
1

Quantitative Studies in Software Release Planning under Risk and

Resource Constraints

Günther Ruhe

University of Calgary

2500 University Drive NW

Calgary, AB T2N 1N4, Canada

ruhe@ucalgary.ca

Des Greer

Queens University Belfast

Belfast BT7 1NN

United Kingdom

des.greer@qub.ac.uk

Abstract
Delivering software in an incremental fashion
implicitly reduces many of the risks associated

with delivering large software projects. However,
adopting a process, where requirements are

delivered in releases means decisions have to be

made on which requirements should be delivered
in which release. This paper describes a method

called EVOLVE+, based on a genetic algorithm

and aimed at the evolutionary planning of
incremental software development. The method is

initially evaluated using a sample project. The

evaluation involves an investigation of the trade-
off relationship between risk and the overall

benefit. The link to empirical research is two-fold:

Firstly, our model is based on interaction with
industry and randomly generated data for effort

and risk of requirements. The results achieved this

way are the first step for a more comprehensive
evaluation using real-world data. Secondly, we try

to approach uncertainty of data by additional

computational effort providing more insight into
the problem solutions: (i) Effort estimates are

considered to be stochastic variables following a
given probability function; (ii) Instead of offering

just one solution, the L-best (L>1) solutions are

determined. This provides support in finding the
most appropriate solution, reflecting implicit

preferences and constraints of the actual decision-

maker. Stability intervals are given to indicate the
validity of solutions and to allow the problem

parameters to be changed without adversely

affecting the optimality of the solution.

Keywords: Incremental Software Development,
Release Planning, Uncertainty, Quantitative

Analysis, Decision Support, Genetic Algorithm,

Risk Management, Resource constraints.

1. Background and Motivation.

There is a growing recognition that an

incremental approach to software development is

often more suitable and less risky than the

traditional waterfall approach [10]. This

preference is demonstrated by the current

popularity of agile methods, all of which adopt an

incremental approach to delivering software

rapidly [20]. This shift in paradigm has been

brought about by many factors, not least the rapid

growth of the World Wide Web, the consequent

economic need to deliver systems faster [4] and

the need to ensure that software better meets

customer needs. Further, it has been recognized

that even where an incremental model is not the

initial process of choice, it is often adopted at the

maintenance stage due to unanticipated changes

[19].

Software development companies have real

constraints for competitive market edge and

delivery of a quality product. To achieve quality

processes and practices there are permanent

trades-offs to the different aspects related to the

final quality of the product. Decision processes are

the driving forces to organize a corporation’s

success [6]. Software Engineering Decision

Support (SEDS) is a new paradigm for learning

software organizations [21]. Its main goal is

provide support for decision-making based on best

knowledge and experience, computational and

human intelligence, as well as a suite of sound and

appropriate methods and techniques.

Computerized decision support should be

considered in unstructured decision situations

characterized by one or more of the following

factors: complexity, uncertainty, multiple groups

with a stake in the decision outcome (multiple

stakeholders), a large amount of information

(especially company data), and/or rapid change in

Proceedings of the 2003 International Symposium on Empirical Software Engineering (ISESE’03)
0-7695-2002-2/03 $ 17.00 © 2003 IEEE

2

information. Support here means to provide access

to information that would otherwise be unavailable

or difficult to obtain; to facilitate generation and

evaluation of solution alternatives, and to

prioritize alternatives by using explicit models that

provides structure for particular decisions.

In the incremental software process model,

requirements are gathered in the initial stages and,

taking technical dependencies and user priorities

into account and the effort required for each

requirement, the system is divided into increments.

These increments are then successively delivered

to customers. It is often true that any given

requirement could be delivered in one, several or

even all releases. Consequently, there is a need to

decide which requirements should be delivered in

which release. It may make sense to deliver those

with highest user value in the earliest increments,

and thus gain more benefits early on [8]. Since

there are likely to be many different users all with

different viewpoints on what user value of

requirements is, this decision is potentially very

complex. Exacerbating this is the fact that there

are a range of constraints, one of which is the

desired maximum effort for any given increment.

In addition to this factor, risk is an important

consideration. A given project may have a risk

referent. This is a level of risk, which should not

be exceeded [3]. In an incremental delivery model,

this means that a given release has also a risk

referent.

In response to these issues, we have developed

an evolutionary and iterative approach called

EVOLVE+ that offers quantitative analysis for

decision support in software release planning. The

model is extended from [11] and takes into

account: (i) the priorities of the representative

stakeholder groups with respect to requirements;

(ii) the effort estimate for implementing each

requirement and the effort limit for each release;

(iii) precedence constraints, where one

requirement must occur in a release prior to the

release for another requirement; (iv) coupling

constraints where a group of requirements must

occur in the same release; (v) resource constraints

where certain requirements may not be in the same

release; and (vi) a risk factor estimate for each

requirement and a maximum risk referent value,

calculated from this for each release.

