Integrated Requirement Selection
and Scheduling for the Release
Planning of a Software Product

C. Li

J.M. van den Akker
S. Brinkkemper

G. Diepen

Department of Information and Computing Sciences
Utrecht University

Technical Report UU-CS-2006-059
www.cs.uu.nl

ISSN 0924-3275

2 C.Li,J.M.vanden Akker, S. Brinkkemper, and G. Diepen

Integrated Requirement Selection and Scheduling for the Release Planning of a Software
Product 3

Integrated Requirement Selection and Scheduling for the
Release Planning of a Softwar e Product

C. Li, J.M. van den Akker, S. Brinkkemper, and Gefizn

Department of Information and Computing Sciences,
Utrecht University, P.O. Box 80089, 3508 TB Utredtie Netherlands
{cli, j.m.vandenakker, s.brinkkemper, diepen}@csmiu

Abstract. This paper integrates requirement scheduling sssue software re-

lease planning. Two integer linear programming nedee presented—the first
model can schedule the development of the requirterfer the new release
exactly in time so that the project span is minedizand the resource and
precedence constraints are satisfied. The secordklms for combined re-

quirement selection and scheduling and it can nbt maximize revenue but
also calculates an on-time-delivery project schediinultaneously. We also
run two simulations to examine the influence ofcpdence constraints and
compare the differences of the traditional priaétion models and the two new
ones. The simulation results suggest that requinemependency can signifi-
cantly influence the project plan and the combimexdiel for requirement selec-
tion and scheduling is better in the sense ofiefficy and on-time delivery.

1 Introduction

Determining requirements for the upcoming releasa icomplex process [24].
With the evident pressure on time-to-market [22, &W limited available resources,
often there are more requirements than can be lpciogplemented. The market-
driven requirement engineering processes [6] hasteomg focus on requirement pri-
oritization [18]. The requirement list needs tofifukthe interests of various stake-
holders and takes many variables into consideraSeweral scholars have presented
lists of such variables including: importance osibass value, preference of different
stakeholders, cost of development, requirementityualevelopment risk and re-
guirement dependencies [8, 13, 14, and 27].

In order to deal with the multi-aspect optimizatiproblem, different techniques
have been applied. The analytical hierarchy pro¢&ss) [18, 22] assesses require-
ments by examining all possible requirement paics @se matrix calculations to de-
termine a weighted list. Jung [17] extended thekwafr Karlsson and Ryan [18] by
using integer linear programming (ILP) to reduce tomplexity of AHP to large
amounts of requirements. Carlshamre [8] too usd?dl dh which a release planning
tool was built and added requirement dependensiemamportant aspect in release
planning. Ruhe and Saliu [25] describe a methodedam ILP to include stake-
holder’s opinions for release planning. Van den étk&t al [2] further extended the
ILP technique by including some management steemeghanisms and ran a few

4 C.Li,J.M.van den Akker, S. Brinkkemper, and G. Diepen

simulations to test the influences of each fadBmsides ILP techniques, the cumula-
tive voting method [19] allows different stakehatsléo assign a fixed amount of units
among all requirements, and an average weightedireagent list is constructed;
Ruhe & Saliu [25] provide a method called EVOLVEdiocate requirements to in-
cremental releases. For more techniques, BeramieAadrews [4], provide an ex-
tensive list of requirement prioritizing techniques

The schedule of the requirements development éssalggested as an important is-
sue in this field [13], unfortunately, few priogtition methods have taken it into ac-
count. Scheduling requirements is considered asxa siep after requirement selec-
tion [8] and the two processes—selection and sdhmgare often used iteratively to
find a group of requirements with an on-time delywproject plan [24]. Compared to
the extensive research on requirement selectioly, ldtle research has been per-
formed for the scheduling part. Given the fact B@% of software projects are late
or over budgeted [10], a precise project plan wtdah synchronize every develop-
ment team is necessary. The traditional criticah @dgorithm or Gantt chart method
is widely used for project planning, but is oftest able to include all factors. Differ-
ent types of dependencies [7], which describe ¢taionships between requirements,
also increase the complexity of making a projeanpl

1.1 Exampleof release planning problem

Release Definition 5.1
Reve Total Team Team Team

Nr. Requirement Dependencr)(ues mar days A B C
12 Authorization on order cancellation and removallmp 63,25 24 50 5 45
34 Authorization on archiving service orders 12 12 2 ® ®
63 Performance improvements order processing 20 15 15
25 Inclusion graphical plan board Com 66 100 70 10 10 50
43 Link with Acrobat reader for PDF files Imp 25 10 33 33
75 :(;)ypsttltrenr:]zmg interface with international Postal c Imp 25 10 15 15
35 Adaptations in rental and systems 35 40 2Q0
66 Symbol import 5 10 10
67 Comparison of services per department 10 34 25
Total 226 279 42 77 160
Available resources (number of developers) 3 1 1 1
Release duration 60 days
Available team capacity for release 180 60 60 60

