
 

Whitepaper                                     
Release management -                          

An automated release process 

 

  



                  Whitepaper – Release management of a fully automated release process 

 

 

Email us : contact@akratech.in                                                                                                                                           Page 1 

 

  

 

Contents 
 

Overview ......................................................................................................................................................... 2 

Objectives ....................................................................................................................................................... 2 

Basic Flow of Release Management ............................................................................................................... 2 

Release Management workflow ..................................................................................................................... 3 

Understand releases and deployments .......................................................................................................... 4 

Release Management Quality ......................................................................................................................... 7 

Release management Processes & Automation ............................................................................................. 8 

Release Management Automation ......................................................................................................... 9 

Building a Release Management LIFECYLE ................................................................................................... 13 

Policy to be adopted as part of best practices .............................................................................................. 16 

Ensuring an effective Automation Platform ................................................................................................. 17 

Benefits of automation release .................................................................................................................... 18 

 

 
 

 

 

 

 

 

 

  

 

 

 

mailto:contact@akratech.in


                  Whitepaper – Release management of a fully automated release process 

 

 

Email us : contact@akratech.in                                                                                                                                           Page 2 

 

Overview  
 
 
Release Management is the process responsible for planning, scheduling, and controlling the build, in 

addition to testing and deploying Releases. Release Management ensures delivery of new and enhanced 

IT services required by the business, while protecting the integrity of existing services. 

 

Objectives 

 
It is about ensuring that an existing working application is not replaced with a non-working one. Besides 

it is about not introducing a working application which breaks other working applications or components. 

In real life, we see both these cases happening frequently. So, to reiterate, the agenda of release 

management is totally production, operation, infrastructure availability focused 

 
 Increase the number of successful Releases, including reducing the number of releases with 

unexpected outcomes.  

 Decrease the number of incidents caused by releases.  

 Create a single documented process for managing all releases.  

 Maintain a single repository for recording all releases through the lifecycle.  

 Ensure that the process is adopted, adhered to, and escalated to management if there are 

compliance issues.  

 Improve coordination between groups to ensure smooth and timely delivery of IT services.  

 Improve productivity by establishing standard release processes and tooling.  

 Initiate the release management process to provide sufficient lead-time for adequate impact 

analysis by the CAB.  

 Ensure that auditable release controls are established and documented.  

 Communicate releases to affected client representatives, clients (where appropriate), and other 

IT organizations (where appropriate).  

 Streamline the procedures so that there is an appropriate balance between the complexity of the 

Release and the required controls.  

 Build lessons learned from the release management process that could be applied to other areas 

of Service Management 

 
 

Basic Flow of Release Management 

 
Figure below outlines the basic steps that constitute a “Release Management” process. In this 

diagram the movement of a Release from left to right depicts progress through various 

environments (Development, QA and Production), each of which is a distinctive operating 

environment that progressively seeks to replicate Production conditions and functions separately 

mailto:contact@akratech.in


                  Whitepaper – Release management of a fully automated release process 

 

 

Email us : contact@akratech.in                                                                                                                                           Page 3 

 

from the other although they leverage common methods for promoting a Release between them 

 

It is important to note that Figure below does not reflect certain environments (e.g. Sandbox and 

pre-Production) which exist in more mature operations. 

 

 

Release Management workflow 
 

When using Release Management, here are the steps that you typically follow: 

Create release definitions: You start using Release Management by creating a release definition in the 

RELEASE hub of your team project. A release definition specifies (a) What to deploy - the set of artifacts that 

constitutes a new release, and (b) How to deploy - the series of automation tasks that should be run in 

each environment. 

Add environments: You add one or more environments to a release definition. Each environment is simply 

a named logical entity that represents a deployment target for your release. For example, you create 

environments for test, quality assurance, staging, and production. You then edit the environments to specify 

the lists of users that must approve the deployment where this is appropriate. 

Add tasks: You add automation tasks to each environment. These tasks describe the deployment and 

testing process. There is a wide range of pre-defined tasks you can use. These tasks can take advantage 

of shared custom variables and built-in properties in their configuration. Your tasks may need to connect to 

other services, cloud platforms, or third party deployment and testing services. For this, you define your 

global service endpoints. 