In situations where there are complex

relationships between several factors and

consequently a very large solution space, genetic

algorithms have been shown to be appropriate [1].

Genetic algorithms have arisen from an analogy

with the natural process of biological evolution

[13] and usually start with a population of

randomly generated solutions, each member of the

population being evaluated by some objective

function. The next step is selection, where

solutions (or chromosomes) are chosen from the

population to be used in creating the next

generation. In this process, those with a superior

fitness score are more likely to be selected. The

next generation is created by a crossover operator,

which mixes pairs of chromosomes to create new

offspring containing elements of both parents. A

further operation, mutation is applied to introduce

diversity in the population by creating random

changes in the new offspring. As new offspring

are created, typically the worst scoring

chromosomes are replaced. The selection

mechanism, the size of the population, the amount

and type of crossover, the extent and mechanism

of mutation and the replacement strategy are all

variable and can be adjusted, dependent on the

problem being solved.

Hence, a computationally very efficient

algorithm based on the principles of evolution is

proposed as a potentially suitable means to find L-

best release plans and to handle uncertainties in

effort estimates. Support for decision-making

typically involves the development of not only one

solution, but a set of ‘best’ candidates where the

actual decision-maker can select from, according

to their implicit preferences and subjective

constraints.

The problem and the model used to solve it are

described in Section 2. Our model is based on

interaction with industry. The proposed solution

approach called EVOLVE+ is presented in Section

3. In keeping with current advice for evaluation of

software engineering theory, methods and tools

empirically [14][16], we have designed and

carried out a series of experiments to evaluate

EVOLVE+. Randomly generated data for effort

and risk of requirements were initially used as an

example project described in Section 4. This

includes stochastic variables for effort constraints

as well as sensitivity and stability analysis. Section

5 will provide a summary of the findings and

identify potential extensions for future research

2. Model Building and Problem

Statement.

Release planning for incremental software

development includes the assignment of

requirements to releases such that all technical,

risk, resource and budget constraints are fulfilled.

The overall goal is to find an assignment of

requirements to increments that maximizes the

Proceedings of the 2003 International Symposium on Empirical Software Engineering (ISESE’03)
0-7695-2002-2/03 $ 17.00 © 2003 IEEE

3

sum of all (weighted) priorities of all the different

stakeholders. In what follows, we more formally

introduce all the necessary concepts and notation.

2.1 Stakeholder Priorities

One of the challenges to the software

engineering research community is to involve

stakeholders in the requirements engineering

process. In any project, several stakeholders may

be identified. A stakeholder is defined as anyone

who is materially affected by the outcome of the

project. Effectively solving any complex problem

involves satisfying the needs of a diverse group of

stakeholders. Typically, stakeholders will have

different perspectives on the problem and different

needs that must be addressed by the solution.

Example stakeholders are the different types of

users of the system, investor, production manager,

shareholder, or designer. An understanding of who

the stakeholders are and their particular needs are

key elements in developing an effective solution

for the software release planning problem.

It is assumed that a software system is initially

specified by a set R1 of requirements, i.e., R1=

{r1,r2… rn}. At this stage (k=1), we wish to

allocate these requirements to the next and future

releases. In a later phase k (>1), an extended

and/or modified set of requirements Rk will be

considered as a starting point to plan for increment

k (abbreviated by Inck). The requirements are

competing with each other (to become

implemented).

Their individual importance is considered from

the perspective of q different stakeholders

abbreviated by S1,S2,…,Sq. Each stakeholder Sp is

assigned a relative importance p (0,1). The

relative importance of all involved stakeholders is

normalized to one, i.e., p=1,…,q p = 1.

Each stakeholder Sp assigns a priority denoted

by prio(ri, Sp, R
k) to requirement ri as part of set of

requirements Rk at phase k of the planning

approach. prio() is a function: (ri, Sp, Rk)

{1,2,.., } assigning a priority value to each

requirement for each set Rk. Typically, different

stakeholders have different priorities for the same

requirement.

2.2 Evolution of Increments

As result of the planning process, different

increments will be composed out of the given set

of requirements. These increments are planned up-

front but the possibility of re-planning after any

increment is allowed. This re-planning may

involve changing some requirements, priorities

and constraints and/or introducing new ones. It

necessitates a reassignment of requirements (not

already implemented in former releases) to

increments. Throughout the paper, we assume that

the number of releases is not fixed upfront. The

complete modeling and solution approach remains

valid with only minor modifications for the case of

fixed number of releases.

