
Central Washington University Central Washington University

ScholarWorks@CWU ScholarWorks@CWU

All Master's Theses Master's Theses

Spring 2015

Using Time Series Models for Defect Prediction in Software Using Time Series Models for Defect Prediction in Software

Release Planning Release Planning

James W. Tunnell
Central Washington University, tunnellj@cwu.edu

Follow this and additional works at: https://digitalcommons.cwu.edu/etd

 Part of the Longitudinal Data Analysis and Time Series Commons, and the Software Engineering

Commons

Recommended Citation Recommended Citation
Tunnell, James W., "Using Time Series Models for Defect Prediction in Software Release Planning" (2015).
All Master's Theses. 144.
https://digitalcommons.cwu.edu/etd/144

This Thesis is brought to you for free and open access by the Master's Theses at ScholarWorks@CWU. It has been
accepted for inclusion in All Master's Theses by an authorized administrator of ScholarWorks@CWU. For more
information, please contact scholarworks@cwu.edu.

https://digitalcommons.cwu.edu/
https://digitalcommons.cwu.edu/etd
https://digitalcommons.cwu.edu/all_theses
https://digitalcommons.cwu.edu/etd?utm_source=digitalcommons.cwu.edu%2Fetd%2F144&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/822?utm_source=digitalcommons.cwu.edu%2Fetd%2F144&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.cwu.edu%2Fetd%2F144&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.cwu.edu%2Fetd%2F144&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.cwu.edu/etd/144?utm_source=digitalcommons.cwu.edu%2Fetd%2F144&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@cwu.edu

USING TIME SERIES MODELS FOR DEFECT PREDICTION

IN SOFTWARE RELEASE PLANNING

A Thesis

Presented to

The Graduate Faculty

Central Washington University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

Computational Science

by

James W. Tunnell

June 2015

ii

CENTRAL WASHINGTON UNIVERSITY

Graduate Studies

We hereby approve the thesis of

James W. Tunnell

Candidate for the degree of Master of Science

APPROVED FOR THE GRADUATE FACULTY

 Dr. John K. Anvik, Committee Chair

 Dr. Yvonne Chueh

 Dr. Kathryn Temple

 Dean of Graduate Studies

iii

ABSTRACT

USING TIME SERIES MODELS FOR DEFECT PREDICTION

IN SOFTWARE RELEASE PLANNING

by

James W. Tunnell

June 2015

 To produce a high-quality software release, sufficient time should be allowed for

testing and fixing defects. Otherwise, there is a risk of slip in the development schedule

and/or software quality. A time series model is used to predict the number of bugs created

during development. The model depends on the previous numbers of bugs created. The

model also depends, in an exogenous manner, on the previous numbers of new features

resolved and improvements resolved. This model structure would allow hypothetical

release plans to be compared by assessing their predicted impact on testing and defect-

fixing time. The VARX time series model was selected as a reasonable approach. The

accuracy of the model varies for different sampling periods, window sizes, and degree of

differencing.

iv

ACKNOWLEDGEMENTS

The author is grateful to Dr. John Anvik, for his advice and patience, to Dr.

Yvonne Chueh for her help with exploratory data analysis, and to Dr. Kathryn Temple for

her guidance with time series modeling.

v

TABLE OF CONTENTS

Chapter Page

 I INTRODUCTION .. 1

 II LITERATURE REVIEW ... 3

 III MOTIVATION ... 6

 IV BACKGROUND .. 12

 V METHODS ... 16

 VI RESULTS ... 26

 VII DISCUSSION ... 43

 VIII THREATS TO VALIDITY .. 45

 IX FUTURE WORK .. 48

 X CONCLUSION ... 52

 REFERENCES ... 53

 APPENDIXES .. 55

vi

LIST OF TABLES
1

 Table Page

 1 The results of sampling example issues .. 19

 2 The date ranges of data collected, and the number issues that resulted. 27

 3 The sliding windows sizes to be used for each sampling period 28

 4 The parameter values selected from exploratory modeling. 32

 5 A comparison of the final modeling results across datasets 42

 6 A comparison of the results for full and restricted sample ranges 49

1
 The tables shown in the Appendixes are not listed here.

vii

LIST OF FIGURES
2

 Figure Page

 1 Using an explanatory model for defect prediction .. 7

 2 Applying the defect prediction model to estimate overall cost 10

 3 An overview of data methods ... 16

 4 Sampling example issue data .. 19

 5 An illustration of time-windowing ... 21

 6 The none-valid proportion, using the MongoDB core server dataset 30

 7 The in-interval proportion, using the MongoDB core server dataset 31

 8 The actual and predicted distributions of the number of bugs 34

 9 Histogram of forecast mean errors over sliding window 34

 10 Q-Q plot of forecast mean errors .. 35

 11 The actual and predicted distributions of the number of bugs 36

 12 Histogram of forecast mean errors over sliding window 37

 13 Q-Q plot of forecast mean errors .. 37

 14 The actual and predicted distributions of the number of bugs 38

 15 Histogram of forecast mean errors over sliding window 39

 16 Q-Q plot of forecast mean errors .. 39

 17 The actual and predicted distributions of the number of bugs 40

 18 Histogram of forecast mean errors over sliding window 41

 19 Q-Q plot of forecast mean errors .. 42

2
 The figures shown in the Appendixes are not listed here.

viii

LIST OF FIGURES (CONTINUED)

 Figure Page

 20 Forecast errors by window reveal the location of an outlier 49

 21 Undifferenced time series data from the Hibernate orm dataset................. 50

1

CHAPTER I

INTRODUCTION

Two primary concerns in software release planning are improving functionality

and maintaining quality. Both objectives are constrained by limits on development time

and cost. In order to respect these constraints and still pursue both objectives, the scope

of planned work must be limited so that time is available to properly deal with the

inevitable defects (bugs) that will arise. In this way, a software release can better ensure

quality while also improving functionality.

A critical step in this planning process is to factor in a suitable amount of time for

testing and bug-fixing. Otherwise, there is a risk of slip in the development schedule

and/or software quality. As the time and effort required for testing and bug-fixing will

likely be a function of the number of defects introduced during development, it is

desirable to be able to predict how many bugs can be expected as development proceeds.

A potential application for defect prediction is to compare different release plans

according to their estimated bug fallout and subsequent impact on testing and bug-fixing

times. This would assist release planners in ensuring that the total development time does

not exceed the project’s time budget for a release. The comparison of different release

plans is integral to release plan optimization, which is the focus of The Next Release

Problem [2] (discussed in detail in the Motivation chapter).

Many approaches to defect prediction focus on either code analysis or historical

defect information. To make the defect prediction model useful for comparing release

plans, the model must depend in some way on the basic elements of the release plan:

2

planned features and improvements. The historical defect models discussed in the

Literature Review chapter are limited in this respect, as they depend only on the past

defects.

An approach to defect prediction is presented using a multivariate time series

model. This model can be applied for a proposed release, because predictions can be

made using only information about proposed features and improvements.

The paper is organized as follows. First, related work is presented in the

Literature Review chapter. Then, further motivation for the use of a time series model for

predicting defects is presented in the Motivation section. Next, an overview of time series

modeling concepts is provided in the Background section. The methods used for data

collection and preparation, and time series modeling are detailed in the Methods chapter.

The results of applying these methods are then given in the Results chapter, and

discussed in the Discussion chapter. After this, possible sources of invalidity are put forth

in the Threats to Validity chapter, and potential avenues of future research are laid out in

the Future Work chapter. The paper ends with the Conclusion chapter.

3

CHAPTER II

LITERATURE REVIEW

Software defect (bug) prediction typically involves a detailed analysis of code or

proposed design changes. Some of these analytical methods are mentioned in the next

section. These analytical approaches require more information in more detail than might

be available during the software release planning stage. For this reason, alternative

approaches were sought out, and several that depend on historical data and use statistical

methods are discussed.

Analytical Approaches to Defect Prediction

Akiyama [1] predicted defect counts based on lines of code (LOC), number of

decisions, and the number of subroutine calls. Gaffney [7] likewise predicted defect count

based on LOC. Rather than code itself, Henry and Kafura [10] define metrics that are

based on information taken from design documents, to be used in defect prediction.

Nagappan and Ball [14] use relative code churn (lines modified) as a metric for

predicting the density of defects. Giger, Pinzger, and Gall [8] compare the use of code

churn to a more fined-grained approach, capturing “. . . the exact code changes and their

semantics down to statement level” (p. 83).

Statistical Approaches to Defect Prediction

Rather than requiring a detailed code analysis to predict defects, the approach

proposed in this paper is to develop a mathematical model based on historical data on

defect occurrences. Specifically, the proposed approach is to develop a defect prediction

model using previous software features, improvements, and defects.

4

A related approach, used by Li, Shaw, Herbsleb, Ray, and Santhanam [12], is to

study only the defect occurrences themselves, and attempt to develop a mathematical

model for defect projection. In their work, functions were fitted to a time series of defect

occurrences, and then the function parameters themselves were extrapolated for each new

release. They found that the Weibull model fit best in 73% of the tested software releases.

They attempted to extrapolate model parameters using naive methods, moving averages,

and exponential smoothing, but found these techniques to be “. . . inadequate in

extrapolating model parameters of the Weibull model for defect-occurrence projection”

(p. 271). The reason given for this ineffectiveness is the changing nature of the software

development system. For example, development practices, staffing levels, and usage

patterns may all change between releases.

In another related approach, Graves, Karr, Marron, and Siy [9] developed several

models that predict the future distribution of software faults in a given code module. The

basis of their predictive models is a statistical analysis of change management data,

which describes only the changes made to code files. The best model they found was a

weighted time damping model, where every change in the module files contributed to

defect prediction, with time-damping to account for age of changes. They achieved a

performance nearly as good by basing a generalized linear model on just the modules age

and the number of past changes. They also found factors that did not improve model

performance, based on module length, number of developers making changes in the

module, and how often a module is changed simultaneously with another module.

5

In the final approach discussed here, by Singh, Abbas, Ahmad, and Ramaswamy

[16], the Box-Jenkins method is applied to datasets from the Eclipse and Mozilla

software projects, which are represented as time series data, and defect count is predicted

using an ARIMA model. Their modeling effort is focused at the component-level, and

they conclude that “. . . current bug count of a component is linearly related to its

previous bug count” (p. 6).

6

CHAPTER III

MOTIVATION

Release planners typically rely on both their experience and project conventions

to generate a release plan by selecting planned features and improvements such that the

estimated time to test for and fix defects will not cause a schedule slip.

However, if the defect estimation technique is only loosely based on past

experience, as with a rule-of-thumb, then it may prove too coarse for comparing multiple

release plans. Specifically, such a technique may not provide any quantitative difference

between release plans that are similar (but not the same). For example, suppose two

different release plans are being considered. Both include two features, but one has five

improvements and the other has seven. A rule-of-thumb approach may provide the same

estimate for each. Even for dissimilar release plans, such an approach still has the

disadvantage of lacking confidence intervals to quantify prediction uncertainty.

An alternative approach is to develop a model that will take into account the

differences in composition of features and improvements between the release plans. In

this case, one would expect that the predicted number of defects would vary across the

release plans and that prediction uncertainty can be quantified by confidence intervals.

Such a model would assume some explanatory relationship, like that shown in Figure 1.

7

Release

Plan 1

Release

Plan 2

Release

Plan N
...

Explanatory

Model

Predicted

Defects 1

Predicted

Defects 2

Predicted

Defects N
...

Figure 1 Using an explanatory model for defect predictions.

A predictive model will have some inaccuracy, but confidence levels can be used

to quantify the uncertainty of future prediction based on past accuracy. This will allow

release planners to assess the risk of relying on the defect prediction. A higher confidence

level results in less risk because it encompasses a larger window for the prediction.

Conversely, a lower confidence level results in more risk and a more narrow prediction

window.

The Next Release Problem

Release plan optimization is exactly the goal of The Next Release Problem [2]

(NRP), but there is a gap between the abstract domain of the NRP and the detailed, messy

data found in software projects. By applying an explanatory predictive model there is a

path toward bridging this gap, opening up the potential for using NRP optimization

techniques in real-world release planning. In this section, first the NRP is described, then

the gap between it and practical planning is discussed, and finally it is shown how the

explanatory model suggested earlier would be applied to help bridge this gap.

8

Defining the NRP

The NRP was defined by Bagnall, Rayward-Smith, and Whittley [2], and was

shown to be NP-Hard. Being abstract in its treatment of feature cost, a broad range of

optimization techniques can be applied to the NRP, such as integer programming, hill

climbing, simulated annealing, genetic algorithms, etc. The NRP is the subject of

academic research in the area of Search-Based Software Engineering [11][17][19].

