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Abstract
Delivering software in an incremental fashion 
implicitly reduces many of the risks associated 

with delivering large software projects. However, 
adopting a process, where requirements are 

delivered in releases means decisions have to be 

made on which requirements should be delivered 
in which release. This paper describes a method 

called EVOLVE+, based on a genetic algorithm 

and aimed at the evolutionary planning of 
incremental software development. The method is 

initially evaluated using a sample project. The 

evaluation involves an investigation of the trade-
off relationship between risk and the overall 

benefit.  The link to empirical research is two-fold: 

Firstly, our model is based on interaction with 
industry and randomly generated data for effort 

and risk of requirements. The results achieved this 

way are the first step for a more comprehensive 
evaluation using real-world data. Secondly, we try 

to approach uncertainty of data by additional 

computational effort providing more insight into 
the problem solutions: (i) Effort estimates are 

considered to be stochastic variables following a 
given probability function; (ii) Instead of offering 

just one solution, the L-best (L>1) solutions are 

determined. This provides support in finding the 
most appropriate solution, reflecting implicit 

preferences and constraints of the actual decision-

maker. Stability intervals are given to indicate the 
validity of solutions and to allow the problem 

parameters to be changed without adversely 

affecting the optimality of the solution. 

Keywords: Incremental Software Development, 
Release Planning, Uncertainty, Quantitative 

Analysis, Decision Support, Genetic Algorithm, 

Risk Management, Resource constraints. 

1. Background and Motivation. 

There is a growing recognition that an 

incremental approach to software development is 

often more suitable and less risky than the 

traditional waterfall approach [10]. This 

preference is demonstrated by the current 

popularity of agile methods, all of which adopt an 

incremental approach to delivering software 

rapidly [20]. This shift in paradigm has been 

brought about by many factors, not least the rapid 

growth of the World Wide Web, the consequent 

economic need to deliver systems faster [4] and 

the need to ensure that software better meets 

customer needs. Further, it has been recognized 

that even where an incremental model is not the 

initial process of choice, it is often adopted at the 

maintenance stage due to unanticipated changes 

[19].  

Software development companies have real 

constraints for competitive market edge and 

delivery of a quality product. To achieve quality 

processes and practices there are permanent 

trades-offs to the different aspects related to the 

final quality of the product. Decision processes are 

the driving forces to organize a corporation’s 

success [6]. Software Engineering Decision 

Support (SEDS) is a new paradigm for learning 

software organizations [21]. Its main goal is 

provide support for decision-making based on best 

knowledge and experience, computational and 

human intelligence, as well as a suite of sound and 

appropriate methods and techniques. 

Computerized decision support should be 

considered in unstructured decision situations 

characterized by one or more of the following 

factors: complexity, uncertainty, multiple groups 

with a stake in the decision outcome (multiple 

stakeholders), a large amount of information 

(especially company data), and/or rapid change in 
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information. Support here means to provide access 

to information that would otherwise be unavailable 

or difficult to obtain; to facilitate generation and 

evaluation of solution alternatives, and to 

prioritize alternatives by using explicit models that 

provides structure for particular decisions. 

In the incremental software process model, 

requirements are gathered in the initial stages and, 

taking technical dependencies and user priorities 

into account and the effort required for each 

requirement, the system is divided into increments. 

These increments are then successively delivered 

to customers. It is often true that any given 

requirement could be delivered in one, several or 

even all releases. Consequently, there is a need to 

decide which requirements should be delivered in 

which release. It may make sense to deliver those 

with highest user value in the earliest increments, 

and thus gain more benefits early on [8].  Since 

there are likely to be many different users all with 

different viewpoints on what user value of 

requirements is, this decision is potentially very 

complex. Exacerbating this is the fact that there 

are a range of constraints, one of which is the 

desired maximum effort for any given increment. 

In addition to this factor, risk is an important 

consideration. A given project may have a risk 

referent. This is a level of risk, which should not 

be exceeded [3]. In an incremental delivery model, 

this means that a given release has also a risk 

referent.  

