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Abstract. This paper integrates requirement scheduling issues into software re-
lease planning. Two integer linear programming models are presented—the first 
model can schedule the development of the requirements for the new release 
exactly in time so that the project span is minimized and the resource and 
precedence constraints are satisfied. The second model is for combined re-
quirement selection and scheduling and it can not only maximize revenue but 
also calculates an on-time-delivery project schedule simultaneously. We also 
run two simulations to examine the influence of precedence constraints and 
compare the differences of the traditional prioritization models and the two new 
ones. The simulation results suggest that requirement dependency can signifi-
cantly influence the project plan and the combined model for requirement selec-
tion and scheduling is better in the sense of efficiency and on-time delivery.  

1 Introduction 

Determining requirements for the upcoming release is a complex process [24]. 
With the evident pressure on time-to-market [22, 27] and limited available resources, 
often there are more requirements than can be actually implemented. The market-
driven requirement engineering processes [6] have a strong focus on requirement pri-
oritization [18]. The requirement list needs to fulfill the interests of various stake-
holders and takes many variables into consideration. Several scholars have presented 
lists of such variables including: importance or business value, preference of different 
stakeholders, cost of development, requirement quality, development risk and re-
quirement dependencies [8, 13, 14, and 27].  

In order to deal with the multi-aspect optimization problem, different techniques 
have been applied. The analytical hierarchy process (AHP) [18, 22] assesses require-
ments by examining all possible requirement pairs and use matrix calculations to de-
termine a weighted list. Jung [17] extended the work of Karlsson and Ryan [18] by 
using integer linear programming (ILP) to reduce the complexity of AHP to large 
amounts of requirements. Carlshamre [8] too used ILP on which a release planning 
tool was built and added requirement dependencies as an important aspect in release 
planning. Ruhe and Saliu [25] describe a method based on ILP to include stake-
holder’s opinions for release planning. Van den Akker et al [2] further extended the 
ILP technique by including some management steering mechanisms and ran a few 
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simulations to test the influences of each factor. Besides ILP techniques, the cumula-
tive voting method [19] allows different stakeholders to assign a fixed amount of units 
among all requirements, and an average weighted requirement list is constructed; 
Ruhe & Saliu [25] provide a method called EVOLVE to allocate requirements to in-
cremental releases. For more techniques, Berander and Andrews [4], provide an ex-
tensive list of requirement prioritizing techniques.  

The schedule of the requirements development is also suggested as an important is-
sue in this field [13], unfortunately, few prioritization methods have taken it into ac-
count. Scheduling requirements is considered as a next step after requirement selec-
tion [8] and the two processes—selection and scheduling are often used iteratively to 
find a group of requirements with an on-time delivery project plan [24]. Compared to 
the extensive research on requirement selection, only little research has been per-
formed for the scheduling part. Given the fact that 80% of software projects are late 
or over budgeted [10], a precise project plan which can synchronize every develop-
ment team is necessary. The traditional critical path algorithm or Gantt chart method 
is widely used for project planning, but is often not able to include all factors. Differ-
ent types of dependencies [7], which describe the relationships between requirements, 
also increase the complexity of making a project plan.  

1.1 Example of release planning problem  

Release Definition 5.1     

Nr. Requirement Dependency 
Reve 
nues 

Total 
man days 

Team 
A 

Team 
B 

Team 
C 

12 Authorization on order cancellation and removal Imp 63, 25 24 50 5  45 

34 Authorization on archiving service orders  12 12 2 5 5 

63 Performance improvements order processing  20 15 15   

25 Inclusion graphical plan board Com 66 100 70 10 10 50 

43 Link with Acrobat reader for PDF files Imp 25 10 33  33  

75 
Optimizing interface with international Postal code 
system 

Imp 25 10 15   15 

35 Adaptations in rental and systems  35 40  20 20 

66 Symbol import  5 10 10   

67 Comparison of services per department  10 34  9 25 

 Total 226 279 42 77 160 

 Available resources (number of developers) 3 1 1 1 

 Release duration 60 days 

 Available team capacity for release 180 60 60 60 

Table 1: Example requirements sheets of a release planning problem  
 
Table 1 depicts a simplified example representation of the release planning prob-