Phase k of the overall planning procedure

EVOLVE+ is abbreviated by EVOLVE+(k). The

input of EVOLVE+(k) is the set of requirements

Rk. The output is a definition of increments Inck,

Inck+1, Inck+2, … with Inct Rk for all t = k, k+1,

k+2, … The different increments are disjoint, i.e.,

Incs Inct = for all s,t {k, k+1, k+2, …}. The

unique function k assigns each requirement ri of

set Rk the number s of its increment Incs, i.e., k:

ri Rk k(ri)= s {k, k+1, k+2, …}.

2.3 Effort Constraints

Effort estimation is another function assigning

each pair (ri, R
k) of requirement ri as part of the set

Rk the estimated value for implementing this

effort, i.e., effort() is a function: (ri, Rk) +

where + is the set of positive real numbers.

Please note that the estimated efforts can be

updated during the different phases of the overall

procedure.

Typically project releases are planned for

certain dates. This introduces a size constraint

Sizek in terms of effort of any released increment

Inc(k). We have assumed that the effort for an

increment is the sum of the efforts required for

individual requirements assigned to this increment.

This results in the set of constraints r(i) Inc(k)

effort(ri, R
k) Sizek for all increments Inc(k).

2.4 Balancing Risk per Increment

Risk estimation is used to address all the

inherent uncertainty associated with the

implementation of a certain requirement. In what

follows, we employ a risk score as an abstraction

of all risks associated with a given requirement.

These risks may refer to any event that potentially

might negatively affect schedule, cost or quality in

the final project results. For each pair (ri,R
k) of

requirement ri as part of the set Rk the estimated

value for implementing this effort, i.e. risk is a

ratio scaled function risk: (ri, R
k) [0,1), where

‘0’ means no risk at all and ‘1’ stands for the

highest risk. In what follows we assume that the

risk assessment is done by expert judgment.

The idea of risk balancing is to avoid a

concentration of highly risky requirements into the

Proceedings of the 2003 International Symposium on Empirical Software Engineering (ISESE’03)
0-7695-2002-2/03 $ 17.00 © 2003 IEEE

4

same increment. This leads to constraints r(i)

Inc(k) risk(ri, R
k) Riskk for each increment k. The

risk per increment is supposed to be additive, and

Riskk denotes the upper bound for the acceptable

risk for the k-th increment, the risk referent.

2.5 Precedence, Dependency and Resource

Constraints

 In a typical real world project, it is likely

that some requirements must be implemented

before others. There might be logical or technical

reasons that the realization of one requirement

must be in place before the realization of another.

Since we are planning incremental software

delivery, we are only concerned that their

respective increments are in the right order. More

formally, for all iterations k we define a partial

order k on the product set Rk x Rk such that (ri. rj)
k implies k(ri)

k(rj).

 With similar arguments as above, there

might be logical or technical reasons implying that

the realization of one requirement must be in place

in the same increment as another one. Again, since

we are concerned with incremental software

delivery, we are only concerned that their

respective increments are in the right order. More

formally, for all iterations k we define a binary

relation k on Rk such that (ri. rj)
k implies that

k(ri) = k(rj) for all phases k.

Finally, we consider resource constraints. We

assume that certain requirements are known to

allocate the same type of resource, and putting

them into the same increment would exceed the

given capacity of that resource. In general, there

are index sets I(t) {1,…,n} such that card({ri

Rk: i I(t)}) resource(t) for all releases k and for

all resources t. Therein, resource(t) denotes the

capacity available of resource t.

2.6 Problem Statement for Software

Release Planning

We assume an actual set of requirements Rk.

Taking into account all the notation, concepts and

constraints as formulated above, we can now

formulate our problem as follows:

For all requirements ri Rk determine an

assignment *: *(ri)= m of all requirements ri to

an increment *(ri)= m such that

(1) r(i) Inc(m) effort(ri, R
m) Sizem

 for m = k,k+1,… (Effort constraints)

(2) r(i) Inc(m) risk(ri, R
m) Riskm

 for m = k,k+1,… (Risk constraints)

(3) *(ri)
*(rj) for all pairs (ri. rj)

k

 (Precedence constraints)

(4) *(ri) = *(rj) for all pairs (ri. rj)
k

(Coupling constraints)

(5) card({ri Rk: i I(t)}) resource(t)

for all releases k and all sets I(t) related

to all resources t

(6) A = p=1…,q p [r(i) R(k)benefit(ri,,Sp,
*)]

 L-max! with

benefit(ri,Sp,R
k, *)=[-prio(ri,Sp, R

k)

+1][- *(rj,)+1] and

 = max{ *(ri): ri Rk}

The function (6) is to maximize the weighted

benefit over all the different stakeholders. L-max

means to compute not only one, but a set of L best

solutions (L>1). That means for all feasible

assignments h, h=1,2,… there is a subset (with

card()=L) of assignments such that any

assignment outside is is at least not better

(related to (6)) than any assignment from .. For a

fixed stakeholder, the benefit from the assignment

of an individual requirement to an increment is the

higher, the earlier it is released and the more

important it is.

