
AIP Conference Proceedings 1834, 040017 (2017); https://doi.org/10.1063/1.4981613 1834, 040017

© 2017 Author(s).

A software deployment algorithm of conflict
detection and automatic adjustment
Cite as: AIP Conference Proceedings 1834, 040017 (2017); https://doi.org/10.1063/1.4981613
Published Online: 28 April 2017

Bingpeng Li

ARTICLES YOU MAY BE INTERESTED IN

 Split plot design and data analysis in SAS
AIP Conference Proceedings 1834, 030024 (2017); https://doi.org/10.1063/1.4981589

https://images.scitation.org/redirect.spark?MID=176720&plid=1401533&setID=379066&channelID=0&CID=496955&banID=520310232&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=f64bef4ce8450099ddefdcc26d23a5121cb5eda2&location=
https://doi.org/10.1063/1.4981613
https://doi.org/10.1063/1.4981613
https://aip.scitation.org/author/Li%2C+Bingpeng
https://doi.org/10.1063/1.4981613
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.4981613
https://aip.scitation.org/doi/10.1063/1.4981589
https://doi.org/10.1063/1.4981589

A Software Deployment Algorithm of Conflict Detection and
Automatic Adjustment

Bingpeng Lia)

Naijing Political College Shanghai Branch, Shanghai 200433, China.

a)121837334@qq.com

Abstract. This paper focuses on software intelligent deployment which can adjust the software deployment process
according to a different environment. First, it analyses the existing software deployment tools,proposes the model of
software intelligent deployment and the standardized description of software intelligent deployment. Then it introduces
and analyses the method of conflict detection and automatic adjustment in software deployment process.On this basis, it
proposes the intelligent deployment software algorithm, which can automatically adjust the software process according to
different environments. Finally it compares and analyses the actual effect of software intelligent deployment.

INTRODUCTION

Software deployment is the process of installing and configuring software to enable the software to work
properly. [1]. Software deployment is not only a tedious work, but also the software deployment environment is
vastly different. There will be a variety of different types of client and server and a variety of different operating
systems and applications running on the deployment environment. Existing software deployment methods include
[2]: manual installation, Install Service /Unattended (Remote) installation, based on the image of the installation
(Ghost, ImageX, PowerQuest), software deployment tools.

At home and abroad there are many software deployment systems, which use different methods and strategies
for the distribution and deployment of software. The existing software deployment system is divided into three types
of: the package deployment tool, the general product deployment tool, the specific vendor product deployment tool.
[3]

The above mentioned three kinds of software deployment system, their common shortcomings are that these
software deployment systems cannot effectively or partially detect constrained and dependent problems before
software deployment process. This is likely to cause a conflict in the software deployment process, which cannot be
automatically resolved, but also the need for manual participation. The existing software deployment system cannot
solve the conflict automatically, mainly including the following two aspects:

(1) In software deployment process, deployment system only gets the situation of the deployment target, without
considering the constraints between the deployment software. This is the reason for the conflict of software
deployment.

(2) In software deployment process, deployment system only describes the dependencies between the
deployment software. But before the software is deployed, the detection constraint and dependency problem are not
combined with the deployment target. This is the reason for the conflict of software deployment.

Considering various problems in the existing software deployment tools, this paper proposes the software
intelligent deployment based on the standardized description. The software intelligent deployment not only uses a
standardized software description language to describe deployment constraints and dependencies of software, but
also detects software and hardware environment of deployment targets. In the software deployment process, the
deployment software system matches and adjusts the software deployment process, which is dependent on the
detecting conflict of the software deployment. In the case of minimal human intervention, software is deployed
automatically and intelligently.

2017 5th International Conference on Computer-Aided Design, Manufacturing, Modeling and Simulation (CDMMS 2017)
AIP Conf. Proc. 1834, 040017-1–040017-8; doi: 10.1063/1.4981613

Published by AIP Publishing. 978-0-7354-1504-1/$30.00

040017-1

BASIC CONCEPTS OF SOFTWARE DEPLOYMENT AND DEPLOYMENT
CONFLICT

Software intelligent deployment model

Software intelligent deployment model includes the deployment server and the deployment target two parts,
which refers to deployment target hardware information, software deployment target information, software
installation package, software deployment information, deployment algorithm and software installation sequence, as
shown in figure 1.