lem. For nine requirements with estimated revenue (in euro) and cost (in man days), 
the available resources in different teams (or skills) within the given period, and the 
interdependencies between the requirements, the best set of requirements for a next 
release needs to be determined. Here we use the six types of dependencies suggested 
by Carlshamre [7]. These are given by: 1) Combination: two requirements are in need 
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of each other; 2) Implication: one requirement requires another one to function; 3) 
Exclusion: two requirements conflicts to each other. 4) revenue-based and 5) cost-
based dependency means one requirement influences the revenue / cost of another. 
And 6) time-related dependency means one requirement needs to be implemented af-
ter another. 

The release planning problem has been modeled as a multi-dimensional knapsack 
problem [2, 8, 17, and 25]. Using ILP technique, five requirements are selected 
(marked in yellow) so that the total revenue is maximized against the available re-
sources. It is also possible to include requirement dependency and some management 
steering mechanisms like hiring external personnel, deadline extension, etc in the 
model, we refer to van den Akker et al [2] for detail. To solve the ILP problem, we re-
fer to Wolsey [28] for details.  

The next step is to schedule the selected requirement exactly in time. Here we have 
to deal with dependencies that result in restrictions on time. For example, require-
ments pertaining to foundational components often need to be implemented before 
others. Similarly, certain capabilities (for example quality issues like safety and secu-
rity) need to be architected and built into the system rather than added on later during 
development. Therefore, an optimal implementation order of the requirements is de-
sired. In the next section, we will illustrate how precedence constraint can influence 
the project plan, the release date, as well as the requirement selection.   

1.3 Problem illustration  

Here we first formally define precedence constraint—if requirement 
j

R ′  can only 
start after requirement 

j
R  is completely finished, then there is a precedence con-

straint between 
j

R and
j

R ′ , denoted as j jR R′p . Usually, precedence constraints re-
sult from dependencies. It is clear that the precedence constraint can influence the de-
velopment sequence of the requirements. However, the question is: as we have 
already selected the requirements based on the available capacity, will the precedence 
constraint also influence the project deadline of the release? 

When there are precedence constraints and different development teams, schedul-
ing requirements becomes a complex problem. Figure 1, provides an example of a 
time-schedule for the release planning problem in Table 1.  

R 34

0 5 10 15 20 30 35 40 time...25 45 50 55 60

Team A

Team B

Team C Req 25

Req 25

Req 25

Req 43

Release 

date

Req 

34

Req 

34

Req 63 Req 66

Waiting...

 
Figure 1: a numerical example of requirement scheduling problem 
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From Figure 1, it is clear that although the requirement selection does not exceed 
the teams’ capacities, the project is delayed. The reason is that there is an implication 
dependency and hence a precedence constraints between requirement 25 and 43. Al-
though team B finishes its task for R25 at day 10, it can not start to develop R43, 
which is dependent on R25’s completion, because R25 is only available at day 50 
when team C finishes its job. So, between day 10 and day 50, Team B only needs five 
days for R34 and the rest 35 days are wasted on waiting Team C. When R25 is finally 
available at day 50, it takes Team B another 33 days to develop R43, so the earliest 
date to finish the whole project is at day 83 instead of the expected day 60. Obviously, 
the time wasted on synchronization is not preferred. This raises an important issue 
how to design a schedule which makes teams not wasting time on waiting others? Or 
if this problem can not be eliminated (Results are shown later in chapter 6), how to 
minimize such waiting time and also minimize the total project span of the whole re-
lease project?  

Another issue is: if we need to spend too much time on waiting for others, is that 
possible to re-select the requirements so that the release plan fits a predetermined 
deadline? For example, in the former case, if we still want to keep the 60 days as the 
deadline, then we need to re-select the requirements so that the newly selected re-
quirements can be implemented within the time span. For the case in Figure 1, R43 
has to be dropped to keep the project on time.  

