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Abstract

We introduce a portfolio management method that uses
effort estimates to build sets of feasible deadlines for soft-
ware projects at the bidding stage. Effort estimates can
involve considerable error, and this must be taken into
account when selecting deadlines. We show how a sim-
ple probability model can allow for possible errors. The
model is built using a single effort estimate for each cur-
rent project, together with historical data on estimated and
actual effort for former projects.

The probability model is used in two ways: firstly to find
the probability of successfully meeting a set of proposed
deadlines; and secondly to select deadlines that deliver a
fixed probability of success. Rather than treating projects
in isolation, we work with the full company portfolio, en-
abling setbacks in some projects to be balanced by gain in
others. Our method is implemented with demonstrations in
the tool PROJMAN.

Key Words: effort estimation; project management; re-
gression model; risk analysis; risk management.

1. Introduction

Project management is a key issue for software com-
panies, as contract bids must be competitive yet realistic.
Small software companies frequently bid for contracts in
application areas where they have little or no experience,
and the time available for effort estimation can be mini-
mal. Simple, easy to use methods are essential to assist with
managing the company portfolio [11].

This paper outlines a simple portfolio management
method to provide decision support for project managers.
The portfolio approach means that decisions are based on
the full set of company projects, allowing a trade-off be-

tween projects requiring more effort than expected and
those requiring less [12]. We focus attention on effort, as it
is the largest and least predictable component of a project’s
costs. The method can be used for portfolios of any size or
composition.

The aims of our portfolio management method are firstly
to determine the feasibility of a set of proposed project
deadlines, and secondly to suggest a new set of deadlines to
attain a desired probability of successful completion. The
central idea is that all effort estimates involve error. Rather
than trying to eliminate the errors, we model them explicitly
and use them as the basis of our feasibility assessments. To
this end, we represent errors, or uncertainties, by probability
distributions. An estimated effort of 20 person-days, for ex-
ample, is converted into a probability distribution centered
on the value 20, and including a range of values to either
side of 20. Exactly how far to either side depends upon the
probability distribution chosen, so the model should first be
calibrated to historical data. For assessing or setting dead-
lines, we take into account the range of effort values that
might occur for each of the projects in the portfolio.

The only requirement for our method is a record of previ-
ous projects. No models for effort estimation are necessary,
although they can be incorporated if desired. Although we
do require an effort estimate for every project, it need be
nothing more sophisticated than subjective opinion. We do
not discourage subjective estimates as they reflect the cur-
rent practices of most small software companies [11].

Our portfolio management method is implemented in
the tool PROJMAN, written in the statistical language

�
.

PROJMAN is downloadable, with demonstrations, from
http://www.stat.auckland.ac.nz/˜fewster/
projman/. In the following section, we describe how to
build, calibrate, and verify a probability model for effort
using historical project data. In Section 3 we explain the
PROJMAN tool. Demonstrations with industrial portfolio
data are provided in Section 4.
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Figure 1. Probability density functions, ������� , for a range of distributions. Part (a) : Poisson distri-
bution (solid line), and Chisquare distribution (dashed line), both with mean = 15. Part (b) : Gamma
distribution (solid line), and Lognormal distribution (dashed line), both with mean = 20 and dispersion
= 0.4. Part (c) : Gamma distribution (solid line), and Lognormal distribution (dashed line), both with
mean = 50 and dispersion = 2; and Lognormal distribution with median specification (dotted line),
with median = 50 and dispersion (variance / median � ) = 2.

2. Probability model for project effort

2.1. Probability distributions

The basis of our portfolio management method is a prob-
ability model for effort. An effort estimate can be readily
formed, but as important as the estimate itself is some idea
about the variability or uncertainty associated with the esti-
mate. A probability model aims to quantify this uncertainty.
Probability models may be derived in many ways, ranging
from statistical regression procedures to subjective opinion.
Here we explain what is meant by a probability model and
suggest possible ways of constructing one.

The effort required to complete a new project is an un-
known quantity � that may be described by a probabil-
ity distribution. Probability distributions are characterized
largely by three quantities: center, variance, and skewness.
The center of a distribution refers to the distribution mean,
or sometimes the median. The variance describes the spread
of the distribution: diffuse or concentrated. The skewness
describes the distribution shape: whether possible values
are distributed evenly on either side of the mean (skew-
ness=0), or whether they occur further to one side of the
mean than the other. In the context of software projects we
expect some positive skew in the distribution of � , mean-
ing that the probability that the effort will be much higher
than estimated is greater than the probability it will be much
lower [6].

We focus on six families of probability distributions:
the Normal, Poisson, Chisquare, Gamma, Lognormal, and
Lognormal-median. The shape of a probability distribution
is determined by its family, and is pictured using the prob-
ability density function. Examples of distributional shapes
are shown in Figure 1. All Normal distributions are sym-
metric (skewness=0). Poisson and Chisquare distributions
have positive skew when the mean is small, but become
more symmetric as the mean increases. Chisquare distri-
butions have greater variability and retain greater skew than
Poisson (Figure 1(a)). Gamma and Lognormal distributions
have pronounced positive skew that can be controlled inde-
pendently of the mean (Figure 1(b) and (c)). For low mean
and variance, the Gamma and Lognormal are quite similar
(Figure 1(b)). For high mean and variance, the Gamma dis-
tribution has a spike close to zero and a very long upper tail,
whereas the Lognormal distribution remains more rounded
(Figure 1(c)).