In response to these issues, we have developed 

an evolutionary and iterative approach called 

EVOLVE+ that offers quantitative analysis for 

decision support in software release planning. The 

model is extended from [11] and takes into 

account: (i) the priorities of the representative 

stakeholder groups with respect to requirements; 

(ii) the effort estimate for implementing each 

requirement and the effort limit for each release; 

(iii) precedence constraints, where one 

requirement must occur in a release prior to the 

release for another requirement; (iv) coupling 

constraints where a group of requirements must 

occur in the same release; (v) resource constraints 

where certain requirements may not be in the same 

release; and (vi) a risk factor estimate for each 

requirement and a maximum risk referent value, 

calculated from this for each release.  

In situations where there are complex 

relationships between several factors and 

consequently a very large solution space, genetic 

algorithms have been shown to be appropriate [1]. 

Genetic algorithms have arisen from an analogy 

with the natural process of biological evolution 

[13] and usually start with a population of 

randomly generated solutions, each member of the 

population being evaluated by some objective 

function. The next step is selection, where 

solutions (or chromosomes) are chosen from the 

population to be used in creating the next 

generation. In this process, those with a superior 

fitness score are more likely to be selected. The 

next generation is created by a crossover operator, 

which mixes pairs of chromosomes to create new 

offspring containing elements of both parents. A 

further operation, mutation is applied to introduce 

diversity in the population by creating random 

changes in the new offspring. As new offspring 

are created, typically the worst scoring 

chromosomes are replaced. The selection 

mechanism, the size of the population, the amount 

and type of crossover, the extent and mechanism 

of mutation and the replacement strategy are all 

variable and can be adjusted, dependent on the 

problem being solved.  

Hence, a computationally very efficient 

algorithm based on the principles of evolution is 

proposed as a potentially suitable means to find L-

best release plans and to handle uncertainties in 

effort estimates. Support for decision-making 

typically involves the development of not only one 

solution, but a set of ‘best’ candidates where the 

actual decision-maker can select from, according 

to their implicit preferences and subjective 

constraints.

The problem and the model used to solve it are 

described in Section 2. Our model is based on 

interaction with industry. The proposed solution 

approach called EVOLVE+ is presented in Section 

3. In keeping with current advice for evaluation of 

software engineering theory, methods and tools 

empirically [14][16], we have designed and 

carried out a series of experiments to evaluate 

EVOLVE+. Randomly generated data for effort 

and risk of requirements were initially used as an 

example project described in Section 4. This 

includes stochastic variables for effort constraints 

as well as sensitivity and stability analysis. Section 

5 will provide a summary of the findings and 

identify potential extensions for future research 

2. Model Building and Problem 

Statement. 

Release planning for incremental software 

development includes the assignment of 

requirements to releases such that all technical, 

risk, resource and budget constraints are fulfilled. 

The overall goal is to find an assignment of 

requirements to increments that maximizes the 
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sum of all (weighted) priorities of all the different 

stakeholders. In what follows, we more formally 

introduce all the necessary concepts and notation. 

2.1 Stakeholder Priorities  

One of the challenges to the software 

engineering research community is to involve 

stakeholders in the requirements engineering 

process. In any project, several stakeholders may 

be identified. A stakeholder is defined as anyone 

who is materially affected by the outcome of the 

project. Effectively solving any complex problem 

involves satisfying the needs of a diverse group of 

stakeholders. Typically, stakeholders will have 

different perspectives on the problem and different 

needs that must be addressed by the solution. 

Example stakeholders are the different types of 

users of the system, investor, production manager, 

shareholder, or designer. An understanding of who 

the stakeholders are and their particular needs are 

key elements in developing an effective solution 

for the software release planning problem. 