In this paper, we will focus on solving the two problems mentioned above: under 
the circumstances that there are both different development teams (or special skills) 
and precedence constraints: 
1. How should we schedule the requirements to minimize the project make-span, 

i.e., the finishing time of the project? 
2. How should we integrate the requirement selection and scheduling together so 

that the revenue is maximized and the project plan is on schedule?  
 
The remaining of the paper is organized as follow. In Section 2, we first present the 

relationship between precedence constraint and the requirement dependencies. Then 
we show two special cases for requirement scheduling. Sections 3 and 4 provide ILP 
models for requirement scheduling and a combined method for requirement selection 
and scheduling. We discuss the prototypes we developed in Section 5. In Section 6, 
two simulations are presented to examine the influences of precedence constraint on 
requirement scheduling and the differences between the models. At last, we conclude 
the paper and provide future research directions in Section 7.   

2 A first analysis 

2.1 Precedence constraint & requirement dependency  

Carlshamre et, al [7] identified six types of requirement interdependencies (listed 
in Table 2) for the release planning, and the first five are suggested and modeled as 
important factors for requirement selection [2, 8]. With respect to time, some of the 
dependencies can not only influence the requirement selection, but will also influ-
ence the requirement scheduling. For example, if requirement 

j
R ′  requires 

j
R  to 
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function, it is normally better to start develop
j

R ′  after 
j

R  is finished; or if re-
quirement jR  influences the implementation cost of requirement

j
R ′ , it is also con-

sidered better to implementjR first [8]. So, together with the explicitly mentioned 
time-related dependency, also the implication and cost-related dependencies pro-
vide precedence constraints. Hence, when scheduling the requirements, we should 
take three out of the six types of requirement dependencies into consideration. Ta-
ble 2 depicts the influence of dependencies on requirement selection and schedul-
ing. 

Dependency 
group 

Dependency 
type 

Influence 
requirement 

selection 

Influence 
requirement 
scheduling 

Combination �   
Implication �  �  

Functional 
dependency 

Exclusion �   
Revenue-based �   Value-related 

dependency Cost-based �  �  
Time-related 
dependency 

Time-related  �  

Table 2: The influences of dependencies on requirement selection and scheduling 

2.2 Scheduling with no precedence constraint 

In Figure 1, we have illustrated the scheduling problem when there are precedence 
constraints and team divisions. However, scheduling will not be a problem if there are 
no precedence constraints between requirements. As each team works independently, 
and no synchronization is needed, they just need to randomly give a permutation of all 
the development tasks of the team, and perform them one after another. In this way, 
scheduling is not a problem and the deadline will not be exceeded.   

2.3 Scheduling with no team division 

If there are precedence constraints but no team or task division, scheduling the ac-
tivities is also not a difficult issue. We can first draw a Directed Acyclic Graph 
(DAG) by setting the requirements 

j
R  as vertexes and the precedence constraint 

j j
R R ′p  as a directed edge( , )

j j
R R′ . Then any topological sort [9] of the directed 

acyclic graph results in a feasible schedule. This sort provides a linear order of all the 
vertices such that if G  contains an edge( , )j jR R ′ , then 

j
R  appears before

j
R ′ . We 

can compute this sort in ( )O V E+  time where V equals the number of require-
ments and E  equals the number of dependencies. Because the development works 
continuously without interruption, the release deadline can also be kept. 

3 An ILP model for requirement scheduling  

To schedule the requirements exactly in time, there are two issues to consider: the 
available resources are limited and there are precedence constraints between the re-
quirements. Within scheduling theory, the problem can be characterized as a special 
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case of the resource constraint project scheduling problem (RCPSP) [21]. It is special 
because the resources all have capacity 1. RCPSP is an NP-Hard problem [5]. The 
problem complexity caused many scholars to development heuristics method [3] or 
exact algorithms [11]. Here, we present an ILP model of such problem.  

3.1 Problem formulation 

We are given a set of n  requirements{ }1 2 nR R RL .  Let m  be the num-
ber of teams iG  ( 1, 2, )i m= K . We denote ija  as the amount of man days needed 
for Requirement 

j
R  in team 

i
G . The development activity in team 

i
G  for re-

quirement 
j

R  is considered as one individual job—each team works independently 
on one requirement and there is no predefined time restriction for the jobs within a re-
quirement. Let us define a set 1 2( , , , )kX J J J= K of all the jobs with positive devel-
opment time and there are k  ( k m n≤ × ) jobs in the set.  