When a distribution has pronounced positive skew, the
mean is much greater than the median. The median is the
half-way point of a distribution: half of the time a random
value will fall below the median, and half of the time it will
fall above. The mean, on the other hand, describes the aver-
age that would be obtained from a large sample of random
values. For highly skewed data it is sometimes more ap-
propriate to describe a distribution in terms of the median
than the mean. We consider the Lognormal-median fam-
ily for this reason. The distributions in this family are ex-



actly the same as those in the Lognormal family, but they
are specified in terms of the median rather than the mean.
Figure 1(c) shows that the median specification yields a dis-
tribution centered more obviously on the stated value (me-
dian=50) than the usual specification with mean=50.

To build a probability model for the project effort, � , we
first form an effort estimate on which to center the proba-
bility distribution of � . Throughout this paper, the ‘cen-
ter’ of a probability distribution refers to the median for
the Lognormal-median family, and to the mean for all other
families. The effort estimate could be as simple as a man-
ager’s opinion, or it could be the output from a predictive
model, based for example on multivariate regression or on
machine-learning techniques [2, 10].

Next a family of probability distributions is selected,
based on the shape and spread. With some families, such
as the Poisson and Chisquare, the single value for distribu-
tion center is sufficient to specify the whole distribution. In
these cases, the original effort estimate and choice of family
make the probability model complete.

With other families, the center specifies only the location
of the distribution, and the variability is controlled indepen-
dently. For these families we need a way of deciding upon
the variability for a given center. We do this by devising
a rule linking the variance and the center, where the same
rule is assumed to hold for all projects. We give this rule
the name dispersion, a term borrowed from statistical re-
gression modeling. The dispersion is therefore defined to
be a function of the distribution variance and center that is
assumed constant for all projects.

We have chosen a range of dispersion relationships to as-
sociate with the six distribution families detailed here. Our
dispersion definitions give a spectrum of modeling options,
although many other dispersion choices are also possible.
Table 1 shows the chosen dispersion relationships. The
Poisson and Chisquare families have fixed dispersion val-
ues of ����� and ����� respectively. For the other families,
dispersion is constant for all projects but its value must be
estimated, usually from data on past projects.

The dispersion for the Normal family is defined to equal
the variance, so the amount of variability in � is constant,
regardless of the estimated effort. This is unlikely to be
realistic unless all effort estimates are broadly similar, as
there is usually less uncertainty associated with an effort
estimate of 10 person-days than with one of 100 person-
days. It is more realistic to assume that variability increases
with estimated effort. The Poisson and Chisquare disper-
sions fix the ratio of variance to mean, so uncertainty in-
creases for larger projects. Variance is equal to the mean
for the Poisson ( ����� ), and equal to twice the mean for
the Chisquare ( ���	� ). The Gamma and Lognormal dis-
persions fix the ratio of variance to the square of the mean,
so uncertainty can increase dramatically for larger projects.

Table 1. Distributions and dispersions.

Distribution Dispersion, � Value

Normal �
� var estimated

Poisson ��� var � mean ����
Chisquare ��� var � mean �����
Gamma ��� var � mean � estimated

Lognormal ��� var � mean � estimated

Lognormal-median ��� var � median � estimated

With the Lognormal-median family, the dispersion fixes the
ratio of variance to the square of the median. It can be
shown that this implies the ratio of variance to the square
of the mean is also constant, but we use the median specifi-
cation for ease.

The choice of distribution family, the effort estimate
for distribution center, and the dispersion estimate together
specify the probability model entirely. We use the general
notation ����������� , where � denotes the unknown effort,
� denotes the effort estimate or distribution center, and �
summarizes the choice of distribution family and dispersion
estimate. In the next sections we describe how the estimates
of center � and dispersion � are derived, and how the valid-
ity of the probability model � is checked.

2.2. Estimating center and dispersion

Effort estimates are used in our probability model only
as the central value around which the effort distribution is
spread. Consequently, accurate estimates are not crucial,
and any method of effort estimation is valid. The subjective
effort estimates currently favored by many companies are
just as suitable as more formal prediction outputs.

If formal effort estimates are preferred, one possibility is
to use a statistical regression model [2, 1]. Estimating effort
in this way has the advantage that dispersion, in the defi-
nitions used above, is obtained directly from the regression
software for certain families and models. Statistical regres-
sion is a vast and general framework that allows effort to
be formulated as a function of predictor variables. The pa-
rameters of the predictor function, which govern the precise
contribution of each predictor, are estimated by the statisti-
cal method of maximum likelihood. Essentially, this means
choosing the parameter values that make our past observa-
tions most likely.

A simple example is ordinary least squares regression
(OLS), where a typical regression equation for effort, � ,



would be
� � ���������
	

size
����

Here,
���

and
���

are parameters to be estimated, size is a
measure of product size, and

�
denotes a random error that is

assumed to have a Normal distribution with mean 0 and un-
known variance � � constant across all projects. The param-
eter estimates ���� and ���� are obtained by fitting the model to
data from previous projects.

