875 9.4234 0.9015 0.8369 

57 0 438 0.0822 0.209 9.5227 0.9088 0.8176 

60 0 435 0.0759 0.2463 9.0788 0.9175 0.8284 

63 0 432 0.0903 0.2646 9.1516 0.917 0.8304 

66 0 429 0.0816 0.2741 8.7717 0.9301 0.8636 

69 0 426 0.0798 0.2832 9.0589 0.9253 0.8505 

72 0 423 0.078 0.3103 8.5253 0.948 0.855 

75 0 420 0.0738 0.3085 8.5665 0.9405 0.8662 

78 0 417 0.0791 0.362 8.6697 0.9429 0.8694 

36 1 458 0.0786 0.1232 9.6252 0.3784 0.2568 

39 1 455 0.0659 0.1176 9.4768 0.352 0.2453 

42 1 452 0.0774 0.1175 9.5606 0.356 0.2636 

45 1 449 0.0935 0.1327 9.6163 0.3144 0.2408 

48 1 446 0.0874 0.1425 9.4862 0.3324 0.2636 

51 1 443 0.0609 0.125 9.2261 0.3489 0.261 

54 1 440 0.0568 0.159 9.3312 0.3582 0.2464 

57 1 437 0.0526 0.1618 9.078 0.366 0.2824 

60 1 434 0.0507 0.1699 9.0127 0.3596 0.2778 

63 1 431 0.0603 0.1852 8.8855 0.3485 0.2576 

66 1 428 0.0537 0.1975 8.8611 0.3538 0.2523 

69 1 425 0.0635 0.1985 8.9273 0.3605 0.2821 

72 1 422 0.0687 0.2061 8.4446 0.3846 0.2917 

75 1 419 0.0501 0.2161 8.2176 0.3558 0.2564 

78 1 416 0.0529 0.2234 8.2652 0.3562 0.2647 

36 2 457 0.1422 0.0281 12.885 0.294 0.2047 

39 2 454 0.1586 0.0209 12.8026 0.3048 0.2273 

42 2 451 0.1663 0.0319 12.865 0.2582 0.1758 

45 2 448 0.1585 0.0345 12.836 0.3022 0.2115 

48 2 445 0.1393 0.0287 12.2567 0.3172 0.2151 
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Table 25 (Continued) 

Window 

Size 

Diff. 

Degree 

Window 

Count 

None 

Valid  

Non-

normal 
RMSE 

In 90% 

Interval 

In 75% 

Interval 

51 2 442 0.1335 0.0261 12.213 0.3083 0.2225 

54 2 439 0.1412 0.0239 11.746 0.3043 0.2418 

57 2 436 0.156 0.038 11.6564 0.3418 0.2655 

60 2 433 0.1455 0.0568 11.382 0.3209 0.2521 

63 2 430 0.1535 0.0604 11.2337 0.3363 0.2661 

66 2 427 0.1639 0.056 10.9923 0.3175 0.2552 

69 2 424 0.1557 0.0782 10.6024 0.3303 0.2242 

72 2 421 0.1615 0.0878 10.4374 0.3665 0.2702 

75 2 418 0.1722 0.0838 9.9606 0.3375 0.2587 

78 2 415 0.188 0.1128 10.1103 0.3077 0.2174 

 

Table 26 Results of the sliding window for various parameter values, using the NetBeans 

platform dataset, with a sampling period of 14 days. 

Window 

Size 

Diff. 