Because each job belongs to only one requirement, using this attribute, we can par-
tition the set X  into n  disjoint subsets{ }1 2( ) ( ) ( )nX R X R X RL  where 

( )jX R = { kJ | job kJ  is for requirement 
j

R }, ( 1, 2, )j n= K . Similarly, one job 
only belongs to one team, so we can partition the set X  into m  disjoint subsets 
{ }1 2( ) ( ) ( )nX G X G X GL  where ( )iX G = { kJ | job kJ  is in team 

i
G } ( 1, 2, )i m= K .  

Assuming the number of developers in team iG  is
i

Q , we find that the develop-
ment time 

k
d  for job kJ  is ij ja Q  where ( ) ( )k j iJ X R X G∈ I .Here we assume 

that as soon as a team starts working on a job, it will continue work on it until the job 
is complete finished. 

 
The precedence constraints 

We can define a set { }( , )
j j j j

A R R R R′ ′= p  which contains all the precedence 
constraints. We define the set H  to show the precedence relationship between jobs: 

{ }( , ) ( ) , ( ), ( , )k k k j k j j jJ J J JH X R X R R R A′ ′ ′ ′= ∈ ∈ ∈  
In this way, we set all the jobs of requirement

j
R ′  as the successors of the jobs of 

requirement
j

R  and we can make sure that any job in requirement
j

R ′  can only start 
after all the jobs for requirement

j
R  are finished.  

We also need to introduce two virtual jobs, the start of the project and the end of 
the project. The job START must start before starting the jobs inX , the job END can 
only start when all the jobsX are finished. We consider the processing time of these 
two virtual jobs is 0. And the new job set with the two additional virtual jobs isX ′ .  

If job kJ  does not have any successor, then we set ( , )kJ END  in H . Or if job 

kJ  does not have any predecessor then we put ( , )kJSTART  in H  . 
The precedent relationships between jobs can be represented by a directed acyclic 

graph ( , )G X H′= .   
 

The upper bound of the project span 
Let 

max
T be the upper bound of the project span. We can set the upper bound as 

1

max( ( ))
n

k k j
j

Jd X R
=

∈∑ . The upper bound corresponds to developing requirements 
one after another, i.e. without any time overlap between different requirements.  
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The earliest start 
k

es and the latest start 
k

ls  of each job kJ  
For each job kJ , we can compute 

k
es (earliest possible start) and 

k
ls (latest pos-

sible start) as its time window to start. To compute the time interval, we first topo-
logically sort the jobs, so that job kJ  is before job kJ ′  in the order if 
( , )k kJ J H′ ∈ .   

We can use a longest path algorithm (forward recursion) to compute 
k

es . First, set 
0

START
es = , then we go through the jobs from START to END and set 

( )
( , )

max
k j j

j k H

es es d
∈

= + . Similarly, we can compute the latest start 
k

ls  using a longest 
path algorithm (backward recursion). First, set 

maxEND
ls T=  then we go through the 

jobs from END to START and set ( )
( , )
min

j k j
j k H

ls ls d
∈

= −   
 

The (0,1) integer linear programming model 
For the integer linear programming model we use a time-indexed formulation. This 

formulation has successfully been applied for machine-scheduling problems and is 
known to have a strong LP-relaxation lower bound (see e.g. [1] and [12]). We discre-
tize time and the integer time t  represents the period of [ ), 1t t + . For each job kJ  
we define a group of variable

kt
ξ within the time interval[ ],

k k
es ls , where t  is the 

possible time for kJ  to start. Now 
kt

ξ is a binary variable which equals 1 if and only 
if kJ  starts at the beginning of period t . Then we can formulate the problem as fol-
low: 

min
END

END

t ls

ENDt

t es

t ξ
=

=

⋅∑       (3.1) 

Subject to: 