3. Solution Approach

3.1 EVOLVE+ Approach

The proposed approach called EVOLVE+

combines the computational strength of genetic

algorithms with the flexibility of an iterative

solution method. At all iterations, a genetic

algorithm is applied to determine L-best solutions

of (1) - (6).

Figure 1. EVOLVE+ approach to assign
requirements to increments.

Maximization of objective function (6) is the

Requirements

&

Constraints

&

Refined

&

Extended

…

E V O L V E+

Increment1

…

&

Constraints

&

Refined

&

Extended

&

Constraints

&

Increment2

Increment3

Requirements Requirements

Priorities Priorities Priorities

Iteration 1 Iteration 2 Iteration 3

Increment2

Increment3 Increment3

… … …

Increment1

Increment2

Increment1

Requirements

&

Constraints

&

Refined

&

Extended

…

E V O L V E+

Increment1

…

&

Constraints

&

Refined

&

Extended

&

Constraints

&

Increment2

Increment3

Requirements Requirements

Priorities Priorities Priorities

Iteration 1 Iteration 2 Iteration 3

Increment2

Increment3 Increment3

… … …

Increment1

Increment2

Increment1

Proceedings of the 2003 International Symposium on Empirical Software Engineering (ISESE’03)
0-7695-2002-2/03 $ 17.00 © 2003 IEEE

5

main purpose of conducting crossover and

mutation operations. This function is computed as

a fitness value for each optimization step of the

genetic algorithm. The algorithm terminates when

there is no further improvement in the solution.

This is calculated as no improvement in the

objective function value achieved within 0.5%

deviation over six hundred simulations. The

algorithm works by producing orderings of

requirements and, if valid, calculating this fitness

score.

For each solution generated by the genetic

algorithm, each of the constraints is checked. The

effort constraint (1) is handled by a greedy-like

increment allocation algorithm, which is run on

every ordering produced by the genetic algorithm.

This can be a discrete effort estimation or,

alternatively, the model allows for the possibility

that effort estimates are represented by probability

distributions. If this is the case, the RiskOptimizer

tool, provided with the necessary parameters,

simulates the distribution using Latin Hypercube

sampling over thousands of iterations. The

increment allocation is implemented as before, but

the effort constraint is calculated as the value at a

chosen percentile. This allows the decision maker

to select the required confidence levels for keeping

within the effort constraints for individual

releases. The risk constraint is checked by

summing the total risk for each release and

comparing this with the risk referent (2).

Precedence constraints (3), coupling constraints

(4) and resource constraints (5) are implemented

by specific rules used to check each generated

solution. In the case of precedence and coupling

constraints a table of pairs of requirements is held.

For precedence constraints, the first member of the

pair is a predecessor of the second. For coupling

constraints, the pairs must be in the same release.

For the resource constraints, a list of resources is

maintained and for each resource an available

capacity limit is estimated. This refers to number

of occurrences allowed for that resource in a given

release. The required usage of these resources for

each requirement is held in a table and the total

usage for any release must not exceed the

available capacity of any resource. In all three

cases, if any given solution is generated that

violates the constraint, the solution is rejected and

a backtracking operation is used to generate a new

solution.

In calculating the benefit, weightings are used

to discriminate between stakeholders, these

weightings being calculated using the pair-wise

comparison method from AHP [22].

EVOLVE+ is an evolutionary approach. At

iteration k, a final decision is made about the next

immediate increment Inck and a solution is

proposed for all subsequent increments Inck+1,

Inck+2, …The reason for the iterative part in

EVOLVE+ is to allow all kinds of late changes in

requirements, prioritization of requirements by

stakeholders, effort estimation for all

requirements, effort constraints, precedence and

coupling constraints as well as changes in the

weights assigned to stakeholders. This most recent

information is used as an input to iteration k+1 to

determine the next increment Inck+1 as final and all

subsequent ones Inck+2, Inck+3, …as tentatively

again. This is illustrated in Figure 1.