It is assumed that a software system is initially 

specified by a set R1 of requirements, i.e., R1=

{r1,r2… rn}. At this stage (k=1), we wish to 

allocate these requirements to the next and future 

releases. In a later phase k (>1), an extended 

and/or modified set of requirements Rk will be 

considered as a starting point to plan for increment 

k (abbreviated by Inck). The requirements are 

competing with each other (to become 

implemented).  

Their individual importance is considered from 

the perspective of q different stakeholders 

abbreviated by S1,S2,…,Sq. Each stakeholder Sp is 

assigned a relative importance p  (0,1). The 

relative importance of all involved stakeholders is 

normalized to one, i.e., p=1,…,q p = 1. 

Each stakeholder Sp assigns a priority denoted 

by prio(ri, Sp, R
k) to requirement ri as part of set of 

requirements Rk at phase k of the planning 

approach. prio() is a function: (ri, Sp, Rk)

{1,2,.., } assigning a priority value to each 

requirement for each set Rk. Typically, different 

stakeholders have different priorities for the same 

requirement.  

2.2 Evolution of Increments 

As result of the planning process, different 

increments will be composed out of the given set 

of requirements. These increments are planned up-

front but the possibility of re-planning after any 

increment is allowed. This re-planning may 

involve changing some requirements, priorities 

and constraints and/or introducing new ones. It 

necessitates a reassignment of requirements (not 

already implemented in former releases) to 

increments. Throughout the paper, we assume that 

the number of releases is not fixed upfront. The 

complete modeling and solution approach remains 

valid with only minor modifications for the case of 

fixed number of releases. 

Phase k of the overall planning procedure 

EVOLVE+ is abbreviated by EVOLVE+(k). The 

input of EVOLVE+(k) is the set of requirements 

Rk. The output is a definition of increments Inck,

Inck+1, Inck+2, … with Inct  Rk for all t = k, k+1, 

k+2, … The different increments are disjoint, i.e., 

Incs  Inct =  for all s,t  {k, k+1, k+2, …}. The 

unique function k assigns each requirement ri of 

set Rk the number s of its increment Incs, i.e., k:

ri  Rk k(ri)= s  {k, k+1, k+2, …}. 

2.3 Effort Constraints 

Effort estimation is another function assigning 

each pair (ri, R
k) of requirement ri as part of the set 

Rk the estimated value for implementing this 

effort, i.e., effort() is a function: (ri, Rk) +

where + is the set of positive real numbers. 

Please note that the estimated efforts can be 

updated during the different phases of the overall 

procedure. 

Typically project releases are planned for 

certain dates. This introduces a size constraint 

Sizek in terms of effort of any released increment 

Inc(k). We have assumed that the effort for an 

increment is the sum of the efforts required for 

individual requirements assigned to this increment. 

This results in the set of constraints r(i)  Inc(k) 

effort(ri, R
k)  Sizek for all increments Inc(k). 

2.4 Balancing Risk per Increment 

Risk estimation is used to address all the 

inherent uncertainty associated with the 

implementation of a certain requirement. In what 

follows, we employ a risk score as an abstraction 

of all risks associated with a given requirement. 

These risks may refer to any event that potentially 

might negatively affect schedule, cost or quality in 

the final project results.  For each pair (ri,R
k) of 

requirement ri as part of the set Rk the estimated 

value for implementing this effort, i.e. risk is a 

ratio scaled function risk: (ri, R
k)  [0,1), where 

‘0’ means no risk at all and ‘1’ stands for the 

highest risk. In what follows we assume that the 

risk assessment is done by expert judgment. 

The idea of risk balancing is to avoid a 

concentration of highly risky requirements into the 
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same increment. This leads to constraints r(i)

Inc(k)  risk(ri, R
k)  Riskk for each increment k. The 

risk per increment is supposed to be additive, and 

Riskk denotes the upper bound for the acceptable 

risk for the k-th increment, the risk referent. 

2.5 Precedence, Dependency and Resource 

Constraints

 In a typical real world project, it is likely 

that some requirements must be implemented 

before others. There might be logical or technical 

reasons that the realization of one requirement 

must be in place before the realization of another. 