1
k

k

t ls

kt

t es

ξ
=

=

=∑  ,   for all kJ X′∈    (3.2) 

k k

k k

t ls t ls

kt k k t

t es t es

t d tξ ξ
′

′

= =

′

= =

⋅ + ≤ ⋅∑ ∑    for all ( , )k kJ J H′ ∈   (3.3) 

( ) ( , )

1
k i

t

k
J X G t k

τ
τ σ

ξ
∈ =

≤∑ ∑   for ( )
max

0,1,t T= K , 1, ,i m= K  (3.4) 

{ }0,1ktξ ∈    for all [ ],k kt es ls∈  , kJ X′∈  (3.5) 

where in constraint (3.4), ( , ) max(0, 1)
k

t k t dσ = − + . Constraint (3.1) shows the 

objective that we want to minimize the project span. Constraint (3.2) shows a job is 
started exactly once. Constraint (3.3) is the precedence constraint—one requirement 
can only start after its predecessor is finished. Constraint (3.4) means a development 
team can only develop at most one job at one time.  

4 A combined model for requirement selection & scheduling 

As we have seen, there is a risk that the selected set of requirements can not be 
scheduled in time. In most of the software development process models, the selection 
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and scheduling are performed iteratively until a good solution is found [24]. However, 
doing it iteratively is not only difficult but also time-consuming because we need to 
constantly repeat the following 3 steps:  

1. Drop some requirements so that the project plan is fit. 
2. Re-fill in some requirements to take up the freed capacity.  
3. Re-make project plan for the new group of requirements.  

Because of the complexities of the knapsack model and the RCPSP model (they 
are both NP-Hard), without a proper search algorithm, it is very difficult to find a so-
lution which can fulfill the goals of maximizing revenue and on time delivery. Even if 
such searching method is found, constantly calling these two NP-hard models will be 
very time consuming. A better method is demanded to solve this problem.  

In this section, we will present a new ILP model which enables us to achieve the 
goals of maximizing revenue and on time delivery simultaneously. In the following 
section, we will present a model for combined selection and scheduling of the re-
quirements when a fixed project deadline is given. 

4.1 Formulating the ILP model  

We can define the requirementsjR , the teams iG , the jobs k and the dependency 
set A  same as the in Section 3.1. In addition, each requirement 

j
R  is associated 

with an expected revenue 
j

v . And we denote our planning period by T  and define 
( )d T  as the number of working days in the planning period. 
 
The precedence constraints 

We can handle the precedence constraints similarly to Section 3.1, only that we 
do not need to introduce the two virtual jobs: START & END and do not need to link 
them to the jobs inX . It is because which requirements will be in the schedule is still 
uncertain and the release date is already fixed.  

 
The earliest start 

k
es and the latest start 

k
ls  of each job kJ  

For the earliest start 
k

es , we can also use the longest path algorithm from Section 
3.1. The only difference is since we do not have the virtual job START any more, we 
need to set the earliest start 0

k
es =  for all the jobs which do not have predecessor. 

We can apply this lower bound because a requirement can only be selected and de-
veloped when all its predecessors are selected and developed. .  

For the latest start 
k

ls , it equals ( )
k

d T d− . Please note that the method to com-
pute 

k
ls  is significantly different from the scheduling model. We can not lower this 

upper bound because we do not know whether the successors of a job will be selected.   
It is possible that 

k
ls  is less than 

k
es  for a certain job k. It then means it can not 

fit in the project time span. So the requirement 
j

R  which contains this job will also 
not be a candidate of the next release. Hence, we can eliminate these requirements be-
forehand and define a set X ′′  which only contain the feasible ones.  

 
The (0,1) integer linear programming model 
Like in [2], for each requirementjR , we define a binary decision variable

j
x asso-

ciated to it, where 1
j

x = if and only if requirement
j

R is selected. Moreover, for each 
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job kJ X′′∈ , we define a group of binary decision variable 
kt

ξ  within its possible 
time interval [ , ]

k k
t es ls∈ , where 1

kt
ξ =  if and only if job kJ  starts at time t .  