Create and deploy releases: Once you have created a release definition, you can manually create a new 

release based on this definition and deploy it to various environments, or you can let a release be created 

automatically and deployed upon completion of a build. There is a wide range of options for creating a 

release and deploying it, including release date and time, pipeline or parallel deployment, and more. You 

can also monitor the new changes that went into each release. 

Track deployments: As a release is deployed to various environments, you track its progress. You can 

approve new deployments to an environment, and view the logs of deployments as they happen. 

mailto:contact@akratech.in
https://www.visualstudio.com/en-us/docs/release/author-release-definition/understanding-artifacts
https://www.visualstudio.com/en-us/docs/release/author-release-definition/understanding-tasks
https://www.visualstudio.com/en-us/docs/release/author-release-definition/understanding-environments#approvers
https://www.visualstudio.com/en-us/docs/release/author-release-definition/understanding-tasks#serviceconnections


                  Whitepaper – Release management of a fully automated release process 

 

 

Email us : contact@akratech.in                                                                                                                                           Page 4 

 

Understand releases and deployments 

In Release Management, the terms release and deployment have very different meanings: 

 A release is the package or container that holds a versioned set of artifacts specified in a release 

definition. It includes a snapshot of all the information required to carry out all the tasks and actions 

in the release definition, such as the environments, the task steps for each one, the values of task 

parameters and variables, and the release policies such as triggers, approvers, and release queuing 

options. There can be multiple releases from one released definition, and information about each 

one is stored and displayed in Release Management for the specified retention period. 

 A deployment is the action of running the tasks for one environment, which results in the 

application artifacts being deployed, tests being run, and whatever other actions are specified for 

that environment. A release creates, initializes, and starts each deployment based on the settings 

and policies defined in the original release definition. There can be multiple deployments from each 

release. 

The following schematic shows the relationship between release definitions, releases, and deployments. 

 

Releases (and, in some cases, draft releases) can be created from a release definition in several ways: 

mailto:contact@akratech.in
https://www.visualstudio.com/en-us/docs/release/author-release-definition/more-release-definition
https://www.visualstudio.com/en-us/docs/release/author-release-definition/more-release-definition
https://www.visualstudio.com/en-us/docs/release/managing-releases/track-release#overview
https://www.visualstudio.com/en-us/docs/release/author-release-definition/more-release-definition#retention
https://www.visualstudio.com/en-us/docs/release/author-release-definition/understanding-tasks
https://www.visualstudio.com/en-us/docs/release/author-release-definition/understanding-artifacts


                  Whitepaper – Release management of a fully automated release process 

 

 

Email us : contact@akratech.in                                                                                                                                           Page 5 

 

 By a continuous deployment trigger that creates a release when a new version of the source build 

artifacts is available 

 By using the Release command in the UI to create a release manually 

 By sending a command over the network to the REST interface 

However, the action of creating a release does not mean it will automatically or immediately start a 

deployment. For example: 

 There may be deployment triggers defined for an environment, which force the deployment to wait; 

this could be for a manual deployment, a network request to the REST interface, until a scheduled 

day and time, or for successful deployment to another environment. 

 A deployment started manually from the Deploy command in the UI, or from a network command 

sent to the REST interface, may specify a final target environment other than the last environment 

in a release pipeline. For example, it may specify that the release is deployed only as far as the QA 

environment and not to the production environment. 

 There may be queuing policies defined for an environment, which specify which of multiple 

deployments will occur, or the order in which releases are deployed. 

 There may be pre-deployment approvers defined for an environment, and the deployment will not 

occur until all necessary approvals have been granted. 

 Approvers may defer the release to an environment until a specified date and time. 

Understanding application release and deployment challenges 

Existing manual and semi-automated approaches result in uncoordinated, time-consuming, error-prone 

and non-scalable release mechanisms draining both effort and budgets. The typical problems faced by 

enterprise release and deployment management functions are: 

High volume and frequency of releases 

Typical banks have on an average more than 1000 changes, production issues and enhancements to be 

done and moved to production. Assuming an average of 4 environments and number 

changes/fixes/enhancements are delivered incrementally, the number of promotions is easily closer to a 5 

digit number. 