Since we are planning incremental software 

delivery, we are only concerned that their 

respective increments are in the right order. More 

formally, for all iterations k we define a partial 

order k on the product set Rk x Rk such that (ri. rj)
k implies k(ri)

k(rj).

 With similar arguments as above, there 

might be logical or technical reasons implying that 

the realization of one requirement must be in place 

in the same increment as another one. Again, since 

we are concerned with incremental software 

delivery, we are only concerned that their 

respective increments are in the right order. More 

formally, for all iterations k we define a binary 

relation k on Rk such that (ri. rj)
k implies that 

k(ri) = k(rj) for all phases k. 

Finally, we consider resource constraints. We 

assume that certain requirements are known to 

allocate the same type of resource, and putting 

them into the same increment would exceed the 

given capacity of that resource. In general, there 

are index sets I(t)  {1,…,n} such that card({ri

Rk: i  I(t)})  resource(t) for all releases k and for 

all resources t. Therein, resource(t) denotes the 

capacity available of resource t. 

2.6 Problem Statement for Software 

Release Planning  

We assume an actual set of requirements Rk.

Taking into account all the notation, concepts and 

constraints as formulated above, we can now 

formulate our problem as follows: 

For all requirements ri  Rk determine an 

assignment *: *(ri)= m of all requirements ri  to 

an increment *(ri)= m such that  

(1) r(i)  Inc(m)  effort(ri, R
m)  Sizem

 for m = k,k+1,… (Effort constraints) 

(2) r(i)  Inc(m)  risk(ri, R
m)  Riskm

 for m = k,k+1,… (Risk constraints) 

(3) *(ri)
*(rj) for all pairs (ri. rj)

k

 (Precedence constraints) 

(4) *(ri) = *(rj) for all pairs (ri. rj)
k

(Coupling constraints) 

(5) card({ri  Rk: i  I(t)})  resource(t)  

for all releases k and all sets I(t) related      

to all resources t 

(6) A = p=1…,q p [ r(i) R(k)benefit(ri,,Sp,
*)] 

 L-max! with  

benefit(ri,Sp,R
k, *)=[ -prio(ri,Sp, R

k)

+1][  - *(rj,)+1] and  

 = max{ *(ri): ri  Rk}

The function (6) is to maximize the weighted 

benefit over all the different stakeholders. L-max 

means to compute not only one, but a set of L best 

solutions (L>1). That means for all feasible 

assignments h, h=1,2,… there is a subset  (with 

card( )=L) of assignments such that any 

assignment outside is  is at least not better 

(related to (6)) than any assignment from .. For a 

fixed stakeholder, the benefit from the assignment 

of an individual requirement to an increment is the 

higher, the earlier it is released and the more 

important it is.  

3. Solution Approach 

3.1 EVOLVE+ Approach  

The proposed approach called EVOLVE+ 

combines the computational strength of genetic 

algorithms with the flexibility of an iterative 

solution method. At all iterations, a genetic 

algorithm is applied to determine L-best solutions 

of (1) - (6).  

Figure 1. EVOLVE+ approach to assign 
requirements to increments. 

Maximization of objective function (6) is the 
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main purpose of conducting crossover and 

mutation operations. This function is computed as 

a fitness value for each optimization step of the 

genetic algorithm. The algorithm terminates when 

there is no further improvement in the solution. 

This is calculated as no improvement in the 

objective function value achieved within 0.5% 

deviation over six hundred simulations. The 

algorithm works by producing orderings of 

requirements and, if valid, calculating this fitness 

score. 

For each solution generated by the genetic 

algorithm, each of the constraints is checked. The 

effort constraint (1) is handled by a greedy-like 

increment allocation algorithm, which is run on 

every ordering produced by the genetic algorithm. 