We can now model the combined selection and scheduling problem as follows: 

1

max
n

j j
j

v x
=
∑         (4.1) 

Subject to  
k

k

t ls

kt j
t es

xξ
=

=
=∑     for all ( )k jJ X R∈ , 1, ,j n= K   (4.2) 

j jx x′ ≤    for all ( , )j jR R A′ ∈    (4.3) 

(1 ) ( )
k k

k k

t ls t ls

kt k k t j
t es t es

t d t x d Tξ ξ
′

′

= =

′ ′
= =

⋅ + ≤ ⋅ + − ⋅∑ ∑   

   for all ( , )k kJ J H′ ∈ , ( )k jJ X R′ ′∈  (4.4) 

( ) ( , )

1
i

t

k
k X G t k

τ
τ σ

ξ
∈ =

≤∑ ∑   for  ( )max0,1,t T= K , 1, ,i m= K   (4.5) 

 

{ }, 0,1kt jxξ ∈    for all [ ],k kt es ls∈ , kJ X′′∈ ,  

         1, ,j n= K                 (4.6) 

where in constraint 3.5, ( , ) max(0, 1)
k

t k t dσ = − + . The objective (4.1) shows 

that we want to maximize the revenue. Constraint (4.2) means that a requirement is 
selected if and only if all its jobs are planned. Constraints (4.3) and (4.4) deal with the 
precedence constraints.  Constraint (4.3) means a requirement is only selected when 
its predecessor is selected. Constraint (4.4) means the jobs for the successor require-
ment can only start after all the jobs for its precedent requirements are finished. Please 
note that this constraint is different with the precedence constraint modeled in section 
3.1, because the successor job is not guaranteed to be selected. (4.5) is the resource 
constraint that one team is only able to develop one requirement at a time. Constraint 
(4.6) is the binary constraint for all the variables.  

Note that if we ignore the precedence constraints (4.3) and (4.4), it is another way 
to represent the multi-dimensional Knapsack problem.  

4.2 Extensions of the model  

Using the combined model, it is possible to model all the six types of requirement 
dependency listed in Table 2. Combination, implication, exclusion and revenue-based 
can be modeled the same way as in the knapsack model. Only the cost-based depend-
ency is modeled differently. It is also possible to model the conditions when team 

i
G  

is only available for a certain time interval instead of the whole period, or there are 
holiday seasons within the period. For reasons of brevity, we refer to [20] for details. 
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5 Prototype 

We have implemented three Java prototypes for requirement selection & schedul-
ing based on the models available so far—the knapsack model, the scheduling model, 
and the combined model. These prototypes run in Linux environment and make use of 
the callable library of ILOG CPLEX [16] for solving the ILP problem. CPLEX is one 
of the best known packages for integer linear programming.   
 

 
Figure 2: screen shot of the scheduling prototypes 
 
Figure 2 shows a screenshot of the prototype for the combined model. The re-

quirements are managed and stored in the database with estimated revenue, cost and 
dependency. This screenshot shows the interface of the model for combined require-
ment selection and scheduling. Based on the data attributes of the requirements and 
the expected release date, the requirements selection and a project plan for the next re-
lease are calculated simultaneously.  

6 Simulation tests 

In Section 1.3 we have shown that when there are different development teams and 
precedence constraints, the problem of synchronization can possibly delay the whole 
project. However, the size of this influence is still unknown. In addition, although the 
combined model for requirement selection and scheduling can guarantee on time de-
livery, the additional constraints will possibly cause a loss of revenue. The trade off 
between the time saving and the additional cost is also not clear. These concerns lead 
us to investigate the following questions through simulation tests:  

Simulation 1: What is the relationship between the number of time-related de-
pendencies and the possibility of running out of time in the project planning?  

Simulation 2: What are the differences when we select and schedule requirements 
at the same time, and when we select and schedule sequentially? 



Integrated Requirement Selection and Scheduling for the Release Planning of a Software 
Product      13 

For testing the programs and comparing the models, two types of datasets were 
used (available online [15] for research purpose). They were:  

� Small: 9 requirements and 3 teams, release duration 60 days.  
� Master: 99 requirements and 17 teams, release duration 30 days.  

The Small dataset was the example dataset provide in Table 1. The Master dataset 
was generated from larger real life datasets. All team values were kept the same, but 
the team capacities and revenues were modified for confidentiality reasons.  

