
Integrated Requirement Selection
and Scheduling for the Release
Planning of a Software Product

C. Li

J.M. van den Akker

S. Brinkkemper

G. Diepen

Department of Information and Computing Sciences
Utrecht University

Technical Report UU-CS-2006-059
www.cs.uu.nl

ISSN 0924-3275

2 C. Li, J.M. van den Akker, S. Brinkkemper, and G. Diepen

Integrated Requirement Selection and Scheduling for the Release Planning of a Software
Product 3

Integrated Requirement Selection and Scheduling for the
Release Planning of a Software Product

C. Li, J.M. van den Akker, S. Brinkkemper, and G. Diepen

Department of Information and Computing Sciences,

Utrecht University, P.O. Box 80089, 3508 TB Utrecht, The Netherlands
{cli, j.m.vandenakker, s.brinkkemper, diepen}@cs.uu.nl

Abstract. This paper integrates requirement scheduling issues into software re-
lease planning. Two integer linear programming models are presented—the first
model can schedule the development of the requirements for the new release
exactly in time so that the project span is minimized and the resource and
precedence constraints are satisfied. The second model is for combined re-
quirement selection and scheduling and it can not only maximize revenue but
also calculates an on-time-delivery project schedule simultaneously. We also
run two simulations to examine the influence of precedence constraints and
compare the differences of the traditional prioritization models and the two new
ones. The simulation results suggest that requirement dependency can signifi-
cantly influence the project plan and the combined model for requirement selec-
tion and scheduling is better in the sense of efficiency and on-time delivery.

1 Introduction

Determining requirements for the upcoming release is a complex process [24].
With the evident pressure on time-to-market [22, 27] and limited available resources,
often there are more requirements than can be actually implemented. The market-
driven requirement engineering processes [6] have a strong focus on requirement pri-
oritization [18]. The requirement list needs to fulfill the interests of various stake-
holders and takes many variables into consideration. Several scholars have presented
lists of such variables including: importance or business value, preference of different
stakeholders, cost of development, requirement quality, development risk and re-
quirement dependencies [8, 13, 14, and 27].

In order to deal with the multi-aspect optimization problem, different techniques
have been applied. The analytical hierarchy process (AHP) [18, 22] assesses require-
ments by examining all possible requirement pairs and use matrix calculations to de-
termine a weighted list. Jung [17] extended the work of Karlsson and Ryan [18] by
using integer linear programming (ILP) to reduce the complexity of AHP to large
amounts of requirements. Carlshamre [8] too used ILP on which a release planning
tool was built and added requirement dependencies as an important aspect in release
planning. Ruhe and Saliu [25] describe a method based on ILP to include stake-
holder’s opinions for release planning. Van den Akker et al [2] further extended the
ILP technique by including some management steering mechanisms and ran a few

4 C. Li, J.M. van den Akker, S. Brinkkemper, and G. Diepen

simulations to test the influences of each factor. Besides ILP techniques, the cumula-
tive voting method [19] allows different stakeholders to assign a fixed amount of units
among all requirements, and an average weighted requirement list is constructed;
Ruhe & Saliu [25] provide a method called EVOLVE to allocate requirements to in-
cremental releases. For more techniques, Berander and Andrews [4], provide an ex-
tensive list of requirement prioritizing techniques.

The schedule of the requirements development is also suggested as an important is-
sue in this field [13], unfortunately, few prioritization methods have taken it into ac-
count. Scheduling requirements is considered as a next step after requirement selec-
tion [8] and the two processes—selection and scheduling are often used iteratively to
find a group of requirements with an on-time delivery project plan [24]. Compared to
the extensive research on requirement selection, only little research has been per-
formed for the scheduling part. Given the fact that 80% of software projects are late
or over budgeted [10], a precise project plan which can synchronize every develop-
ment team is necessary. The traditional critical path algorithm or Gantt chart method
is widely used for project planning, but is often not able to include all factors. Differ-
ent types of dependencies [7], which describe the relationships between requirements,
also increase the complexity of making a project plan.

1.1 Example of release planning problem

Release Definition 5.1

Nr. Requirement Dependency
Reve
nues

Total
man days

Team
A

Team
B

Team
C

12 Authorization on order cancellation and removal Imp 63, 25 24 50 5 45

34 Authorization on archiving service orders 12 12 2 5 5

63 Performance improvements order processing 20 15 15

25 Inclusion graphical plan board Com 66 100 70 10 10 50

43 Link with Acrobat reader for PDF files Imp 25 10 33 33

75
Optimizing interface with international Postal code
system

Imp 25 10 15 15

35 Adaptations in rental and systems 35 40 20 20

66 Symbol import 5 10 10

67 Comparison of services per department 10 34 9 25

 Total 226 279 42 77 160

 Available resources (number of developers) 3 1 1 1

 Release duration 60 days

 Available team capacity for release 180 60 60 60

Table 1: Example requirements sheets of a release planning problem

Table 1 depicts a simplified example representation of the release planning prob-

lem. For nine requirements with estimated revenue (in euro) and cost (in man days),
the available resources in different teams (or skills) within the given period, and the
interdependencies between the requirements, the best set of requirements for a next
release needs to be determined. Here we use the six types of dependencies suggested
by Carlshamre [7]. These are given by: 1) Combination: two requirements are in need