Table 1: Example requirements sheets of a reldasaipg problem

Table 1 depicts a simplified example representatibthe release planning prob-
lem. For nine requirements with estimated revemuero) and cost (in man days),
the available resources in different teams (odskivithin the given period, and the
interdependencies between the requirements, thesbesf requirements for a next
release needs to be determined. Here we use thgpsix of dependencies suggested
by Carlshamre [7]. These are given byCbhmbination two requirements are in need

Integrated Requirement Selection and Scheduling for the Release Planning of a Software
Product 5

of each other; 2)Jmplication one requirement requires another one to funct®)n;
Exclusion two requirements conflicts to each other.rdyenue-base@nd 5)cost-
baseddependency means one requirement influences tlemue / cost of another.
And 6) time-relateddependency means one requirement needs to benepled af-
ter another.

The release planning problem has been modelednadtadimensional knapsack
problem [2, 8, 17, and 25]. Using ILP techniquejefirequirements are selected
(marked in yellow) so that the total revenue is imézed against the available re-
sources. It is also possible to include requirendempendency and some management
steering mechanisms like hiring external persondehdline extension, etc in the
model, we refer to van den Akker et al [2] for dlefBo solve the ILP problem, we re-
fer to Wolsey [28] for detalils.

The next step is to schedule the selected requiteex@ctly in time. Here we have
to deal with dependencies that result in restmtion time. For example, require-
ments pertaining to foundational components ofteadnto be implemented before
others. Similarly, certain capabilities (for exampjuality issues like safety and secu-
rity) need to be architected and built into thetsysrather than added on later during
development. Therefore, an optimal implementatiodeo of the requirements is de-
sired. In the next section, we will illustrate hgrecedence constraint can influence
the project plan, the release date, as well asetiigirement selection.

1.3 Problem illustration

Here we first formally define precedence constraimtrequwement R. canonly
start after requiremenR is completely finished, then there is a precedamre
straint betweenR andR., denoted aR < R.. Usually, precedence constraints re-
sult from dependenmes It is clear that the prened constraint can influence the de-
velopment sequence of the requirements. However,dilestion is: as we have
already selected the requirements based on thiablacapacity, will the precedence
constraint also influence the project deadlinehefrelease?

When there are precedence constraints and diffel@rglopment teams, schedul-
ing requirements becomes a complex problem. Fidunerovides an example of a
time-schedule for the release planning problemahld 1.

R 34
Team A Req 25 Req 63 -
Req .
Team B Req 25 g [T Waiting..-———--—--— Req 43
Team C Req 25 R;;q Release
date
Il Il Il Il Il Il Il Il Il Il Il Il >
0 5 10 15 20 25 30 35 40 45 50 55 60 .. time

Figure 1: a numerical example of requirement sclieglproblem

6 C.Li,J.M.vanden Akker, S. Brinkkemper, and G. Diepen

From Figure 1, it is clear that although the regnrient selection does not exceed
the teams’ capacities, the project is delayed. rEason is that there is amplication
dependency and hence a precedence constraintsepeteguirement 25 and 43. Al-
though team B finishes its task for R25 at day il@an not start to develop R43,
which is dependent on R25’'s completion, because iR2ly available at day 50
when team C finishes its job. So, between day Wday 50, Team B only needs five
days for R34 and the rest 35 days are wasted ding/dieam C. When R25 is finally
available at day 50, it takes Team B another 3% daydevelop R43, so the earliest
date to finish the whole project is at day 83 iadtef the expected day 60. Obviously,
the time wasted on synchronization is not preferiigus raises an important issue
how to design a schedule which makes teams noingastne on waiting others? Or
if this problem can not be eliminated (Results slnewn later in chapter 6), how to
minimize such waiting time and also minimize th&algroject span of the whole re-
lease project?

Another issue is: if we need to spend too much timevaiting for others, is that
possible to re-select the requirements so thatrélease plan fits a predetermined
deadline? For example, in the former case, if wevgant to keep the 60 days as the
deadline, then we need to re-select the requirasmamtthat the newly selected re-
quirements can be implemented within the time span.the case in Figure 1, R43
has to be dropped to keep the project on time.

In this paper, we will focus on solving the two blems mentioned above: under
the circumstances that there are both differeneldgwment teams (or special skills)
and precedence constraints:

1. How should we schedule the requirements to minintliee project make-span,
i.e., the finishing time of the project?

2. How should we integrate the requirement selectioth scheduling together so
that the revenue is maximized and the project [gam schedule?

The remaining of the paper is organized as follomSection 2, we first present the
relationship between precedence constraint andetpgirement dependencies. Then
we show two special cases for requirement schegiuBections 3 and 4 provide ILP
models for requirement scheduling and a combinethadefor requirement selection
and scheduling. We discuss the prototypes we dpedlin Section 5. In Section 6,
two simulations are presented to examine the infltae of precedence constraint on
requirement scheduling and the differences betwleemodels. At last, we conclude
the paper and provide future research directior&eiction 7.