In order to make the model not case specific, we randomly generated dependen-
cies. We guaranteed that no cycle occurs within the dependencies. This is important 
because the requirements in the cycle would be inter-waiting others’ completion and 
cause a deadlock. For the small dataset, we examine the situation with 1, 2, 3 and 4 
dependencies, while for the master dataset, we check the situation with 0.5%, 1%, 
2%, and 5% of the maximal number of possible dependencies (this equals 

2 ( 1) / 2
n

C n n= ⋅ − ). Note that we here we mentioned the number of dependencies we 
explicitly generated. There may also be some additional dependencies induced by the 
generated dependencies, e.g. if Ri has to precede Ri and Rj has to precede Rk , then also 
Ri has to precede Rk. For every number of dependencies, we randomly generate 100 
groups of dependencies and run 100 times. 

6.1 Results of the simulation 1: the influence of dependencies on project plan  

In this simulation, we want to exam how much precedence constraint can influence 
the project span. Given the small and master dataset, we first select requirement using 
the knapsack model, then we randomly generate a certain amount of dependencies 
and call the scheduling model to make a project plan. We then find the maximal, 
minimal and average make-span, i.e. duration of the project and count how many 
times the project is delayed within the 100 runs. At last, we compare the results with 
the lower bound. The lower bound is the maximum value of the project make-span 
without precedence constraints and the result of longest path algorithm, which relaxed 
the constraint on team difference (i.e.ENDes in Section 3.1). Table 3 shows the results 

of the 100 runs each row.   
Table 3: schedule results of the first simulation 
 

The project span 
The difference between 

lower bound 
Data Set 

Dep 
ratio 

No.   
Dep Max 

days 
Min 
days 

Average 
days 

Times of 
delay 

Max diff 
Min 
diff 

Average 
diff 

10% 1 83 55 58.80 16 0.00% 0.00% 0.00% 
20% 2 93 55 63.70 40 27.27% 0.00% 0.93% 
30% 3 103 55 70.42 62 27.27% 0.00% 2.64% 

Small-result 
(5 Reqs,  60 

days) 
40% 4 108 55 75.32 76 14.55% 0.00% 2.12% 

0.5% 14 40 30 30.93 33 30.00% 0.00% 2.70% 
1% 29 46 30 31.38 27 8.57% 0.00% 0.22% 
2% 57 69 30 36.92 76 22.58% 0.00% 2.13% 

Master-result 
(76 Reqs, 30 

days) 
5% 142 84 38 56.15 100 19.23% 0.00% 3.47% 



14      C. Li, J.M. van den Akker, S. Brinkkemper, and G. Diepen 

To visualize the results, we plot the result of master data set in the following chart. 
The result of small dataset keeps the same trend as the master one.  

 
Figure 3: schedule results based on the master dataset  
 

In figure 3, the left chart shows the dependency’s influence on project span and the 
right chats shows the ratio of the delayed cases and on-time cases. Although the re-
quirements selected using knapsack model are expected to finish within 30 days, the 
results vary a lot. When there are 0.5% or 1% of possible dependencies, the results 
of the 100 runs range within a few days, the average project span is close to the re-
lease date and the number of over-time cases is still low. The result starts to explode 
after 2%. Then the project span varies a lot based on different dependencies and is 
on average much higher than expected. Especially when there are 5% of possible 
dependencies, the minimal case requires 38 days which means none of the 100 run 
are on time.  

It is not difficult to conclude that precedence constraints play an important role for 
release scheduling. When there are just a few dependencies, they can already greatly 
influence the project span. And as the number of dependencies grows, the project 
span also grows significantly. Based on the complexity of the system, the exact num-
ber of dependencies may vary a lot, but a former survey [8] has suggested that there 
are at least 80% of requirements are interdependent and most of them are implications 
and cost-based, then we can assume that the exact number of dependency is at least 
higher than the second row of the small and master dataset.  