Integrated Requirement Selection and Scheduling for the Release Planning of a Software
Product 5

of each other; 2) Implication: one requirement requires another one to function; 3)
Exclusion: two requirements conflicts to each other. 4) revenue-based and 5) cost-
based dependency means one requirement influences the revenue / cost of another.
And 6) time-related dependency means one requirement needs to be implemented af-
ter another.

The release planning problem has been modeled as a multi-dimensional knapsack
problem [2, 8, 17, and 25]. Using ILP technique, five requirements are selected
(marked in yellow) so that the total revenue is maximized against the available re-
sources. It is also possible to include requirement dependency and some management
steering mechanisms like hiring external personnel, deadline extension, etc in the
model, we refer to van den Akker et al [2] for detail. To solve the ILP problem, we re-
fer to Wolsey [28] for details.

The next step is to schedule the selected requirement exactly in time. Here we have
to deal with dependencies that result in restrictions on time. For example, require-
ments pertaining to foundational components often need to be implemented before
others. Similarly, certain capabilities (for example quality issues like safety and secu-
rity) need to be architected and built into the system rather than added on later during
development. Therefore, an optimal implementation order of the requirements is de-
sired. In the next section, we will illustrate how precedence constraint can influence
the project plan, the release date, as well as the requirement selection.

1.3 Problem illustration

Here we first formally define precedence constraint—if requirement
j

R ′ can only
start after requirement

j
R is completely finished, then there is a precedence con-

straint between
j

R and
j

R ′ , denoted as j jR R′p . Usually, precedence constraints re-
sult from dependencies. It is clear that the precedence constraint can influence the de-
velopment sequence of the requirements. However, the question is: as we have
already selected the requirements based on the available capacity, will the precedence
constraint also influence the project deadline of the release?

When there are precedence constraints and different development teams, schedul-
ing requirements becomes a complex problem. Figure 1, provides an example of a
time-schedule for the release planning problem in Table 1.

R 34

0 5 10 15 20 30 35 40 time...25 45 50 55 60

Team A

Team B

Team C Req 25

Req 25

Req 25

Req 43

Release

date

Req

34

Req

34

Req 63 Req 66

Waiting...

Figure 1: a numerical example of requirement scheduling problem

6 C. Li, J.M. van den Akker, S. Brinkkemper, and G. Diepen

From Figure 1, it is clear that although the requirement selection does not exceed
the teams’ capacities, the project is delayed. The reason is that there is an implication
dependency and hence a precedence constraints between requirement 25 and 43. Al-
though team B finishes its task for R25 at day 10, it can not start to develop R43,
which is dependent on R25’s completion, because R25 is only available at day 50
when team C finishes its job. So, between day 10 and day 50, Team B only needs five
days for R34 and the rest 35 days are wasted on waiting Team C. When R25 is finally
available at day 50, it takes Team B another 33 days to develop R43, so the earliest
date to finish the whole project is at day 83 instead of the expected day 60. Obviously,
the time wasted on synchronization is not preferred. This raises an important issue
how to design a schedule which makes teams not wasting time on waiting others? Or
if this problem can not be eliminated (Results are shown later in chapter 6), how to
minimize such waiting time and also minimize the total project span of the whole re-
lease project?

Another issue is: if we need to spend too much time on waiting for others, is that
possible to re-select the requirements so that the release plan fits a predetermined
deadline? For example, in the former case, if we still want to keep the 60 days as the
deadline, then we need to re-select the requirements so that the newly selected re-
quirements can be implemented within the time span. For the case in Figure 1, R43
has to be dropped to keep the project on time.

In this paper, we will focus on solving the two problems mentioned above: under
the circumstances that there are both different development teams (or special skills)
and precedence constraints:
1. How should we schedule the requirements to minimize the project make-span,

i.e., the finishing time of the project?
2. How should we integrate the requirement selection and scheduling together so

that the revenue is maximized and the project plan is on schedule?

The remaining of the paper is organized as follow. In Section 2, we first present the

relationship between precedence constraint and the requirement dependencies. Then
we show two special cases for requirement scheduling. Sections 3 and 4 provide ILP
models for requirement scheduling and a combined method for requirement selection
and scheduling. We discuss the prototypes we developed in Section 5. In Section 6,
two simulations are presented to examine the influences of precedence constraint on
requirement scheduling and the differences between the models. At last, we conclude
the paper and provide future research directions in Section 7.