Wide technology stack coupled with heterogeneous environments 

mailto:contact@akratech.in
https://www.visualstudio.com/en-us/docs/release/author-release-definition/more-release-definition#triggers
https://www.visualstudio.com/en-us/docs/release/managing-releases/create-release#manualrelease
https://www.visualstudio.com/en-us/docs/release/managing-releases/create-release#restapi
https://www.visualstudio.com/en-us/docs/release/author-release-definition/understanding-environments#deploymenttriggers
https://www.visualstudio.com/en-us/docs/release/managing-releases/create-release#restapi
https://www.visualstudio.com/en-us/docs/release/managing-releases/create-release#deployrelease
https://www.visualstudio.com/en-us/docs/release/managing-releases/create-release#restapi
https://www.visualstudio.com/en-us/docs/release/managing-releases/create-release#pauseterminate
https://www.visualstudio.com/en-us/docs/release/author-release-definition/understanding-environments#queuingpolicies
https://www.visualstudio.com/en-us/docs/release/managing-releases/track-release#approve
https://www.visualstudio.com/en-us/docs/release/managing-releases/track-release#approve


                  Whitepaper – Release management of a fully automated release process 

 

 

Email us : contact@akratech.in                                                                                                                                           Page 6 

 

Added to these is the wide technology stack- horizontally and vertically. i.e. each application spans across 

multiple technologies. Portfolio of applications is spread across multiple technologies. 

Expert Overload 

Due to the multiple technologies involved, Manual (or partially manual) deployment processes remain 

dependent on experts with specific application knowledge and technologies. Crucial deployment 

knowledge is in the heads of people, not stored and automated in systems.  

Excessive costs and delays 

Manual deployments involving multiple experts across multiple environments is time consuming. This 

translates to higher costs and schedule delays. 

Outages 

According to a 2010 Gartner, Inc. Research report, “through 2015, 80% of mission critical outages will be 

caused by people and process issues, and more than 50% of those outages are caused by 

change/configuration/release integration and handoff issues. 

Do no harm! …and don’t break the working production environment with new things that work!   

Point of View 

Bulky deployment manuals or Custom Scripts 

Manual deployments are guided by bulky manuals and contain endless sequences of deployment steps. It 

is extremely difficult to keep these manuals up-to-date each time a change occurs in the physical 

infrastructure, middleware or the application itself. Custom scripts created to automate the deployments 

steps are also tedious and need to be updated when there is a change. 

Non-orchestrated tool sets 

Release and Deployment activities are managed using a plethora of tools. These are not orchestrated to 

provide a seamless end to end release and deployment process 

Lack of visibility 

mailto:contact@akratech.in


                  Whitepaper – Release management of a fully automated release process 

 

 

Email us : contact@akratech.in                                                                                                                                           Page 7 

 

Organizations are unable to trace whether contents of the package being promoted to various 

environments are the baseline contents (e.g. whether the UAT certified build is the same one that is 

deployed into Production) 

Release Management Quality 

 
While the activities to create an artifact are used for both processes, which is encouraged for efficiency 

purposes, the utilization of that artifact can be different for each process; an example is the use of a 

quality assurance.  

 

Quality assurance determines if defects exist in the construction of the application or infrastructure 

component for the purpose of correcting the defect before going into production. While this same 

information is important for release management, the same information can be used to identify potential 

points of failure that could occur once the release is implemented into production. The difference is that 

project management uses the information in a diagnostic manner that will only be used during the project 

lifecycle, where release management will use the information in a proactive manner and will use it 

throughout the life of the service until the bugs are corrected or until the service is retired. 

 

These types of similarities exist throughout the development and project lifecycle. It should be 

remembered that the key difference is how the information and artifacts will be used—project 

management will only use the information and artifacts for the length of the project and release 

management will use it for the life of the service. The reusability of the information and artifacts is a benefit 

of release management. Reusability reduces development time and the cost of future releases simply 

because development teams do not need to recreate the artifact from scratch to understand the existing 

version of the release. When a new release is created, the development team simply refers to release 

notes and documentation from the previous release. 