Using OLS regression to estimate effort defines the
whole probability model for � . If a new project has size� and requires effort � , then � is assumed to have a Nor-
mal distribution with mean �������� ���� � � . The dispersion is the
estimated variance, �� � , given directly by the OLS software.

A second possibility is OLS regression with log-
transformed response:

����� � � � � � � ��� � 	
size

�����

where
� � Normal ��� � � � � as before. It can be shown

that this model implies that the probability model for �
belongs to the Lognormal-median family. A project with
size � yields a Lognormal distribution for � , with median
� �"!#%$'& !#)(+*-, , and dispersion = variance/median � = � !.0/ ��� !.0/21 � � .

Beyond OLS regression is a large selection of other re-
gression models. Generalized Linear Models (GLMs) al-
low non-linear relationships between predictors and effort
response, and can model � with a Normal, Gamma, or Pois-
son distribution, among others [2]. Once again, dispersion
estimates are obtained directly from the fit.

When a formal effort model is not used, and either the
Normal, Gamma, Lognormal, or Lognormal-median fam-
ily has been selected, a dispersion estimate is still required.
This can be obtained from historical data by the maxi-
mum likelihood method. As with formal effort models, this
means that we use the errors in effort estimation that have
been observed for completed projects to reflect the likely
uncertainty for a new project. In the case of the Normal
family, the dispersion equals the variance and is estimated
by the mean squared difference between past observations
and estimates. For the other three families, estimating the
dispersion requires a numerical maximization.

�
code and

demonstrations for dispersion estimation are available from
the PROJMAN website.

Effort modeling can be as simple or complicated as re-
quired. It is straightforward to write code for maximum
likelihood estimation of mean/median and dispersion quan-
tities using a wide range of probability families and pre-
dictor functions. All regression modeling involves the se-
lection of a probability distribution, � , which is then used
directly in our portfolio management method. The effort
estimates obtained from formal models are used by our
method in exactly the same way as subjective estimates de-
rived from guesswork.

2.3. Choosing a distribution family

The choice of distribution family for the probability
model is central to the success of our method. Different
families allow for different levels of variability in � , and
have different amounts of skew. Checking the suitability
of the selected family is therefore an important part of the
modeling process. Statistical tests for distribution checking
are called goodness-of-fit tests.

The probability model for effort � is formulated as � �
��� ��� . We aim to test the suitability of the choice of distri-
bution family, � . The test is conducted using 3 completed
projects, with estimated efforts � � �4545� �%6 , actual efforts7 � �4548� 7 6 , and estimated dispersion � . It checks whether
the observations 7 � �5455� 7 6 could reasonably have come
from the 3 distributions characterized by � , with separate
centers � � �5548� �%6 and common dispersion � . If so, � is
assumed also to be suitable for new projects.

Two commonly used statistical goodness-of-fit tests are
the Chisquare test and the Kolmogorov-Smirnov test (KS)
[4]. One problem is that the tests are designed to check
whether a random sample of observations come from a sin-
gle hypothesized distribution, but in our context we wish to
test whether the 3 observations 7 � �4545� 7 6 come from the
3 different distributions � � � � � �5545� ��� � 6 � . We overcome
this problem using a transformation of the data as follows.

Let 9;: be the cumulative distribution function of distri-
bution � � �%: � , defined by 9;: � 7 � �=< (a random value from
distribution �����%: � is > 7 ). The function 9;: is provided by
standard statistical software for all the distribution families
we consider. It can be shown that, if � � � � �): � , then
9 : � � ��� Uniform �?� � � � , the Uniform distribution on the
interval ��� � � � . If the choice of distribution family � is cor-
rect, this implies that 9 � � 7 � � � 9 � � 7 � �

�5454� 9 6 � 7 6 � are all
drawn from the Uniform ��� � � � distribution. We can there-
fore apply the standard Chisquare or KS goodness-of-fit test
by testing the sample 9 � � 7 � � � 9 � � 7 � �

�5455� 9 6 � 7 6 � against
the Uniform ��� � � � distribution.

The Chisquare test operates by binning the data into
categories and counting the number of points in each
category. If 9 � � 7 � � � 9 � � 7 � �

�4554� 9 6 � 7 6 � are genuinely
Uniform ��� � � � , then roughly 25% of the observations should
fall between 0 and 0.25, roughly 25% between 0.25 and
0.5, and so on. If the observed frequencies are very dif-
ferent from those expected, we have evidence that distribu-
tion � is not appropriate for these data. The strength of
evidence against distribution � is measured by the @ -value
returned by the test. Small @ -values (typically AB�  ��C ) pro-
vide strong evidence against � , whereas large @ -values pro-
vide no evidence against � . The KS test works on a differ-
ent principle, by comparing the empirical distribution func-
tion of the data 9 � � 7 � � � 9 � � 7 � �

�5455� 9 6 � 7 6 � against that of
the Uniform ��� � � � distribution. Again, evidence against �



is summarized by the @ -value.
�

code and demonstrations for testing goodness of fit are
included on the PROJMAN website. In practice, the tests will
perform best when the number 3 of completed projects is
large. Reasonable results may be obtained for 3 � �%C or
more.