2 A first analysis

2.1 Precedence constraint & requirement dependency

Carlshamre et, al [7] identified six types of requirement interdependencies (listed
in Table 2) for the release planning, and the first five are suggested and modeled as
important factors for requirement selection [2, 8]. With respect to time, some of the
dependencies can not only influence the requirement selection, but will also influ-
ence the requirement scheduling. For example, if requirement

j
R ′ requires

j
R to

Integrated Requirement Selection and Scheduling for the Release Planning of a Software
Product 7

function, it is normally better to start develop
j

R ′ after
j

R is finished; or if re-
quirement jR influences the implementation cost of requirement

j
R ′ , it is also con-

sidered better to implementjR first [8]. So, together with the explicitly mentioned
time-related dependency, also the implication and cost-related dependencies pro-
vide precedence constraints. Hence, when scheduling the requirements, we should
take three out of the six types of requirement dependencies into consideration. Ta-
ble 2 depicts the influence of dependencies on requirement selection and schedul-
ing.

Dependency
group

Dependency
type

Influence
requirement

selection

Influence
requirement
scheduling

Combination �
Implication � �

Functional
dependency

Exclusion �
Revenue-based � Value-related

dependency Cost-based � �
Time-related
dependency

Time-related �

Table 2: The influences of dependencies on requirement selection and scheduling

2.2 Scheduling with no precedence constraint

In Figure 1, we have illustrated the scheduling problem when there are precedence
constraints and team divisions. However, scheduling will not be a problem if there are
no precedence constraints between requirements. As each team works independently,
and no synchronization is needed, they just need to randomly give a permutation of all
the development tasks of the team, and perform them one after another. In this way,
scheduling is not a problem and the deadline will not be exceeded.

2.3 Scheduling with no team division

If there are precedence constraints but no team or task division, scheduling the ac-
tivities is also not a difficult issue. We can first draw a Directed Acyclic Graph
(DAG) by setting the requirements

j
R as vertexes and the precedence constraint

j j
R R ′p as a directed edge(,)

j j
R R′ . Then any topological sort [9] of the directed

acyclic graph results in a feasible schedule. This sort provides a linear order of all the
vertices such that if G contains an edge(,)j jR R ′ , then

j
R appears before

j
R ′ . We

can compute this sort in ()O V E+ time where V equals the number of require-
ments and E equals the number of dependencies. Because the development works
continuously without interruption, the release deadline can also be kept.

3 An ILP model for requirement scheduling

To schedule the requirements exactly in time, there are two issues to consider: the
available resources are limited and there are precedence constraints between the re-
quirements. Within scheduling theory, the problem can be characterized as a special

8 C. Li, J.M. van den Akker, S. Brinkkemper, and G. Diepen

case of the resource constraint project scheduling problem (RCPSP) [21]. It is special
because the resources all have capacity 1. RCPSP is an NP-Hard problem [5]. The
problem complexity caused many scholars to development heuristics method [3] or
exact algorithms [11]. Here, we present an ILP model of such problem.

3.1 Problem formulation

We are given a set of n requirements{ }1 2 nR R RL . Let m be the num-
ber of teams iG (1, 2,)i m= K . We denote ija as the amount of man days needed
for Requirement

j
R in team

i
G . The development activity in team

i
G for re-

quirement
j

R is considered as one individual job—each team works independently
on one requirement and there is no predefined time restriction for the jobs within a re-
quirement. Let us define a set 1 2(, , ,)kX J J J= K of all the jobs with positive devel-
opment time and there are k (k m n≤ ×) jobs in the set.

Because each job belongs to only one requirement, using this attribute, we can par-
tition the set X into n disjoint subsets{ }1 2() () ()nX R X R X RL where

()jX R = { kJ | job kJ is for requirement
j

R }, (1, 2,)j n= K . Similarly, one job
only belongs to one team, so we can partition the set X into m disjoint subsets
{ }1 2() () ()nX G X G X GL where ()iX G = { kJ | job kJ is in team

i
G } (1, 2,)i m= K .

Assuming the number of developers in team iG is
i

Q , we find that the develop-
ment time

k
d for job kJ is ij ja Q where () ()k j iJ X R X G∈ I .Here we assume

that as soon as a team starts working on a job, it will continue work on it until the job
is complete finished.

The precedence constraints

We can define a set { }(,)
j j j j

A R R R R′ ′= p which contains all the precedence
constraints. We define the set H to show the precedence relationship between jobs:

{ }(,) () , (), (,)k k k j k j j jJ J J JH X R X R R R A′ ′ ′ ′= ∈ ∈ ∈
In this way, we set all the jobs of requirement

j
R ′ as the successors of the jobs of

requirement
j

R and we can make sure that any job in requirement
j

R ′ can only start
after all the jobs for requirement

j
R are finished.