2 Afirst analysis

2.1 Precedence constraint & requirement dependency

Carlshamre et, al [7] identified six types of reguient interdependencies (listed
in Table 2) for the release planning, and the fixg are suggested and modeled as
important factors for requirement selection [2,\8]th respect to time, some of the
dependencies can not only influence the requirerseliettion, but will also influ-
ence the requirement scheduling. For examplegiiirement R. requires R to

Integrated Requirement Selection and Scheduling for the Release Planning of a Software

Product

7

function, it is normally better to start devel@p after R is finished; or if re-
quirement; influences the implementation cost of requirententit is also con-
sidered better to implemeRtfirst [8]. So, together with the explicitly mentied
time-relateddependency, also thimplication and cost-relateddependencies pro-
vide precedence constraintéence, when scheduling the requirements, we should
take three out of the six types of requirement ddpacies into consideration. Ta-
ble 2 depicts the influence of dependencies onireauent selection and schedul-

ing.
Influence Influence
Dependency Dependency ; ;
roup type requirement requirement
9 selection | scheduling
. inati v
Functional c;r%rsl?(;g:gcr)ln " ~
dependenc .
P y Exclusion v
Value-related | Revenue-based v
dependency Cost-based v v
Time-related | 10 olated 4
dependency

Table 2: The influences of dependencies on req@n¢rselection and scheduling

2.2 Scheduling with no precedence constraint

In Figure 1, we have illustrated the schedulingopgm when there are precedence
constraints and team divisions. However, scheduliighot be a problem if there are
no precedence constraints between requirementsaé{s team works independently,
and no synchronization is needed, they just needntdomly give a permutation of all
the development tasks of the team, and perform theenafter another. In this way,
scheduling is not a problem and the deadline waitlbe exceeded.

2.3 Scheduling with no team division

If there are precedence constraints but no teatasérdivision, scheduling the ac-
tivities is also not a difficult issue. We can firdraw a Directed Acyclic Graph
(DAG) by setting the requirement® as vertexes and the precedence constraint
R < R. as a directed ed¢® , R.). Then any topological sort [9] of the directed
acyclic graph results in a feasible schedule. §hi$ provides a linear order of all the
vertices such that ifG contains an edd&;, R.), then R appears before.. We
can compute this sort iO(V + E) time whereV equals the number of require-
ments and E equals the number of dependencies. Because tleogawent works
continuously without interruption, the release diegdcan also be kept.

3 AnILP mode for requirement scheduling

To schedule the requirements exactly in time, tla@eetwo issues to consider: the
available resources are limited and there are gdergm constraints between the re-
quirements. Within scheduling theory, the problean be characterized as a special

8 C.Li,J.M.vanden Akker, S. Brinkkemper, and G. Diepen

case of the resource constraint project schedplinglem (RCPSP) [21]. It is special
because the resources all have capacity 1. RCP&R MP-Hard problem [5]. The
problem complexity caused many scholars to devetsprheuristics method [3] or
exact algorithms [11]. Here, we present an ILP rhofisuch problem.

3.1 Problem formulation

We are given a set ofi requirementfR R, -+ R}. Let m be the num-
ber of teamsG, (i =1,2,..m). We denotea, as the amount of man days needed
for RequirementR in team G . The development activity in tear® for re-
quirement R is considered as one individual job—each team siamkependently
on one requirement and there is no predefined teésgiction for the jobs within a re-
quirement. Let us define a s¢t=(J,, J,,..., J) of all the jobs with positive devel-
opment time and there ark (k < mx n) jobs in the set.

Because each job belongs to only one requiremsintg this attribute, we can par-
tition the set X into n disjoint subset$X(R) X(R) -~ X R} where
X(R)= {3l job J, is for requirementR }, (j=1,2,..n). Similarly, one job
only belongs to one team, so we can partition #te) into m disjoint subsets
{X(G) X(G) -+ X(G)} where X(G) = { J, | job J, is in team
G}(i=12...m).

Assuming the number of developers in tedn isQ , we find that the develop-
ment time d_ for job J, is qj/q where J, O X(R)ﬂ X(@) .Here we assume
that as soon as a team starts working on a jaetillicontinue work on it until the job
is complete finished.

The precedence constraints
We can define a seA={(RJ, Rj,)| R< IJR} which contains all the precedence
constraints. We define the séd to show the precedence relationship between jobs:
H ={(0 3% OX(R), 3 O X(R),(R, R)D

In this way, we set all the jobs of requiremBnt as the successors of the jobs of
requiremenR and we can make sure that any job in requirefRentan only start
after all the jobs for requiremeRt are finished.

We also need to introduce two virtual jobs, thetsté the project and the end of
the project. The jolSTARTMust start before starting the jobsXn the jobEND can
only start when all the jobs are finished. We consider the processing time e$¢h
two virtual jobs is 0. And the new job set with tie additional virtual jobs iX' .