The NRP describes the situation where software project planners, who have

multiple customers to satisfy, would like to maximize the revenue produced from

completing the project. This is all described mathematically as follows.

A software project has a set 𝑅 of all possible requirements (new features and

enhancements) that might be included in the next software release. A customer 𝑖 is

satisfied by completing a subset 𝑅𝑖 ⊆ 𝑅. The importance of a customer 𝑖 is given by the

weight, 𝑤𝑖 ∈ ℤ+.

Requirements may have acyclic dependencies, or prerequisites, that must be

completed first. A subset that includes all prerequisite requirements, recursively, is

indicated by �̂�𝑖, and should be taken to mean

�̂�𝑖 = 𝑅𝑖 ∪ 𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟𝑠(𝑅𝑖)

For example, if 𝑅1 = {𝑟2}, and 𝑟1 is a prerequisite for 𝑟2, then �̂�𝑖 = {𝑟1, 𝑟2}.

A requirement 𝑟 ∈ 𝑅 has a cost 𝑐𝑜𝑠𝑡(𝑟) ∈ ℤ+, associated with its implementation,

not considering the cost of any prerequisite requirements. Then, the cost for some subset

𝑅′ ⊆ 𝑅 will be

𝑐𝑜𝑠𝑡(𝑅′) = ∑ 𝑐𝑜𝑠𝑡(𝑟)
𝑟∈�̂�′

9

Once customer 𝑖 is satisfied, their weight 𝑤𝑖 contributes to the total revenue from

the project, as in

∑ 𝑤𝑖

𝑖∈𝑆

So, the NRP is posed as follows. For a group of 𝑛 customers, select the subset

𝑆 ⊆ {1,2, … , 𝑛} that maximizes total revenue, while keeping the total cost within some

budget constraint 𝐵. This is given by

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ 𝑤𝑖

𝑖∈𝑆

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑐𝑜𝑠𝑡 (⋃ �̂�𝑖

𝑖∈𝑆

) ≤ 𝐵

The Gap between Abstraction and Reality

As was discussed in the previous section, a planner would need several things to

be able to implement a NRP-like optimization:

1. A set of requirements that could potentially be implemented.

2. A set of customers that are satisfied by some subset of the requirements, and have

an associated weight.

3. A cost function, to quantify the cost of each requirement.

4. A cost budget that should not be exceeded.

Having all these in hand, a planner could proceed to optimize the subset of

requirements planned for the next release. One difficulty with this that can be highlighted

is in the definition of a cost function. It might be suggested that the estimated time to

implement a requirement alone might be used to determine cost, but there is a practical

10

detail that prevents this: in order to maintain quality software the total cost of any

requirement should take into consideration both the cost of implementation and the cost

of fixing associated defects. Otherwise, a release plan would appear to be within budget,

when there is a risk that the budget will be exceeded when defect costs are also

considered.

Bridging the Gap

We use the explanatory model to address the need to consider defect cost. Such a

model, given some subset of proposed requirements, can be used to predict defects and to

find additional cost which should be considered. This use of the predictive model is

illustrated in Figure 2.

Requirements

Subset

Predictive

Model

Predicted

Defects

Requirements

Cost Function

Defect Cost

Function
Total Cost

Σ

Figure 2 Applying the defect prediction model to estimate overall cost.

Since predictive models cannot be perfectly accurate, instead we would expect

that any forecasting would include confidence levels. Taking into account the confidence

of a prediction allows planners to account for risk in the use of the defect prediction. If

11

more risk is acceptable, then planners will get a narrower prediction window, and in

exchange take more of a chance that the prediction is inaccurate. A wider prediction

window means, though, that when the defect prediction is used to determine requirements

cost, that potential cost range will also be wider.

12

CHAPTER IV

BACKGROUND

In this section, time series models are introduced, and then further concepts

related to modeling, exogeneity and stationarity, are discussed.

Time Series Models

A time series is a collection of observations that occur in order. The process

underlying a time series is assumed to be stochastic, so the model must correspondingly

be probabilistic. Critically, the sequence of observations cannot be re-arranged, as each

observation is typically dependent on one or more previous observation. This dependence

is termed autocorrelation and accounting for it is one of the primary functions of a time

series model.

Autoregressive Models

A basic autoregressive (AR) model is formed as a linear combination of previous

values, plus a white noise term that accounts for random variations (the stochastic

portion). An 𝐴𝑅(𝑝) model for predicting a value 𝑋 at time 𝑡 can be written as

𝑋𝑡 = 𝑐 + ∑ 𝜑𝑡𝑋𝑡−1

𝑝

𝑖=1

+ 𝜀𝑡

where 𝜑1, 𝜑2, …, 𝜑𝑝 are the 𝑝 parameters, 𝑐 is a constant, and 𝜀𝑡 is the white noise term.

Multivariate Models

When the AR model is extended to the multivariate case (i.e. allowing for

multiple time series), a Vector AR (VAR) model is formed. This model will support a

13

time series for defect count and also time series for the two release plan variables

(improvements and new features).

Endogeneity and Exogeneity

Under the VAR model, the behavior of each time series is explained by both its

own past values and the past values of the other time series. This makes the variables

endogenous.

The alternative is that a time series should not be explained by itself, and is only

used to explain other time series. This type of explanatory variable is called exogenous,

and could be considered an input.

By also considering exogenous variables, a VAR model would become a VARX

model. This model meets the requirements of the explanatory model described in the

Motivation section, since it would allow release plan variables to be kept exogenous and

used only to explain defect count.

Trends and Stationarity

AR, VAR, and VARX models do not account for non-stationary data. If a time

series is not stationary, differencing may produce a stationary series. Trending time series

are challenging to analyze, because the summary statistics of mean, variance, and

autocovariance vary over time, and are therefore not interpretable [6]. Deterministic and

stochastic trend types are discussed here.

A deterministic trend will move upward or downward, meaning that the time

series mean is non-constant. However, the time series will be constant according to a

deterministic function and the time series movements will generally follow the

14

deterministic function, with non-permanent fluctuations above or below. Such a time

series is said to be stationary around a deterministic trend.

In contrast, a stochastic trend shows permanent effects whenever random

variations occur, and the series will not necessarily fluctuate only close to the area of a

deterministic function. The application of differencing can be used to remove a stochastic

trend.

Stationarity can be strict or weak (of some order). Strict stationarity occurs when

statistical properties are invariant with respect to shifts of the time origin [13].

Alternatively, a weak stationarity (of second order) can be established, and from this

strict stationarity can be established by then assuming normality [4].

For a multivariate time series, stationarity holds if all the component univariate

time series are stationary [18], so the goal of stationarity testing will be to establish

second-order stationarity for each univariate time series component, and then show that

the assumption of normality is reasonable. This will establish the stationarity of the

multivariate time series as a whole. Next, tests are discussed for assessing if a

deterministic or stochastic trend is present.

Unit Root and Stationarity Testing

A time series that contains a stochastic trend is non-stationary. A pure auto-

regressive (AR) model of such a time series contains a unit root [6]. Testing for the

presence of a unit root can therefore be used to test for non-stationarity. A unit-root test

poses as the null hypothesis that an AR model has a unit root. Then, a test statistic is

measured. If the p-value is below some significance, the null hypothesis can be rejected,

15

and it is established that the time series does not have a stochastic trend. The Augmented

Dickey Fuller (ADF) test is often used for unit root testing.

On the other hand, a stationarity test uses the null hypothesis that a time series is

stationary around a deterministic trend. If the test statistic shows that this hypothesis can

be rejected at some significance level then a stochastic trend should be considered by the

unit root test. The Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test can be applied for

testing stationarity.

16

CHAPTER V

METHODS

In this chapter, we consider methods for both obtaining time series data (data

methods) and for obtaining a model using that data (modeling methods).

Data Methods

In this section, the data sources and the rationale for their selection are discussed.

Then the methods used for preparing data for modeling, by cleansing, sampling,

stationarity testing, and windowing, are described. The procedure used is summarized in

Figure 3.

Extraction & Cleansing

Sampling

Stationarity Testing &
Differencing

Windowing

Modeling

Issue Tracking

System

Issue Data

Time Series
Stationary Time

Series

Windowed,

Stationary Time

Series

...

Figure 3 An overview of data methods.

17

Data Sources

The empirical datasets used to establish predictive models came from several

software projects’ historical data, and were taken from their issue tracking systems
1
. To

be considered for selection, it was required that a project

 Has been actively developed for at least several years

 Has openly available issue tracking system data

 Distinguishes between defects and other issue types

The projects selected by these criteria were

 MongoDB
2
: core server product

 Hibernate
3
: orm product

 NetBeans
4
: platform and java products

The MongoDB software project has been actively developed since 2009.

MongoDB uses JIRA
5
 for issue tracking. Issue data for core server product was exported

from the project's JIRA web interface
6
.

The Hibernate software project has been actively developed since 2003, and also

uses JIRA for issue tracking. Issue data for the orm product was exported from the

project’s JIRA web interface
7
.

1
An issue tracking system can be used to track bugs, new features, improvements, etc.

2
 MongoDB is a scalable document-oriented database system (http://www.mongodb.org/).

3
 Hibernate is an object-relational mapping (ORM) framework for the Java language.

4
 NetBeans is a software development platform written in Java

5
 JIRA is an issue tracking and project management system made by Atlassian

6
 The project’s JIRA web interface is at https://jira.mongodb.org/browse/SERVER

7
 The project’s JIRA web interface is at https://hibernate.atlassian.net/projects/HHH

18

The Netbeans software project has been actively developed as an open source

project since 2000. The project uses Bugzilla for issue tracking. Issue data for the

platform and java products was obtained using a 2010 dump of the Bugzilla database.

This database was made available as part of the mining challenge for the 2011 conference

for Mining Software Repositories
8
.

Data Preparation

The datasets need some preparation before a time series modeling procedure is

run. Preparatory steps include cleansing, sampling, stationarity testing and differencing,

and windowing. These steps are now explained below.

Data Cleansing

Not all the data were preserved for modeling. The modification or removal of data

is discussed next.

First, only issues with resolutions such as fixed, complete, or done were kept.

Issues with other resolutions, such as unresolved, won't fix, duplicate, etc. were counted

as unfixed and were not kept. This was done because the proposed model structure

assumes that bug creation is explained by software changes. Therefore, issues that do not

result in any change were not included in the dataset.

Next, issues that are categorized as sub-tasks were converted to be the same issue

type as the parent issue. Those sub-tasks whose parent issue is not in the dataset are

considered orphans and discarded.

8
 The mining challenge data is available at http://2011.msrconf.org/msr-challenge.html

19

Data Sampling

Data were sampled at regular periods to measure the number of improvements

resolved, the number of features resolved, and the number of bugs created. As an

example, this sampling process is illustrated in Figure 4, with the outcome of sampling

the example data shown in Table 1.

Bug

Bug

Bug

Improvement

Improvement

New Feature

Period 1 Period 2 Period 3 …

Figure 4 Sampling example issue data.

Table 1 The results of sampling example issues.

Period Improvements

Resolved

New Features

Resolved

Bugs

Created

1 0 0 1

2 1 1 1

3 1 0 1

20

Stationarity Testing & Differencing

To establish stationarity, we first need to see if we can rule out the presence of a

stochastic trend by applying the ADF test. If we can indeed rule out a stochastic trend, we

should be able to confirm stationarity by applying the KPSS test. Or, if a stochastic trend

cannot be ruled out, then KPSS test should be applied to check that trend stationarity is

also rejected. If data is found to have a stochastic trend, it should be differenced and then

retested to confirm (trend) stationarity. In both tests, it will be assumed that the

deterministic component is constant, with an intercept but no trend. The ur.df and

ur.kpss functions from the urca
9
 library were used to perform the ADF and KPSS

tests, respectively.

Time Windowing

It is assumed that the software development process underlying a given project

might change over time. Rather than developing a model that also changes over time,

data will be kept for modeling only if it occurs within a time window. This will limit the

amount of process change the model is exposed to. Taking this approach means that the

modeling methods will be executed for each time-windowed part of the data. See an

illustration of a window in Figure 5.

9
 The urca library (http://cran.r-project.org/web/packages/urca) provides tests for time series data, and

is freely available as a package for the R computing environment.

21

Figure 5 An illustration of time-windowing.

It will be necessary to advance the time window after modeling data within the

window, so that the entire time series can take part in the modeling. This notion of

applying modeling data within the window, advancing the window by one sample, and

then repeating until the end of the time series is reached, is called herein a sliding

window.