We also need to introduce two virtual jobs, the start of the project and the end of
the project. The job START must start before starting the jobs inX , the job END can
only start when all the jobsX are finished. We consider the processing time of these
two virtual jobs is 0. And the new job set with the two additional virtual jobs isX ′ .

If job kJ does not have any successor, then we set (,)kJ END in H . Or if job

kJ does not have any predecessor then we put (,)kJSTART in H .
The precedent relationships between jobs can be represented by a directed acyclic

graph (,)G X H′= .

The upper bound of the project span
Let

max
T be the upper bound of the project span. We can set the upper bound as

1

max(())
n

k k j
j

Jd X R
=

∈∑ . The upper bound corresponds to developing requirements
one after another, i.e. without any time overlap between different requirements.

Integrated Requirement Selection and Scheduling for the Release Planning of a Software
Product 9

The earliest start
k

es and the latest start
k

ls of each job kJ
For each job kJ , we can compute

k
es (earliest possible start) and

k
ls (latest pos-

sible start) as its time window to start. To compute the time interval, we first topo-
logically sort the jobs, so that job kJ is before job kJ ′ in the order if
(,)k kJ J H′ ∈ .

We can use a longest path algorithm (forward recursion) to compute
k

es . First, set
0

START
es = , then we go through the jobs from START to END and set

()
(,)

max
k j j

j k H

es es d
∈

= + . Similarly, we can compute the latest start
k

ls using a longest
path algorithm (backward recursion). First, set

maxEND
ls T= then we go through the

jobs from END to START and set ()
(,)
min

j k j
j k H

ls ls d
∈

= −

The (0,1) integer linear programming model
For the integer linear programming model we use a time-indexed formulation. This

formulation has successfully been applied for machine-scheduling problems and is
known to have a strong LP-relaxation lower bound (see e.g. [1] and [12]). We discre-
tize time and the integer time t represents the period of [), 1t t + . For each job kJ
we define a group of variable

kt
ξ within the time interval[],

k k
es ls , where t is the

possible time for kJ to start. Now
kt

ξ is a binary variable which equals 1 if and only
if kJ starts at the beginning of period t . Then we can formulate the problem as fol-
low:

min
END

END

t ls

ENDt

t es

t ξ
=

=

⋅∑ (3.1)

Subject to:

1
k

k

t ls

kt

t es

ξ
=

=

=∑ , for all kJ X′∈ (3.2)

k k

k k

t ls t ls

kt k k t

t es t es

t d tξ ξ
′

′

= =

′

= =

⋅ + ≤ ⋅∑ ∑ for all (,)k kJ J H′ ∈ (3.3)

() (,)

1
k i

t

k
J X G t k

τ
τ σ

ξ
∈ =

≤∑ ∑ for ()
max

0,1,t T= K , 1, ,i m= K (3.4)

{ }0,1ktξ ∈ for all [],k kt es ls∈ , kJ X′∈ (3.5)

where in constraint (3.4), (,) max(0, 1)
k

t k t dσ = − + . Constraint (3.1) shows the

objective that we want to minimize the project span. Constraint (3.2) shows a job is
started exactly once. Constraint (3.3) is the precedence constraint—one requirement
can only start after its predecessor is finished. Constraint (3.4) means a development
team can only develop at most one job at one time.

4 A combined model for requirement selection & scheduling

As we have seen, there is a risk that the selected set of requirements can not be
scheduled in time. In most of the software development process models, the selection

10 C. Li, J.M. van den Akker, S. Brinkkemper, and G. Diepen

and scheduling are performed iteratively until a good solution is found [24]. However,
doing it iteratively is not only difficult but also time-consuming because we need to
constantly repeat the following 3 steps:

1. Drop some requirements so that the project plan is fit.
2. Re-fill in some requirements to take up the freed capacity.
3. Re-make project plan for the new group of requirements.

Because of the complexities of the knapsack model and the RCPSP model (they
are both NP-Hard), without a proper search algorithm, it is very difficult to find a so-
lution which can fulfill the goals of maximizing revenue and on time delivery. Even if
such searching method is found, constantly calling these two NP-hard models will be
very time consuming. A better method is demanded to solve this problem.

In this section, we will present a new ILP model which enables us to achieve the
goals of maximizing revenue and on time delivery simultaneously. In the following
section, we will present a model for combined selection and scheduling of the re-
quirements when a fixed project deadline is given.

4.1 Formulating the ILP model

We can define the requirementsjR , the teams iG , the jobs k and the dependency
set A same as the in Section 3.1. In addition, each requirement

j
R is associated

with an expected revenue
j

v . And we denote our planning period by T and define
()d T as the number of working days in the planning period.

The precedence constraints

We can handle the precedence constraints similarly to Section 3.1, only that we
do not need to introduce the two virtual jobs: START & END and do not need to link
them to the jobs inX . It is because which requirements will be in the schedule is still
uncertain and the release date is already fixed.