This can be a discrete effort estimation or, 

alternatively, the model allows for the possibility 

that effort estimates are represented by probability 

distributions. If this is the case, the RiskOptimizer 

tool, provided with the necessary parameters, 

simulates the distribution using Latin Hypercube 

sampling over thousands of iterations. The 

increment allocation is implemented as before, but 

the effort constraint is calculated as the value at a 

chosen percentile. This allows the decision maker 

to select the required confidence levels for keeping 

within the effort constraints for individual 

releases. The risk constraint is checked by 

summing the total risk for each release and 

comparing this with the risk referent (2). 

Precedence constraints (3), coupling constraints 

(4) and resource constraints (5) are implemented 

by specific rules used to check each generated 

solution. In the case of precedence and coupling 

constraints a table of pairs of requirements is held. 

For precedence constraints, the first member of the 

pair is a predecessor of the second. For coupling 

constraints, the pairs must be in the same release. 

For the resource constraints, a list of resources is 

maintained and for each resource an available 

capacity limit is estimated.  This refers to number 

of occurrences allowed for that resource in a given 

release. The required usage of these resources for 

each requirement is held in a table and the total 

usage for any release must not exceed the 

available capacity of any resource. In all three 

cases, if any given solution is generated that 

violates the constraint, the solution is rejected and 

a backtracking operation is used to generate a new 

solution.  

In calculating the benefit, weightings are used 

to discriminate between stakeholders, these 

weightings being calculated using the pair-wise 

comparison method from AHP [22].  

EVOLVE+ is an evolutionary approach. At 

iteration k, a final decision is made about the next 

immediate increment Inck and a solution is 

proposed for all subsequent increments Inck+1,

Inck+2, …The reason for the iterative part in 

EVOLVE+ is to allow all kinds of late changes in 

requirements, prioritization of requirements by 

stakeholders, effort estimation for all 

requirements, effort constraints, precedence and 

coupling constraints as well as changes in the 

weights assigned to stakeholders. This most recent 

information is used as an input to iteration k+1 to 

determine the next increment Inck+1 as final and all 

subsequent ones Inck+2, Inck+3, …as tentatively 

again. This is illustrated in Figure 1. 

3.2 Algorithms and Tool Support 

In this research, we have made use of 

Palisade’s RiskOptimizer tool [17]. The 

RiskOptimizer tool provides different algorithms 

for adjusting the variables. Since we are concerned 

with ranking requirements, the most suitable one 

provided is the ‘order’ method. This method 

generates different permutations of a starting 

solution and is designed for optimizing rankings of 

objects. The order genetic algorithm is described 

in [5]. 

Selection is effected by choosing two parents 

from the current population, the choice being 

determined by relating the fitness score to a 

probability curve [18]. The crossover operator 

mixes two solutions maintaining some sub-

orderings of both. Mutation is carried out after 

crossover and is intended to introduce variance 

and so avoid terminating at a local solution. Thus, 

mutation introduces new orderings in the 

population that might not be reached if only 

crossover operations were used. In the order 

method, this means that a random change in order 

occurs by swapping, the number of swaps being 

proportional to the mutation rate. In cases where 

organisms are generated outside the solution space 

a backtracking process is employed, where the tool 

reverts to one of the parents and retries the 

crossover and mutation operations until a valid 

child is obtained. This case arises if one or more of 

the constraints are violated. The extent of 

crossover and mutation is controlled by the genetic 

operators crossover rate and mutation rate.

The process of selection, crossover and 

mutation continues, with the worst performing 

organisms being replaced with the newly created 

organisms, which have better fitness scores. The 

genetic algorithm is terminated after a certain 

number of optimizations or after there ceases to be 

any significant improvement in the best fitness 
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score achieved. This is achieved by stating that the 

process should terminate if there is no 

improvement (or less than a certain percentage 

increase) in the best fitness score over n 

optimizations. 

4. Evaluation  

4.1 Description of Sample Project 

In evaluation of the method, a sample software 

project with twenty requirements was used. We 

have represented this initial set, R1 of requirements 

by identifiers r1 to r20. The technical precedence 

constraints in our typical project are represented 

by the set,  (compare Section 2.6) as shown 

below. This states that r1 must come before r6, r19,

r3 and r12 and r11 before r19.
1 = {(r1,r6), (r1,r19),(r1,r3),(r1,r12),(r11,r19)}

Further, some requirements were specified to 

be implemented in the same increment as 

represented by the set , as defined in Section 2.6. 