Modeling Methods

The typical method for building time series models involves specification,

estimation, and diagnostics checking [4]. Once specified and estimated, the diagnostic

checking step ensures that only valid models are considered for selection. The final step

of modeling would be selection, where models are compared by some model selection

criterion [4]. The next sections present the approach used to specify, estimate, check, and

select a VARX model to be used for defect prediction.

Model Specification & Estimation

Specification of a 𝑉𝐴𝑅𝑋(𝑝) model is accomplished by choosing an order 𝑝,

which is the number of autoregressive terms to include in the model. Once an order is

22

specified, the model parameters can be estimated by a procedure such as least squares

regression.

The model order will directly affect the number of parameters included in the

model. One goal of specification will be to avoid having too many parameters relative to

the number of observations. The following derivation will lead to a simple rule for

limiting the model order in this respect. First, let 𝑛 be the number of time samples in a

time series. When there are 𝑚 time series, each sample contains 𝑚 observations, so there

are 𝑚𝑛 total observations for all time series. Next, for a 𝑉𝐴𝑅𝑋(𝑝) model of the 𝑚 time

series variables, there are 𝑚2𝑝 unknown parameters to be estimated. Let the ratio of

observations to parameters be denoted by

𝐾 =
𝑚𝑛

𝑚2𝑝
=

𝑛

𝑚𝑝

To keep 𝐾 at or above some minimum ratio 𝐾𝑚𝑖𝑛, so there are not too few

observations per parameter, we form the inequality

𝐾𝑚𝑖𝑛 ≤ 𝐾 =
𝑛

𝑚𝑝

In terms of 𝑝 this becomes

𝑝 ≤
𝑛

𝑚𝐾𝑚𝑖𝑛

Then, for a fixed value of 𝐾𝑚𝑖𝑛, an upper bound on the model order would be

𝑝𝑚𝑎𝑥 = ⌊
𝑛

𝑚𝐾𝑚𝑖𝑛
⌋

23

With this upper bound, model specification will include the generation of models

having order 1, 2,..., 𝑝𝑚𝑎𝑥. These models, with their estimated parameters, will be

candidates for final model selection after undergoing diagnostic checking.

The estVARXar function of the dse
10

 library was used to estimate the

parameters of a VARX model.

Diagnostics Checking

Diagnostic checking is performed to verify that a model can be accepted. This

step includes testing for model stability, inadequacy, and normality.

Stability Test

For an autoregressive model to be stable, the roots of the process characteristic

equation must lie outside the unit circle [4]. Equivalently, the inverse of the roots must lie

inside the unit circle. The stability function from the dse library was used to perform

this stability test.

Portmanteau Test

For an adequate ARMA model, it can be shown that “As the series length

increases, the [model residuals] become close to the white noise . . .” [4, p. 338]. For this

reason, there are model inadequacy tests formed around a study of the residuals.

One of these tests, the Ljung-Box test, forms a statistic from the autocorrelation of

the residuals (up to some lag). In this test, the null hypothesis is that residuals are

10

 The dse library (http://cran.r-project.org/web/packages/dse) provides tools for time series models,

and is freely available as a package for the R computing environment.

24

independent, so their autocorrelation is not high enough to be distinguished from a white

noise series. To support this hypothesis, the test p-value should be above some level of

significance. The Box.test function from the stats
11

 library was used for performing

the Ljung-Box inadequacy test, with a 5% significance level.

Normality Test

To form a prediction interval for the model forecast, it is assumed that model

residuals are normal. Therefore, models with non-normal residuals violate this

assumption. Normality of model residuals are tested using the Jarque-Bera (JB) adjusted

Lagrange multiplier (ALM) test, which is very precise for a wide range of sample sizes

[5]. The JB test in general is testing that sample skewness and kurtosis matches that of a

normal distribution. The jbTest function from the fBasics
12

 library was used to perform

the JB ALM normality test, with a 5% significance level.

Model Selection

Model selection criteria are used to compare models according to their fit, by

penalizing for residual error and the number of parameters. There are a number of

different selection criteria, including Akaike Information Criterion (AIC), AIC with

correction (AICc), and Bayesian Information Criterion (BIC). Bisgaard and Kulahci

noted that “. . . [t]he penalty for introducing unnecessary parameters is more severe for

11

 The stats library (http://stat.ethz.ch/R-manual/R-patched/library/stats/html/00Index.html) provides

core statistics functions, and is freely available as a package for the R computing environment.
12

 The fBasics library (http://cran.r-project.org/web/packages/fBasics/index.html) was prepared for

teaching computational finance, and is freely available as a package for the R computing

environment.

25

BIC and AICC than for AIC” [3]. A less severe penalty for the number of parameters

would be preferred in this case, since we are already limiting the number of parameters in

the model specification step, and because additional parameters may in fact be necessary

to account for time series autocorrelations with higher lags. Therefore, AIC was chosen

as the selection criterion. The bestTSestModel function from the dse library was

used to perform model selection with the AIC criterion.

26

CHAPTER VI

RESULTS

The data and modeling methods described in the Methods chapter were applied to

the four datasets: MongoDB core server, Hibernate orm, NetBeans platform and

NetBeans java. The results of applying the methods are described in the following

sections. The code that was developed to apply the methods is contained in two

repositories:

 https://github.com/jamestunnell/thesis

 https://github.com/jamestunnell/defectPrediction

The thesis repository contains scripts that are used for data extraction and cleansing. The

defectPrediction repository contains code for an R package. This package contains

functions used for sampling, for stationarity testing, and for modeling with a sliding

window.

Data Results

Data were collected from project issue tracking systems, as described in the Data

Sources section. Table 2 shows the range of dates over which data were collected for

each project product, and the number of issues that were collected as a result, both before

and after data cleansing. See the Data Cleansing section for an explanation of why certain

issues were excluded. It is worth noting that none of the datasets contained many

orphaned subtasks. The highest number found was 80 in the Hibernate orm dataset.

27

Table 2 The date ranges of data collected, and the number issues that resulted.

Project Product Name Date Range Initial Issue

Count

Final Issue Count

MongoDB core server Apr, 2009 – Jan, 2015 7,007 6,971

Hibernate orm Apr, 2003 – Apr, 2015 14,262 8,278

NetBeans platform Jan, 2001 – Jun, 2010 24,745 11,335

NetBeans java Jan, 2001 – Jun, 2010 18,313 8,699

Sampling Results

The collected datasets were then sampled to create time series. Not knowing

which sampling period would work best, sampling was performed for three different

sampling periods: 7 days, 14 days, and 30 days. The resulting time series are shown in

Appendix A: Time Series Data Plots.

Stationarity Testing & Differencing Results

The resulting time series were then tested for stationarity. The time series were

found to be non-stationary, with the exception of the Hibernate orm dataset, which was

stationary when using a 30-day sampling period. Differencing was found to remove non-

stationarity, but not knowing how differencing would affect model accuracy, data

differencing of degrees of 0, 1, and 2 were made available for the modeling phase. The

stationarity testing results for non-differenced and differenced time series data can be

found in Appendix B: Stationarity Testing Results.

28

Windowing Results

Not knowing which window size would work best for the sliding window, a range

of window sizes were selected for each sampling period, as shown in Table 3.

Table 3 The sliding windows sizes to be used for each sampling period

Sampling Period Sliding Window Sizes

7 days 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 75, 78

14 days 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54

30 days 12, 15, 18, 21, 24, 27, 30, 33, 36

Modeling Results

The modeling methods were first applied to the datasets using the sliding window

approach. This was done in an exploratory fashion in which the whole procedure was

repeated using various values for the parameters. The hope was to find the parameter

values which could provide the best results. The results of this exercise are discussed first

in the next section. Then, with the results of the exploratory modeling to guide in

selecting parameter values, the sliding window approach is applied once to each dataset,

and these final results are presented.

Exploratory Sliding Window Results

The parameters for the sliding window approach are sampling period, window

sizes, and degree of differencing. These parameters were varied for each data set. Several

metrics are used to evaluate the results:

29

 The none-valid proportion, which is the proportion of windows with no valid

model (all models fail either the stability or inadequacy test).

 The non-normal proportion, which is the proportion of windows, having a valid

model, where model residuals are non-normal (fail the normality test).

 The root-mean-square error (RMSE) of the forecast errors from all windows used

for prediction. Each error value comes from a forecast made in one window. The

RMSE of these errors is computed by

𝑅𝑀𝑆𝐸(�̂�) = √𝑀𝑆𝐸(�̂�) = √
1

𝑛
∑ (�̂�𝑖 − 𝑌𝑖)2

𝑛

𝑖=1

where 𝑌 and �̂� are 𝑛 size vectors for the actual and predicted values, respectively.

The RMSE value is the standard deviation of the error distribution.

 The in-interval proportion, which is the proportion of windows with forecasted

values within the given prediction interval.

The first two metrics, the none-valid and non-normal proportions, measure the

frequency of cases where the forecasting step is not reached. These metrics will be

grouped together and called the validity metrics. The next two metrics, RMSE and the in-

interval proportion, measure the model accuracy. These metrics form a basis for choosing

sliding windows parameter values, and will be called together the accuracy metrics.

The results from running the sliding window with a range of parameters are listed

in Appendix C: Exploratory Modeling Results. In these results, data is separated first by

dataset, then by sampling period, and finally by the degree of differencing. From there,

the window size is varied and metrics are recorded for each.

30

The significance of these results is now discussed, first from the standpoint of

validity and then accuracy. Following this, a procedure is outlined for the selection of

sliding window parameter values.

Effects on Validity

The validity metrics indicate that there are trends as the window size increases.

See the plot in Figure 6 below, for example. However, these trends are not consistent for

different sampling periods and across datasets, so no attempt will be made to generalize

them. But for a given dataset and sampling period they should provide empirical

justification for choosing one window size over another, to minimize the number of

invalid cases encountered over the course of the sliding window.

Figure 6 The none-valid proportion, using the MongoDB core server dataset.

31

Effects on Accuracy

The accuracy metrics indicate that a higher degree of differencing results in lower

model accuracy. See the plot in Figure 7 below, for example. The undifferenced data,

unfortunately cannot be used because it is non-stationarity. It is not clear whether the

window size has a consistent effect on accuracy that can be generalized, but again it may

provide an empirical justification for choosing a window size to maximize accuracy, once

a sampling period and degree of differencing are chosen.

Figure 7 The in-interval proportion, using the MongoDB core server dataset.

The accuracy metrics also indicate that a smaller sampling period has a different

effect on accuracy, depending on the degree of differencing. For an undifferenced time

series, smaller sampling periods results in better accuracy. For time series that have one

or two degrees of differencing, the effect of sampling period is inconsistent, and so

should be checked empirically to obtain the best accuracy according to the choice in

sample period.

32

Parameter Value Selection

Based on the observations made in the previous two sections, a procedure can be

outlined to establish sliding window parameter values. First, the smallest degree of

differencing is used, as stationarity allows. Next, if data is undifferenced then chose a 7-

day (small) sampling period. Otherwise, try several sampling periods to see which results

in accuracy trend lines that are highest. Last, try several window sizes in order to

maximize validity and accuracy.

This procedure is applied using the validity and accuracy results from Appendix

C: Exploratory Modeling Results. First, since all of the time series require differencing,

the degree of differencing chosen is 1 for all. Next, the sampling period and windows size

are chosen to to try and maximize both validity and accuracy. The values chosen for these

and the other parameters are shown in Table 4.

Table 4 The parameter values selected from exploratory modeling.

Dataset Degree of

Differencing

Period Window

MongoDB core server 1 14 24

Hibernate orm 1 30 24

NetBeans platform 1 14 27

NetBeans java 1 14 30

Final Sliding Window Results

The sliding window approach was applied for each dataset using the parameters

arrived at during exploratory modeling (see Table 4). The results from this final modeling

33

step will be presented and discussed next. For each dataset, several aspects of the results

will be discussed:

 The none-valid and non-normal proportions

 The distribution of actual compared to the distribution of predicted number of

bugs

 The distribution of forecast errors, where each error is the difference between the

predicted and actual number of bugs for one window.

 The in-interval proportion for a 75% or a 90% prediction interval

The comparison of actual and predicted number of bugs will be in the form of

kernel density plots of the two distributions, shown together. The distribution of forecast

mean errors will be presented in terms of shape, using a Q-Q plot, and also by scale,

using the RMSE.

MongoDB core server Results

The MongoDB core server dataset was processed using a difference degree of 1, a

sampling period of 14 days, and a window size of 24. Of the 126 windows used in the

sliding window, no valid model could be found for 3 (2.38%) of them. All of the

remaining 123 windows had normal residuals.

The distributions of actual bugs and predicted bugs are quite similar in

appearance, shown together in Figure 8. The distribution of errors between predicted and

actual bug counts is shown in Figure 9. The scale of this distribution can be summarized

by the RMSE value of 14.723.