3.2 Algorithms and Tool Support

In this research, we have made use of

Palisade’s RiskOptimizer tool [17]. The

RiskOptimizer tool provides different algorithms

for adjusting the variables. Since we are concerned

with ranking requirements, the most suitable one

provided is the ‘order’ method. This method

generates different permutations of a starting

solution and is designed for optimizing rankings of

objects. The order genetic algorithm is described

in [5].

Selection is effected by choosing two parents

from the current population, the choice being

determined by relating the fitness score to a

probability curve [18]. The crossover operator

mixes two solutions maintaining some sub-

orderings of both. Mutation is carried out after

crossover and is intended to introduce variance

and so avoid terminating at a local solution. Thus,

mutation introduces new orderings in the

population that might not be reached if only

crossover operations were used. In the order

method, this means that a random change in order

occurs by swapping, the number of swaps being

proportional to the mutation rate. In cases where

organisms are generated outside the solution space

a backtracking process is employed, where the tool

reverts to one of the parents and retries the

crossover and mutation operations until a valid

child is obtained. This case arises if one or more of

the constraints are violated. The extent of

crossover and mutation is controlled by the genetic

operators crossover rate and mutation rate.

The process of selection, crossover and

mutation continues, with the worst performing

organisms being replaced with the newly created

organisms, which have better fitness scores. The

genetic algorithm is terminated after a certain

number of optimizations or after there ceases to be

any significant improvement in the best fitness

Proceedings of the 2003 International Symposium on Empirical Software Engineering (ISESE’03)
0-7695-2002-2/03 $ 17.00 © 2003 IEEE

6

score achieved. This is achieved by stating that the

process should terminate if there is no

improvement (or less than a certain percentage

increase) in the best fitness score over n

optimizations.

4. Evaluation

4.1 Description of Sample Project

In evaluation of the method, a sample software

project with twenty requirements was used. We

have represented this initial set, R1 of requirements

by identifiers r1 to r20. The technical precedence

constraints in our typical project are represented

by the set, (compare Section 2.6) as shown

below. This states that r1 must come before r6, r19,

r3 and r12 and r11 before r19.
1 = {(r1,r6), (r1,r19),(r1,r3),(r1,r12),(r11,r19)}

Further, some requirements were specified to

be implemented in the same increment as

represented by the set , as defined in Section 2.6.

This states that r3 and r12 must be in the same

release, as must r11 and r13.
1 ={(r3, r12),(r11, r13)}

Resource constraints are represented by index

sets for the set of those requirements asking for the

same resource. In our sample project, we have a

resource T1 which has a capacity of 1

(resource(T1)=1) that is used by requirements r3

and r8. The sample project had one single resource

constraint represented by the following index set.

I(T1) = {3,8}

Each requirement has an associated effort

estimate in terms of a score between one and ten.

The effort constraint was added that for each

increment the effort should be less than twenty-

five, i.e., Sizek = 25 for all releases k. Five

stakeholders were used to score the twenty

requirements with priority scores from one to five.

These scores are shown in Table 1. As we can see,

different stakeholders in some cases assign more

or less the same priority to requirements (as for r1

and r17). However, the judgment is more

conflicting in other cases (as for r11).

The stakeholders, S1 to S5, were weighted using

AHP pair-wise comparison from a global project

management perspective. The technique of

averaging over normalized columns [22] can be

used to approximate the eigenvalues. As a result,

we achieved the vector (0.211, 0.211, 0.421,

0.050, 0.105) assigning priorities to the five

stakeholders.

Table 1: Sample stakeholder-assigned
priorities.

Stakeholder

 S1 S2 S3 S4 S5

r1 1 1 1 1 1

r2 3 3 2 4 3

r3 2 2 2 2 1

r4 3 2 2 4 2

r5 4 5 3 4 4

r6 4 4 4 5 5

r7 2 1 1 1 1

r8 3 5 3 5 5

r9 5 5 5 3 4

r10 3 4 5 4 3

r11 5 2 3 1 4

r12 2 4 3 2 4

r13 1 5 2 2 2

r14 3 3 4 3 5

r15 1 3 2 2 3

r16 3 1 2 2 2

r17 5 5 5 5 5

r18 1 2 2 3 1

r19 2 3 4 3 4

R
eq

u
ir

em
en

t

r20 5 5 4 3 4

With regard to genetic algorithm parameters,

we used the default population size of fifty and the

built in auto-mutation function which detects when

a solution has stabilized and then adjusts the

mutation rate to try to improve the solution. In

preliminary experiments, we established that it

was not possible to consistently predict the best

crossover rate. Hence we used a range of

crossover rates for each experiment.