If job J, does not have any successor, then we(SgtEND) in H . Or if job
J, does not have any predecessor then we(@RfARTJ,) in H

The precedent relationships between jobs can bresepted by a directed acyclic
graph G = (X', H).

The upper bound of the project span

»Let T be the upper bound of the project span. We carhsetipper bound as
Zmax(dk|JkD X (R)). The upper bound corresponds to developing reogints
ofte after another, i.e. without any time overlafween different requirements.

Integrated Requirement Selection and Scheduling for the Release Planning of a Software
Product 9

Theearliest start es and thelatest start Is,_ of each job J,

For each jobJ, , we can computees (earliest possible start) ant$, (latest pos-
sible start) as its time window to start. To coneptite time interval, we first topo-
logically sort the jobs, so that jok), is before job J,. in the order if
(I, I)OH.

We can use a longest path algorithm (forward résnygo compute es . First, set
€S, =0, then we go through the jobs froTART to END and set
es = max(es+ d) Similarly, we can compute the latest stést using a longest
path Jéfl@a*rlthm (backward recursion). First, SBEIND .. then we go through the
jobs fromEND to STARTand setls, = min (IsK

(j.k)OH
The (0,1) integer linear programming model

For the integer linear programming model we usena-indexed formulation. This
formulation has successfully been applied for maetsicheduling problems and is
known to have a strong LP-relaxation lower bourek(s.g. [1] and [12]). We discre-
tize time and the integer timé represents the period it,t +1) . For each jobJ,
we define a group of variabfg within the time intervales, I§], where t is the
possible time forJ, to start. Now ¢ is a binary variable which equals 1 if and only
if J, starts at the beginning of period Then we can formulate the problem as fol-
low:

t=ls,

min Y tCE.,, (3.1)
t=esp
Subject to:
t=ls,
D& =1, forall J, O X' (3.2)
I:eg(
t=|$k 1,:|§(‘
D, +d < DL, forall (J,,J,)0H (3.3)
t=es =es
t
> & <1 for t=(0,1...T_), i=1....m (3.4)
3,0X(G) r=0(t K
& 0{o3 forall tOfes,ls] .J,O0X (3.5

where in constraint (3.4)g(t,k) = max(0t—-d + 1). Constraint (3.1) shows the

objective that we want to minimize the project sp@anstraint (3.2) shows a job is

started exactly once. Constraint (3.3) is the pfenee constraint—one requirement
can only start after its predecessor is finishezhsfraint (3.4) means a development
team can only develop at most one job at one time.

4 A combined model for requirement selection & scheduling

As we have seen, there is a risk that the selesgedf requirements can not be
scheduled in time. In most of the software develephprocess models, the selection

10 C.Li,J.M.vanden Akker, S. Brinkkemper, and G. Diepen

and scheduling are performed iteratively until adjsolution is found [24]. However,
doing it iteratively is not only difficult but alsbme-consuming because we need to
constantly repeat the following 3 steps:

1. Drop some requirements so that the project pléit is

2. Re-fill in some requirements to take up the freaplacity.

3. Re-make project plan for the new group of requineisie

Because of the complexities of the knapsack moddithe RCPSP model (they
are both NP-Hard), without a proper search algorjth is very difficult to find a so-
lution which can fulfill the goals of maximizingwenue and on time delivery. Even if
such searching method is found, constantly caliirege two NP-hard models will be
very time consuming. A better method is demandesbtee this problem.

In this section, we will present a new ILP modelichhenables us to achieve the
goals of maximizing revenue and on time delivemudtaneously. In the following
section, we will present a model for combined d@&ecand scheduling of the re-
quirements when a fixed project deadline is given.

4.1 Formulating the ILP model

We can define the requiremeis, the teams,, the jobs k and the dependency
set A same as the in Section 3.1. In addition, eachireqent R is associated
with an expected revenug, . And we denote our planning period By and define
d(T) as the number of working days in the planningqakri

The precedence constraints
We can handle the precedence constraints similar§ection 3.1, only that we
do not need to introduce the two virtual joBS:ART& END and do not need to link
them to the jobs iX . It is because which requirements will be in tbbkeslule is still
uncertain and the release date is already fixed.

Theearliest start es and the latest start Is_ of each job J,

For the earliest stares , we can also use the longest path algorithm freetién
3.1. The only difference is since we do not haweintual jobSTARTany more, we
need to set the earliest stagg =0 for all the jobs which do not have predecessor.
We can apply this lower bound because a requireiweemtonly be selected and de-
veloped when all its predecessors are selectedeveloped. .

For the latest starts,, it equals d(T) - d, . Please note that the method to com-
pute Is, is significantly different from the scheduling neddWe can not lower this
upper bound because we do not know whether theessiars of a job will be selected.