34

Figure 8 The actual and predicted distributions of the number of bugs.

Figure 9 Histogram of forecast mean errors over sliding window.

35

The shape of this distribution is visualized using the Q-Q plot in Figure 10. This plot

shows that both the left- and right-tail portions of the distribution are non-normal. Of the 123

prediction windows, 45 (36.59%) were within a 90% prediction interval, and 34 (27.64%)

were within a 75% prediction interval.

Figure 10 Q-Q plot of forecast mean errors.

Hibernate orm Results

The Hibernate orm dataset was processed using a difference degree of 1, a

sampling period of 30 days, and a window size of 24. Of the 121 windows used in the

sliding window, no valid model could be found for 5 (4.13%) of them. And of the

remaining 116 windows with valid models, the model residuals were non-normal for 1

(0.86%) of them. This left 115 windows that were used to make predictions.

36

The distributions of actual bugs and predicted bugs are quite similar in

appearance, shown together in Figure 11.

Figure 11 The actual and predicted distributions of the number of bugs.

The distribution of errors between predicted and actual bug counts is shown in

Figure 12. The scale of this distribution can be summarized by the RMSE value of 10.27.

The shape of this distribution is visualized using the Q-Q plot in Figure 13. This plot shows

some right- and left-tail portions are non-normal. Of the 115 prediction windows, 62

(53.91%) were within a 90% prediction interval, and 52 (45.22%) were within a 75%

prediction interval.

37

Figure 12 Histogram of forecast mean errors over sliding window.

Figure 13 Q-Q plot of forecast mean errors.

38

NetBeans platform Results

The NetBeans platform dataset was processed using a difference degree of 1, a

sampling period of 14 days, and a window size of 27. Of the 219 windows used in the

sliding window, no valid model could be found for 21 (9.59%) of them. And of the

remaining 198 windows with valid models, the model residuals were non-normal for 5

(2.53%) of them. This left 193 windows that were used to make predictions.

The distributions of actual bugs and predicted bugs are quite similar in

appearance, shown together in Figure 14.

Figure 14 The actual and predicted distributions of the number of bugs.

The distribution of errors between predicted and actual bug counts is shown in

Figure 15. The scale of this distribution can be summarized by the RMSE value of

15.2702. The shape of this distribution is visualized using the Q-Q plot in Figure 16. This plot

shows that many of the tail values are outside of the confidence bands, especially on the left side.

39

Figure 15 Histogram of forecast mean errors over sliding window.

Figure 16 Q-Q plot of forecast mean errors.

40

Of the 193 prediction windows, 89 (46.11%) were within a 90% prediction

interval, and 76 (39.38%) were within a 75% prediction interval.

NetBeans java Results

The NetBeans java dataset was processed using a difference degree of 1, a

sampling period of 14 days, and a window size of 30. Of the 216 windows used in the

sliding window, no valid model could be found for 28 (12.96%) of them. And of the

remaining 188 windows with valid models, the model residuals were non-normal for 28

(14.89%) of them. This left 160 windows that were used to make predictions.

The distributions of actual bugs and predicted bugs are quite similar in

appearance, shown together in Figure 17.

Figure 17 The actual and predicted distributions of the number of bugs.

41

The distribution of errors between predicted and actual bug counts is shown in

Figure 18. The scale of this distribution can be summarized by the RMSE value of

18.0469. The shape of this distribution is visualized using the Q-Q plot in Figure 19. This plot

shows strong non-normality at the tails, with almost all of the tail values outside of the confidence

bands.

Of the 160 prediction windows, 69 (43.125%) were within a 90% prediction

interval, and 49 (30.625%) were within a 75% prediction interval.

Figure 18 Histogram of forecast mean errors over sliding window.

42

Figure 19 Q-Q plot of forecast mean errors.

A summary of all the final results is presented in Table 5, which is convenient for

making a comparison.

Table 5 A comparison of the final modeling results across datasets.

Dataset

Window

Count

None-valid

Proportion

Non-normal

Proporation RMSE

In-interval Proportion

90% Conf. 75% Conf.

MongoDB

core server

126 2.38% 0% 14.7230 36.59% 27.64%

Hibernate

orm

121 4.13% 0.86% 10.2685 53.91% 45.22%

NetBeans

platform

219 9.59% 2.53% 15.2702 46.11% 39.38%

NetBeans

java

216 12.96% 14.89% 18.0469 43.13% 30.63%

43

CHAPTER VII

DISCUSSION

The validity of modeling results was evaluated by the none-valid and non-normal

proportions. These measures both varied by window size, so windowing could be used to

improve them. For the datasets and windowing parameters used, the none-valid

proportions were between 2% and 13%, and the non-normal proportions were between

0% and 15%. Together, these proportions represent the risk that for any given sample

window there will be no valid course for making a prediction.

The accuracy of model predictions was evaluated with RMSE and in-interval

proportion. These measures both varied by window size, so windowing could be used to

improve them. For the datasets and windowing parameters used, the in-interval

proportions at a 90% prediction interval were between 36% and 54%, and the in-interval

proportions at a 75% prediction interval were between 27% and 46%.

Evaluating a dataset with a sliding window does not only provide control over

validity and accuracy, it also conveys a picture of how a model can generally be expected

to perform for any given window in the future. In the cases where the none-valid and

non-normal proportions were quite low, this would lead to an expectation that for any

given window in the future, there will likely be a valid model available, having normal

residuals. Since the in-interval proportions were often far below the level of their

prediction intervals, this would lead to an expectation that in many cases a model

prediction would not be within the prediction interval. Such an expectation might

44

discourage the model’s use for defect prediction. On the other hand, if a low RMSE value

is obtained, the model may still be considered useful for defect prediction.

45

CHAPTER VIII

THREATS TO VALIDITY

The historical data used to form models and make predictions is taken from actual

software projects’ issue tracking systems. Though the data exists independently from the

work of this thesis, there are still potential threats to the validity of the thesis results

which may be due to the way data were originally recorded in the issue tracking system.

Also, the way data were treated before being uses in modeling, as well as the

relationships that are assumed to exist between the data variables may be threats to

validity. In the following sections, potential threats to internal validity and external

validity are identified and discussed.

Internal Validity

Threats to internal validity serve to undermine the causal relationships that are

assumed. Throughout this paper, bugs created have been held as a dependent variable,

with improvements resolved and features resolved being held as independent variables. It

is also assumed that there exists some causality between the independent variables and

the dependent variable. Several threats to this assumption are discussed next.

Ambiguous Temporal Precedence

The threat of ambiguous temporal precedence exists when it is not clear that one

variable only occurs before another. Using the chosen model structure, the resolution of

features and improvement s should occur before bugs are reported. But through visual

inspection of the available time series data, it was such a temporal precedence was not

46

clear. This confirms that internal validity is threatened by ambiguous temporal

precedence.

Confounding

Confounding may arise due to the existence of an additional variable which

affects the dependent variable, and whose behavior is related to that of an independent

variable. The software development process is hugely complicated, both in the number of

actors and in the ways that an actor can participate in the process. Because the thesis

work relies only on data from an issue tracking system, there are likely other variables

which may play into the creation of software defects. The existence of unmeasured or

unconsidered variables makes confounding a definite, but also probably inevitable, threat

to internal validity.

History

The effects of external events, outside of the scope of software development, may

contribute to the behavior of the dependent variable. For example, team attrition, team

reorganization, and negative quality reports may all affect current and future development

activities. With such large changes, development teams may be forced to change focus in

the areas of quality or functionality. Such changes may disrupt historical behavioral

patterns and relationships between variables. This threat to validity is perhaps

unavoidable in long-term consideration of historical data. The approach taken to counter

this threat to validity is to window data such that models are less exposed to structural

changes.

47

External Validity

There are two types of generalizability that are sought for in this thesis work:

generalizability across software projects and generalizability across time windows.

Threats to these types are discussed in the next sections.

Generalizability across Software Projects

For results to be generalizable across software projects, they must be inferred

from many datasets. So far only four datasets have been used. This small number of

datasets limits how well the results can be generalized to other software projects. Also, by

design the selected projects were all open source. This makes the datasets and project

information available to all researchers, but might also threaten the generalizability to

projects that are not open source.

Generalizability across Time Windows

For a particular project dataset, results will vary for each of the time windows. To

provide a result that can be generalized across time windows within the data set, a sliding

window is applied over the entire dataset and several measurements are obtained. These

measurements are proportions that indicate how probable it is that any given time

window will produce a valid, accurate model. Additionally, the distribution of forecast

errors across time windows is presented for each dataset, to characterize the probability

of obtaining any given range of forecast error.

48

CHAPTER IX

FUTURE WORK

An improvement to the current methods is mentioned: excluding time windows

that contain outliers. Additionally, two lines of potential future research are proposed:

modeling with undifferenced data using birth-death process models and making use of

change management data in a time series model.

Exclusion of Outliers

With each dataset, a distribution of the forecast errors was shown as a histogram.

There appears to be one or more outliers present in each of these histograms. The

presence of an outlier may indicate that a time window contains data whose behavior

significantly deviates from the rest of the time series. Such deviations could be caused by

unaccounted-for externalities, as is suggested in the History subsection from the Threats

to Validity chapter. Because such externalities would not be accounted for by the model,

it would be desirable to prevent their influence from confounding any time series model

under consideration. The presence of outliers in the forecast error distribution can be

established by statistical testing. Once a window is identified as containing an outlier, it

may be necessary to exclude all samples in that window from the sliding window

process. Or, a detailed inspection of the time series may reveal which portion of the data

should be excluded.

For the datasets with the worst results, NetBeans java, a large outlier was present

in the sliding window forecast errors. These errors are shown by window in Figure 20,

revealing the location of the outlier at window 43, which includes samples 43 through 72.

49

Figure 20 Forecast errors by window reveal the location of an outlier.

When the sliding window method is applied to samples after this window, starting

at sample 73, the results improved over those obtained using the entire sample range,

suggesting that outlier occurrence may provide good guidance for which portion of the

sample range is usable for modeling. A comparison of the full and restricted results is

shown in Table 6.

Table 6 Comparison of the results for full and restricted sample ranges.

Sample

Range

Window

Count

None-valid

Proportion

Non-normal

Proporation RMSE

In-interval Proportion

90% Conf. 75% Conf.

Full 216 12.96% 14.89% 18.0469 43.13% 30.63%

Restricted 144 11.81% 7.87% 16.2761 49.57% 34.19%

Modeling with Birth-death Processes

The exploratory modeling results showed much better model accuracy when using

the undifferenced time series data, with in-interval proportions near the level of the

50

prediction interval. If a model could be used that operates on the undifferenced data

without violating the model assumptions, then much better accuracy could be obtained.

The model may need to take into account the special nature of the issue tracking system

data. This data will always be non-negative, since it is count data. And due to the

irregular flurries of software development activity, this means that the count data tends to

spike and then return to a low, zero or near-zero value. The plot of undifferenced time

series data in Figure 21 illustrates this tendency. Increasing the sampling period will

smooth the sharp features somewhat, but not greatly, and at the loss of feature detail.

Figure 21 Undifferenced time series data from the Hibernate orm dataset.

Rather than smoothing or differencing the data to make it valid for a conventional

time series model, another approach is to choose a model that is suitable for handling

count data. It is proposed that a birth-death process be used as a model of this kind. In a

birth-death process, the state transitions whenever a birth or death occurs, and count is

51

incremented or decremented, respectively. The birth and death in this case would be the

creation and resolution of a software issue.

Modeling with Change Management Data

A problem with the use of issue tracking system (ITS) data is that it is

disconnected from the actual changes made to the software. This is a problem for two

reasons. First, because there is a time lag between when a software change is committed

and when the software change is reported in the ITS. Fortunately, if this lag time were

characterized then a suitable sampling period can be chosen to minimize any negative

effect. The other reason why a disconnect is problematic is that the issue tracking data

does not contain direct information as to the magnitude of the software changes made,

nor to which software subsystem the changes were made.

To overcome this lack of information, it is proposed that change management

(CM) data be used as the exogenous input to a time series model, in place of the new

feature and improvement data currently being used. CM data can provide information to

both the time and magnitude of a change. Coupled with the existing bug report data from

the ITS, such a model could capture the varying degree to which a software change might

be likely to lead to bug reports, based on factors such as the magnitude of the change,

location in the codebase, and the author.

52

CHAPTER X

CONCLUSION

The data and modeling methods described allowed issue tracking system data to

be used to form a time series model for defect prediction. These methods were applied to

datasets from several open-source software projects.