The earliest start

k
es and the latest start

k
ls of each job kJ

For the earliest start
k

es , we can also use the longest path algorithm from Section
3.1. The only difference is since we do not have the virtual job START any more, we
need to set the earliest start 0

k
es = for all the jobs which do not have predecessor.

We can apply this lower bound because a requirement can only be selected and de-
veloped when all its predecessors are selected and developed. .

For the latest start
k

ls , it equals ()
k

d T d− . Please note that the method to com-
pute

k
ls is significantly different from the scheduling model. We can not lower this

upper bound because we do not know whether the successors of a job will be selected.
It is possible that

k
ls is less than

k
es for a certain job k. It then means it can not

fit in the project time span. So the requirement
j

R which contains this job will also
not be a candidate of the next release. Hence, we can eliminate these requirements be-
forehand and define a set X ′′ which only contain the feasible ones.

The (0,1) integer linear programming model
Like in [2], for each requirementjR , we define a binary decision variable

j
x asso-

ciated to it, where 1
j

x = if and only if requirement
j

R is selected. Moreover, for each

Integrated Requirement Selection and Scheduling for the Release Planning of a Software
Product 11

job kJ X′′∈ , we define a group of binary decision variable
kt

ξ within its possible
time interval [,]

k k
t es ls∈ , where 1

kt
ξ = if and only if job kJ starts at time t .

We can now model the combined selection and scheduling problem as follows:

1

max
n

j j
j

v x
=
∑ (4.1)

Subject to
k

k

t ls

kt j
t es

xξ
=

=
=∑ for all ()k jJ X R∈ , 1, ,j n= K (4.2)

j jx x′ ≤ for all (,)j jR R A′ ∈ (4.3)

(1) ()
k k

k k

t ls t ls

kt k k t j
t es t es

t d t x d Tξ ξ
′

′

= =

′ ′
= =

⋅ + ≤ ⋅ + − ⋅∑ ∑

 for all (,)k kJ J H′ ∈ , ()k jJ X R′ ′∈ (4.4)

() (,)

1
i

t

k
k X G t k

τ
τ σ

ξ
∈ =

≤∑ ∑ for ()max0,1,t T= K , 1, ,i m= K (4.5)

{ }, 0,1kt jxξ ∈ for all [],k kt es ls∈ , kJ X′′∈ ,

 1, ,j n= K (4.6)

where in constraint 3.5, (,) max(0, 1)
k

t k t dσ = − + . The objective (4.1) shows

that we want to maximize the revenue. Constraint (4.2) means that a requirement is
selected if and only if all its jobs are planned. Constraints (4.3) and (4.4) deal with the
precedence constraints. Constraint (4.3) means a requirement is only selected when
its predecessor is selected. Constraint (4.4) means the jobs for the successor require-
ment can only start after all the jobs for its precedent requirements are finished. Please
note that this constraint is different with the precedence constraint modeled in section
3.1, because the successor job is not guaranteed to be selected. (4.5) is the resource
constraint that one team is only able to develop one requirement at a time. Constraint
(4.6) is the binary constraint for all the variables.

Note that if we ignore the precedence constraints (4.3) and (4.4), it is another way
to represent the multi-dimensional Knapsack problem.

4.2 Extensions of the model

Using the combined model, it is possible to model all the six types of requirement
dependency listed in Table 2. Combination, implication, exclusion and revenue-based
can be modeled the same way as in the knapsack model. Only the cost-based depend-
ency is modeled differently. It is also possible to model the conditions when team

i
G

is only available for a certain time interval instead of the whole period, or there are
holiday seasons within the period. For reasons of brevity, we refer to [20] for details.

12 C. Li, J.M. van den Akker, S. Brinkkemper, and G. Diepen

5 Prototype

We have implemented three Java prototypes for requirement selection & schedul-
ing based on the models available so far—the knapsack model, the scheduling model,
and the combined model. These prototypes run in Linux environment and make use of
the callable library of ILOG CPLEX [16] for solving the ILP problem. CPLEX is one
of the best known packages for integer linear programming.

Figure 2: screen shot of the scheduling prototypes

Figure 2 shows a screenshot of the prototype for the combined model. The re-

quirements are managed and stored in the database with estimated revenue, cost and
dependency. This screenshot shows the interface of the model for combined require-
ment selection and scheduling. Based on the data attributes of the requirements and
the expected release date, the requirements selection and a project plan for the next re-
lease are calculated simultaneously.

6 Simulation tests

In Section 1.3 we have shown that when there are different development teams and
precedence constraints, the problem of synchronization can possibly delay the whole
project. However, the size of this influence is still unknown. In addition, although the
combined model for requirement selection and scheduling can guarantee on time de-
livery, the additional constraints will possibly cause a loss of revenue. The trade off
between the time saving and the additional cost is also not clear. These concerns lead
us to investigate the following questions through simulation tests:

Simulation 1: What is the relationship between the number of time-related de-
pendencies and the possibility of running out of time in the project planning?