 

In the same way that there are activities, tasks, and artifacts that are created and used for both project 

management and release management, there are also activities, tasks, and artifacts created for one 

process that complement the completion of other artifacts for the other process. An example of a 

complementary task is the creation of the business requirements document (BRD), which is a project 

management task. The BRD feeds the creation of service level requirements, the service offering, and 

finally results in the creation of a service level agreement between the customer and IT operations. The 

service offering is also a critical component for creating the organization’s service catalog. In this example, 

the BRD is not a requirement of the release lifecycle, however the service level agreement is, and without 

understanding the requirements and expectations of the customer, the service cannot be built and 

operated to the customer’s needs and expectations. 

The release and project management processes have similar and complementary tasks, activities, and 

artifacts, however there are some activities of each process that are not valued by the other. It is not that 

these activities and artifacts are not value added; it is simply that they do not have relevance to the goals 

and objectives of the related process. It was discussed that the BRD is not part of release deliverables; 

however, it is a key activity and deliverable of the project process. A support and escalation document is 

not considered an added value to the project process, however it is essential to the release process since 

mailto:contact@akratech.in


                  Whitepaper – Release management of a fully automated release process 

 

 

Email us : contact@akratech.in                                                                                                                                           Page 8 

 

the release process is concerned with the quality operational delivery of the service through retirement. 

Release management Processes & Automation 

Release management involves five major processes necessary to successfully plan and deploy authorized 

releases into an IT infrastructure. They are: 

1. Release Planning 

2. Release Building 

3. Acceptance Testing 

4. Release Preparation 

5. Release Deployment 

 

1. Release Planning - The first step in the release process is the creation of a plan identifying the 

activities and the resources required to successfully deploy a release into the production 

environment. This process includes the identification of scope and content of an approved change, 

and the release requirements for successful deployment, performing a risk assessment for the 

release and gaining signoff from the appropriate groups, prioritizing, planning, and scheduling 

release activities, establishing a suitable team for the release if required, liaising with experts and 

interested parties to determine the required resources and strategy for the release & finally 

documenting and tracking all release planning activities. 

 

2. Release Building - Once the release plan is in place & agreed on, it is required to identify and 

develop the processes, tools, and technologies required to deploy the release into production. This 

process flow leads to the creation of a release package containing all of the components necessary 

to deploy the release. It includes selection of a suitable release mechanism that is a strategic fit, is 

repeatable, and is consistent, designing and building a release package that allows it to be 

successfully deployed, testing of the release package to deliver the change effectively in line with 

requirements & ensuring the release package is updated to the CMDB. 

 

3. Acceptance Testing -  Acceptance testing allows QA testers and business representatives to see 

how the release and release package perform together in an environment that closely mirrors 

production. This process includes designing and building an accurate test environment that models 

the conditions in production, performing key functionality user acceptance tests aligned to the 

requirements of the change and release to ensure confidence in the release & evaluating 

acceptance testing results to make a confident decision to move toward release preparation. 

 

4. Release Preparation - After the completion of the acceptance testing, the next step is to prepare the 

production environment for the release, move through the preparation process and agree on the 

action to be taken. This process ensures that adequate resources are available for deployment of 

the release, effective communication pertaining to the release is carried out & all the training and 

user activity needed for deployment have been completed. It also confirms the suitability of 

implementation plans and readiness of the production environment for receiving the release, reviews 

the preparation and suitability of the release for deployment into the production environment, 

ensures all related changes have been handled by the change management process & manages 

the discussion around the Release Readiness Review inputs. 

 

mailto:contact@akratech.in


                  Whitepaper – Release management of a fully automated release process 

 

 

Email us : contact@akratech.in                                                                                                                                           Page 9 

 

5. Release Deployment - The process of deploying the release into the production environment 

depends on the type and nature of the release and on the selected release mechanism. It tracks 

through the implementation plan to carry out the actual deployment procedure & reviews the 

deployed release, taking into account feedback and comments from all parties involved. If the 

release fails to meet expectations or if serious problems are encountered during deployment, 

problem management may need to help identify and diagnose the root cause of the problem. If a 

suitable fix or workaround can be found, this should be documented and an RFC created to deploy 

it into production. The RFC should also ensure that the fix and any supporting documentation are 

added to the release package. Ultimately, the feedback is provided back to the change management 

& the release is completed following the successful deployment and completion of the review. 