4.2 Empirical Studies

In evaluating the method, we at first randomly

generated solutions for the sample data. Using

deterministic estimations for effort it was found

out of 1000 random rankings, only 1.7% were

valid. This does not even consider the objective

function value. This demonstrates how difficult it

would be to successfully employ a manual or even

a greedy-type increment assignment. However,

this is not surprising for a NP-complete problem

like the one under consideration.

Three particular aspects of the method were

investigated to validate their usability for larger

and real-world problems.

Proceedings of the 2003 International Symposium on Empirical Software Engineering (ISESE’03)
0-7695-2002-2/03 $ 17.00 © 2003 IEEE

7

4.2.1 Risk versus Benefit

Firstly, the relationship between the overall risk

in a software release and the benefit objective

function was considered. As expected, increasing

the risk referent or level of risk acceptable in an

increment increases the achievable benefit in the

solutions provided by the method. As an example,

we increased the initial risk referent normalized to

1.0. The resulting trade-off curve is shown in

Figure 2.

170

180

190

200

210

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.2

risk referent

b
e
n

e
fi

t

Figure 2. Trade-off relationship between risk
referent and achieved benefit.

4.2.2 Uncertainty in Effort Estimates

Secondly, the level of uncertainty for the effort

estimates was investigated. To achieve this, the

effort estimates are treated as probability

distributions. For our experiments, a triangular

probability distribution for the estimated effort to

implement requirements was used. The complete

definition of all those functions is summarized in

Table 2.

Using stochastic variables for the estimated

effort of requirements introduces uncertainty into

the model and the process of assigning

requirements to releases. This means that the

decision maker can plan the releases based on their

confidence level in the estimates. In practice there

is a trade-off between this level of confidence and

the benefit achievable. It also means that the

adopted release plan has associated with it, a

percentage indicating the probability that it will

that be adhere to its effort estimates.

For the computations using stochastic variable

for the effort estimates, we have fixed the risk

referent for each increment to 1.1. In the same

experiment, we additionally introduced another

resource constraint. Resource T2 which has a

capacity of 2, is used by requirements r3, r8, and

r19, e.g., I(T2) = {3,8,19}. Precedence and coupling

constraints were assumed to be the same as

described in Section 4.1. Furthermore, for the sake

of simplicity we assumed Sizek = 25 for all

increments k.

Table 2. Definition of triangular probability
functions for the effort of all requirements.

 Effort

 Min Mode Max

r1 5 10 15

r2 2 4 6

r3 1 2 3

r4 2 3 4

r5 3 4 5

r6 4 7 10

r7 0 1 2

r8 0 2 4

r9 5 10 15

r10 1 3 5

r11 0 2 4

r12 4 5 6

r13 1 2 3

r14 7 8 9

r15 0 1 2

r16 3 4 5

r17 0 1 2

r18 3 4 5

r19 2 4 6 R
eq

u
ir

em
en

t

r20 5 8 11

Table 3 gives the results of the experiments for

three different levels for the probability of not

exceeding the effort bound. With increasing risk of

exceeding the available effort capacity, the

expected benefit is increasing.

4.2.3 L-best Solutions and their Stability

The final computation is related to determine L-

best (L>1) solutions. This means that the decision-

maker can finally choose from the L most

promising solutions rather than accept one

solution. This allows the decision maker to take

into account the uncertainty of the data, the

implicit constraints and their own preferences.

Stability intervals are given to indicate the validity

of solutions and to allow the problem parameters

to be changed without adversely affecting the

solution. Table 4 summarizes L-best solutions for

a fixed level of risk (1.0) and L = 5.

Proceedings of the 2003 International Symposium on Empirical Software Engineering (ISESE’03)
0-7695-2002-2/03 $ 17.00 © 2003 IEEE

8

Table 3. Results for release planning under different levels of probability for not exceeding the effort

capacity bound Effort = 25 (Risk Referent=1.1). Risk = Total Risk Score r(i) Inc(1) risk(ri, R
1
).

Effort = Total Effort at 95
th

 percentile r(i) Inc(1) effort(ri, R
1
).

Probability Benefit (A) Risk Effort Release Assigned Requirements

0.56 23.4 1 r1 r2 r8

0.82 24.0 2 r5 r7 r10 r14 r16

1.08 24.4 3 r3 r4 r6 r12 r15 r17

0.64 24.7 4 r9 r11 r13 r19

95% 201

0.24 13.4 5 r8 r20

0.84 23.8 1 r1 r2 r7 r18

0.89 24.3 2 r4 r5 r8 r14 r16

1.05 23.9 3 r3 r6 r11 r12 r13 r15

0.45 23.4 4 r9 r10 r17 r19

90% 218

0.11 9.66 5 r20

0.9 24.6 1 r1 r3 r11 r12 r13

0.91 24.5 2 r2 r14 r15 r16 r17 r18

1.00 23.6 3 r4 r5 r7 r8 r9

0.44 20.9 4 r6 r10 r20

80% 224

0.09 4.7 5 r19

Table 4: L-best solutions (L=5) for software release planning and related stability intervals
(Risk Referent=1.0).