The data methods that were employed helped to improve the modeling results. To

begin with, non-stationarity was removed by differencing. This allowed the data to be

used by the model, when non-stationary data could not be used. Then, validity and

accuracy were improved by windowing. This was accomplished by choosing windows

with a low proportion of invalid models, a low RMSE, and a high proportion of forecasts

values within a prediction interval. Without windowing, a model would need to account

for an entire dataset, even where structural changes may occur.

The modeling methods were used to select model order and to estimate

parameters. Additionally, the modeling methods allowed for diagnostic testing to identify

invalid models or models with non-normal residuals. The proportion of windows with

unusable models varies by window size, so being able to identify such unusable models

and also to control the window size gives some control over this proportion.

53

REFERENCES

[1] F. Akiyama. An example of software system debugging. In IFIP Congress (1),

volume 71, pages 353–359, 1971.

[2] A. J. Bagnall, V. J. Rayward-Smith, and I. M. Whittley. The next release problem.

Information and software technology, 43(14):883–890, 2001.

[3] S. Bisgaard and M. Kulahci. Time series analysis and forecasting by example. John

Wiley & Sons, 2011.

[4] G. E. P. Box, G. M. Jenkins, and G. C. Reinsel. Time Series Analysis. John Wiley,

2008.

[5] W. Diethelm, and H. G. Helmut. Precise finite-sample quantiles of the Jarque-Bera

adjusted Lagrange multiplier test. Swiss Federal Institute of Technology. Institute

for Theoretical Physics, ETH Hönggerberg, C-8093 Zurich 26: 70-71, 2005.

[6] P. H. Franses. Time series models for business and economic forecasting.

Cambridge university press, 1998.

[7] J. E. Gaffney. Estimating the number of faults in code. Software Engineering, IEEE

Transactions on, SE-10(4):459–464, July 1984.

[8] E. Giger, M. Pinzger, and H. C. Gall. Comparing fine-grained source code changes

and code churn for bug prediction. In Proceedings of the 8th Working Conference

on Mining Software Repositories, pages 83–92. ACM, 2011.

[9] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy. Predicting fault incidence using

software change history. Software Engineering, IEEE Transactions on, 26(7):653–

661, 2000.

[10] S. Henry and D. Kafura. The evaluation of software systems’ structure using

quantitative software metrics. Software: Practice and Experience, 14(6):561–573,

1984.

[11] H. Jiang, J. Zhang, J. Xuan, Z. Ren, and Y. Hu. A hybrid ACO algorithm for the

next release problem. In Software Engineering and Data Mining (SEDM), 2010 2nd

International Conference on, pages 166–171. IEEE, 2010.

[12] P. L. Li, M. Shaw, J. Herbsleb, B. Ray, and P. Santhanam. Empirical evaluation of

defect projection models for widely-deployed production software systems.

SIGSOFT Softw. Eng. Notes, 29(6):263–272, Oct. 2004.

[13] T. K. Moon and W. C. Stirling. Mathematical methods and algorithms for signal

processing, volume 1. Prentice Hall, New York, 2000.

54

[14] N. Nagappan and T. Ball. Use of relative code churn measures to predict system

defect density. In Software Engineering, 2005. ICSE 2005. Proceedings. 27th

International Conference on, pages 284–292. IEEE, 2005.

[15] W. Shadish, T. Cook, and D. Campbell. Experimental and Quasi-Experimental

Designs for Generilized Causal Inference. Houghton Mifflin, Boston, 2002.

[16] L. L. Singh, A. M. Abbas, F. Ahmad, and S. Ramaswamy. Predicting software bugs

using arima model. In Proceedings of the 48th Annual Southeast Regional

Conference, page 27. ACM, 2010.

[17] J. Xuan, H. Jiang, Z. Ren, and Z. Luo. Solving the large scale next release problem

with a backbone-based multilevel algorithm. Software Engineering, IEEE

Transactions on, 38(5):1195–1212, 2012.

[18] K. Yang and C. Shahabi. On the stationarity of multivariate time series for

correlation-based data analysis. In Data Mining, Fifth IEEE International

Conference on, pages 4–pp. IEEE, 2005.

[19] Y. Zhang, M. Harman, and S. A. Mansouri. The multi-objective next release

problem. In Proceedings of the 9th annual conference on Genetic and evolutionary

computation, pages 1129–1137. ACM, 2007.

55

APPENDIXES

Appendix A: Time Series Data Plots

Plots of the time series data obtained from sampling the software project datasets

are illustrated in the figures below.

Figure 22 Time series resulting from sampling the MongoDB core server dataset with a 7-

day sampling period.

56

Figure 23 Time series resulting from sampling the MongoDB core server dataset with a 14-

day sampling period.

Figure 24 Time series resulting from sampling the MongoDB core server dataset with a 30-

day sampling period.

57

Figure 25 Time series resulting from sampling the Hibernate orm dataset with a 7-day

sampling period.

Figure 26 Time series resulting from sampling the Hibernate orm dataset with a 14-day

sampling period.

58

Figure 27 Time series resulting from sampling the Hibernate orm dataset with a 30-day

sampling period.

Figure 28 Time series resulting from sampling the NetBeans platform dataset with a 7-day

sampling period.

59

Figure 29 Time series resulting from sampling the NetBeans platform dataset with a 14-

day sampling period.

Figure 30 Time series resulting from sampling the NetBeans platform dataset with a 30-

day sampling period.

60

Figure 31 Time series resulting from sampling the NetBeans java dataset with a 7-day

sampling period.

Figure 32 Time series resulting from sampling the NetBeans java dataset with a 14-day

sampling period.

61

Figure 33 Time series resulting from sampling the NetBeans java dataset with a 30-day

sampling period

Appendix B: Stationarity Testing Results

The results of stationarity testing are contained in the following tables, both for

differenced and non-differenced data, and for each sampling period used (7-day, 14-day,

and 30-day). The Augmented Dickey Fuller (ADF) and Kwiatkowski–Phillips–Schmidt–

Shin (KPSS) tests were both run.

62

Table 7 Stationarity test results for the MongoDB core server time series data, with a

sampling period of 7 days.

Time Series
Un-differenced data Differenced data

ADF (𝜏2) ADF(𝜑1) KPSS ADF (𝜏2) ADF(𝜑1) KPSS

Bugs -5.009168

(< 1%)

12.59583

(< 1%)

2.810561

(< 1%)

-17.5075

(< 1%)

153.2578

(< 1%)

0.01125

(> 10%)

Improvements -5.851094

(< 1%)

17.15104

(< 1%)

2.43306

(< 1%)

-20.2816

(< 1%)

205.6782

(< 1%)

0.01561

(> 10%)

New Features -10.80503

(< 1%)

58.37575

(< 1%)

0.1376936

(> 10%)

-21.1322

(< 1%)

223.2843

(< 1%)

0.01278

(> 10%)

Table 8 Stationarity test results for the MongoDB core server time series data, with a

sampling period of 14 days.

Time Series
Un-differenced data Differenced data

ADF (𝜏2) ADF(𝜑1) KPSS ADF (𝜏2) ADF(𝜑1) KPSS

Bugs -3.954806

(< 1%)

7.903041

(< 1%)

1.977684

(< 1%)

-9.9046

(< 1%)

49.0530

(< 1%)

0.01552

(> 10%)

Improvements -3.708167

(< 1%)

6.93959

(< 1%)

1.613534

(< 1%)

-12.8286

(< 1%)

82.2958

(< 1%)

0.02771

(> 10%)

New Features -6.47668

(< 1%)

20.974

(< 1%)

0.10850

(> 10%)

-15.2122

(< 1%)

115.7057

(< 1%)

0.01891

(> 10%)

63

Table 9 Stationarity test results for the MongoDB core server time series data, with a

sampling period of 30 days.

Time Series
Un-differenced data Differenced data

ADF (𝜏2) ADF(𝜑1) KPSS ADF (𝜏2) ADF(𝜑1) KPSS

Bugs -3.858221

(< 1%)

7.500749

(< 1%)

1.413058

(< 1%)

-9.25577

(< 1%)

42.88765

(< 1%)

0.039097

(> 10%)

Improvements -2.543267

(> 10%)

3.315932

(> 10%)

1.056792

(< 1%)

-7.90954

(< 1%)

31.31153

(< 1%)

0.037643

(> 10%)

New Features -4.57232

(< 1%)

10.47271

(< 1%)

0.0928971

(> 10%)

-8.24411

(< 1%)

33.98363

(< 1%)

0.03578

(> 10%)

Table 10 Stationarity test results for the Hibernate orm time series data, with a

sampling period of 7 days.

Time Series
Un-differenced data Differenced data

ADF (𝜏2) ADF(𝜑1) KPSS ADF (𝜏2) ADF(𝜑1) KPSS

Bugs -9.891018

(< 1%)

48.91804

(< 1%)

0.5578149

(> 2.5%)

-28.932

(< 1%)

418.5303

(< 1%)

0.010707

(> 10%)

Improvements -10.61357

(< 1%)

56.33118

(< 1%)

2.818589

(< 1%)

-28.7815

(< 1%)

414.1865

(< 1%)

0.007084

(> 10%)

New Features -13.57442

(< 1%)

92.14123

(< 1%)

0.4729388

(> 2.5%)

-27.0919

(< 1%)

366.9867

(< 1%)

0.015379

(> 10%)

64

Table 11 Stationarity test results for the Hibernate orm time series data, with a

sampling period of 14 days.

Time Series
Un-differenced data Differenced data

ADF (𝜏2) ADF(𝜑1) KPSS ADF (𝜏2) ADF(𝜑1) KPSS

Bugs -5.601016

(< 1%)

15.68603

(< 1%)

0.3742806

(> 5%)

-17.2864

(< 1%)

149.4123

(< 1%)

0.020300

(> 10%)

Improvements -6.266768

(< 1%)

19.65349

(< 1%)

1.913421

(< 1%)

-18.8948

(< 1%)

178.5101

(< 1%)

0.012008

(> 10%)

New Features -9.058437

(< 1%)

41.03137

(< 1%)

0.3597925

(> 5%)

-19.4734

(< 1%)

189.6103

(< 1%)

0.016904

(> 10%)

Table 12 Stationarity test results for the Hibernate orm time series data, with a

sampling period of 30 days.

Time Series
Un-differenced data Differenced data

ADF (𝜏2) ADF(𝜑1) KPSS ADF (𝜏2) ADF(𝜑1) KPSS

Bugs -4.09404

(< 1%)

8.381815

(< 1%)

0.2431273

(> 10%)

-13.9911

(< 1%)

97.87568

(< 1%)

0.044111

(> 10%)

Improvements -4.566302

(< 1%)

10.4551

(< 1%)

1.26875

(< 1%)

-12.6055

(< 1%)

79.4494

(< 1%)

0.020981

(> 10%)

New Features -6.141746

(< 1%)

18.86246

(< 1%)

0.2832424

(> 10%)

-12.1244

(< 1%)

73.50509

(< 1%)

0.028846

(> 10%)

65

Table 13 Stationarity test results for the NetBeans platform time series data, with a

sampling period of 7 days.

Time Series
Un-differenced data Differenced data

ADF (𝜏2) ADF(𝜑1) KPSS ADF (𝜏2) ADF(𝜑1) KPSS

Bugs -6.8546

(< 1%)

23.4952

(< 1%)

1.9320

(< 1%)

-22.9636

(< 1%)

263.6646

(< 1%)

0.02620

(> 10%)

Improvements -13.9027

(< 1%)

96.64276

(< 1%)

0.06701

(> 10 %)

-23.9283

(< 1%)

286.2845

(< 1%)

0.00844

(> 10%)

New Features -10.0169

(< 1%)

50.1686

(< 1%)

2.4783

(< 1%)

-26.1357

(< 1%)

341.5365

(< 1%)

0.01208

(> 10%)

Table 14 Stationarity test results for the NetBeans platform time series data, with a

sampling period of 14 days.

Time Series
Un-differenced data Differenced data

ADF (𝜏2) ADF(𝜑1) KPSS ADF (𝜏2) ADF(𝜑1) KPSS

Bugs -4.78601

(< 1%)

11.4690

(< 1%)

1.1625

(< 1%)

-14.3822

(< 1%)

103.4296

(< 1%)

0.03728

(> 10%)

Improvements -10.4056

(< 1%)

54.1394

(< 1%)

0.06183

(> 10%)

-19.4647

(< 1%)

189.4367

(< 1%)

0.01729

(> 10%)

New Features -5.7482

(< 1%)

16.5211

(< 1%)

1.5325

(< 1%)

-17.1666

(< 1%)

147.3461

(< 1%)

0.02806b

(> 10%)

66

Table 15 Stationarity test results for the NetBeans platform time series data, with a

sampling period of 30 days.