Release Management Automation 

Application release and deployment automation is the automation of the release planning, control and entire 

deployment process from build all the way to production. A Release Automation platform is a toolset used 

to enable a more accurate, reliable and accelerated release and deployment experience for business and 

to offer an overall simplification of the complex release management process. 

- The automation platform typically covers  

 Planning of release, dependencies and schedules 

 Monitoring and control  of environments, consistency and access 

 Automation of deployment, rollback and configuration  

Let us see how an automation platform changes the way release and deployment happens. 

The Release Management service stores the data about your release definitions, environments, tasks, 

releases, and deployments on real time environments. 

mailto:contact@akratech.in


                  Whitepaper – Release management of a fully automated release process 

 

 

Email us : contact@akratech.in                                                                                                                                           Page 10 

 

 

Release Management runs the following steps as part of every deployment: 

Pre-deployment approval: When a new deployment request is triggered, Release Management checks 

whether a pre-deployment approval is required before deploying a release to an environment. If it is 

required, it sends out email notifications to the appropriate approvers. 

Queue deployment job: Release Management schedules the deployment job on an available automation 

agent. An agent is a piece of software that is capable of running tasks in the deployment. 

Agent selection: An automation agent picks up the job. The agents for Release Management are exactly the 

same as those that run your Builds in Team Services and Team Foundation Server. A release definition can 

contain settings to select an appropriate agent at runtime. 

Run the deployment tasks: The agent then runs all the tasks in the deployment job to deploy the app to the 

target servers for an environment. 

mailto:contact@akratech.in
https://www.visualstudio.com/en-us/docs/release/getting-started/configure-agents
https://www.visualstudio.com/en-us/docs/release/getting-started/configure-agents


                  Whitepaper – Release management of a fully automated release process 

 

 

Email us : contact@akratech.in                                                                                                                                           Page 11 

 

Generate progress logs: The agent creates detailed logs for each step while running the deployment, and 

pushes these logs back to the Server. 

Post-deployment approval: When deployment to an environment is complete, Release Management checks 

if there is a post-deployment approval required for that environment. If no approval is required, or upon 

completion of a required approval, Release Management proceeds to trigger deployment to the next 

environment. 

 

In manual release management, Planning is done using excel sheets. It is very difficult to track the multitude 

of tasks to be completed for each release, their dependencies. Also it is very difficult to map to the 

environments that will be used and any potential conflicts.  

The automation platform enables planning out the release calendar providing a holistic view of all upcoming 

releases.  

The various tasks under each release can be scheduled and the dependencies mapped. The dependencies 

between releases can be mapped to enable identification and resolution of release conflicts 

Test environments required for a particular release can be reserved. This enables a view of what is 

happening on each environment at any point of time. Configuration parameters for the particular release are 

defined; this provides the flexibility to customize the deployment according to that particular release context. 

The process flow can be customized based on release types 

Release Control 

In manual release and deployment activities multiple personnel need to have access to environments, 

component storage locations. This spawns a number of issues related to environment inconsistencies, 

security and compliance.  

Tracking the reason for a release failure is a time consuming activity. The dynamic schedule changes to 

various releases also create potential resource conflicts which are difficult to detect. 

The release control aspect of the automation platform enables tracking the progress of releases and 

identification of both process and application issues. The platform identifies issues such as, a release 

package not having an associated application version or configuration files required to guide the roll out, 

also alerts are provided for rollout issues, resource conflicts if environments are used for something else. 

The platform provides a clear audit trail mechanism of who approved a particular release, when was the 

release promoted to a particular environment, issues if any, roll back status etc making compliance a breeze. 

Automation Deployment 

When software developers decide their build package is ready, it is automatically passed to the solution. 

The build package then moves through a pre-defined software development lifecycle, complete with all the 

mailto:contact@akratech.in


                  Whitepaper – Release management of a fully automated release process 

 

 

Email us : contact@akratech.in                                                                                                                                           Page 12 

 

compliance-savvy functions like automated process, workflows, notifications and approvals. During the 

entire process, release and deployment teams can easily track changes and provide the necessary 

compliance reports. From the time the build is assembled and imported into the system, the solution tracks, 

manages, and deploys the application through automated workflows and best practices. 