This states that r3 and r12 must be in the same 

release, as must r11 and r13.
1 ={(r3, r12),(r11, r13)}

Resource constraints are represented by index 

sets for the set of those requirements asking for the 

same resource. In our sample project, we have a 

resource T1 which has a capacity of 1 

(resource(T1)=1) that is used by requirements r3

and r8. The sample project had one single resource 

constraint represented by the following index set. 

I(T1) = {3,8} 

Each requirement has an associated effort 

estimate in terms of a score between one and ten. 

The effort constraint was added that for each 

increment the effort should be less than twenty-

five, i.e., Sizek = 25 for all releases k. Five 

stakeholders were used to score the twenty 

requirements with priority scores from one to five. 

These scores are shown in Table 1. As we can see, 

different stakeholders in some cases assign more 

or less the same priority to requirements (as for r1

and r17). However, the judgment is more 

conflicting in other cases (as for r11). 

The stakeholders, S1 to S5, were weighted using 

AHP pair-wise comparison from a global project 

management perspective. The technique of 

averaging over normalized columns [22] can be 

used to approximate the eigenvalues. As a result, 

we achieved the vector (0.211, 0.211, 0.421, 

0.050, 0.105) assigning priorities to the five 

stakeholders. 

Table 1: Sample stakeholder-assigned 
priorities.

Stakeholder

  S1 S2 S3 S4 S5

r1 1 1 1 1 1 

r2 3 3 2 4 3 

r3 2 2 2 2 1 

r4 3 2 2 4 2 

r5 4 5 3 4 4 

r6 4 4 4 5 5 

r7 2 1 1 1 1 

r8 3 5 3 5 5 

r9 5 5 5 3 4 

r10 3 4 5 4 3 

r11 5 2 3 1 4 

r12 2 4 3 2 4 

r13 1 5 2 2 2 

r14 3 3 4 3 5 

r15 1 3 2 2 3 

r16 3 1 2 2 2 

r17 5 5 5 5 5 

r18 1 2 2 3 1 

r19 2 3 4 3 4 

R
eq

u
ir

em
en

t 

r20 5 5 4 3 4 

With regard to genetic algorithm parameters, 

we used the default population size of fifty and the 

built in auto-mutation function which detects when 

a solution has stabilized and then adjusts the 

mutation rate to try to improve the solution. In 

preliminary experiments, we established that it 

was not possible to consistently predict the best 

crossover rate. Hence we used a range of 

crossover rates for each experiment. 

4.2 Empirical Studies 

In evaluating the method, we at first randomly 

generated solutions for the sample data. Using 

deterministic estimations for effort it was found 

out of 1000 random rankings, only 1.7% were 

valid. This does not even consider the objective 

function value. This demonstrates how difficult it 

would be to successfully employ a manual or even 

a greedy-type increment assignment. However, 

this is not surprising for a NP-complete problem 

like the one under consideration. 

Three particular aspects of the method were 

investigated to validate their usability for larger 

and real-world problems.  
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4.2.1 Risk versus Benefit 

Firstly, the relationship between the overall risk 

in a software release and the benefit objective 

function was considered. As expected, increasing 

the risk referent or level of risk acceptable in an 

increment increases the achievable benefit in the 

solutions provided by the method. As an example, 

we increased the initial risk referent normalized to 

1.0. The resulting trade-off curve is shown in 

Figure 2.  

170

180

190

200

210

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.2

risk referent

b
e
n

e
fi

t

Figure 2. Trade-off relationship between risk 
referent and achieved benefit. 