The goodness-of-fit test on historical data concludes the
construction and calibration of a probability model for ef-
fort. Next we describe how the model is applied for portfo-
lio management.

3. Portfolio management method

3.1. Portfolio success rate

Once a probability model is in place for effort estimation,
it can be used to make decisions about bids and deadlines
for future projects. Two applications of the model are sug-
gested. The first is to test the feasibility of a set of proposed
deadlines for new projects. The user inputs a proposed
schedule, and the model outputs a probability of success.
The second application performs the reverse operation: the
user inputs a desired probability of success, and the model
outputs a possible schedule that achieves that probability.

The company portfolio is defined as a set of � projects
under current consideration. These can include projects that
are ongoing, new, or still at the bidding stage. For testing
deadline feasibility, each project has a specified deadline by
which it must be finished. We use

� : to denote the deadline
for project � , measured in number of working days from
the start day. Projects are labeled from 1 to � according
to deadline, so that project 1 has the earliest deadline and
project � has the latest. The estimated effort for project � is
� : , measured in person-days. The effort spent on project �
to date, in person-days, is written � : . The company has �
employees available for the � projects.

The unknown effort in person-days that will be taken to
complete project � is denoted by � : . The uncertainty in � : is
described by the probability model previously constructed.
For an unstarted project, � : is assumed to be distributed
according to the chosen distribution � (one of Normal,
Poisson, Chisquare, Gamma, Lognormal, or Lognormal-
median), with center � : and dispersion � , where � is esti-
mated from previous projects. If project � is ongoing, � :
represents the additional effort needed for project � , given
that effort �': has already been spent.

Given a set of effort estimates � � �5458� ��� , and proposed
deadlines

��� �5458� � � , our aim is to establish whether the
deadlines are realistic by finding the probability of portfolio
success. For the portfolio to be successful, all projects must
be completed by their deadlines. Thus project 1 must be
completed by deadline

� �
; both projects 1 and 2 must be

completed by deadline
�
� , and so on. The total available

effort in person-days from the start day to deadline
�

is � 	�
. We can therefore summarize the deadline criterion as

follows:����
	

� �
� ��� � �...

� � � � �
� 54 � �
�

����
� > �

����
	
� ��
�...� �
����
� 

The criterion requires all projects � � � �5548� � to be com-
pleted by deadline

� : , rather than just project � . This is
the key to the portfolio approach, because uncertainty about
completion of project � incorporates uncertainty from all
previous projects. If � � � 45�� � :���� � : for any � , we
say that deadline

� : has failed.
It is generally too complicated to find a formula for port-

folio success probability, but an accurate value can be ob-
tained in seconds by simulation. A large number of values
of � �0�4555� � � are generated from their probability distribu-
tions. For each set of random � values, the deadline cri-
terion is checked and the set is recorded as a success or a
failure. The estimated probability of success is the propor-
tion of successes observed. Generating 10 000 sets of � -
values will estimate the portfolio success probability with a
maximum margin of error of 1%.

If project � is unstarted, standard statistical software can
be used to generate a random value for ��: . If project � is
already underway, we need to generate ��: from the condi-
tional effort distribution for project � , given that the effort
must be greater than the value � : already expended. We can
show that such a sample can be obtained from

� : � 9�� ����� � 1 9 ��� : ����� : � 9 ��� : ��� �

where 9 � 7 � is the cumulative distribution function of the
unconditional effort distribution for project � (i.e. 9 � 7 � �
< (project � takes total effort > 7 )), and � : is a uniform ran-
dom number between 0 and 1. The functions 9 and 9 � �
are both provided by standard statistical software. Alterna-
tively, managers might prefer to revise their original effort
estimates for projects in progress, and sample from a re-
vised unconditional distribution.

The portfolio success rate method is implemented in our
portfolio management tool, PROJMAN. Table 2 gives an ex-
ample application. A portfolio of ten projects is shown, with
a range of values for estimated effort, effort to date, and
deadline. There are �	�! employees, and the Chisquare
distribution has been selected for the probability model.
From 10 000 simulations on this portfolio, PROJMAN re-
turns for each deadline the probability of failure and the
probability that the deadline is the first to fail. The second
probability is the better indicator of ‘problem’ deadlines,
because all previous projects succeeded.



Table 2. Example of the PROJMAN portfolio management tool. A portfolio of 10 projects is shown
with estimated effort, ��� (person-days); deadline,

� � (number of working days from start); effort to
date, ��� (person-days); and whether or not the deadline is fixed (y/n). The next two columns give
the output from 10 000 PROJMAN simulations with E=4 employees using the Chisquare distribution.
P(fail) is the probability of failure for deadline

� � , and P(fail 1) is the probability that deadline
� � is

the first to fail. The overall probability of portfolio success is 41.07%. The P(fail 1) column sums
to 58.93% = 100%–P(overall success). The last three columns show a second trial with a new set
of deadlines. The first five projects have fixed deadlines, but the last five open projects are allotted
new deadlines to attain an overall probability of success of about 90%. Each open project has been
given a first-fail probability of 1.08%.