Risk

Level

Stability

Interval

Benefit

(A)

Release Effort

r(i) Inc(1)

effort(ri, R1)

Assigned Requirements

0.85 [0, 0.15] 1 25 r7 r10 r14 r15 r16 r20

0.99 [0, 0.01] 2 25 r1 r3 r11 r12 r13 r19

0.95 [0, 0.05] 3 25 r2 r4 r5 r9 r18

0.55 [0, 0.45]

172.2

4 10 r6 r8 r17

0.91 [0, 0.09] 1 25 r1 r7 r8 r14 r18

0.98 [0, 0.02] 2 25 r2 r3 r12 r15 r16 r17 r20

0.90 [0, 0.10] 3 25 r5 r9 r10 r11 r13 r19

0.55 [0, 0.45]

171.8

4 10 r4 r6

0.96 [0, 0.04] 1 25 r1 r2 r7 r15 r17 r20

0.90 [0, 0.10] 2 25 r3 r9 r11 r12 r13 r19

0.93 [0, 0.07] 3 25 r5 r8 r10 r14 r16 r18

0.55 [0, 0.45]

170.2

4 10 r4 r6

0.96 [0, 0.04] 1 25 r1 r2 r5 r8 r10 r15 r17

0.90 [0, 0.10] 2 25 r3 r9 r11 r12 r13 r19

0.93 [0, 0.07] 3 25 r7 r14 r16 r18 r20

0.55 [0, 0.45]

170.1

4 10 r4 r6

0.91 [0, 0.09] 1 25 r1 r7 r8 r14 r18

0.91 [0, 0.09] 2 25 r2 r3 r9 r11 r12 r13

0.97 [0, 0.03] 3 25 r5 r10 r15 r16 r17 r19 r20

0.55 [0, 0.45]

168.9

4 10 r4 r6

Proceedings of the 2003 International Symposium on Empirical Software Engineering (ISESE’03)
0-7695-2002-2/03 $ 17.00 © 2003 IEEE

9

5. Summary and Conclusions

This paper has described the investigation of a

method for software release planning under effort,

risk and resource constraints. The original model

includes effort, precedence, coupling and resource

constraints. Future research is directed to further

relax the underlying assumptions concerning

availability of precise and complete data.

The method developed and evaluated is

EVOLVE+, which takes as its main input, a set of

requirements with their effort and risk estimations.

EVOLVE+ has been developed from earlier work

and incorporates feedback from industry, so that

the additional aspects of resource constraints,

effort estimate uncertainty and risk analysis have

been included. The new method uses a genetic

algorithm to optimize the solution within pre-

defined technical constraints. To assess potential

release plans, an objective function has been

defined that measures the benefits of delivering

requirements in their assigned increment. The

method is applied iteratively to provide candidate

plans for the next and future releases.

EVOLVE+ differs from previous prioritization

techniques[15] in that: it is specifically aimed at an

incremental software process; it takes into account

stakeholder priorities as well as effort constraints

for all releases; it considers inherent precedence,

coupling and resource constraints; it assumes that

changes to requirements and the project attributes

will take place over time, better matching the

reality of most software projects; it caters for

conflict in stakeholder’s priorities while

recognizing that stakeholders opinions are not

always equal; and it generates the L-best solutions,

allowing the decision maker to make the final

choice.

In investigating the method we have used a

sample project of twenty requirements. Overall,

we found the method to provide feasible solutions,

which provide a balance between the conflicting

interests of stakeholders, take account of the

available effort required for a given release, limits

the level of risk in each software release and

provides an estimate of the confidence level of the

effort predictions for releases.

The initial evaluation by a sample project gives

sufficient confidence to apply EVOLVE+ for real-

world data sets from industry. Future development

work relating to EVOLVE+ will include a

comprehensive empirical evaluation using real-

world data. First steps in this direction are very

promising. Two initial case studies indicate that

EVOLVE+ is able to solve problems more

effectively and more efficiently with even

hundreds of requirements and a large number of

involved stakeholders.