Degree 

Window 

Count 

None 

Valid  

Non-

normal 
RMSE 

In 90% 

Interval 

In 75% 

Interval 

24 0 223 0.0493 0.0425 19.3307 0.8867 0.7882 

27 0 220 0.05 0.0526 15.816 0.904 0.798 

30 0 217 0.0599 0.0686 15.7743 0.9053 0.8053 

33 0 214 0.0561 0.0545 14.8422 0.9162 0.8115 

36 0 211 0.0427 0.0941 14.7299 0.9454 0.847 

39 0 208 0.0385 0.125 14.5529 0.9543 0.88 

42 0 205 0.0146 0.1584 14.7545 0.9412 0.8471 

45 0 202 0.0396 0.201 14.0061 0.9548 0.8839 

48 0 199 0.0302 0.2435 15.2696 0.9452 0.8836 

51 0 196 0.0357 0.2646 14.7779 0.9353 0.9065 

54 0 193 0.0415 0.2865 15.0171 0.9318 0.9091 

24 1 222 0.0991 0.04 16.4695 0.4635 0.3438 

27 1 219 0.0959 0.0253 15.2702 0.4611 0.3938 

30 1 216 0.1111 0.0156 15.9387 0.3757 0.328 

33 1 213 0.0939 0.0155 15.968 0.3947 0.2842 

36 1 210 0.0762 0.0258 15.7459 0.3915 0.3069 

39 1 207 0.0821 0.0263 15.2116 0.3243 0.2919 

42 1 204 0.0784 0.0266 15.1269 0.3497 0.235 

45 1 201 0.0796 0.027 14.038 0.3667 0.2889 
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Table 26 (Continued) 

Window 

Size 

Diff. 

Degree 

Window 

Count 

None 

Valid  

Non-

normal 
RMSE 

In 90% 

Interval 

In 75% 

Interval 

48 1 198 0.0657 0.0324 14.2528 0.3408 0.2849 

51 1 195 0.0821 0.0279 14.6695 0.2989 0.2414 

54 1 192 0.099 0.0173 14.8401 0.3176 0.2471 

24 2 221 0.1991 0.0565 22.0721 0.2814 0.2036 

27 2 218 0.1835 0.0506 20.127 0.3669 0.2544 

30 2 215 0.186 0.0229 21.079 0.345 0.2632 

33 2 212 0.2311 0.0491 19.8758 0.2774 0.1871 

36 2 209 0.2392 0.0503 19.6064 0.3311 0.2781 

39 2 206 0.2379 0.0637 19.7054 0.3197 0.2517 

42 2 203 0.2414 0.0649 19.7021 0.3264 0.2708 

45 2 200 0.27 0.0822 19.4454 0.3284 0.2687 

48 2 197 0.2335 0.106 18.2789 0.3481 0.2741 

51 2 194 0.299 0.1029 18.8858 0.3115 0.2213 

54 2 191 0.3246 0.1163 18.9413 0.3596 0.2807 

 

Table 27 Results of the sliding window for various parameter values, using the NetBeans 

platform dataset, with a sampling period of 30 days. 

Window 

Size 

Diff. 

Degree 

Window 

Count 

None 

Valid  

Non-

normal 
RMSE 

In 90% 

Interval 

In 75% 

Interval 

12 0 103 0.1942 0 43.6864 0.7229 0.6024 

15 0 100 0.16 0.0238 34.8502 0.8171 0.622 

18 0 97 0.2062 0.0519 32.3821 0.8082 0.7123 

21 0 94 0.1915 0.0658 34.5304 0.7465 0.6761 

24 0 91 0.011 0.1111 36.6959 0.725 0.6625 

27 0 88 0 0.1364 33.2856 0.7368 0.6184 

30 0 85 0.0118 0.0833 33.3657 0.7662 0.6753 

33 0 82 0.0122 0.0741 33.0471 0.8267 0.68 

36 0 79 0 0.0506 31.0204 0.84 0.7333 

12 1 102 0.098 0.0326 39.2089 0.4045 0.3371 

15 1 99 0.1212 0.069 35.8939 0.4444 0.3827 

18 1 96 0.0729 0.0225 36.2631 0.3908 0.3103 

21 1 93 0.0753 0.0581 34.3627 0.3827 0.2963 

24 1 90 0.0111 0.1124 36.8309 0.3418 0.2532 

27 1 87 0.0115 0.1512 37.2506 0.3836 0.2603 
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Table 27 (Continued) 

Window 

Size 

Diff. 

Degree 

Window 

Count 

None 

Valid  

Non-

normal 
RMSE 

In 90% 

Interval 

In 75% 

Interval 

30 1 84 0 0.1548 37.2207 0.3239 0.2254 

33 1 81 0 0.2222 39.2093 0.2698 0.1587 

36 1 78 0 0.2308 37.0815 0.3333 0.25 

12 2 101 0.198 0 55.6171 0.3457 0.2346 

15 2 98 0.2347 0.0267 51.4706 0.274 0.2055 

18 2 95 0.2316 0 52.889 0.3562 0.2466 

21 2 92 0.2065 0 47.3575 0.2192 0.1507 

24 2 89 0.0674 0 47.1952 0.241 0.1325 

27 2 86 0.0465 0 46.1986 0.2317 0.1585 

30 2 83 0.0482 0 46.4639 0.2405 0.1772 

33 2 80 0.05 0.0132 42.8021 0.2133 0.1067 

36 2 77 0.039 0 44.603 0.2162 0.1757 

 

Table 28 Results of the sliding window for various parameter values, using the NetBeans 

java dataset, with a sampling period of 7 days. 