Test deadlines Set and test new deadlines

Project Estimate Deadline Effort to date Fixed < (fail) < (fail 1) New Deadline < (fail) < (fail 1)
�%: � : �': (y/n) (%) (%)

� : (%) (%)

P1 20 8 15 y 0.03 0.03 8 0.08 0.08
P2 40 10 35 y 1.37 1.34 10 1.34 1.29
P3 10 12 0 y 2.73 1.54 12 2.56 1.40
P4 20 15 12 y 2.66 1.08 15 2.71 1.19
P5 20 20 5 y 1.96 0.48 20 2.21 0.65
P6 40 25 0 n 25.76 21.61 41.1 3.64 1.08
P7 20 40 0 n 0.43 0.00 25.0 3.11 1.08
P8 20 40 0 n 5.51 0.23 30.2 3.53 1.08
P9 50 45 0 n 49.51 25.59 54.8 3.66 1.08
P10 60 60 0 n 49.63 7.03 70.7 3.80 1.08

< (overall success) : 41.07% < (overall success) : 89.99%

The portfolio in Table 2 has a relatively poor probabil-
ity of success, with only 41.07% of the 10 000 simulations
seeing success for all projects. The riskiest projects are P6
and P9, which would both benefit from amended deadlines.
Project P10 has a high probability of failure (49.63%), but
from the first-fail probability of 7.03% we see that failure in
P10 follows mainly from delays in earlier projects.

Note that in principle it is possible for a deadline to have
a high success rate, despite being shorter than the estimated
effort for the corresponding project. This is because PRO-
JMAN assumes that projects can be tackled by more than
one employee concurrently. If no joint work is possible, the
tool should be run separately for each employee’s personal
portfolio, using ����� .
3.2. Setting deadlines

The second application of our portfolio management
method is to suggest a set of deadlines that give a desired
probability of overall success. The results are not unique,
as there will be many different possible schedules that at-

tain a given success probability, but in many cases a useful
guideline can be obtained. The method assumes that joint
work is possible on projects.

For this application, a distinction is necessary between
the projects for which deadlines have already been agreed,
and projects for which deadlines are to be decided. We la-
bel the projects as fixed or open: new deadlines will be sug-
gested only for the open projects, although all projects are
considered in ensuring that the portfolio meets the specified
probability of success.

The desired success probability is written as @ . The al-
lowed failure rate is therefore � 1 @ . First we must find
the failure rate � for the fixed projects. If this is already
greater than � 1 @ , we will not be able to choose the open
deadlines for an overall success probability of @ . If � is less
than � 1 @ , however, this leaves an allowed failure rate of
� 1 @ 1 � to be shared among the open projects. PROJMAN

chooses the open deadlines so that this allowed failure is
shared equally between them. If there are 3 open projects,
this means that each open deadline is selected to have prob-
ability � � 1 @ 1 � � �03 of being the first deadline to fail.



To implement this approach we need to construct a pri-
ority, or ordering, on the projects. By default, PROJMAN

orders fixed projects according to their deadlines, and open
projects according to their estimated effort. The user can
override the default by specifying an alternative priority.
Different orderings produce different results.

Results from the deadline selection routine on the ex-
ample portfolio are shown in the last columns of Table 2.
The overall portfolio success rate is set at 90%. The dead-
lines obtained are dependent upon the choice of probability
model, in this case Chisquare. Different models give dif-
ferent results, so it is important to use the goodness-of-fit
tests to verify that the chosen probability distribution gives
a realistic impression of effort uncertainty. Further demon-
strations of the PROJMAN tool with deadline selection are
given on the PROJMAN website.

4. Portfolio management for industrial data

4.1. Tukutuku data.

We demonstrate the PROJMAN tool using 32 Web ap-
plication projects from the Tukutuku database [9]. Each
project is described by 32 variables, from which effort may
be estimated. Actual effort upon completion is also known,
and ranges from 1 to 223 person-days.

Of the 32 projects, 12 are from Company M, a small
company with � �=C employees. We use the Company M
data as our company portfolio to demonstrate the PROJMAN

tool. The observed efforts for Company M can be used to
test with hindsight whether the deadlines suggested by PRO-
JMAN are realistic. To apply PROJMAN to the Company M
projects, we also require a separate dataset of completed
projects to build and calibrate a probability model. For this
we use the remaining set of 20 projects from the Tukutuku
database, collected from 13 different companies but simi-
lar to those in the Company M portfolio. These historical
projects are referred to as Set A.

To show how Company M might use the PROJMAN tool
over a period of time, we divide the Company M data at
random into two groups of six projects: Group I and Group
II. To begin with, we assume that all projects are unstarted,
but the Group I projects are under consideration. At a later
stage, we assume that the Group I projects have been com-
pleted and the Group II projects are under consideration.
The observed efforts from Group I are used to update the
PROJMAN system and provide new output for Group II.

Figure 2 illustrates the steps of the demonstration. The
first step is to derive a model for effort prediction using the
projects in Set A. The characteristics of the Tukutuku data
suggest two appropriate prediction frameworks [15]: case-
based reasoning (CBR), and stepwise regression (SWR).
We demonstrate both techniques. Our aim is not to find

the best effort model but to show how the PROJMAN tool is
used in the two frameworks.