It is possible thatls, is less thanes for a certain jokk. It then means it can not
fit in the project time span. So the requiremeRt which contains this job will also
not be a candidate of the next release. Hence awelominate these requirements be-
forehand and define a seX” which only contain the feasible ones.

The (0,1) integer linear programming model
Like in [2], for each requiremef;, we define a binary decision variableasso-
ciated to it, wherex, =1if and only if requiremenR is selected. Moreover, for each

Integrated Requirement Selection and Scheduling for the Release Planning of a Software
Product 11

job J, 0O X", we define a group of binary decision variabfg within its possible
time interval t O[es, Is], where § =1 if and only if job J, starts at timet .
We can now model the combined selection and schregdptoblem as follows:

maxzn:vj X (4.2)

Subject to
t=lIs,
3 & =X, forall 3, OX(R), j=1....n (4.2)
t=esg

X <X forall (R, R.)0 A (4.3)

t=ls, t=lse

Ztgm"’dks Z thwt"'(l_Xj')[d(T)

t=es t=eg

forall (3,,3,)0H, J, OX(R) (4.4)

i £ <1 for t=(0,1,..T,.), i=1...m (4.5)

KOX(G) 7=0(t,K)

&%, 0{0,3 forall tO[es, ls]. J, O X",
j=1...,n (4.6)
where in constraint 3.5¢(t,k) = max(0t-d_+ 1). The objective (4.1) shows

that we want to maximize the revenue. Constrair)(#eans that a requirement is
selected if and only if all its jobs are plannedn€traints (4.3) and (4.4) deal with the
precedence constraints. Constraint (4.3) meaesj@rement is only selected when
its predecessor is selected. Constraint (4.4) mengobs for the successor require-
ment can only start after all the jobs for its m@ent requirements are finished. Please
note that this constraint is different with the ggdence constraint modeled in section
3.1, because the successor job is not guaranteld selected. (4.5) is the resource
constraint that one team is only able to develop mguirement at a time. Constraint
(4.6) is the binary constraint for all the variable

Note that if we ignore the precedence constrait3) (@and (4.4), it is another way
to represent the multi-dimensional Knapsack problem

4.2 Extensionsof the model

Using the combined model, it is possible to modlethe six types of requirement
dependency listed in Table ombinationimplication, exclusionandrevenue-based
can be modeled the same way as in the knapsackl.n@mlg thecost-basedlepend-
ency is modeled differently. It is also possiblertodel the conditions when teai@,
is only available for a certain time interval iredieof the whole period, or there are
holiday seasons within the period. For reasong@fity, we refer to [20] for details.

12 C.Li,J.M.vanden Akker, S. Brinkkemper, and G. Diepen

5 Prototype

We have implemented three Java prototypes for remunt selection & schedul-
ing based on the models available so far—the krekpsedel, the scheduling model,
and the combined model. These prototypes run imtenvironment and make use of
the callable library of ILOG CPLEX [16] for solvintpe ILP problem. CPLEX is one
of the best known packages for integer linear @ogning.

prototype g
File ~ Edi View Requirement Tean Release Help
Dependency managemen! | Release planner | report
Team A Team B Team C
Selec! Req Ic Descript.. Dependency | Revenue Start | Duratior | Start |Duratior | Start |Duration A
12 Authc.. Imp 63,25 24 5 0 45
J 3 Authc.. 12 Day 34 2 Day 29 5 Day 50 5
J 6. Profor.., 20 Day 0 1= 0 Day 0 5C
,/ 28 Incle.. Con 6€ 10(Day 40 | 10 Day 34 | 1C Day 0 5C
4. Link .. Imp 28 10 0 33 0
7! Optim.... Imp 28 10 0 0 15
3! Adap!... 3t 0 20 20
./ 6€ Symbe... 5 Day24 | 1C 0 0
67 Compat.., 10 0 9 2t
v

The project duration is set tc
Stove
60 days

Figure 2: screen shot of the scheduling prototypes

Figure 2 shows a screenshot of the prototype ferdbmbined model. The re-
guirements are managed and stored in the datalifsestimated revenue, cost and
dependency. This screenshot shows the interfatieeofnodel for combined require-
ment selection and scheduling. Based on the daibués of the requirements and
the expected release date, the requirements salexntd a project plan for the next re-
lease are calculated simultaneously.

6 Simulation tests

In Section 1.3 we have shown that when there dfereint development teams and
precedence constraints, the problem of synchrdoizatan possibly delay the whole
project. However, the size of this influence idl sthknown. In addition, although the
combined model for requirement selection and sdheglgan guarantee on time de-
livery, the additional constraints will possiblyusz a loss of revenue. The trade off
between the time saving and the additional coatsis not clear. These concerns lead
us to investigate the following questions throughuation tests:

Simulation 1: What is the relationship between the number of -tiefeted de-
pendencies and the possibility of running outmiktin the project planning?

Simulation 2: What are the differences when we select and schedqlirements
at the same time, and when we select and scheeglestially?