Time Series
Un-differenced data Differenced data

ADF (𝜏2) ADF(𝜑1) KPSS ADF (𝜏2) ADF(𝜑1) KPSS

Bugs -4.0439

(< 1%)

8.2138

(< 1%)

0.8163

(< 1%)

-8.7011

(< 1%)

37.8870

(< 1%)

0.04038

(> 10%)

Improvements -6.8425

(< 1%)

23.4209

(< 1%)

0.05968

(> 10%)

-11.7327

(< 1%)

68.8281

(< 1%)

0.03475

(> 10%)

New Features -4.1963

(< 1%)

8.8044

(< 1%)

1.0125

(< 1%)

-11.5676

(< 1%)

66.9154

(< 1%)

0.08033

(> 10%)

Table 16 Stationarity test results for the NetBeans java time series data, with a

sampling period of 7 days.

Time Series
Un-differenced data Differenced data

ADF (𝜏2) ADF(𝜑1) KPSS ADF (𝜏2) ADF(𝜑1) KPSS

Bugs -6.2924

(< 1%)

19.7971

(< 1%)

1.4979

(< 1%)

-22.5341

(< 1%)

253.8932

(< 1%)

0.02850

(> 10%)

Improvements -14.2133

(< 1%)

101.0122

(< 1%)

0.1397

(> 10%)

-25.8415

(< 1%)

333.8919

(< 1%)

0.00801

(> 10%)

New Features -12.5811

(< 1%)

79.1419

(< 1%)

1.6665

(< 1%)

-27.8207

(< 1%)

386.9947

(< 1%)

0.00922

(> 10%)

67

Table 17 Stationarity test results for the NetBeans java time series data, with a

sampling period of 14 days.

Time Series
Un-differenced data Differenced data

ADF (𝜏2) ADF(𝜑1) KPSS ADF (𝜏2) ADF(𝜑1) KPSS

Bugs -4.1489

(< 1%)

8.6086

(< 1%)

1.7996

(< 1%)

-14.8878

(< 1%)

110.8247

(< 1%)

0.04114

(> 10%)

Improvements -10.6512

(< 1%)

56.7236

(< 1%)

0.62672

(< 1%)

-20.0450

(< 1%)

200.9024

(< 1%)

0.01392

(> 10%)

New Features -8.3221

(< 1%)

34.6290

(< 1%)

0.57192

(> 2.5%)

-20.9486

(< 1%)

219.4221

(< 1%)

0.02217

(> 10%)

Table 18 Stationarity test results for the NetBeans java time series data, with a

sampling period of 30 days.

Time Series
Un-differenced data Differenced data

ADF (𝜏2) ADF(𝜑1) KPSS ADF (𝜏2) ADF(𝜑1) KPSS

Bugs -3.3551

(< 5%)

5.6322

(< 5%)

0.5672

(> 2.5%)

-8.6438

(< 1%)

37.3794

(< 1%)

0.07085

(> 10%)

Improvements -6.1447

(< 1%)

18.8829

(< 1%)

0.1011

(> 10%)

-11.8473

(< 1%)

70.1811

(< 1%)

0.02910

(> 10%)

New Features -4.1530

(< 1%)

8.6242

(< 1%)

0.7231

(> 1%)

-13.4034

(< 1%)

89.8285

(< 1%)

0.05939

(> 10%)

68

Appendix C: Exploratory Modeling Results

These are the results from running exploratory modeling, where a variety of

sliding window parameters were evaluated to determine their effect on validity and

accuracy.

Table 19 Results of the sliding window for various parameter values, using the MongoDB

core server dataset, with a sampling period of 7 days.

Window

Size

Diff.

Degree

Window

Count

None

Valid

Non-

normal
RMSE

In 90%

Interval

In 75%

Interval

36 0 266 0.0263 0.0425 7.1088 0.8105 0.6694

39 0 263 0.0152 0.0386 6.7192 0.8353 0.7309

42 0 260 0.0154 0.0547 7.0477 0.8347 0.7025

45 0 257 0.0156 0.0593 6.8563 0.8487 0.7395

48 0 254 0.0079 0.0595 7.0984 0.8608 0.7384

51 0 251 0.012 0.0726 7.085 0.8478 0.7304

54 0 248 0.0242 0.095 7.0005 0.8767 0.758

57 0 245 0.0041 0.0984 7.0746 0.8636 0.7409

60 0 242 0 0.0826 7.2357 0.8514 0.7027

63 0 239 0 0.0962 7.1432 0.8565 0.75

66 0 236 0.0085 0.0769 7.4012 0.8843 0.7361

69 0 233 0.0129 0.0565 7.0468 0.871 0.7465

72 0 230 0.0043 0.0611 7.1442 0.8651 0.7581

75 0 227 0 0.0529 6.9642 0.8884 0.7907

78 0 224 0 0.0714 7.2621 0.875 0.7788

36 1 265 0.0038 0.053 7.3308 0.316 0.216

39 1 262 0 0.0687 7.3186 0.3402 0.2582

42 1 259 0 0.0888 7.2981 0.3178 0.2331

45 1 256 0 0.0898 7.2555 0.309 0.2318

48 1 253 0 0.0988 7.4097 0.2544 0.2061

51 1 250 0 0.084 7.4077 0.2358 0.2096

54 1 247 0.004 0.0772 7.4128 0.2467 0.185

57 1 244 0.0041 0.0823 7.3926 0.2601 0.1928

60 1 241 0.0041 0.0958 7.3429 0.2811 0.212

63 1 238 0.0042 0.097 7.471 0.2804 0.1963

66 1 235 0.0043 0.1154 7.5238 0.2319 0.1739

69 1 232 0 0.1164 7.6218 0.2927 0.1854

69

Table 19 (Continued)

Window

Size

Diff.

Degree

Window

Count

None

Valid

Non-

normal
RMSE

In 90%

Interval

In 75%

Interval

72 1 229 0 0.1223 7.713 0.2388 0.1741

75 1 226 0 0.146 7.797 0.2591 0.1969

78 1 223 0 0.1256 7.7931 0.2769 0.1846

36 2 264 0.0341 0.0588 9.7407 0.2417 0.1625

39 2 261 0.0421 0.08 9.5765 0.2348 0.1609

42 2 258 0.031 0.064 9.6554 0.2692 0.2009

45 2 255 0.0039 0.0591 9.75 0.2552 0.1674

48 2 252 0.004 0.0558 9.538 0.2278 0.1688

51 2 249 0.0161 0.049 9.5859 0.2747 0.1803

54 2 246 0.0203 0.0498 9.7917 0.2533 0.1747

57 2 243 0.0247 0.0295 9.4243 0.2826 0.2

60 2 240 0.0208 0.0255 9.1724 0.2882 0.1921

63 2 237 0.0169 0.0215 9.1596 0.2895 0.2018

66 2 234 0.0085 0.0259 9.2681 0.2257 0.1814

69 2 231 0.0043 0.0217 9.2867 0.2889 0.1956

72 2 228 0 0.0219 9.27 0.2735 0.2108

75 2 225 0 0.0133 9.2443 0.3063 0.2432

78 2 222 0.0045 0.009 9.1373 0.2922 0.2237

Table 20 Results of the sliding window for various parameter values, using the MongoDB

core server dataset, with a sampling period of 14 days.

Window

Size

Diff.

Degree

Window

Count

None

Valid

Non-

normal
RMSE

In 90%

Interval

In 75%

Interval

24 0 127 0.126 0.0631 12.2365 0.7019 0.5962

27 0 124 0.1048 0.036 12.0656 0.7196 0.5888

30 0 121 0.0744 0.0625 12.2339 0.7714 0.6381

33 0 118 0.0508 0.0446 12.1686 0.7944 0.6355

36 0 115 0.0087 0.0439 12.5667 0.8165 0.6789

39 0 112 0.0089 0.045 12.251 0.8585 0.7075

42 0 109 0.0092 0.0278 12.5108 0.8381 0.7524

45 0 106 0 0.0377 12.7371 0.8627 0.7157

48 0 103 0 0.0388 12.7419 0.8485 0.7475

51 0 100 0 0.03 12.1728 0.8866 0.7732

54 0 97 0 0 13.0601 0.8866 0.7423

70

Table 20 (Continued)

Window

Size

Diff.

Degree

Window

Count

None

Valid

Non-

normal
RMSE

In 90%

Interval

In 75%

Interval

24 1 126 0.0238 0 14.723 0.3659 0.2764

27 1 123 0.0813 0 14.6283 0.292 0.2301

30 1 120 0.0667 0.0089 13.8263 0.2883 0.2072

33 1 117 0.0598 0 13.7754 0.3273 0.2273

36 1 114 0.0439 0.0092 13.721 0.2963 0.213

39 1 111 0.036 0.0093 13.674 0.3019 0.217

42 1 108 0.0093 0.0093 13.7645 0.2642 0.2264

45 1 105 0.0095 0.0385 13.8128 0.26 0.22

48 1 102 0.0196 0.02 14.0921 0.3163 0.2143

51 1 99 0.0808 0.011 14.6563 0.2222 0.2

54 1 96 0.1354 0.0241 15.2364 0.2593 0.2099

24 2 125 0.136 0 19.1918 0.2315 0.1759

27 2 122 0.1557 0.0097 19.3405 0.2451 0.1471

30 2 119 0.1597 0 18.7677 0.29 0.19

33 2 116 0.181 0 18.7744 0.2 0.1474

36 2 113 0.1681 0.0106 17.9884 0.2688 0.2151

39 2 110 0.1364 0.0421 17.6966 0.1648 0.0989

42 2 107 0.0935 0.0206 17.8889 0.2316 0.1684

45 2 104 0.0481 0.0303 17.9562 0.2708 0.1667

48 2 101 0.0198 0.0404 17.6384 0.2 0.1368

51 2 98 0.0102 0.0825 18.1619 0.2472 0.1573

54 2 95 0.0316 0.0978 18.7985 0.2651 0.2169

Table 21 Results of the sliding window for various parameter values, using the MongoDB

core server dataset, with a sampling period of 30 days.

Window

Size

Diff.

Degree

Window

Count

None

Valid

Non-

normal
RMSE

In 90%

Interval

In 75%

Interval

12 0 58 0.1897 0.1702 30.1084 0.5385 0.4103

15 0 55 0.1818 0.0444 29.8198 0.5349 0.4651

18 0 52 0.25 0 29.9369 0.5128 0.3846

21 0 49 0.2449 0.027 31.3845 0.5 0.3611

24 0 46 0.087 0.0952 28.7562 0.6053 0.4737

27 0 43 0.1395 0.1622 31.7467 0.5806 0.4839

30 0 40 0.15 0.0882 30.558 0.7097 0.5161

71

Table 21 (Continued)

Window

Size

Diff.

Degree

Window

Count

None

Valid

Non-

normal
RMSE

In 90%

Interval

In 75%

Interval

33 0 37 0.1892 0.2 31.319 0.5833 0.375

36 0 34 0.0882 0.1935 32.1424 0.6 0.44

12 1 57 0.1579 0.0833 38.4833 0.3409 0.2955

15 1 54 0.0556 0.1765 33.5892 0.4048 0.3095

18 1 51 0.1569 0.2326 29.4009 0.2121 0.1212

21 1 48 0.1875 0.2308 34.4193 0.2333 0.1667

24 1 45 0.0889 0.0732 34.4471 0.4211 0.2895

27 1 42 0.119 0 32.8154 0.3784 0.2432

30 1 39 0.2308 0.0333 34.0206 0.5172 0.3103

33 1 36 0.25 0.037 35.4527 0.4231 0.2692

36 1 33 0 0.0606 34.1955 0.4194 0.2581

12 2 56 0.1607 0 46.1684 0.1915 0.1489

15 2 53 0.0566 0 48.0847 0.16 0.14

18 2 50 0.08 0 47.4011 0.2174 0.1522

21 2 47 0.0851 0 50.933 0.186 0.093

24 2 44 0.1136 0 49.4234 0.1795 0.1026

27 2 41 0.1463 0 47.5708 0.1143 0.0857

30 2 38 0.1579 0.0312 40.017 0.1935 0.0968

33 2 35 0.2 0 43.9241 0.2143 0.1071

36 2 32 0.0625 0 49.3429 0.0333 0.0333

Table 22 Results of the sliding window for various parameter values, using the Hibernate

orm dataset, with a sampling period of 7 days.

Window

Size

Diff.