4.2.2 Uncertainty in Effort Estimates 

Secondly, the level of uncertainty for the effort 

estimates was investigated. To achieve this, the 

effort estimates are treated as probability 

distributions. For our experiments, a triangular 

probability distribution for the estimated effort to 

implement requirements was used. The complete 

definition of all those functions is summarized in 

Table 2.  

Using stochastic variables for the estimated 

effort of requirements introduces uncertainty into 

the model and the process of assigning 

requirements to releases. This means that the 

decision maker can plan the releases based on their 

confidence level in the estimates. In practice there 

is a trade-off between this level of confidence and 

the benefit achievable. It also means that the 

adopted release plan has associated with it, a 

percentage indicating the probability that it will 

that be adhere to its effort estimates. 

For the computations using stochastic variable 

for the effort estimates, we have fixed the risk 

referent for each increment to 1.1. In the same 

experiment, we additionally introduced another 

resource constraint. Resource T2 which has a 

capacity of 2, is used by requirements r3, r8, and 

r19, e.g., I(T2) = {3,8,19}. Precedence and coupling 

constraints were assumed to be the same as 

described in Section 4.1. Furthermore, for the sake 

of simplicity we assumed Sizek = 25 for all 

increments k.  

Table 2. Definition of triangular probability 
functions for the effort of all requirements. 

  Effort 

  Min Mode Max 

r1 5 10 15 

r2 2 4 6 

r3 1 2 3 

r4 2 3 4 

r5 3 4 5 

r6 4 7 10 

r7 0 1 2 

r8 0 2 4 

r9 5 10 15 

r10 1 3 5 

r11 0 2 4 

r12 4 5 6 

r13 1 2 3 

r14 7 8 9 

r15 0 1 2 

r16 3 4 5 

r17 0 1 2 

r18 3 4 5 

r19 2 4 6 R
eq

u
ir

em
en

t 

r20 5 8 11 

Table 3 gives the results of the experiments for 

three different levels for the probability of not 

exceeding the effort bound. With increasing risk of 

exceeding the available effort capacity, the 

expected benefit is increasing.

4.2.3 L-best Solutions and their Stability 

The final computation is related to determine L-

best (L>1) solutions. This means that the decision-

maker can finally choose from the L most 

promising solutions rather than accept one 

solution. This allows the decision maker to take 

into account the uncertainty of the data, the 

implicit constraints and their own preferences. 

Stability intervals are given to indicate the validity 

of solutions and to allow the problem parameters 

to be changed without adversely affecting the 

solution. Table 4 summarizes L-best solutions for 

a fixed level of risk (1.0) and L = 5. 
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Table 3. Results for release planning under different levels of probability for not exceeding the effort 

capacity bound Effort = 25 (Risk Referent=1.1). Risk = Total Risk Score r(i)  Inc(1)  risk(ri, R
1
).

Effort = Total Effort at 95
th

 percentile r(i) Inc(1)  effort(ri, R
1
). 

Probability Benefit (A) Risk Effort  Release Assigned Requirements 

0.56 23.4 1 r1 r2 r8    

0.82 24.0 2 r5 r7 r10 r14 r16

1.08 24.4 3 r3 r4 r6 r12 r15 r17

0.64 24.7 4 r9 r11 r13 r19   

95% 201 

0.24 13.4 5 r8 r20     

0.84 23.8 1 r1 r2 r7 r18   

0.89 24.3 2 r4 r5 r8 r14 r16

1.05 23.9 3 r3 r6 r11 r12 r13 r15

0.45 23.4 4 r9 r10 r17 r19   

90% 218 

0.11 9.66 5 r20      

0.9 24.6 1 r1 r3 r11 r12 r13

0.91 24.5 2 r2 r14 r15 r16 r17 r18

1.00 23.6 3 r4 r5 r7 r8 r9

0.44 20.9 4 r6 r10 r20    

80% 224 

0.09 4.7 5 r19      

Table 4: L-best solutions (L=5) for software release planning and related stability intervals 
(Risk Referent=1.0). 