The core aspect of the release and deployment automation is the Deployment model. The majority of the 

platforms enable definition of a deployment model which consists of three distinct sub models. 

The first sub model is the logical application model, which defines “What” needs to be deployed. 

The second sub model is the Environment model, which defines “Where” the release component(s) need to 

be deployed. 

The third sub model is the Work flow execution model, which defines “How”, i.e the order in which the release 

components (s) need to be deployed. 

Application Model 

The logical application model is not about packaging of physical binaries, it is the logical packaging. The 

logical model captures what are the different types of components that comprise the release and their 

mapping to the specific container/server type. This model captures -  

 Dependencies on middle ware, database or previous version of the same applications and how 
they are related to each other.  

 Configuration status, i.e. the versions of the application, where the binaries are organized, which 
versions are sunset and the sequence of patches or upgrades that have to be installed to get to 
the current version. 

 Inventory list of components and the versions of the component(s) that make up a particular 
release. 

Environment Model 

Enterprises have different types of environments such as Dev, SIT, UAT, Pre-Prod and Productions. The 

details of these environments along with their setting such as the number of different servers, interfaces etc. 

are captured as part of the environment model. These need to be modeled so that it can affect the work flow 

as it is executed.  

Profiles for deployment of components to each container/server type example database server, app server 

etc. are also captured as part of the environment model. 

Workflow Model 

As part of the application and environment models, components of particular applications along with their 

various environments are identified. Most of the enterprises have different release types, for example 

customization release, support release, non-functional and emergency releases with each release type 

having its own route to live. The work flow execution model defines the sequence of release activities by 

each release type. 

mailto:contact@akratech.in


                  Whitepaper – Release management of a fully automated release process 

 

 

Email us : contact@akratech.in                                                                                                                                           Page 13 

 

The work flow can be easily defined using pre-defined standardized business process functions with a drag 

and drop interface. For each of these steps a threshold for success/failure along with recovery steps for 

failure conditions can be defined. You have options to set breaks at each of these steps to pause the 

deployment and examine the logs. 

The workflow execution model uses the data in application and environment models to repeat the required 

activities without the need for complex if-then-else logic. The platform is intelligent to repeat steps based on 

the number of servers, skip a server update if the release does not impact the server. 

To sum it up, this model enables encapsulating the entire set of deployment data and facilitates a repeatable, 

scalable and secure deployment process 

Building a Release Management LIFECYLE 

 

 

 

1. Change Management 5.  Deployment Management 

 - Bug Fixes             - Deployment Request Portal 

mailto:contact@akratech.in


                  Whitepaper – Release management of a fully automated release process 

 

 

Email us : contact@akratech.in                                                                                                                                           Page 14 

 

 - New Enhancements     - Environment Management 

 - Project Tracking     - Notifications 

2. Version Control Management 6. Environment Provisioning 

 - Branching & Merging   - Bare Metal Provisioning 

 - Labeling/Tagging   - System Configuration 

 - Versioning   - Application Sanity Checks 

3. Build Management 7. Configuration Repository 

 - Build Request Portal   - Repository Structure 

 - Continuous Integration   - Environment specific data 

 - Dependency Management 8. Deployment Framework 

4. Binary Repository   - Remote Deployments 

 - Repository Structure   - Orchestration 

 - External Libraries Integration - Error Handling   - Reusable Deployment Scripts 

 - High Availability   

 

 

 

 

Version Control Best Practices 

mailto:contact@akratech.in


                  Whitepaper – Release management of a fully automated release process 

 

 

Email us : contact@akratech.in                                                                                                                                           Page 15 

 

Check-In  

 Define a periodic check-in (logical chunks) and refresh policy for your project. Check-in can be as frequent 

as hourly to daily or completely left to developers as in distributed VCS. Project complexity, quantum of 

integration effort, team co-location are some critical factors to be considered while taking decision.  

 Do not check-in binaries files into VCS. VCS should be used for files which get updated, strictly speaking 

an update to a binary results in a new version (i.e. binaries should be treated read only)  

Branching & Merging  

- Branch only if unavoidable and branch late  

- Do not create separate branches for individual developers. VCS is not a backup server.  