Integrated Requirement Selection and Scheduling for the Release Planning of a Software
Product 13

For testing the programs and comparing the modeis,types of datasets were

used (available online [15] for research purposbgy were:

+ Small: 9 requirements and 3 teams, release duratiorag€. d

+ Master: 99 requirements and 17 teams, release duratiaiags)
The Small dataset was the example dataset promidalble 1. The Master dataset
was generated from larger real life datasets. édht values were kept the same, but
the team capacities and revenues were modifieddiefidentiality reasons.

In order to make the model not case specific, weloanly generated dependen-
cies. We guaranteed that no cycle occurs withindigygendencies. This is important
because the requirements in the cycle would be-wdting others’ completion and
cause a deadlock. For the small dataset, we exatminsituation with 1, 2, 3 and 4
dependencies, while for the master dataset, wekctiex situation with 0.5%, 1%,
2%, and 5% of the maximal number of possible depecigs (this equals
an =nl{n-1)/2). Note that we here we mentioned the number oédépncies we
explicitly generated. There may also be some autditidependencies induced by the
generated dependencies, e.dRihas to precedg andR, has to precedg, then also
R has to precedB,. For every number of dependencies, we randomlgigea 100
groups of dependencies and run 100 times.

6.1 Resultsof thesimulation 1: the influence of dependencies on project plan

In this simulation, we want to exam how much preced constraint can influence
the project span. Given the small and master datasefirst select requirement using
the knapsack model, then we randomly generate taiceamount of dependencies
and call the scheduling model to make a projech.pie then find the maximal,
minimal and average make-span, i.e. duration ofptegect and count how many
times the project is delayed within the 100 runslast, we compare the results with
the lower bound. The lower bound is the maximunueabf the project make-span
without precedence constraints and the resultrafdst path algorithm, which relaxed
the constraint on team difference (eg,,in Section 3.1). Table 3 shows the results

. The difference between
The project span

Dep | No. Times of lower bound
Data Set .
ratio | Dep Max | Min | Average delay Max diff Min | Average
days| days| days diff diff
10% 1 83 55 58.80 16 0.00% 0.0090.00%
Small-result
(5 Regs u6 20% 2 93 55 63.70 40 27.27% 0.00%0.93%
days’) 30% 3 103 55 70.42 62 27.27% 0.0092.64%
40% 4 108 55 75.32 76 14.55% 0.0092.12%
Master-result 0.5% 14 40 30 30.93 33 30.00% 0.00%2.70%
(76 Regs, 30 1% 29 46 30 31.38 27 8.57% 0.009%0.22%
days)’ 2% 57 69 30 36.92 76 22.58% 0.0092.13%

5% 142 84 38 56.15 100 19.23p6 0.0093.47%

of the 100 runs each row.
Table 3: schedule results of the first simulation

14 C.Li,J.M.vanden Akker, S. Brinkkemper, and G. Diepen

To visualize the results, we plot the result of teadata set in the following chart.
The result of small dataset keeps the same tretlteasaster one.

100

&0
&0

o =

0

project span

Y

0.50% 1% 2% 5%

precentage of passible dependency precentage of possible dependency

= time range & average days Odelayed cases Eontime cases

Figure 3: schedule results based on the mastesatata

In figure 3, the left chart shows the dependentylsence on project span and the
right chats shows the ratio of the delayed casdsoartime cases. Although the re-
quirements selected using knapsack model are eegbézifinish within 30 days, the
results vary a lot. When there are 0.5% or 1% afsfide dependencies, the results
of the 100 runs range within a few days, the awe@m®ject span is close to the re-
lease date and the number of over-time casedlibsti The result starts to explode
after 2%. Then the project span varies a lot basedifferent dependencies and is
on average much higher than expected. Especialgnvthere are 5% of possible
dependencies, the minimal case requires 38 dayshwheans none of the 100 run
are on time.

It is not difficult to conclude that precedence staints play an important role for
release scheduling. When there are just a few dkpeies, they can already greatly
influence the project span. And as the number gleddencies grows, the project
span also grows significantly. Based on the coniplexX the system, the exact num-
ber of dependencies may vary a lot, but a formeregu[8] has suggested that there
are at least 80% of requirements are interdeperatehmost of them atimplications
and cost-basedthen we can assume that the exact number of depen is at least
higher than the second row of the small and maksttrset.