FIGURE 1. Software intelligent deployment model

Deployment target: computer that needs to be deployed.
Deployment server: computer that provides a software deployment service to a deployment target.
Hardware information of deployment target: including CPU, memory, hard disk, motherboard, network card and

other hardware information of deployment target.
Software information of deployment target: including the operating system information and installation software

information, such as the software name, software version number, manufacturer name.
Deployment software information: standardized description of software installation package, describes the

contents of the software including basic information and software deployment related information.
Software installation sequence: the software installation package and the corresponding operation commands to

the deployment target.
Work flow of software deployment model: First, collect the software and hardware information of the

deployment target, and standardized describe the software and hardware information of the deployment target;
Second, according to the requirements of the deployment, use the deployment software algorithm to generate the
software installation sequence; Finally, the deployment server sends the software installation sequence to the
deployment target, the deployment target installation and configuration software.

040017-2

Standardized description of software intelligent deployment

To carry out software intelligent deployment, we must combine the information of the deployment software and
the information of the target. The standardization description of deployment software is realized through modeling
the hardware and software information of the client.

Because the software description model needs to support the whole process of software deployment, it is
necessary to describe the contents contained [5]: basic information of software; component information; deployment
constraints (software constraints and hardware constraints); software dependencies; deployment activities (pre-
deployment activities and post-deployment activities).

Here we adopt a software description language Software Description Deployable (DSD) [4] [5], which that can
support software deployment to the maximum extent. DSD describes the basic semantic elements of software
systems that are essential for software deployment tasks. DSD is not a static description of the contents of the
deployed software system, but also dynamic generation of software system configuration through pattern
interpretation and operation. DSD describes a high degree of expansion, in the simplest case, the model needs to
describe a software system configuration: a version and variable. In the most complex case, a software system model
can describe the entire software series: all versions and variables.

In software intelligent deployment process, In addition to the need to standardize the deployment of software
modeling description, we should also standardized describe hardware and software information of the deployment
target. We use DSD to describe deployment software, regarding the deployment goal the standardization description
is different from the deployment software. After deploying software in a standardized description is not changed in
real time, and the deployment target hardware and software information changes in real-time. Here we abstract the
deployment target information as a Managed Object (MO) [6], this object includes three parts of contents: the
hardware information of deployment client, the software information of deployment client, deployment
configuration information.

Conflict definition of software intelligent deployment

Depending on the nature of the conflict, the conflict can be divided into constraint conflict and dependency
conflict.

Deployment constraints are the conditions that must be met at the time of deployment, which are divided into
two kinds of software and hardware constraints. Software constraints such as the operating system (type, version),
browser, etc. Hardware constraints such as processor type, processor speed, disk space, memory size, screen size, etc.

Deployment dependency is that if one software’s normal use is relies on other software, both software constitute
a dependency relationship. A dependent software can be deployed after its dependent software being deployed. The
following is a formal definition of deployment dependencies and deployment processes

Definition 1.1 (deployment dependent) a software deployment dependency is a two tuple (s1, s2), where s1 is the
name of being dependent on software, s2 is a name that depend on s1 software, ands1 s2.

Definition 1.2 (deployment process) a software deployment process D is a three tuple (S, T, R), where S is the set of
software, T is deployed on the target software, R is to deploy the dependence set, where R is reflexive, {s2 | (s1, s2) R}
S, and S T = .

We use s1 s2to indicatethat s2depend ons1in deployment process D. s2depend ons1has two cases: s2directly depend
ons1, s2indirectly depend ons1, s2depend ons1can be defined as follows:

s1 s2 =df(s1, s2) R s3 S (s3 s1 (s3, s2) R s1 s3) (1)

CONFLICT DETECTION AND AUTOMATIC ADJUSTMENT OF SOFTWARE
INTELLIGENT DEPLOYMENT

According to the different nature of conflict, the conflict can be divided into constraint conflict and dependency
conflict. In this paper, we will introduce constraint conflict detection and dependency conflict detection.

040017-3

Constraint detection of software intelligent deployment

Through DSD and MO, software intelligent deployment system determine whether there is constraint conflict.
The process of constraint and collision detection is as follows:

(1) get MO of deployment target.
(2) get the software installation sequence and the corresponding DSD.
(3) through MO and operation software installation sequence, calculate predicted state after execution of the

software installation sequence, predicted state structure is the same as the MO structure.
(4) detect Software and hardware constraints of predicted state.