Window 

Size 

Diff. 

Degree 

Window 

Count 

None 

Valid  

Non-

normal 
RMSE 

In 90% 

Interval 

In 75% 

Interval 

36 0 458 0.0328 0.1783 11.5142 0.9093 0.8297 

39 0 455 0.0286 0.1833 11.6885 0.9114 0.8338 

42 0 452 0.031 0.1872 11.3673 0.9326 0.8624 

45 0 449 0.0267 0.1854 8.495 0.9326 0.8511 

48 0 446 0.0471 0.1788 9.0924 0.9255 0.8596 

51 0 443 0.0519 0.1929 8.3931 0.941 0.8791 

54 0 440 0.0682 0.1854 9.0207 0.9431 0.8832 

57 0 437 0.0824 0.197 8.6575 0.9441 0.8789 

60 0 434 0.0691 0.203 8.3238 0.9503 0.8851 

63 0 431 0.0742 0.2281 8.8945 0.9416 0.8636 

66 0 428 0.0794 0.2487 8.3348 0.9459 0.8682 

69 0 425 0.0729 0.2843 8.3855 0.9504 0.8723 

72 0 422 0.0711 0.3112 8.1105 0.9556 0.8778 

75 0 419 0.0644 0.3444 8.3474 0.9689 0.8794 

78 0 416 0.0457 0.3552 8.0082 0.957 0.8945 

36 1 457 0.0306 0.1174 9.6908 0.3785 0.289 

39 1 454 0.0396 0.0963 9.6353 0.3909 0.2868 
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Table 28 (Continued) 

Window 

Size 

Diff. 

Degree 

Window 

Count 

None 

Valid  

Non-

normal 
RMSE 

In 90% 

Interval 

In 75% 

Interval 

42 1 451 0.0421 0.1019 9.628 0.3376 0.2448 

45 1 448 0.0335 0.1039 9.4252 0.3531 0.2577 

48 1 445 0.0292 0.1181 9.6122 0.3675 0.2782 

51 1 442 0.0249 0.1183 9.6928 0.3368 0.2605 

54 1 439 0.0478 0.0909 9.6931 0.3289 0.2553 

57 1 436 0.0665 0.0983 9.6654 0.3597 0.2807 

60 1 433 0.0462 0.092 8.9048 0.3893 0.2773 

63 1 430 0.0581 0.1111 8.6984 0.3444 0.2528 

66 1 427 0.0468 0.1302 8.6851 0.3672 0.2655 

69 1 424 0.0448 0.158 8.8131 0.3314 0.2551 

 

Table 29 Results of the sliding window for various parameter values, using the NetBeans 

java dataset, with a sampling period of 14 days. 

Window 

Size 

Diff. 

Degree 

Window 

Count 

None 

Valid  

Non-

normal 
RMSE 

In 90% 

Interval 

In 75% 

Interval 

24 0 223 0.148 0.1316 18.4175 0.903 0.8364 

27 0 220 0.1455 0.1809 15.5545 0.9156 0.8182 

30 0 217 0.1475 0.2108 13.2803 0.9247 0.8699 

33 0 214 0.1355 0.2432 14.8439 0.9 0.8643 

36 0 211 0.1469 0.3111 13.3972 0.9435 0.871 

39 0 208 0.1442 0.3427 14.9439 0.9316 0.8718 

42 0 205 0.1366 0.3277 15.3356 0.9328 0.8571 

45 0 202 0.1733 0.3952 15.8706 0.9505 0.8812 

48 0 199 0.1759 0.4268 14.7681 0.9574 0.9255 

51 0 196 0.1735 0.4568 13.9321 0.9659 0.9205 

54 0 193 0.1813 0.4937 14.5164 0.9625 0.9125 

24 1 222 0.1171 0.0561 19.7705 0.427 0.3027 

27 1 219 0.0913 0.1206 18.0539 0.3657 0.2857 

30 1 216 0.1296 0.1489 18.0469 0.4312 0.3062 

33 1 213 0.1408 0.1694 17.9844 0.3684 0.3158 

36 1 210 0.1476 0.1955 17.6171 0.3889 0.3056 

39 1 207 0.1304 0.1889 17.16 0.4247 0.2877 

42 1 204 0.1225 0.2235 17.1311 0.446 0.3381 

45 1 201 0.1343 0.2299 17.5275 0.4179 0.3284 
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Table 29 (Continued) 

Window 

Size 

Diff. 