The output from the effort model is used in two ways.
Firstly, the model is applied to the Group I projects to es-
timate efforts ��� � �5455� ���� for input to PROJMAN. Secondly,
the estimated efforts � � � �5458� � ��

�
for Set A, together with the

observed efforts 7 �� �4554� 7 ��
�
, are used to construct a proba-

bility model 7 �: � � � ��� �: � , as in Section 2. This involves
selecting a distribution family for � �

, estimating the dis-
persion parameter if necessary, and testing goodness of fit.
This step differs according to the chosen effort prediction
framework. When stepwise regression is used, the distribu-
tion � �

is automatically specified by the regression model.
For the case-based reasoning approach, � �

must be fitted
separately.

Finally, the Group I effort estimates � � � �5458� � �� and the
probability model � �

are used as inputs to the PROJMAN

system to build or test sets of plausible deadlines for the
Group I portfolio. This ends Phase 1 of the demonstration.
In Phase 2, the completed Group I projects are used to aug-
ment the data from Set A to provide a new set B of historical
data. The effort and probability models are refitted to Set B
and the new models are used with the Group II projects for
input to PROJMAN.

4.2. Case-based reasoning framework (CBR)

Case-based reasoning is a method of effort estimation
based on analogy with completed projects [17]. The user
identifies a set of variables that influence project effort. For
Web applications, suitable variables include number of Web
pages, number of images, and so on. A reference set of
completed projects is maintained with data on each variable
and a record of total effort at completion. Effort is estimated
for a new project by finding projects in the reference set
that are most similar to the new project on the basis of the
chosen variables. The effort values for the similar projects
are combined to generate an effort prediction for the new
project, typically using a weighted or unweighted mean.

Decisions for the user include the choice of the initial set
of variables, how to use these variables to assess similarity
between projects, how many reference projects to extract
for each effort estimate, and how to combine the reference
effort values into a single new effort prediction. With the
Tukutuku data, we identified 24 variables for the CBR anal-
ysis out of the 32 available. These comprised size variables,
such as number of Web pages, text pages, images, anima-
tions, and audio/video files, with separate records for new,
reused, and outsourced features; diversity variables, indicat-
ing the number of different features involved in the applica-
tion; and variables counting numbers of high effort and low
effort features of the application. Similarities were assessed
using the unweighted Euclidean distance, with all variables



� �

� �

�

Phase 1 : Group I projects unstarted

Set A (completed)
Observed efforts 7 �� �4554� 7 ��

�
.

Effort Model
Fit model to Set A.

Estimate efforts � � � �5455� � ��
�
.

Group I (unstarted)

Apply Effort Model to
estimate efforts � � � �5454� � �� .

True efforts 7 �� �5454� 7 �� unknown.

Probability Model7 �: ��� � � � �: � .
Fit distribution � �

.

PROJMAN

Assume 7 �: ��� � � � �: � .
Output deadlines for Group I.

� �

� �

�

Phase 2 : Group I projects completed

Set B (completed)
Merges Set A and Group I.

Observed efforts 7��� �5545� 7��� �
(from 7 �� �5545� 7 �

�
� � 7 �� �5548� 7 �� ).

New Effort Model
Fit model to Set B.

Estimate efforts � � � �4555� � �� � .

Group II (unstarted)

Apply new Effort Model to
estimate efforts � � �� �5454� � � �� .

True efforts 7 � �� �5454� 7 � �� unknown.

New Probability Model7��: ��� � ��� �: � .
Fit distribution � � .

PROJMAN

Assume 7 � �: ��� � � � � �: � .
Output deadlines for Group II.

Figure 2. Flow chart showing the steps used to demonstrate the PROJMAN tool with the data from
Company M and the historical data Set A. For Phase 1, the true Group I efforts � ����
	
	�	�� � � are assumed
unknown. For Phase 2, � �� ��	�	�	�� � � are assumed known but the true Group II efforts � ���� ��	�	
	
� � ��� are
unknown. The completed Group I projects are used to update the effort and probability models for
Phase 2.

scaled between 0 and 1. Because the dataset was relatively
small, we extracted only the three closest reference projects
for each prediction. The final effort prediction was given
by the unweighted mean of the three reference efforts. All
CBR analyses were performed using CBR-Works [14], a
commercially available CBR tool.

For Phase 1 (Figure 2), we applied the CBR method to
the data in Set A. Each project � was given an effort predic-
tion � �: based on the three most similar projects in Set A,
excluding itself. The actual effort, 7 �: , was already known.
We investigated the distributions in Table 1 for fitting the
probability model 7 �: � � � ��� �: � . The data were hard
to fit because the CBR method tended to underpredict ef-
fort, often substantially, so a distribution with extreme pos-
itive skew was required. Only the Lognormal-median fam-

ily gave an acceptable fit, and dispersion was high at 34.9.
Chisquare and KS goodness-of-fit tests both gave @ -values
of about 0.01, indicating a poor fit, but still considerably
better than any other family. The distribution captures the
upper extreme of the data quite well, but there are fewer
observations than expected at the lower extreme. The dead-
lines provided by PROJMAN may therefore be on the tight
side, and a high probability of success should be sought to
compensate.