Degree

Window

Count

None

Valid

Non-

normal
RMSE

In 90%

Interval

In 75%

Interval

36 0 592 0.0338 0.0437 3.7751 0.8921 0.7971

39 0 589 0.039 0.0424 3.8057 0.8985 0.7823

42 0 586 0.0666 0.0256 3.7109 0.9099 0.803

45 0 583 0.0858 0.0263 3.7575 0.9056 0.817

48 0 580 0.0345 0.0268 3.6948 0.9156 0.811

51 0 577 0.0347 0.0305 3.6648 0.9167 0.8167

54 0 574 0.0505 0.0312 3.7317 0.8996 0.8239

57 0 571 0.0578 0.0428 3.701 0.9107 0.8078

60 0 568 0.044 0.0442 3.6616 0.9191 0.8189

72

Table 22 (Continued)

Window

Size

Diff.

Degree

Window

Count

None

Valid

Non-

normal
RMSE

In 90%

Interval

In 75%

Interval

63 0 565 0.0531 0.0505 3.7796 0.9094 0.8051

66 0 562 0.0623 0.0512 3.8422 0.908 0.818

69 0 559 0.0716 0.0636 3.8496 0.9218 0.8333

72 0 556 0.0629 0.0691 3.764 0.9237 0.8227

75 0 553 0.0633 0.0714 3.7777 0.9148 0.8254

78 0 550 0.0618 0.0659 3.7236 0.9129 0.8423

36 1 591 0.0558 0 4.0317 0.3495 0.2455

39 1 588 0.068 0.0036 4.0605 0.337 0.2418

42 1 585 0.0547 0.0072 4.0237 0.3206 0.2277

45 1 582 0.0533 0.0036 3.9689 0.3224 0.235

48 1 579 0.0501 0.0073 3.869 0.3132 0.2418

51 1 576 0.0556 0.0074 3.8782 0.3074 0.2352

54 1 573 0.0593 0.0111 3.9158 0.2889 0.227

57 1 570 0.0702 0.0132 3.8293 0.3002 0.2199

60 1 567 0.06 0.0169 3.9171 0.3034 0.2137

63 1 564 0.0762 0.0115 3.9501 0.3029 0.2369

66 1 561 0.082 0.0155 3.9868 0.3097 0.2189

69 1 558 0.0878 0.0196 3.9754 0.2866 0.2184

72 1 555 0.0847 0.0276 3.9352 0.3097 0.2308

75 1 552 0.0924 0.018 3.9101 0.2988 0.2134

78 1 549 0.0838 0.0219 3.9379 0.3008 0.2276

36 2 590 0.1746 0.0719 5.4174 0.3341 0.2456

39 2 587 0.1942 0.0613 5.6012 0.3243 0.2117

42 2 584 0.2089 0.0584 5.4871 0.3425 0.2345

45 2 581 0.2306 0.0559 5.3992 0.3483 0.2607

48 2 578 0.1972 0.0517 5.1401 0.3568 0.275

51 2 575 0.2261 0.0764 4.9943 0.3382 0.2652

54 2 572 0.215 0.0958 4.7969 0.3498 0.2709

57 2 569 0.2478 0.0748 4.7112 0.3636 0.2803

60 2 566 0.2032 0.0754 4.8994 0.3573 0.2806

63 2 563 0.2114 0.0788 5.1818 0.3301 0.2396

66 2 560 0.225 0.076 4.8411 0.3441 0.2718

69 2 557 0.228 0.0651 5.0767 0.3657 0.2761

72 2 554 0.2184 0.0785 4.9937 0.3759 0.2607

75 2 551 0.2123 0.0876 4.9523 0.3409 0.2449

78 2 548 0.2172 0.0816 4.9851 0.3477 0.2335

73

Table 23 Results of the sliding window for various parameter values, using the Hibernate

orm dataset, with a sampling period of 14 days.

Window

Size

Diff.

Degree

Window

Count

None

Valid

Non-

normal
RMSE

In 90%

Interval

In 75%

Interval

24 0 290 0.0655 0.0185 6.0408 0.8271 0.7368

27 0 287 0.0732 0.0338 6.2294 0.821 0.7198

30 0 284 0.088 0.0463 6.3016 0.8381 0.7368

33 0 281 0.0712 0.0345 6.1508 0.877 0.75

36 0 278 0.0432 0.0338 6.0623 0.8833 0.7588

39 0 275 0.0473 0.0573 6.0728 0.8907 0.7571

42 0 272 0.0772 0.0797 6.1146 0.8918 0.7619

45 0 269 0.0855 0.1057 6.2106 0.8727 0.7409

48 0 266 0.0489 0.1186 5.9274 0.8969 0.7578

51 0 263 0.0456 0.1315 5.8937 0.8853 0.7569

54 0 260 0.0462 0.1411 6.2151 0.8873 0.7418

24 1 289 0.0692 0.0297 6.0855 0.3563 0.2644

27 1 286 0.0629 0.0187 5.9908 0.365 0.2586

30 1 283 0.0777 0.0192 5.9715 0.4062 0.293

33 1 280 0.0893 0.0314 5.977 0.3887 0.2996

36 1 277 0.0903 0.0278 6.0303 0.3878 0.2898

39 1 274 0.0985 0.0324 6.0421 0.3891 0.2929

42 1 271 0.1181 0.0418 6.1093 0.4148 0.3144

45 1 268 0.1194 0.0254 6.0003 0.4174 0.2913

48 1 265 0.1472 0.0531 5.9811 0.3598 0.2664

51 1 262 0.1489 0.0807 6.0572 0.3561 0.2537

54 1 259 0.1622 0.0922 6.0686 0.3655 0.264

24 2 288 0.2014 0.0304 8.8933 0.2691 0.1973

27 2 285 0.1544 0.0456 8.6314 0.2565 0.1783

30 2 282 0.1773 0.069 8.6628 0.2685 0.1806

33 2 279 0.1828 0.0658 8.3941 0.2394 0.1549

36 2 276 0.0942 0.04 8.3626 0.275 0.1958

39 2 273 0.1209 0.0167 8.6061 0.2627 0.2119

42 2 270 0.1704 0.0089 8.3573 0.2387 0.1622

45 2 267 0.1723 0.0136 8.3428 0.2202 0.133

48 2 264 0.178 0.023 8.2138 0.2547 0.1981

51 2 261 0.1992 0.0144 7.9015 0.267 0.1748

54 2 258 0.2209 0.0199 8.0545 0.3046 0.2132

74

Table 24 Results of the sliding window for various parameter values, using the Hibernate

orm dataset, with a sampling period of 30 days.

Window

Size

Diff.

Degree

Window

Count

None

Valid

Non-

normal
RMSE

In 90%

Interval

In 75%

Interval

12 0 134 0.2537 0.05 10.5601 0.8105 0.7474

15 0 131 0.2137 0.0291 9.5438 0.85 0.72

18 0 128 0.2266 0.0404 9.5969 0.8421 0.6947

21 0 125 0.264 0.0217 10.2667 0.8111 0.7

24 0 122 0.0656 0.0702 9.6204 0.8396 0.7075

27 0 119 0.0756 0.0636 9.7352 0.767 0.6505

30 0 116 0.0862 0.0849 9.9829 0.7835 0.7113

33 0 113 0.0973 0.0588 9.1539 0.8646 0.75

36 0 110 0.0455 0.1143 9.5042 0.8817 0.7204

12 1 133 0.1654 0 11.1269 0.4775 0.4144

15 1 130 0.1692 0 11.1249 0.463 0.3333

18 1 127 0.1969 0 10.9949 0.4216 0.3333

21 1 124 0.2339 0.0105 10.5803 0.4787 0.383

24 1 121 0.0413 0.0086 10.2685 0.5391 0.4522

27 1 118 0.0339 0.0175 10.8562 0.4732 0.4375

30 1 115 0.0435 0.0182 10.3656 0.537 0.4259

33 1 112 0.0446 0.0187 10.4198 0.4667 0.3619

36 1 109 0.0183 0.0093 10.3279 0.4434 0.3302

12 2 132 0.2348 0.099 16.3225 0.3736 0.2857

15 2 129 0.2248 0.08 18.469 0.3261 0.2283

18 2 126 0.2778 0.0769 17.1721 0.3214 0.2738

21 2 123 0.3496 0.0625 16.7591 0.3733 0.3067

24 2 120 0.2167 0.0532 15.9745 0.2697 0.2135

27 2 117 0.265 0.0349 15.4464 0.2289 0.1687

30 2 114 0.2719 0.0361 15.8677 0.1875 0.1375

33 2 111 0.2523 0.0361 14.4222 0.25 0.2

36 2 108 0.1574 0.0549 14.6457 0.2674 0.1512

75

Table 25 Results of the sliding window for various parameter values, using the NetBeans

platform dataset, with a sampling period of 7 days.

Window

Size

Diff.

Degree

Window

Count

None

Valid

Non-

normal
RMSE

In 90%

Interval

In 75%

Interval

36 0 459 0.0654 0.0909 9.86 0.8897 0.7949

39 0 456 0.0636 0.0913 9.5371 0.8995 0.8093

42 0 453 0.0574 0.1148 9.5295 0.9074 0.8228

45 0 450 0.0667 0.1357 9.7326 0.8981 0.8402

48 0 447 0.0805 0.1484 9.9171 0.8943 0.8257

51 0 444 0.0901 0.1683 9.6058 0.9137 0.8304

54 0 441 0.093 0.1875 9.4234 0.9015 0.8369

57 0 438 0.0822 0.209 9.5227 0.9088 0.8176

60 0 435 0.0759 0.2463 9.0788 0.9175 0.8284

63 0 432 0.0903 0.2646 9.1516 0.917 0.8304

66 0 429 0.0816 0.2741 8.7717 0.9301 0.8636

69 0 426 0.0798 0.2832 9.0589 0.9253 0.8505

72 0 423 0.078 0.3103 8.5253 0.948 0.855

75 0 420 0.0738 0.3085 8.5665 0.9405 0.8662

78 0 417 0.0791 0.362 8.6697 0.9429 0.8694

36 1 458 0.0786 0.1232 9.6252 0.3784 0.2568

39 1 455 0.0659 0.1176 9.4768 0.352 0.2453

42 1 452 0.0774 0.1175 9.5606 0.356 0.2636

45 1 449 0.0935 0.1327 9.6163 0.3144 0.2408

48 1 446 0.0874 0.1425 9.4862 0.3324 0.2636

51 1 443 0.0609 0.125 9.2261 0.3489 0.261

54 1 440 0.0568 0.159 9.3312 0.3582 0.2464

57 1 437 0.0526 0.1618 9.078 0.366 0.2824

60 1 434 0.0507 0.1699 9.0127 0.3596 0.2778

63 1 431 0.0603 0.1852 8.8855 0.3485 0.2576

66 1 428 0.0537 0.1975 8.8611 0.3538 0.2523

69 1 425 0.0635 0.1985 8.9273 0.3605 0.2821

72 1 422 0.0687 0.2061 8.4446 0.3846 0.2917

75 1 419 0.0501 0.2161 8.2176 0.3558 0.2564

78 1 416 0.0529 0.2234 8.2652 0.3562 0.2647

36 2 457 0.1422 0.0281 12.885 0.294 0.2047

39 2 454 0.1586 0.0209 12.8026 0.3048 0.2273

42 2 451 0.1663 0.0319 12.865 0.2582 0.1758

45 2 448 0.1585 0.0345 12.836 0.3022 0.2115

48 2 445 0.1393 0.0287 12.2567 0.3172 0.2151

76

Table 25 (Continued)

Window

Size

Diff.

Degree

Window

Count

None

Valid

Non-

normal
RMSE

In 90%

Interval

In 75%

Interval

51 2 442 0.1335 0.0261 12.213 0.3083 0.2225

54 2 439 0.1412 0.0239 11.746 0.3043 0.2418

57 2 436 0.156 0.038 11.6564 0.3418 0.2655

60 2 433 0.1455 0.0568 11.382 0.3209 0.2521

63 2 430 0.1535 0.0604 11.2337 0.3363 0.2661

66 2 427 0.1639 0.056 10.9923 0.3175 0.2552

69 2 424 0.1557 0.0782 10.6024 0.3303 0.2242

72 2 421 0.1615 0.0878 10.4374 0.3665 0.2702

75 2 418 0.1722 0.0838 9.9606 0.3375 0.2587

78 2 415 0.188 0.1128 10.1103 0.3077 0.2174

Table 26 Results of the sliding window for various parameter values, using the NetBeans

platform dataset, with a sampling period of 14 days.

Window

Size

Diff.