Acknowledgements
The authors would like to thank the Alberta

Informatics Circle of Research Excellence

(iCORE) for their financial support of this

research. Many thanks are due to Mr Wei Shen for

conducting numerical analysis using

RiskOptimizer and Mark Stanford from Corel for

stimulating discussions on model building.

References
[1] L.C. Briand, J. Feng and Y. Labiche,

“Experimenting with Genetic Algorithm to

Devise Optimal Integration Test Orders”, TR

Department of Systems and Computer

Engineering, Software Quality Engineering

Laboratory Carleton University, 2002.

[2] J. Carnahan and R. Simha, “Natures’s

Algorithms”, IEEE Potentials, April/May, pp21-

24, 2001.

[3] R. Charette, “Software Engineering Risk

Analysis and Management”, McGraw-Hill, New

York, 1989.

[4] M.A. Cusamano, and D.B. Yoffie, “Competing

on Internet Time: Lessons From Netscape and Its

Battle with Microsoft”, The Free Press, New

York, 1998.

[5] L. Davis, “Handbook of Genetic Algorithms”,

Van Nostrand Reinhold, New York, 1991.

[6] G. De Gregorio, “Enterprise-wide Requirements

and Decision Management”, Proc. 9th

International Symposium of the International

Council on System Engineering, Brighton, 1999.

[7] J. Fitzgerald and A.F. Fitzgerald,., “A

Methodology for Conducting A Risk

Assessment”, Designing Controls into

Computerized System, Chapter 5, 2nd ed.,

Redwood, California, Jerry Fitzgerald &

Associates, 1990.

[8] T. Gilb, “Principles of Software Engineering

Management”, Addison-Wesley, 1988.

[9] D. Greer, D. Bustard, and T. Sunazuka,

“Prioritisation of System Changes using Cost-

Benefit and Risk Assessments”, Fourth IEEE

International Symposium on Requirements

Engineering, pp 180-187, June, 1999.

Proceedings of the 2003 International Symposium on Empirical Software Engineering (ISESE’03)
0-7695-2002-2/03 $ 17.00 © 2003 IEEE

10

[10] D. Greer, D. Bustard and T. Sunazuka,

“Effecting and Measuring Risk Reduction in

Software Development”, NEC Journal of

Research and Development, Vol.40, No.3, 1999

pp.378-38.

[11] D. Greer and G. Ruhe, “Software Release

Planning: An Evolutionary and Iterative

Approach”, appears in: Journal for Information

and Software Technology, 2003.

[12] H.W. Hamacher and G. Ruhe, “On Spanning

Tree Problems with Multiple Objectives”, Annals

of Operations Research 52(1994), pp 209-230.

[13] J.H. Holland, “Adaptation in Natural and

Artificial Systems”. University of Michigan

Press, Ann Arbor, 1975.

[14] R. Jeffrey and L. Scott, “Has twenty five years of

empirical software engineering made a

difference”, Proceedings Asia-Pacific Software

Engineering Conference, (Eds. Strooper, P.,

Muenchaisri, P), 4-6 Dec. 2002, IEEE Computer

Society, Los Alamitos, California, pp 539-546.

[15] J. Karlsson, C. Wohlin, and B. Regnell, “An

evaluation of methods for prioritizing Software

Requirements”, Information and Software

Technology, 39(1998), pp 939-947.

[16] B.A. Kitchenham, S.L. Pfleeger, L.M. Pickard,

P.W. Jones, D.C. Hoaglin, K. El-Emam, and J.

Rosenberg, “Preliminary guidelines for empirical

research in software engineering”, IEEE

Transactions on Software Engineering, Volume:

28(2002), pp . 721 –734.

[17] Palisade Corporation, Palisade Corporation, 31

Decker Road, Newfield, NY 14867,

www.Palisade.com, September, 2002.

[18] Palisade Corporation, Guide to RISKOptimizer:

Simulation Optimization for Microsoft Excel

Windows Version Release 1.0, 2001.

[19] V. Rajlich and P. Gosavi, “A case study of

unanticipated incremental change”, Proc.

Software Maintenance, 2002, pp 442 –451.

[20] D.J. Reifer, “How good are agile methods?”,

IEEE Software, vol.19(2002), no.4, pp 16-18.

[21] G. Ruhe, “Software Engineering Decision

Support: Methodology and Applications”, In:

Innovations in Decision Support Systems (Ed. by

Tonfoni and Jain), International Series on

Advanced Intelligence Volume 3, 2003, pp 143-

174.

[22] T.L. Saaty, “The Analytic Hierarchy Process”,

McGraw Hill, New York, 1980.

Proceedings of the 2003 International Symposium on Empirical Software Engineering (ISESE’03)
0-7695-2002-2/03 $ 17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