The Set B data were also fitted with the Lognormal-
median family, giving a slightly reduced dispersion of 24.3.
Although the two dispersion values are numerically quite
different, the practical difference in the shape of the fitted
distribution is rather small.



4.3. Stepwise regression framework (SWR)

Stepwise regression is a method of selecting a set of pre-
dictor variables for a regression model, from a large number
of candidate variables [13]. One predictor variable is added
to the model at a time, chosen as the variable with the high-
est partial correlation to the response, taking into account all
other predictors currently in the model. The aim is to find
the set of predictors that maximize the 9 -statistic. The 9 -
statistic assesses whether the predictors, taken together, are
significantly associated with the response. A new predictor
is added only if it increases 9 by some specified amount.
Stepwise regression has frequently been used as a bench-
mark [17, 3, 16, 8], and is regarded as a good prediction
technique in some circumstances [7].

Linear regression models were not suitable for the Set A
data due to heteroscedasticity, but ordinary regression with
a log-transformed response provided a good fit. The se-
lected model for the Set A data was:

� � � � 7 �: � ���  � � � �  � � ��� � NewWP �+: ��� �: �
where (NewWP) : is the number of new web pages in project� , and

� �: � Normal �?� � �  C�� � for � � � �5548� � � . In
terms of the probability model 7 �: � � � � � �: � , this cor-
responds to the Lognormal-median family with dispersion
�
��� ���
	

�
��� ��� 1 �� �����  C .

For the Set B data, the selected model was expanded to:
����� � 7 �: � � �  ��� � �  � �  � � NewWP� : � �  �  � TotHigh� : �
� �: �
where (TotHigh) : is the total number of high effort fea-
tures in project � , and

� �: � Normal �?� � �  � � � for � �
� �5458� � � . For the probability model 7 �: ��� � ��� �: � , this
corresponds to the Lognormal-median family with disper-
sion �

��� ���
	
�
��� ��� 1 �� � C  � .

Goodness-of-fit tests indicated that both models gave an
excellent fit, with @ -values from the Chisquare and KS tests
all greater than 0.75. Note that this does not necessarily im-
ply that the models are good predictive models; instead, it
means that the extent of the uncertainty in the model has
been accurately captured by the Lognormal-median family.
There may be better effort models that predict the true effort
with less uncertainty. Nonetheless, the dispersion estimates
from the stepwise regression method are notably smaller
than those from the case-based reasoning approach, so step-
wise regression appears to have been a better approach for
these data. The excellent fit of the Lognormal-median dis-
tribution suggests that the output from the PROJMAN tool
can be considered reliable if the same model holds for the
Company M data.

All regression analyses were conducted using the statis-
tical software

�
. We also investigated an alternative step-

wise ANOVA procedure [5], but it did not improve upon the
stepwise regression results.

4.4. Deadline Planning for Company M

Table 3 shows the outcome of the PROJMAN system ap-
plied to the Company M portfolio. The actual effort and ef-
forts estimated by the CBR and SWR approaches are shown
for each project. Contrary to appearances, all of the ob-
served efforts are consistent with their estimates. For exam-
ple, the observation of 7 � ����� for project M2 is at approx-
imately the 10th percentile of the fitted Group I SWR distri-
bution with median � � ���

� � and dispersion 18.5. Even the
observation of 7 � � ����� for project M9 is only at the 97th
percentile for the fitted Group II SWR distribution with me-
dian � � ����� and dispersion 5.8. This serves to emphasize
the vast uncertainty associated with the two effort predic-
tion methods applied to these data, and the need for this
uncertainty to be taken into account when deciding upon
secure deadlines. We do not necessarily expect the dead-
lines suggested by PROJMAN to be favorable in the sense of
being short, but they are likely to be realistic if the models
presented here provide the best available method of effort
estimation.

Table 3 also shows suggested deadlines output by PRO-
JMAN to attain both 80% and 50% probability of portfolio
success. Occasionally the deadlines suggested by the CBR
and SWR approaches are very different, notably for project
M2; but generally they are fairly compatible. To test the
practical consequences of selecting the wrong model, we
used PROJMAN to estimate the probability of portfolio suc-
cess if the SWR deadlines were used when the truth was
represented by the CBR model, and vice versa. The 80%
deadlines from SWR yielded 78% success under CBR for
Group I, and 64% for Group II. Conversely, the 80% dead-
lines from CBR yielded 17% success under SWR for Group
I, and 78% success for Group II. With the exception of the
third value (17%), these results are encouragingly close to
the desired 80%. The anomalous 17% is due to the highly
discrepant estimates given by CBR and SWR for project
M2.