Risk 

Level

Stability 

Interval 

Benefit 

(A) 

Release Effort 

r(i) Inc(1)  

effort(ri, R1) 

Assigned Requirements 

0.85 [0, 0.15] 1 25 r7 r10 r14 r15 r16 r20

0.99 [0, 0.01] 2 25 r1 r3 r11 r12 r13 r19

0.95 [0, 0.05] 3 25 r2 r4 r5 r9 r18   

0.55 [0, 0.45] 

172.2 

4 10 r6 r8 r17     

0.91 [0, 0.09] 1 25 r1 r7 r8 r14 r18   

0.98 [0, 0.02] 2 25 r2 r3 r12 r15 r16 r17 r20

0.90 [0, 0.10] 3 25 r5 r9 r10 r11 r13 r19

0.55 [0, 0.45] 

171.8 

4 10 r4 r6      

0.96 [0, 0.04] 1 25 r1 r2 r7 r15 r17 r20

0.90 [0, 0.10] 2 25 r3 r9 r11 r12 r13 r19

0.93 [0, 0.07] 3 25 r5 r8 r10 r14 r16 r18

0.55 [0, 0.45] 

170.2 

4 10 r4 r6      

0.96 [0, 0.04] 1 25 r1 r2 r5 r8 r10 r15 r17

0.90 [0, 0.10] 2 25 r3 r9 r11 r12 r13 r19

0.93 [0, 0.07] 3 25 r7 r14 r16 r18 r20   

0.55 [0, 0.45] 

170.1 

4 10 r4 r6      

0.91 [0, 0.09] 1 25 r1 r7 r8 r14 r18   

0.91 [0, 0.09] 2 25 r2 r3 r9 r11 r12 r13

0.97 [0, 0.03] 3 25 r5 r10 r15 r16 r17 r19 r20

0.55 [0, 0.45] 

168.9 

4 10 r4 r6      
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5. Summary and Conclusions 

This paper has described the investigation of a 

method for software release planning under effort, 

risk and resource constraints. The original model 

includes effort, precedence, coupling and resource 

constraints. Future research is directed to further 

relax the underlying assumptions concerning 

availability of precise and complete data. 

The method developed and evaluated is 

EVOLVE+, which takes as its main input, a set of 

requirements with their effort and risk estimations. 

EVOLVE+ has been developed from earlier work 

and incorporates feedback from industry, so that 

the additional aspects of resource constraints, 

effort estimate uncertainty and risk analysis have 

been included. The new method uses a genetic 

algorithm to optimize the solution within pre-

defined technical constraints. To assess potential 

release plans, an objective function has been 

defined that measures the benefits of delivering 

requirements in their assigned increment. The 

method is applied iteratively to provide candidate 

plans for the next and future releases.  

EVOLVE+ differs from previous prioritization 

techniques[15] in that: it is specifically aimed at an 

incremental software process; it takes into account 

stakeholder priorities as well as effort constraints 

for all releases; it considers inherent precedence, 

coupling and resource constraints; it assumes that 

changes to requirements and the project attributes 

will take place over time, better matching the 

reality of most software projects; it caters for 

conflict in stakeholder’s priorities while 

recognizing that stakeholders opinions are not 

always equal; and it generates the L-best solutions, 

allowing the decision maker to make the final 

choice.

In investigating the method we have used a 

sample project of twenty requirements. Overall, 

we found the method to provide feasible solutions, 

which provide a balance between the conflicting 

interests of stakeholders, take account of the 

available effort required for a given release, limits 

the level of risk in each software release and 

provides an estimate of the confidence level of the 

effort predictions for releases. 

The initial evaluation by a sample project gives 

sufficient confidence to apply EVOLVE+ for real-

world data sets from industry. Future development 

work relating to EVOLVE+ will include a 

comprehensive empirical evaluation using real-

world data. First steps in this direction are very 

promising. Two initial case studies indicate that 

EVOLVE+ is able to solve problems more 

effectively and more efficiently with even 

hundreds of requirements and a large number of 

involved stakeholders. 
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