6.2 Results of the simulation 2: model comparison  

In this simulation, we compare the differences between applying the knapsack and 
scheduling model subsequently (k&s), and the combined model (comb). We take the 
following three steps to compare the models. Step 1, based on the small and the mas-
ter datasets, we randomly generate a group of dependencies. Step 2, we then use the 
knapsack model to select the requirements and record down the dependencies within 
the selected requirements, and we call the scheduling model to schedule the activities 
exactly in time. Step 3, for the same dataset and dependencies we call the combined 
model to select and schedule the requirement at the same time. Step 4, we compare 
the revenue difference between the knapsack model and the combined model; the 
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time difference between the scheduling model and release date (which is the schedule 
result of the combined model) and the times of delay. 

 When analyzing the results, we found that when the combined model and the 
knapsack model select the same requirements, the scheduling model can always find a 
timely schedule. The result is not surprising but also of no interest since everything is 

the same. So we decided to also make a statistics only for the delayed cases. The 
computational results are shown in Table 4. 

Table 4: simulation results of model comparison 
 

The results prove again that precedence constraints play an important role for re-
quirement selection and scheduling. As the number of constraint increase, the average 
revenue of the two models decrease and the average project plan as well as the possi-
bility of delay increase. To compare the models, we plot the computational results of 
master dataset in the Figure 4.  

 
Figure 4: model comparison result based on master dataset  
 

In Figure 4, the left chart shows the average revenue difference and cost difference 
for the delayed cases and the right chart shows ratio of on-time cases and delayed 
cases. It is clear that the combined model can not only guarantee on time delivery but 
also gain more efficiency. When follow the select and then schedule process, the pro-
ject stand a high change of being delayed and this possibility grows larger and larger 
as the number of dependencies increases. The simulation result also suggests that it is 
more efficient to take the project plan issues into account when selecting the require-

Statistics for the 100 runs Statistics only for the delayed cases 

Data 
Set 

Dep 
ratio 

No.  
of 

Dep 
Average 
revenue 
(comb) 

Average 
revenue 
(k&s) 

Average 
project 
span 
(k&s) 

No. of 
delay 
(k&s) 

Average 
revenue 
(comb) 

Average 
revenue 
(k&s) 

Average 
project 
span 
(k&s) 

Average 
revenue 

diff 

Average 
time  
diff 

3% 1 139.17 141.27 56.62 9 123.67 147 73 15.87% 21.67% 
10% 3 128.06 132.53 58.15 17 110.53 136.82 76 19.15% 26.67% 
15% 5 114.81 121.45 59.25 22 99.27 129.45 76.59 22.92% 27.65% 

Small 
(9 Reqs,
60 days)

20% 7 105.59 110.87 57.72 24 104.02 126.14 76.07 16.84% 26.78% 
0.5% 24 40420.1 40429.5 30.48 17 40442.1 40493.5 32.82 0.13% 9.41% 
1% 48 39275.5 39479.1 32.62 45 38965.7 39400.9 35.82 1.15% 19.41%
2% 97 35581.6 36103.1 36.41 68 35351.8 36118.7 39.43 2.11% 31.42%

Master 
(99 Reqs,
30 days)

5% 242 26947.7 29127.3 45.61 95 26804.5 29098.8 46.43 7.84% 54.77%
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ments, because even if we ignore the influence on missing the deadline, the revenue 
loss of the combined model is significantly less than the additional development time. 

7 Conclusion and future research  

In this paper we present two ILP models to include requirement scheduling issues 
into software release planning. The scheduling model can schedule the requirements 
so that the project make-span is minimized and the resource and precedence con-
straints are satisfied; the combined model maximizes revenue while ensuring on-time 
delivery of the project and simultaneously presents a project plan.  

Simulations have demonstrated the application of the models. The results indicate 
that the model for combined requirement selection and scheduling can not only keep 
on-time-delivery but also be more efficient than the traditional knapsack model.  
The results looks very promising, but some more works still needs to be done. The 
second simulation results show convincing figures to combine the requirement selec-
tion and scheduling together. More work is needed to evaluate this process improve-
ment opportunity. The first simulation results also suggest that the optimal schedule 
found by integer linear programming is not far away from the critical path lower 
bound. It can be interesting to investigate if there are faster algorithms for scheduling 
that can get rather close to the optimum. 
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