- Do not create separate branches for SDLC phases (DEV, ST, SIT, UAT, …). A change to an 

application results in a new version and a version should be deployable to any environment. A 

change should not be made for a particular environment.  

- Define policies for syncing branches. Changes from mainline/trunk to other branches should flow 

continually, branch to mainline for production releases and child branches to parent branches 

based on situation. Project complexity, quantum of integration effort, team co-location are some 

critical factors to be considered while taking decision.  

Tagging & Versioning  

- Label/Tag logical points from which builds are taken for releases  

- Use a common project structure and naming convention  

Build Management Best Practices 

General  

- A build should always produce a versioned binary package  

- Check in build scripts into version control system  

- An output of a build run should be automatically placed in the binary repository as per the structure  

- Build Requests should be captured for audit and other uses. Use a web portal as a build 

management tool.  

- Schedule periodic automated builds with the help of CI tools  

Modularize  

- Break down your project into components and build only changed components & their 

dependencies  

- In the J2ee world, use Maven/Ivy to manage component dependencies  

- Break down your build script into reusable templatized components. Do not hard code.  

Binary Repository Best Practices 

 Should have a defined structure & naming convention  

 High Availability (e.g. SAN clusters with redundancy)  

 One Binary Repository for a company/unit, can be geographically clustered with replication for 

performance  

 Should support promotion of binaries to SDLC environments (DEV/ST/UAT/…)  

 Should have automatic redundancy detection and avoidance  

 Can be realized using products like Archiva, Artifactory or a custom solution on top of the file 

system  

 Should only be accessible to the deployment frameworks based on right ACL  

mailto:contact@akratech.in


                  Whitepaper – Release management of a fully automated release process 

 

 

Email us : contact@akratech.in                                                                                                                                           Page 16 

 

 Should only support file creation, update/delete should not be provided  

 

Configuration Repository Best Practices 

 Should have a defined structure & naming convention and match that of a binary repository  

 Should be realized on top of a version control system  

 One Configuration Repository for a company/unit, can be geographically clustered with replication 

for performance  

 Should only be accessible to the deployment frameworks based on right ACL  

 

Deployment Management & Deployment Framework Best Practices 

 Deployment Management  

o Deployment Requests should be captured for audit and other uses. Use a web portal as a 

build management tool.  

o Capture the revision/version number of the configuration repository at the time of 

deployment request  

o Deployment portal should present the deployment options after linking the Binary & 

Configuration Repository  

Policy to be adopted as part of best practices  
 

 All projects, bundled changes to an existing service (releases containing multiple 

enhancements/fixes) and cyclical changes to an existing service must go through the Release 

Management process and must have a completed request for change (RFC) with appropriate 

approvals.  

 Whenever possible, changes to an existing service should be bundled together and released on 

a regular (e.g., monthly) basis using the Release Management process.  

 A single “Release Engineer” must be identified for every Release. The Release Engineer will be 

responsible for successful coordination and execution of the Release, as well as ensuring all 

required documentation related to the Release exists.  

 Proof that controls (initiation, testing, and approval) have been followed for all auditable Releases 

shall be stored with the ability to be reproduced.  

 Each Release should be initiated through a standardized and approved process (service request, 

incident management, problem management).  

 Each Release should be well tested and verified prior to implementation.  

 All implementation work on the Release should be completed by the Planned End Date/Time.  

 

Validation that the Release has been completed successfully should be confirmed through post-

release testing 

 

 Release – Captures overall detail. Release Engineer role req.  

 Release Item - Details the separate pieces of work within the Release. Release Engineer role 

mailto:contact@akratech.in


                  Whitepaper – Release management of a fully automated release process 

 

 

Email us : contact@akratech.in                                                                                                                                           Page 17 

 

required.  

Release Task – Details work required to deploy each Release. Release Engineer or Release User roles 

required. 

Ensuring an effective Automation Platform 

An effective application release automation platform should be able to: 

Version Control Integration 

Internal as well as Vendor development teams use different version control tools like Subversion, CVS, and 

Microsoft Visual SourceSafe. The automation platform should preferably have capabilities to pick up baseline 

code from any of these version control tools and initiate the build processes. This enables vendor 

development teams to continue using their preferred version control tools while release automation toolset 

handles moving the build package through the release lifecycle. 