6.2 Resultsof the simulation 2: model comparison

In this simulation, we compare the differences leetvapplying the knapsack and
scheduling model subsequently (k&s), and the costbimodel (comb). We take the
following three steps to compare the models. Stdpaged on the small and the mas-
ter datasets, we randomly generate a group of dieperes. Step 2, we then use the
knapsack model to select the requirements and dedmwn the dependencies within
the selected requirements, and we call the scheglatiodel to schedule the activities
exactly in time. Step 3, for the same dataset apeadencies we call the combined
model to select and schedule the requirement asdhee time. Step 4, we compare
the revenue difference between the knapsack mautkltee combined model; the

Integrated Requirement Selection and Scheduling for the Release Planning of a Software
Product 15

time difference between the scheduling model atehse date (which is the schedule
result of the combined model) and the times ofylela

When analyzing the results, we found that whendbmbined model and the
knapsack model select the same requirements, ligglsling model can always find a
timely schedule. The result is not surprising dabaf no interest since everything is

Statistics for the 100 mL Statisticsonly for the delayed cases
No.
Data| De
P of Averagq Averagq Ave_rag No. o] Average | Averag Average Average| Averag
Set | ratio projec project ;
Dep | revenud revenue Span delay revenue | revenu span_ | fevenue time
(comb)| (k&s) (k%s) (k&s)| (comb) | (k&s) (k%s) diff diff
Small 3% 1 139.17] 141.27, 56.6p 9 123.67 147 78 15.82%67%
(9 Req 10% 3 128.06] 132.53 58.1p 17 110.53 136.82 16 99.136.6 7%
60 day{ 15% 5 114.81] 12145 59.2p 22 99.27 12945 7659 9222 27.65%
20% 7 105.59] 110.87 57.7p 24 104.02 126.14 76.07.84%6| 26.78%
Maste 0.5% 24 40420.L 40429.5 30.48 17 40442.1 40493.) 32.82 0.13% 9.41%
(99 Rg 1% 48 39275p 39479.1 32.62| 45 38965.7 39400.{ 35.82 1.159% 19.419
30 day: 2% 97 35581p 36103.1 36.41] 68 | 35351.§ 36118.| 39.43| 2.119% 31.429
5% | 242 | 26947J7 29127.3 45.61] 95 | 26804.5 29098.{ 46.43| 7.84% 54.77Y

the same. So we decided to also make a statistigsfor the delayed cases. The
computational results are shown in Table 4.
Table 4: simulation results of model comparison

The results prove again that precedence constrplats an important role for re-
quirement selection and scheduling. As the numbeonstraint increase, the average
revenue of the two models decrease and the averaggrt plan as well as the possi-

bility of delay increase. To compare the models,plat the computational results of
master dataset in the Figure 4.

%
D%
%
0% =
26%
0%

% | E : :

090% 1% 2% 5%

percentage of possible dependency percentage of possible dependancy
Erevenue difference . Otime difference DOdelayed cazes Bortime cases

Figure 4: model comparison result based on mastasdt

In Figure 4, the left chart shows the average regdtifference and cost difference
for the delayed cases and the right chart shows aébn-time cases and delayed
cases. It is clear that the combined model camnigtguarantee on time delivery but
also gain more efficiency. When follow the seleud #hen schedule process, the pro-
ject stand a high change of being delayed andpthgsibility grows larger and larger
as the number of dependencies increases. The siomutasult also suggests that it is
more efficient to take the project plan issues atoount when selecting the require-

16 C.Li,J.M.vanden Akker, S. Brinkkemper, and G. Diepen

ments, because even if we ignore the influence issing the deadline, the revenue
loss of the combined model is significantly lesarthhe additional development time.

7 Conclusion and futureresearch

In this paper we present two ILP models to incloeiguirement scheduling issues
into software release planning. The scheduling mode schedule the requirements
so that the project make-span is minimized andrés®urce and precedence con-
straints are satisfied; the combined model maximiazenue while ensuring on-time
delivery of the project and simultaneously presengsoject plan.

Simulations have demonstrated the application efrttodels. The results indicate
that the model for combined requirement selectioth scheduling can not only keep
on-time-delivery but also be more efficient thaa traditional knapsack model.

The results looks very promising, but some moreka/atill needs to be done. The
second simulation results show convincing figuesdmbine the requirement selec-
tion and scheduling together. More work is neeaedvialuate this process improve-
ment opportunity. The first simulation results asmgest that the optimal schedule
found by integer linear programming is not far awfegm the critical path lower
bound. It can be interesting to investigate if éhare faster algorithms for scheduling
that can get rather close to the optimum.

References

1 Akker J.M. van den, C.P.M. van Hoesel, and M.W.Re®&bergh (1999). A Polyhedral
Approach to Single-Machine Scheduling ProbleMathematical Programmin@5 (3),
541-572.

2 Akker, J.M. van den, Brinkkemper, S., Diepen, G.Vé&rsendaal, J.M. (2005). Flexible
Release Planning Using Integer Linear Programmingz.l Kamsties, v. Gervasi, & P.
Sawyer (Eds.)Proceedings of the 11th International Workshop @gutrements Engi-
neering for Software Quality (REFSQ'0pp. 247-262)

3 Balakrishnan, R, and W. J, Leon (1998Quality and Adaptability of Problem-Space
Based Neighborhoods for Resource Constrained Scimgdiiorking Paper, Department
of Industrial Engineering, Texas A & M Universi@pllege Station, TX.