Collision detection of software intelligent deployment

Collision detection of software intelligent deployment is divided into two parts: integrity dependent check and
cyclic dependent check.

Integrity dependent check
For a software deployment, if the deployment of the software exist in deployment software collections or

deployment goals, it is said that the deployment is integrity.
If the deployment D = (S, T, R) to meet the following conditions, then the D is complete.

{s1 | (s1, s2) R} T S (2)

Cyclic dependent check
Integrity dependent can only ensure that the deployment software exists, but cyclic dependent problem exist. In

the process of software deployment, if there is a cyclic dependent problem between the deployment software, it
cannot be deployed.

If the deployment of D = (S, T, R) to meet the following conditions, there is no cyclic dependent problem in D.

s S (s s) (3)

If a deployment of D at the same time to meet (2) and (3) two conditions, it is said that D is a good definition.
Cyclic dependent check algorithm can be attributed to directed graph existence loop checking [7].Nodes are used

to represent the deployment software; edges are used to represent the dependency relation. The algorithm is as
follows:

(1) select all nodes without precursor (degree of 0) in directed graph ;
(2) remove these nodes and edges associated with themin directed graph;
(3) repeat the above two steps until all nodes have been removed or there is no precursor in the directed graph;
(4) if there are still not deleted nodes and edges in the current graph, there is a loop in the graph, otherwise, there

is no loop.

Software intelligent deployment constraint conflict adjustment

Integrity dependent can only ensure that the deployment software exists, but cyclic dependent problem exist. In
the process of software deployment, if there is a cyclic dependent problem between the deployment software, it
cannot be deployed.

According to the severity, Constraint conflict can be divided into severe constraint conflict and general constraint
conflict. Serious constraint conflicts divided into two types of conflicts:

(1) Hardware constraint conflict: the deployment software has hardware conflict with deployment target, such as
the memory and hard disk cannot meet the requirements of the deployment software. For hardware constraint
conflict, we cannot solve the conflict by constraint conflict adjustment; the deployment of the software cannot be
installed on the target.

(2) Operational constraint conflict: the deployment software has system conflict with deployment target, such as
operating system of deployment target cannot meet the requirements of deployment software. We cannot solve the
conflict with the constraint conflict; the deployment software cannot be installed on the target.

040017-4

General constraint conflict is an application conflict, which is the conflict between the deployment software and
the software on deployment target. The application conflict can be resolved by adjusting and matching the
application software constraint conflict, and the software conflict adjustment is divided into the following three
types:

(1) Deployment target has installed the same software of lower version, which causes that deployment software
not to be installed correctly. The solution is that increasing uninstalls command in software installation sequence,
first uninstall the target software, and then install the software.

(2) Deployment target has been installed the same software of higher version, which causes that deployment
software not to be installed correctly. The solution is that removing the deployment software in software installation
sequence.

(3) Deployment software needs to be installed in the case that the corresponding software is shutdown. The
solution is that directly closing the corresponding software or prompting the user to close the corresponding
software.

Software intelligent deployment dependency conflict adjustment

The dependency conflict adjustment is divided into two parts: joining the software depending on dependency
conflict and adjusting software installation sequence depending on software dependency relationship.

(1) Joining the software depending on dependency conflict
The deployment software depends on other software, if the deployment D = (S, T, R) is not complete, then

dependent software did not exist in the software installation sequence or deployment target, which need to search in
server software component library. The dependent software collection is as follows:

{s1 | (s1, s2) R}\(T S) (4)

This is an ongoing process, if dependency software is found in server software component library, the software
and its dependent software are added to the deployment D, until the D is complete; if you cannot find the dependent
software, it cannot solve the dependency conflict.

The dependency software is implemented by matching DSD. The <Family> attribute of DSD is used to describe
software sequence, through which intelligent software deployment can find the corresponding software.