Automation of all movement along the path to production 

The automation platform should automate From the time the build is created to final deployment, the 

promotion/ hand-offs across users, applications and environments should be automated. This operation 

should be completely configurable using simple point-and –click functions to meet the individual business 

requirements that the organization has established. 

Point and click distribution and deployment 

For companies managing multi-platform, distributed environments, the solution should automatically deploy 

all necessary components to the appropriate target location throughout the development lifecycle. It should 

gather, package, distribute and install application components at each stage of the lifecycle.  

Total Visibility of Objects and Package contents 

From the minute a build is created, ability to trace all information associated with a valid package from a 

revision number to a tag or label, as it moves through the entire development lifecycle. This includes who 

approved, who touched it, what happened to it, where it went next, etc.  

Deployment rollback features 

Rollback recovery options are absolutely necessary. When it comes to application development, deployment 

is often the stage where disaster will strike. Rollback features allow users to simply label the last state of the 

application pre-deployment before moving into production.  

Parallel development and conflict resolutions 

The simultaneous development of multiple versions of software application can be complex and difficult to 

manage.  

mailto:contact@akratech.in


                  Whitepaper – Release management of a fully automated release process 

 

 

Email us : contact@akratech.in                                                                                                                                           Page 18 

 

All too often, development teams are faced with conflicts between versions, which can confuse and disrupt 

even the best managed project teams. The right solution should allow quick identification of version conflicts 

using descriptive and structured status tags (active, pending, cleared etc..) so that developers can clearly 

see and resolve existing conflicts at the appropriate time.  

Secure and consistent distribution packages 

The right solution should eliminate the security concerns and inconsistencies of manual file transfers, 

coordinate arrival regardless of location or system(windows, Linux, IBM i), log all code and content transfers 

for audit purposes and limit access to objects by user. 

Workflow and change management 

The solution should automate, accelerate and enforce workflow and change management process.  

Software Configuration management 

The solution should include functions that automatically build organize and maintain a central inventory of 

all application components.  

Release merging capabilities 

The right solution should allow seamless merging of releases without losing version and historical 

information in the merged release. Companies with scheduled release and tight controls, software houses 

who want to consolidate releases without losing the object’s identifying mark(the version number’), and 

financial institutions with strict auditing procedures should benefit from the “merge to parent” functionality . 

Flexibility 

The solution selected should be both open and flexible in nature with integration efforts, tool options and 

adoption of process methodologies. This is essential in enforcing process across release management. It 

should plug in to variety of tools so users can pursuer best-of-breed strategy. 

Simple Version Control Integration 

Release management process also need to support simple version control tools like Subversion, CVS, 

Microsoft Visual SourceSafe and Microsoft team foundation. Most of them are great for keeping track of all 

the various version of file, they work fast and developers love them. The solution allows software teams to 

keep using their own version control tools while it handles moving the build package through a pre-defined 

software development lifecycle. 

Benefits of automation release 

The Benefits enterprises achieve by automation release and deployment are: 

 Shorten application release and service times, for both routine and non-routine tasks across the 

application portfolio. 

mailto:contact@akratech.in


                  Whitepaper – Release management of a fully automated release process 

 

 

Email us : contact@akratech.in                                                                                                                                           Page 19 

 

 Provide centralized control and automatic execution of application release tasks such as rollouts, 

patches, hot fixes and rollbacks. 

 Streamline and coordinate processes across users, applications and environments (Dev, QA, 

Ops). 

 Support automation across heterogeneous infrastructures, including physical, virtual and cloud 

environments. 

 Scale application service workload capacities. 

 Provide granular audits and application service reports. 

 Provide a sophisticated and comprehensive dashboard of release trends, enabling high-level IT 

managers to monitor and audit the deployment process. 

 Enable seamless integration with existing automation and monitoring tools 

 
 
 
 
 
 
 

 

mailto:contact@akratech.in

	Overview
	Objectives
	Basic Flow of Release Management
	Release Management workflow
	Understand releases and deployments
	Release Management Quality
	Release management Processes & Automation
	Release Management Automation

	Building a Release Management LIFECYLE
	Policy to be adopted as part of best practices
	Ensuring an effective Automation Platform
	Benefits of automation release