Simulation 2: What are the differences when we select and schedule requirements
at the same time, and when we select and schedule sequentially?

Integrated Requirement Selection and Scheduling for the Release Planning of a Software
Product 13

For testing the programs and comparing the models, two types of datasets were
used (available online [15] for research purpose). They were:

� Small: 9 requirements and 3 teams, release duration 60 days.
� Master: 99 requirements and 17 teams, release duration 30 days.

The Small dataset was the example dataset provide in Table 1. The Master dataset
was generated from larger real life datasets. All team values were kept the same, but
the team capacities and revenues were modified for confidentiality reasons.

In order to make the model not case specific, we randomly generated dependen-
cies. We guaranteed that no cycle occurs within the dependencies. This is important
because the requirements in the cycle would be inter-waiting others’ completion and
cause a deadlock. For the small dataset, we examine the situation with 1, 2, 3 and 4
dependencies, while for the master dataset, we check the situation with 0.5%, 1%,
2%, and 5% of the maximal number of possible dependencies (this equals

2 (1) / 2
n

C n n= ⋅ −). Note that we here we mentioned the number of dependencies we
explicitly generated. There may also be some additional dependencies induced by the
generated dependencies, e.g. if Ri has to precede Ri and Rj has to precede Rk , then also
Ri has to precede Rk. For every number of dependencies, we randomly generate 100
groups of dependencies and run 100 times.

6.1 Results of the simulation 1: the influence of dependencies on project plan

In this simulation, we want to exam how much precedence constraint can influence
the project span. Given the small and master dataset, we first select requirement using
the knapsack model, then we randomly generate a certain amount of dependencies
and call the scheduling model to make a project plan. We then find the maximal,
minimal and average make-span, i.e. duration of the project and count how many
times the project is delayed within the 100 runs. At last, we compare the results with
the lower bound. The lower bound is the maximum value of the project make-span
without precedence constraints and the result of longest path algorithm, which relaxed
the constraint on team difference (i.e.ENDes in Section 3.1). Table 3 shows the results

of the 100 runs each row.
Table 3: schedule results of the first simulation

The project span
The difference between

lower bound
Data Set

Dep
ratio

No.
Dep Max

days
Min
days

Average
days

Times of
delay

Max diff
Min
diff

Average
diff

10% 1 83 55 58.80 16 0.00% 0.00% 0.00%
20% 2 93 55 63.70 40 27.27% 0.00% 0.93%
30% 3 103 55 70.42 62 27.27% 0.00% 2.64%

Small-result
(5 Reqs, 60

days)
40% 4 108 55 75.32 76 14.55% 0.00% 2.12%

0.5% 14 40 30 30.93 33 30.00% 0.00% 2.70%
1% 29 46 30 31.38 27 8.57% 0.00% 0.22%
2% 57 69 30 36.92 76 22.58% 0.00% 2.13%

Master-result
(76 Reqs, 30

days)
5% 142 84 38 56.15 100 19.23% 0.00% 3.47%

14 C. Li, J.M. van den Akker, S. Brinkkemper, and G. Diepen

To visualize the results, we plot the result of master data set in the following chart.
The result of small dataset keeps the same trend as the master one.

Figure 3: schedule results based on the master dataset

In figure 3, the left chart shows the dependency’s influence on project span and the
right chats shows the ratio of the delayed cases and on-time cases. Although the re-
quirements selected using knapsack model are expected to finish within 30 days, the
results vary a lot. When there are 0.5% or 1% of possible dependencies, the results
of the 100 runs range within a few days, the average project span is close to the re-
lease date and the number of over-time cases is still low. The result starts to explode
after 2%. Then the project span varies a lot based on different dependencies and is
on average much higher than expected. Especially when there are 5% of possible
dependencies, the minimal case requires 38 days which means none of the 100 run
are on time.

It is not difficult to conclude that precedence constraints play an important role for
release scheduling. When there are just a few dependencies, they can already greatly
influence the project span. And as the number of dependencies grows, the project
span also grows significantly. Based on the complexity of the system, the exact num-
ber of dependencies may vary a lot, but a former survey [8] has suggested that there
are at least 80% of requirements are interdependent and most of them are implications
and cost-based, then we can assume that the exact number of dependency is at least
higher than the second row of the small and master dataset.

6.2 Results of the simulation 2: model comparison

In this simulation, we compare the differences between applying the knapsack and
scheduling model subsequently (k&s), and the combined model (comb). We take the
following three steps to compare the models. Step 1, based on the small and the mas-
ter datasets, we randomly generate a group of dependencies. Step 2, we then use the
knapsack model to select the requirements and record down the dependencies within
the selected requirements, and we call the scheduling model to schedule the activities
exactly in time. Step 3, for the same dataset and dependencies we call the combined
model to select and schedule the requirement at the same time. Step 4, we compare
the revenue difference between the knapsack model and the combined model; the

Integrated Requirement Selection and Scheduling for the Release Planning of a Software
Product 15

time difference between the scheduling model and release date (which is the schedule
result of the combined model) and the times of delay.