(1) Adjusting software installation sequence depending on software dependency relationship
A good definition deployment D = (S, T, R), that explain there is no solution to software dependence and cycle

dependence problem. The software installation sequence can be generated according to the deployment dependency
relation. The generation process is as follows: I represents the software installation sequence, Rs represents the
residual dependency software collection, Sr represents the residual deployment software collection, each element in
the sequence is a collection of deployment software:

a) I = , Rs = { (s1, s2) | (s1, s2) R s1 S }, Sr = S ;
b) Rp = { s | s Sr (s1, s2) Rs s2 s },Rpis a collection of software that does not rely on other

deployment software in the current dsoftware installation sequence;
c) Add Rp to I, I = I ^ Rp , ^ indicates the connection of the installation sequence;
d) Remove nodes from Rs which are connect with the Rp, Rs = Rs \ { (s1, s2) | (s1, s2) R s1 Rp }, Sr= Sr\

Rp;
e) If Rs and Sr are empty, then the generation process ends, or else return to b) to continue executing.
According to the above process, the software installation sequence can be generated, which has no dependency

conflict.

SOFTWARE INTELLIGENT DEPLOYMENT ALGORITHM

On the basis of introducing the conflict detection and automatic adjustment, we will introduce the software
intelligent deployment algorithm which can adjust the software deployment process automatically according to the
difference of environment. First, the algorithm detects whether conflicts exist in the process of software deployment.
Second, according to the different conflicts, the algorithm automatically adjusts the software process in order to

040017-5

generate free conflict software installation sequence. Software intelligent deployment algorithm process is shown in
figure 2.

FIGURE 2.s software intelligent deployment algorithm process

(1) According the input of system administrator, through the Change Config Wizard function, software
intelligent deployment system generate the software installation sequence.

{Utility Initiated Changes}< Change Config Wizard (Administrator Input)
(2) The current environment status of Object Managed is MO_State, which contains the hardware information

and software information of the deployment target.
Through the current state of the deployment target and the software installation sequence, Change Coordinator

function can calculate Predicted State, this is predicted state of deployment target after the software installation
sequence had deployed on the deployment target. Change Coordinator function is using simulation method, which
according to DSD acts on MO_State and calculates Predicted State.

[Predicted State] <-Change Coordinator ([MO_State], {Utility Initiated Changes})
Illustrate the above process, The DSD of MySQL is shown in Figure 3. It describes the Size MySQL properties

for 150MBand the software installation needs 150MB hard disk space. According to DSD properties, Change
Coordinator function add150MB on MO_State.Disk.State.Partition.Size, the modification of the MO_State class as
the expected Predicted State client system.

FIGURE 3. specific examples of DSD

(3) Analyzer Strict Constraint Violations function of ANALYZER module can judge whether there is a serious
conflict of Predicted State .When there is a serious conflict, the software installation sequence cannot be installed on
the target.

{Strict Constraint Violations}<-Analyzer Strict Constraint Violations ([Predicted State]);
If {Strict Constraint Violations} is not empty then exit;

<Family>
<Id>
<Name>mysql</Name>...
</Id>
...
<Artifacts>
<Size>150MB</Size>
</Artifacts>

</Family>

040017-6

Illustrate the above process, Analyzer Strict Constraint Violation function can check properties of Predicted State
class. When Predicted State.Disk.State.Partition.Free<= 0, which explain that hard disk space is not enough, there is
a serious conflict with the deployment target

(4)Analyzer Constraint Violations function of ANALYZER module can judge whether there is a general conflict
of Predicted State. When there is no general conflict, the software installation sequence can be installed on the
deployment target. When there is a general conflict, the software installation sequence can be installed after further
being adjusted. MO_State is the current state of the deployment target, Constraint Violationare marked as a conflict
in the software installation process. Basing on analyzing MO_State and Constraint Violation, Planner rearranges the
software installation sequence as Actions Adjustive. The Predicted State of the target is calculated by the Change
Coordinator function with the new software installation sequence. And then checking Predicted State of the
deployment target is that to see if there is a conflict. Repeat the cycle until the Predicted State of the deployment
target is no longer in conflict. Finally, the software sequence can ensure normally installon deployment targete.