4 Berander, P., Andrews, A. (2005). Requirements Ridation. In:Engineering and Man-
aging Software RequiremantA. Aurum and C.Wohlin. Berlin, Germany, SpringesrV
lag.

5 Blazewicz, J., J. K. Lenstra, and A. H. G. RinnooynK4983). Scheduling Projects Sub-
ject to Resource Constraints: Classification and CoxitgleDiscrete Applied Math.5,
11-24

6 Par Carlshamre, Bjorn Regnell (200BRequirements Lifecycle Management and Release
Planning in Market-Driven Requirements Engineerifrpcessesinternational Workshop
on the Requirements Engineering Process: Innovad@ahniques, Models, and Tools to
support the RE Process, 6th-8th of September 206&n@&ich UK, the DEXA Confer-
ence

7 Carlshamre P, Sandahl K, Lindvall M, Regnell B, Nath @ag J (2001). An industrial
survey of requirements interdependencies in soéwelease planning. liRroceedings of
the 5th IEEE international symposium on requireraa@mgineeringpp 84-91

Integrated Requirement Selection and Scheduling for the Release Planning of a Software
Product 17

8 Par Carlshamre (2002). Release Planning in MarketeDriSoftware Product Develop-
ment: Provoking an Understandir@equirements Engineerin§folume: 7, Issue: 3, pp:
139-151

9 Thomas H.Cormen, Charlse E. Leiserson, Ronald L. Riv&iéford Stein (2001)Intro-
duction to algorithmssecond edition. MIT Press, pp 549 -551

10 Cusumano, M.A. (2004 he Business of Softwar€ree Press.

11 Demeulemeester,E, W.Herroelen (1992 Branch and Bound Procedure for the Multiple
Resource-Constrained Project Scheduling Proiemagement Scien@8,1803-1818.

12 Dyer, M. and L. Wolsey (1990), Formulating the $n@ylachine Sequencing Problem
with Release Dates as a Mixed Integer Progfaiscrete Applied Mathematic6, 255-
270.

13 Firesmith, D. (2004)Prioritizing Requirements]ournal of Object Technologyol 3, no
8, pp 35 -47.

14 D. Greer, G. Ruhe (2004). Softwarglease planning: an evolutionary and iterative ap-
proach.nformation and Software Technolod§, pp 243-253.

15 http://www.cs.uu.nl/~diepen/ReqMan

16 ILOG CPLEX, http://mwww.ilog.com/products/cplex

17 Jung, H. —=W. (1998) Optimizing Value and Cost in Wezments AnalysislEEE Soft-
ware July/August 1998 pp 74 — 78.

18 Karlsson, J and Ryan, K. (1997). A cost-Value Applofor Prioritizing Requirements,
IEEE SoftwareSeptember/October 1997 pp 67-74.

19 Leffingwell, D., Widrig, D. (2000)Managing Software Requirements — A Unified Ap-
proach Addison-Wesly, Upper Saddle River, NJ.

20 C.Li. (2006) An Integer Linear Programming Approach to Produdft®are Release
Planning & Scheduliny Master thesis of Utrecht University, pp 22 -71

21 A. Mingozzi, V. Maniezzo, S. Ricciardelli, L. Bian¢®x998). An Exact Algorithm for the
Resource-Constrained Project Scheduling Problem BasedNew Mathematical Formu-
lation. Management Scienc®ol. 44, No. 5., pp. 714-729.

22 Novorita, R., Grube, G. (1998). Benefits of StructuRequirements Methods for Market-
Based Enterprisefroceedings of International Council on Systems B@gfing Sixth
Annual International Symposium on Systems EngingeriPractice and Tools
(INCOSE'96) Boston USA.

23 Regnell, B, Host, M., Natt och Dag, J, Beremark, Reldj T. (2001) .An Industrial Case
Study on Distributed Prioritisation in Market-Drivd&Requirements Engineering for Pack-
aged SoftwareRequirement Engineeringol 6, no 1, pp 51-62

24 Regnell, b. and Brinkkemper, S. (2005), Market-Driveaquirements Engineering for
Software Productdn: Engineering and Managing Software RequiremeftsAurum and
C. Wohlin (eds.), Berlin, Germany, Springer Verlag 2§7-308

25 Ruhe, G., Saliu, M.O. (2005). The Art and Scienc&oftware Release PlanningEE
Software vol 22, no 6, pp. 47-53

26 Sawyer, P., Sommerville, I., Kotonya, G. (1999)ptoving Market-Driven RE Processes,
Proceedings of International Conference on Produntdésed Software Process Improve-
ment (PROFES’99 Oulu Finland, June 1999

27 Inge van de Weerd, Sjaak Brinkkemper, Richard Nielnén Johan Versendaal, Lex Bi-
jlsma (2006)A reference framework for software product manageméinécht University
Technical Report UU-CS-2006-014.

28 Wolsey L.A. (1998)Integer ProgrammingWiley-Interscience Series In Discrete Mathe-
matics and Optimization. 1998