 When analyzing the results, we found that when the combined model and the
knapsack model select the same requirements, the scheduling model can always find a
timely schedule. The result is not surprising but also of no interest since everything is

the same. So we decided to also make a statistics only for the delayed cases. The
computational results are shown in Table 4.

Table 4: simulation results of model comparison

The results prove again that precedence constraints play an important role for re-
quirement selection and scheduling. As the number of constraint increase, the average
revenue of the two models decrease and the average project plan as well as the possi-
bility of delay increase. To compare the models, we plot the computational results of
master dataset in the Figure 4.

Figure 4: model comparison result based on master dataset

In Figure 4, the left chart shows the average revenue difference and cost difference
for the delayed cases and the right chart shows ratio of on-time cases and delayed
cases. It is clear that the combined model can not only guarantee on time delivery but
also gain more efficiency. When follow the select and then schedule process, the pro-
ject stand a high change of being delayed and this possibility grows larger and larger
as the number of dependencies increases. The simulation result also suggests that it is
more efficient to take the project plan issues into account when selecting the require-

Statistics for the 100 runs Statistics only for the delayed cases

Data
Set

Dep
ratio

No.
of

Dep
Average
revenue
(comb)

Average
revenue
(k&s)

Average
project
span
(k&s)

No. of
delay
(k&s)

Average
revenue
(comb)

Average
revenue
(k&s)

Average
project
span
(k&s)

Average
revenue

diff

Average
time
diff

3% 1 139.17 141.27 56.62 9 123.67 147 73 15.87% 21.67%
10% 3 128.06 132.53 58.15 17 110.53 136.82 76 19.15% 26.67%
15% 5 114.81 121.45 59.25 22 99.27 129.45 76.59 22.92% 27.65%

Small
(9 Reqs,
60 days)

20% 7 105.59 110.87 57.72 24 104.02 126.14 76.07 16.84% 26.78%
0.5% 24 40420.1 40429.5 30.48 17 40442.1 40493.5 32.82 0.13% 9.41%
1% 48 39275.5 39479.1 32.62 45 38965.7 39400.9 35.82 1.15% 19.41%
2% 97 35581.6 36103.1 36.41 68 35351.8 36118.7 39.43 2.11% 31.42%

Master
(99 Reqs,
30 days)

5% 242 26947.7 29127.3 45.61 95 26804.5 29098.8 46.43 7.84% 54.77%

16 C. Li, J.M. van den Akker, S. Brinkkemper, and G. Diepen

ments, because even if we ignore the influence on missing the deadline, the revenue
loss of the combined model is significantly less than the additional development time.

7 Conclusion and future research

In this paper we present two ILP models to include requirement scheduling issues
into software release planning. The scheduling model can schedule the requirements
so that the project make-span is minimized and the resource and precedence con-
straints are satisfied; the combined model maximizes revenue while ensuring on-time
delivery of the project and simultaneously presents a project plan.

Simulations have demonstrated the application of the models. The results indicate
that the model for combined requirement selection and scheduling can not only keep
on-time-delivery but also be more efficient than the traditional knapsack model.
The results looks very promising, but some more works still needs to be done. The
second simulation results show convincing figures to combine the requirement selec-
tion and scheduling together. More work is needed to evaluate this process improve-
ment opportunity. The first simulation results also suggest that the optimal schedule
found by integer linear programming is not far away from the critical path lower
bound. It can be interesting to investigate if there are faster algorithms for scheduling
that can get rather close to the optimum.

References
1 Akker J.M. van den, C.P.M. van Hoesel, and M.W.P. Savelsbergh (1999). A Polyhedral

Approach to Single-Machine Scheduling Problems. Mathematical Programming 85 (3),
541-572.

2 Akker, J.M. van den, Brinkkemper, S., Diepen, G., & Versendaal, J.M. (2005). Flexible
Release Planning Using Integer Linear Programming. In E. Kamsties, v. Gervasi, & P.
Sawyer (Eds.), Proceedings of the 11th International Workshop on Requirements Engi-
neering for Software Quality (REFSQ'05) (pp. 247-262)

3 Balakrishnan, R, and W. J, Leon (1993). Quality and Adaptability of Problem-Space
Based Neighborhoods for Resource Constrained Scheduling, Working Paper, Department
of Industrial Engineering, Texas A & M University, College Station, TX.

4 Berander, P., Andrews, A. (2005). Requirements Prioritization. In: Engineering and Man-
aging Software Requirements, A. Aurum and C.Wohlin. Berlin, Germany, Springer Ver-
lag.