Degree 

Window 

Count 

None 

Valid  

Non-

normal 
RMSE 

In 90% 

Interval 

In 75% 

Interval 

48 1 198 0.1061 0.226 17.1213 0.4015 0.3066 

51 1 195 0.0769 0.2389 16.7823 0.438 0.3358 

54 1 192 0.0833 0.3523 17.5911 0.386 0.3158 

24 2 221 0.2398 0.0536 26.4102 0.2642 0.2013 

27 2 218 0.2385 0.0602 24.629 0.2756 0.1923 

30 2 215 0.2279 0.0843 24.7462 0.2434 0.1711 

33 2 212 0.2594 0.1019 24.0487 0.2837 0.1986 

36 2 209 0.1866 0.1294 25.3042 0.277 0.2027 

39 2 206 0.1796 0.1657 26.0777 0.2482 0.1702 

42 2 203 0.1724 0.1845 26.7409 0.2263 0.1679 

45 2 200 0.17 0.1627 25.4501 0.2446 0.1727 

48 2 197 0.1726 0.1411 24.9162 0.2571 0.2 

51 2 194 0.1907 0.1465 23.1309 0.2761 0.194 

54 2 191 0.1675 0.1635 21.4298 0.2932 0.2481 

 

Table 30 Results of the sliding window for various parameter values, using the NetBeans 

java dataset, with a sampling period of 30 days. 

Window 

Size 

Diff. 

Degree 

Window 

Count 

None 

Valid  

Non-

normal 
RMSE 

In 90% 

Interval 

In 75% 

Interval 

12 0 103 0.4563 0.0357 64.1359 0.7778 0.6852 

15 0 100 0.36 0.0156 54.8333 0.8413 0.746 

18 0 97 0.3299 0.0769 52.7232 0.85 0.7833 

21 0 94 0.2447 0.1127 24.6878 0.9524 0.9206 

24 0 91 0.1648 0.1316 27.4929 0.9394 0.8485 

27 0 88 0.125 0.1558 27.3194 0.9692 0.8615 

30 0 85 0.1294 0.1351 39.1019 0.9531 0.9062 

33 0 82 0.1341 0.1831 41.7956 0.9138 0.8966 

36 0 79 0.1646 0.1364 42.6994 0.9123 0.8772 

12 1 102 0.0882 0.043 55.804 0.382 0.3371 

15 1 99 0.0808 0.0659 38.211 0.4941 0.3647 

18 1 96 0.0417 0.1304 31.0359 0.425 0.3125 

21 1 93 0.043 0.1461 35.8527 0.4079 0.3421 

24 1 90 0.0556 0.1294 42.9426 0.4054 0.2838 

27 1 87 0.0575 0.1707 39.9849 0.3824 0.2794 
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Table 30 (Continued) 

Window 

Size 

Diff. 

Degree 

Window 

Count 

None 

Valid  

Non-

normal 
RMSE 

In 90% 

Interval 

In 75% 

Interval 

30 1 84 0.0833 0.1039 40.1486 0.4203 0.3188 

33 1 81 0.1358 0.1 40.234 0.4444 0.3175 

36 1 78 0.1538 0.0455 39.5017 0.3492 0.1905 

12 2 101 0.1386 0.0115 60.3041 0.3256 0.2209 

15 2 98 0.1735 0.0123 59.1983 0.35 0.2625 

18 2 95 0.1368 0.0732 53.2988 0.2895 0.2237 

21 2 92 0.163 0.1299 44.2046 0.3582 0.2836 

24 2 89 0.1461 0.0921 43.3983 0.3768 0.3188 

27 2 86 0.1628 0.1111 39.5985 0.2812 0.2656 

30 2 83 0.1566 0.1286 45.954 0.3115 0.2131 

33 2 80 0.1875 0.1385 46.0134 0.2321 0.1964 

36 2 77 0.1688 0.1094 44.9917 0.2807 0.193 
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