Degree

Window

Count

None

Valid

Non-

normal
RMSE

In 90%

Interval

In 75%

Interval

24 0 223 0.0493 0.0425 19.3307 0.8867 0.7882

27 0 220 0.05 0.0526 15.816 0.904 0.798

30 0 217 0.0599 0.0686 15.7743 0.9053 0.8053

33 0 214 0.0561 0.0545 14.8422 0.9162 0.8115

36 0 211 0.0427 0.0941 14.7299 0.9454 0.847

39 0 208 0.0385 0.125 14.5529 0.9543 0.88

42 0 205 0.0146 0.1584 14.7545 0.9412 0.8471

45 0 202 0.0396 0.201 14.0061 0.9548 0.8839

48 0 199 0.0302 0.2435 15.2696 0.9452 0.8836

51 0 196 0.0357 0.2646 14.7779 0.9353 0.9065

54 0 193 0.0415 0.2865 15.0171 0.9318 0.9091

24 1 222 0.0991 0.04 16.4695 0.4635 0.3438

27 1 219 0.0959 0.0253 15.2702 0.4611 0.3938

30 1 216 0.1111 0.0156 15.9387 0.3757 0.328

33 1 213 0.0939 0.0155 15.968 0.3947 0.2842

36 1 210 0.0762 0.0258 15.7459 0.3915 0.3069

39 1 207 0.0821 0.0263 15.2116 0.3243 0.2919

42 1 204 0.0784 0.0266 15.1269 0.3497 0.235

45 1 201 0.0796 0.027 14.038 0.3667 0.2889

77

Table 26 (Continued)

Window

Size

Diff.

Degree

Window

Count

None

Valid

Non-

normal
RMSE

In 90%

Interval

In 75%

Interval

48 1 198 0.0657 0.0324 14.2528 0.3408 0.2849

51 1 195 0.0821 0.0279 14.6695 0.2989 0.2414

54 1 192 0.099 0.0173 14.8401 0.3176 0.2471

24 2 221 0.1991 0.0565 22.0721 0.2814 0.2036

27 2 218 0.1835 0.0506 20.127 0.3669 0.2544

30 2 215 0.186 0.0229 21.079 0.345 0.2632

33 2 212 0.2311 0.0491 19.8758 0.2774 0.1871

36 2 209 0.2392 0.0503 19.6064 0.3311 0.2781

39 2 206 0.2379 0.0637 19.7054 0.3197 0.2517

42 2 203 0.2414 0.0649 19.7021 0.3264 0.2708

45 2 200 0.27 0.0822 19.4454 0.3284 0.2687

48 2 197 0.2335 0.106 18.2789 0.3481 0.2741

51 2 194 0.299 0.1029 18.8858 0.3115 0.2213

54 2 191 0.3246 0.1163 18.9413 0.3596 0.2807

Table 27 Results of the sliding window for various parameter values, using the NetBeans

platform dataset, with a sampling period of 30 days.

Window

Size

Diff.

Degree

Window

Count

None

Valid

Non-

normal
RMSE

In 90%

Interval

In 75%

Interval

12 0 103 0.1942 0 43.6864 0.7229 0.6024

15 0 100 0.16 0.0238 34.8502 0.8171 0.622

18 0 97 0.2062 0.0519 32.3821 0.8082 0.7123

21 0 94 0.1915 0.0658 34.5304 0.7465 0.6761

24 0 91 0.011 0.1111 36.6959 0.725 0.6625

27 0 88 0 0.1364 33.2856 0.7368 0.6184

30 0 85 0.0118 0.0833 33.3657 0.7662 0.6753

33 0 82 0.0122 0.0741 33.0471 0.8267 0.68

36 0 79 0 0.0506 31.0204 0.84 0.7333

12 1 102 0.098 0.0326 39.2089 0.4045 0.3371

15 1 99 0.1212 0.069 35.8939 0.4444 0.3827

18 1 96 0.0729 0.0225 36.2631 0.3908 0.3103

21 1 93 0.0753 0.0581 34.3627 0.3827 0.2963

24 1 90 0.0111 0.1124 36.8309 0.3418 0.2532

27 1 87 0.0115 0.1512 37.2506 0.3836 0.2603

78

Table 27 (Continued)

Window

Size

Diff.

Degree

Window

Count

None

Valid

Non-

normal
RMSE

In 90%

Interval

In 75%

Interval

30 1 84 0 0.1548 37.2207 0.3239 0.2254

33 1 81 0 0.2222 39.2093 0.2698 0.1587

36 1 78 0 0.2308 37.0815 0.3333 0.25

12 2 101 0.198 0 55.6171 0.3457 0.2346

15 2 98 0.2347 0.0267 51.4706 0.274 0.2055

18 2 95 0.2316 0 52.889 0.3562 0.2466

21 2 92 0.2065 0 47.3575 0.2192 0.1507

24 2 89 0.0674 0 47.1952 0.241 0.1325

27 2 86 0.0465 0 46.1986 0.2317 0.1585

30 2 83 0.0482 0 46.4639 0.2405 0.1772

33 2 80 0.05 0.0132 42.8021 0.2133 0.1067

36 2 77 0.039 0 44.603 0.2162 0.1757

Table 28 Results of the sliding window for various parameter values, using the NetBeans

java dataset, with a sampling period of 7 days.

Window

Size

Diff.

Degree

Window

Count

None

Valid

Non-

normal
RMSE

In 90%

Interval

In 75%

Interval

36 0 458 0.0328 0.1783 11.5142 0.9093 0.8297

39 0 455 0.0286 0.1833 11.6885 0.9114 0.8338

42 0 452 0.031 0.1872 11.3673 0.9326 0.8624

45 0 449 0.0267 0.1854 8.495 0.9326 0.8511

48 0 446 0.0471 0.1788 9.0924 0.9255 0.8596

51 0 443 0.0519 0.1929 8.3931 0.941 0.8791

54 0 440 0.0682 0.1854 9.0207 0.9431 0.8832

57 0 437 0.0824 0.197 8.6575 0.9441 0.8789

60 0 434 0.0691 0.203 8.3238 0.9503 0.8851

63 0 431 0.0742 0.2281 8.8945 0.9416 0.8636

66 0 428 0.0794 0.2487 8.3348 0.9459 0.8682

69 0 425 0.0729 0.2843 8.3855 0.9504 0.8723

72 0 422 0.0711 0.3112 8.1105 0.9556 0.8778

75 0 419 0.0644 0.3444 8.3474 0.9689 0.8794

78 0 416 0.0457 0.3552 8.0082 0.957 0.8945

36 1 457 0.0306 0.1174 9.6908 0.3785 0.289

39 1 454 0.0396 0.0963 9.6353 0.3909 0.2868

79

Table 28 (Continued)

Window

Size

Diff.

Degree

Window

Count

None

Valid

Non-

normal
RMSE

In 90%

Interval

In 75%

Interval

42 1 451 0.0421 0.1019 9.628 0.3376 0.2448

45 1 448 0.0335 0.1039 9.4252 0.3531 0.2577

48 1 445 0.0292 0.1181 9.6122 0.3675 0.2782

51 1 442 0.0249 0.1183 9.6928 0.3368 0.2605

54 1 439 0.0478 0.0909 9.6931 0.3289 0.2553

57 1 436 0.0665 0.0983 9.6654 0.3597 0.2807

60 1 433 0.0462 0.092 8.9048 0.3893 0.2773

63 1 430 0.0581 0.1111 8.6984 0.3444 0.2528

66 1 427 0.0468 0.1302 8.6851 0.3672 0.2655

69 1 424 0.0448 0.158 8.8131 0.3314 0.2551

Table 29 Results of the sliding window for various parameter values, using the NetBeans

java dataset, with a sampling period of 14 days.

Window

Size

Diff.

Degree

Window

Count

None

Valid

Non-

normal
RMSE

In 90%

Interval

In 75%

Interval

24 0 223 0.148 0.1316 18.4175 0.903 0.8364

27 0 220 0.1455 0.1809 15.5545 0.9156 0.8182

30 0 217 0.1475 0.2108 13.2803 0.9247 0.8699

33 0 214 0.1355 0.2432 14.8439 0.9 0.8643

36 0 211 0.1469 0.3111 13.3972 0.9435 0.871

39 0 208 0.1442 0.3427 14.9439 0.9316 0.8718

42 0 205 0.1366 0.3277 15.3356 0.9328 0.8571

45 0 202 0.1733 0.3952 15.8706 0.9505 0.8812

48 0 199 0.1759 0.4268 14.7681 0.9574 0.9255

51 0 196 0.1735 0.4568 13.9321 0.9659 0.9205

54 0 193 0.1813 0.4937 14.5164 0.9625 0.9125

24 1 222 0.1171 0.0561 19.7705 0.427 0.3027

27 1 219 0.0913 0.1206 18.0539 0.3657 0.2857

30 1 216 0.1296 0.1489 18.0469 0.4312 0.3062

33 1 213 0.1408 0.1694 17.9844 0.3684 0.3158

36 1 210 0.1476 0.1955 17.6171 0.3889 0.3056

39 1 207 0.1304 0.1889 17.16 0.4247 0.2877

42 1 204 0.1225 0.2235 17.1311 0.446 0.3381

45 1 201 0.1343 0.2299 17.5275 0.4179 0.3284

80

Table 29 (Continued)

Window

Size

Diff.

Degree

Window

Count

None

Valid

Non-

normal
RMSE

In 90%

Interval

In 75%

Interval

48 1 198 0.1061 0.226 17.1213 0.4015 0.3066

51 1 195 0.0769 0.2389 16.7823 0.438 0.3358

54 1 192 0.0833 0.3523 17.5911 0.386 0.3158

24 2 221 0.2398 0.0536 26.4102 0.2642 0.2013

27 2 218 0.2385 0.0602 24.629 0.2756 0.1923

30 2 215 0.2279 0.0843 24.7462 0.2434 0.1711

33 2 212 0.2594 0.1019 24.0487 0.2837 0.1986

36 2 209 0.1866 0.1294 25.3042 0.277 0.2027

39 2 206 0.1796 0.1657 26.0777 0.2482 0.1702

42 2 203 0.1724 0.1845 26.7409 0.2263 0.1679

45 2 200 0.17 0.1627 25.4501 0.2446 0.1727

48 2 197 0.1726 0.1411 24.9162 0.2571 0.2

51 2 194 0.1907 0.1465 23.1309 0.2761 0.194

54 2 191 0.1675 0.1635 21.4298 0.2932 0.2481

Table 30 Results of the sliding window for various parameter values, using the NetBeans

java dataset, with a sampling period of 30 days.

Window

Size

Diff.

Degree

Window

Count

None

Valid

Non-

normal
RMSE

In 90%

Interval

In 75%

Interval

12 0 103 0.4563 0.0357 64.1359 0.7778 0.6852

15 0 100 0.36 0.0156 54.8333 0.8413 0.746

18 0 97 0.3299 0.0769 52.7232 0.85 0.7833

21 0 94 0.2447 0.1127 24.6878 0.9524 0.9206

24 0 91 0.1648 0.1316 27.4929 0.9394 0.8485

27 0 88 0.125 0.1558 27.3194 0.9692 0.8615

30 0 85 0.1294 0.1351 39.1019 0.9531 0.9062

33 0 82 0.1341 0.1831 41.7956 0.9138 0.8966

36 0 79 0.1646 0.1364 42.6994 0.9123 0.8772

12 1 102 0.0882 0.043 55.804 0.382 0.3371

15 1 99 0.0808 0.0659 38.211 0.4941 0.3647

18 1 96 0.0417 0.1304 31.0359 0.425 0.3125

21 1 93 0.043 0.1461 35.8527 0.4079 0.3421

24 1 90 0.0556 0.1294 42.9426 0.4054 0.2838

27 1 87 0.0575 0.1707 39.9849 0.3824 0.2794

81

Table 30 (Continued)

Window

Size

Diff.

Degree

Window

Count

None

Valid

Non-

normal
RMSE

In 90%

Interval

In 75%

Interval

30 1 84 0.0833 0.1039 40.1486 0.4203 0.3188

33 1 81 0.1358 0.1 40.234 0.4444 0.3175

36 1 78 0.1538 0.0455 39.5017 0.3492 0.1905

12 2 101 0.1386 0.0115 60.3041 0.3256 0.2209

15 2 98 0.1735 0.0123 59.1983 0.35 0.2625

18 2 95 0.1368 0.0732 53.2988 0.2895 0.2237

21 2 92 0.163 0.1299 44.2046 0.3582 0.2836

24 2 89 0.1461 0.0921 43.3983 0.3768 0.3188

27 2 86 0.1628 0.1111 39.5985 0.2812 0.2656

30 2 83 0.1566 0.1286 45.954 0.3115 0.2131

33 2 80 0.1875 0.1385 46.0134 0.2321 0.1964

36 2 77 0.1688 0.1094 44.9917 0.2807 0.193

	Using Time Series Models for Defect Prediction in Software Release Planning
	Recommended Citation

	tmp.1437709682.pdf.1jCrL