Another question of interest is how conservative the
PROJMAN deadlines are for practical purposes. Suggested
deadlines that are far longer than necessary will be almost
assured of success, but will not enable companies to make
their contract bids competitive. PROJMAN allows the user
to find the lowest probability of portfolio success at which
the observed efforts would meet the corresponding dead-
lines. Under the SWR approach, this was 21% and 81%
for Groups I and II respectively. For the CBR approach,
the results were 17% and 62%. All of these probabilities
lie well away from the extremes of 0% and 100%, sug-
gesting that the PROJMAN deadlines are within the realistic
range. Deadlines provided for 80% success probability will
often look unduly conservative, but the SWR Group II data
demonstrates that even more conservative deadlines may be



Table 3. Portfolio details. All efforts are measured in person-days. The case-based reasoning and
stepwise regression approaches are labeled respectively CBR and SWR. Deadlines are measured in
number of working days from the start day, and are provided to attain both 80% and 50% success
under the two different probability models.

Group Project Estimated efforts, �0: Actual effort, 7 : Suggested deadlines,
� :

CBR SWR CBR (80%) CBR (50%) SWR (80%) SWR (50%)

M1 19 22 42 50 24 56 32
M2 8 191 38 22 12 386 163

I M3 3 12 9 8 4 27 16
M4 3 11 3 9 5 22 12
M5 42 22 51 118 53 63 36
M6 27 16 5 72 36 39 23

M7 6 11 16 15 8 23 14
M8 3 6 3 7 4 9 5

II M9 33 33 223 85 42 51 31
M10 44 77 112 114 56 118 64
M11 30 11 12 64 34 19 12
M12 3 7 6 8 5 12 8

Table 4. Experiments with deadlines for Group II projects under the stepwise regression model.
Estimated efforts � � are measured in person-days, while deadlines

� � represent working days from
the start. Each trial is conducted with a different set of deadlines. The last two columns for each trial
give the output from 10 000 PROJMAN simulations with E=5 employees using the Lognormal-median
model. P(fail) is the probability of failure for deadline

� � , and P(fail 1) is the probability that deadline� � was the first to fail. The overall probability of portfolio success for each trial is given in the final
row. For each trial, the numbers in the P(fail 1) column sum to 100%– P(overall success).

Trial 1 Trial 2 Trial 3

Proj. Est. Deadline < (fail) < (fail 1) Deadline < (fail) < (fail 1) Deadline < (fail) < (fail 1)
�%: � : (%) (%)

� : (%) (%)
� : (%) (%)

M8 6 9 3.17 3.17 9 3.01 3.01 16 0.72 0.72
M12 7 12 5.66 3.45 12 5.31 3.24 20 1.28 0.79
M11 11 19 6.32 3.09 19 6.48 3.55 29 1.73 1.06

M7 11 23 8.90 3.56 23 8.74 3.22 35 2.17 0.92
M9 33 51 5.75 3.36 51 6.28 3.78 54 4.65 3.63

M10 77 118 5.13 3.23 70 18.59 11.55 70 17.48 12.84

< (overall success) : 80.14% < (overall success) : 71.65% < (overall success) : 80.04%



required in reality (81%). The need for such a large lee-
way in the SWR II case was due to the high effort required
for project M9. There is no obvious feature of the data for
project M9 that could have predicted this high effort.

Finally, Table 4 shows a process of deadline experimen-
tation that might be undertaken by a company manager. The
projects shown are from Group II under the stepwise re-
gression model. Most of the effort estimates are of small
to moderate size, with the exception of M10 which is large.
We imagine that the manager is particularly keen to secure
the contract for project M10, and aims to reduce the dead-
line to make as competitive a bid as possible. Applying
PROJMAN to suggest deadlines at 80% success probability
returns a long deadline of 118 days for project M10 (high-
lighted in Table 4, Trial 1). In Trial 2, the manager ex-
periments with lowering the deadline for M10 to 70 days:
the outcome is an overall portfolio success probability of
71.65%. This might be considered acceptable. However,
the manager is also able to force a deadline of 70 days for
project M10 and use PROJMAN to calculate renewed dead-
lines for the other projects in order to raise the overall suc-
cess probability back up to 80%. This requires compromise
on the smaller projects, as shown in Trial 3. Most of the
20% failure allowed for in Trial 3 is caused by the forced
project M10.

5. Conclusions

A successful approach to project management and dead-
line planning depends upon a realistic assessment of the un-
certainty attached to effort estimates. Uncertainty models
can be built with ease using standard statistical tools and
tests. They can be applied to estimates generated either by
expert opinion, guesswork, or existing prediction models.
In many circumstances, building a model of estimate uncer-
tainty will be considerably easier than finding an accurate
model for effort.

A portfolio approach to deadline planning enables a
company to provide competitive contract bids by absorb-
ing risks into a company-wide management plan. It is very
difficult to balance likely risks by intuition, but with basic
statistical software the problem becomes straightforward.
The PROJMAN tool takes into account progress on current
projects, and allows estimates to be refined or updated at
any stage. The probability model can also be updated as re-
quired, allowing the management plan to evolve over time.

At present, the methods assume that all employees are
able to participate in all projects. In some cases this might
not be possible, either due to differential skills of employ-
ees, or because projects themselves have a limit on the num-
ber of separate contributions that can be worthwhile. For
future work, we aim to consider possible adaptations of the
method for these situations. Another area for future work

concerns the allocation of employee resources to portfolio
projects. At present, PROJMAN offers deadlines to reach
a required probability of portfolio success, but it does not
suggest how employee time should be allocated for these
deadlines to be met.
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