5 Blazewicz, J., J. K. Lenstra, and A. H. G. Rinnooy Kan (1983). Scheduling Projects Sub-
ject to Resource Constraints: Classification and Complexity, Discrete Applied Math., 5,
11-24

6 Pär Carlshamre, Björn Regnell (2000). Requirements Lifecycle Management and Release
Planning in Market-Driven Requirements Engineering Processes. International Workshop
on the Requirements Engineering Process: Innovative Techniques, Models, and Tools to
support the RE Process, 6th-8th of September 2000, Greenwich UK, the DEXA Confer-
ence

7 Carlshamre P, Sandahl K, Lindvall M, Regnell B, Natt och Dag J (2001). An industrial
survey of requirements interdependencies in software release planning. In: Proceedings of
the 5th IEEE international symposium on requirements engineering, pp 84–91

Integrated Requirement Selection and Scheduling for the Release Planning of a Software
Product 17

8 Pär Carlshamre (2002). Release Planning in Market-Driven Software Product Develop-
ment: Provoking an Understanding. Requirements Engineering, Volume: 7, Issue: 3, pp:
139-151

9 Thomas H.Cormen, Charlse E. Leiserson, Ronald L. Riverst, Clifford Stein (2001). Intro-
duction to algorithms, second edition. MIT Press, pp 549 -551

10 Cusumano, M.A. (2004). The Business of Software. Free Press.
11 Demeulemeester,E, W.Herroelen (1992). A Branch and Bound Procedure for the Multiple

Resource-Constrained Project Scheduling Problem Management Science 38,1803-1818.
12 Dyer, M. and L. Wolsey (1990), Formulating the Single Machine Sequencing Problem

with Release Dates as a Mixed Integer Program. Discrete Applied Mathematics 26, 255-
270.

13 Firesmith, D. (2004). Prioritizing Requirements, Journal of Object Technology, vol 3, no
8, pp 35 – 47.

14 D. Greer, G. Ruhe (2004). Software release planning: an evolutionary and iterative ap-
proach. Information and Software Technology 46, pp 243–253.

15 http://www.cs.uu.nl/~diepen/ReqMan
16 ILOG CPLEX, http://www.ilog.com/products/cplex
17 Jung, H. –W. (1998) Optimizing Value and Cost in Requirements Analysis, IEEE Soft-

ware, July/August 1998 pp 74 – 78.
18 Karlsson, J and Ryan, K. (1997). A cost-Value Approach for Prioritizing Requirements,

IEEE Software, September/October 1997 pp 67-74.
19 Leffingwell, D., Widrig, D. (2000) Managing Software Requirements – A Unified Ap-

proach, Addison-Wesly, Upper Saddle River, NJ.
20 C.Li. (2006) An Integer Linear Programming Approach to Product Software Release

Planning & Scheduling”. Master thesis of Utrecht University, pp 22 -71
21 A. Mingozzi, V. Maniezzo, S. Ricciardelli, L. Bianco (1998). An Exact Algorithm for the

Resource-Constrained Project Scheduling Problem Based on a New Mathematical Formu-
lation. Management Science, Vol. 44, No. 5. , pp. 714-729.

22 Novorita, R., Grube, G. (1998). Benefits of Structured Requirements Methods for Market-
Based Enterprises, Proceedings of International Council on Systems Engineering Sixth
Annual International Symposium on Systems Engineering: Practice and Tools
(INCOSE’96), Boston USA.

23 Regnell, B, Höst, M., Natt och Dag, J, Beremark, P. Hjelm. T. (2001) .An Industrial Case
Study on Distributed Prioritisation in Market-Driven Requirements Engineering for Pack-
aged Software. Requirement Engineering, vol 6, no 1, pp 51-62

24 Regnell, b. and Brinkkemper, S. (2005), Market-Driven Requirements Engineering for
Software Products. In: Engineering and Managing Software Requirements, A. Aurum and
C. Wohlin (eds.), Berlin, Germany, Springer Verlag pp. 287-308

25 Ruhe, G., Saliu, M.O. (2005). The Art and Science of Software Release Planning, IEEE
Software, vol 22, no 6, pp. 47-53

26 Sawyer, P., Sommerville, I., Kotonya, G. (1999). Improving Market-Driven RE Processes,
Proceedings of International Conference on Product Focused Software Process Improve-
ment (PROFES’99), Oulu Finland, June 1999

27 Inge van de Weerd, Sjaak Brinkkemper, Richard Nieuwenhuis, Johan Versendaal, Lex Bi-
jlsma (2006) A reference framework for software product management. Utrecht University
Technical Report UU-CS-2006-014.

28 Wolsey L.A. (1998). Integer Programming. Wiley-Interscience Series In Discrete Mathe-
matics and Optimization. 1998