{Constraint Violations}<-Analyzer Constraint Violations ([Predicted State]);
do while ({Constraint Violations} is not empty)
{
{Adjustive Actions} <-Planner ([MO_State], {Constraint Violations});
[Predicted State] <-Change Coordinator([MO_State], {Adjustive Actions});
{Constraint Violations}<-Analyzer Constraint Violations (Predicted State]);
{Strict Constraint Violations}<-Analyzer Strict Constraint Violations ([Predicted State]);
If {Strict Constraint Violations} is not empty then exit;
}// do while
If {Strict Constraint Violations} is empty {Action Plan} <- {Adjustive Actions};
(5)The software deployment processes is adjusted by the Planner. Planner uses conflict adjustment method to

adjust the software installation sequence, which has introduced.

EFFECT OF SOFTWARE INTELLIGENT DEPLOYMENT

In local area network, take 100 PC as an example to compare the deployment plan, is shown in Table 1.
TABLE 1. Comparison of client deployment scenarios for different software deployment methods

deployment method time consuming deployment quality

manual deployment 100 * (installation 3.5 hours + manual
configuration 0.5 hours)=400 hours

Cannot avoid the manual configuration
process prone to errors, cannot guarantee

the quality of Client Deployment
semi-automatic

deployment with
artificial intervention

Make the deployment mirror 4 hours + disk
copy 1 hours + 100 * manual configuration

0.5 hours) = 55 hours

Cannot avoid the manual configuration
process prone to errors, cannot guarantee

the quality of Client Deployment

software intelligent
deployment

configure intelligent deployment tools 6 hours
+ automatic deployment of 1 hours (at the

same time automatic configuration) = 7 hours

to achieve the client automation
configuration, to ensure the quality of

the Client Deployment

In the software deployment process, the calculation formula of the manual deployment time is that [(installation
time + manual configuration time) * the number of deployed];the calculation formula of the semi-automatic
deployment time is that [deployment time + manual configuration time];the calculation formula of the software
intelligent deployment time is that [software intelligent deployment preparation time + automatic deployment
time].The conclusions can be drawn from the above deployment time calculation formula. In the case of increasing
deployment, the time of software intelligent deployment is changed least, at the same time software intelligent
deployment can ensure the quality owing to the automation of the configuration. In addition, the software intelligent
deployment not only achieves the standardization of the client and the flexibility to deploy, but also effectively
reduces the workload of system maintenance. To summarize, in the case of large scale and high complexity,
software intelligent deployment has unparalleled advantaged than other two kinds of deployment methods.

040017-7

CONCLUSION

Software intelligent deployment uses standardized mode to describe software deployment information and
deployment target information, detects and automatic adjusts conflict in the deployment process, which can enable
the software to be installed automatically and unconflictly. The method not only improves the efficiency of
operation management, but also effectively reduces the operation cost of enterprise information management.

Software intelligent deployment can also extends feature, such as collecting hardware and software information
of client during the deployment process, which can provide a powerful information support for enterprise resource
management.

REFERENCES

1. Hillenbrand M, Müller P, Mihajloski K. A software deployment service for autonomous computing
environments. International Conference on Intelligent Agents, Web Technology and Internet Commerce-
IAWTIC'2004, Gold Coast, Australia, 2004.

2. Talwar V, Milojicic D, Wu Q, et al. Approaches for service deployment. IEEE Internet Computing, 2005, 9(2):
70-80.

3. Anderson G, Rathke J. Dynamic software update for message passing programs. Asian Symposium on
Programming Languages and Systems. Springer Berlin Heidelberg, 2012: 207-222.

4. De Lemos R, Giese H, Müller H A, et al. Software engineering for self-adaptive systems: A second research
roadmap. Software Engineering for Self-Adaptive Systems II. Springer Berlin Heidelberg, 2013: 1-32.

5. Ruiz-Rube I, Dodero J M, Colomo-Palacios R. A framework for software process deployment and evaluation.
Information and Software Technology, 2015, 59: 205-221.

6. Naik V K, Mohindra A, Bantz D F. Architecture for the coordination of system management services. IBM
Systems Journal, 2004, 43(1): 78.

7. Perera S, Gannon D. Enforcing user-defined management logic in large scale system. 2009 Congress on
Services-I. IEEE, 2009: 243-250.

040017-8

http://dx.doi.org/10.1109/MIC.2005.32
http://dx.doi.org/10.1016/j.infsof.2014.12.001
http://dx.doi.org/10.1147/sj.431.0078
http://dx.doi.org/10.1147/sj.431.0078

