

Bi-Objective Release Planning for Evolving Software
Systems

Moshood Omolade Saliu
Software Engineering Decision Support Laboratory

University of Calgary, Calgary, AB T2N 1N4, Canada

saliu@cpsc.ucalgary.ca

Guenther Ruhe
Software Engineering Decision Support Laboratory

University of Calgary, Calgary, AB T2N 1N4, Canada

ruhe@ucalgary.ca

ABSTRACT
The release planning (RP) problem can be investigated from two
dimensions – what to release and when to release. We investigate
the “what” to release decision in terms of which new features or
change requests should be assigned and implemented in which
releases of a software system. RP for evolving systems is
challenging, because the new features might require changes to the
existing system. A major drawback of existing RP methods is that,
they do not consider the existing systems in making RP decisions. In
this paper, we present a technique to detect coupling between
features based on relatedness of the components that would
implement the features. The components implementing the features
are derived from change impact analysis. We integrate the results
from feature coupling into a RP strategy that encourages the
assignment of highly coupled features in the same release. This
helps to avoid haphazard implementation of related features. We
present a decision support approach that formulates the RP problem
as a bi-objective optimization problem. Our Bi-Objective Release
Planning for Evolving Systems (BORPES) is aimed at optimizing
the value of release plans from both the business perspectives and
the implementation perspectives. This paper presents BORPES in
detail and reports on a proof-of-concept case study that investigates
the applicability of the proposed approach. The bi-objective
optimization offers a set of Pareto-optimal solutions.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement – Enhancement and corrections. D.6.3 [Management
of Computing and Information Systems]: Software Management
– software selection and software maintenance.

General Terms: Management, Measurement, Design

Keywords: Release planning, impact analysis, feature coupling,
evolving systems, bi-objective optimization

1. INTRODUCTION
RP involves decision-making about what new features and change
requests to implement in which releases of a software system. There
are several planning parameters that influence the assignment of

features to releases. These parameters include value of the features,
stakeholders concerns, delivery time, urgency with which the
feature is required, resource demands, feature interdependencies,
existing system architecture, and dependencies of the features to the
code base [5], [25], [26]. A survey of existing research results in RP
shows that different aspects of these planning parameters have been
considered to various degrees [27].

Existing RP techniques focus on the value of features as the major
parameter of interest when deciding which features to implement
[27]. However, results from industrial studies reported in [5] have
shown that these features share other form of relationships that must
be considered when planning software releases. It is important to
consider dependency between features, especially for evolving
software systems that already have version(s) of the system
deployed. This is because the new set of features would have to be
implemented as part of the existing system. In order to incorporate
these new features, the components (e.g. subsystems, classes,
methods, files, etc) of the existing software system might have to be
modified. Thus, it is important to determine the dependencies
between the features with respect to the components that would
realize them in the existing system. This research is partly based on
the intuition that if two features share high number of common
implementation components, then it indicates the existence of
coupling between the two features.

The questions we investigate in this paper are the following:

1. How do we detect and quantify coupling between features
based on the overlap in their implementation?

2. How do we employ the feature coupling information
together with other planning parameters in making RP
decisions?

The main motivation for this work is the importance of maximizing
the synergy between the features assigned during the RP process. In
order to facilitate reuse and save on development resources,
software developers would rather implement features that are
realized by common components in the same release. By
implementing such features together, developers may be able to
implement several features more quickly. This is due to the reduced
cognitive effort required to understand the implementation of the
different features when implemented together. Also, by
implementing these features together it may be possible to avoid or
at least reduce the effect of unplanned dependency (as discussed by
Giroux and Robillard [10]), and to reduce implementation effort.

This paper makes the following contributions:

1. It presents a method for detecting and quantifying the
coupling dependency between features based on overlaps
in the components implementing the features

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC/FSE’07, September 3-7, 2007, Cavtat near Dubrovnik, Croatia.
Copyright 2007 ACM 978-1-59593-811-4/07/0009…$5.00.

105

2. It presents a method for incorporating the detected feature
coupling information into RP decisions

3. It formulates the RP problem as a bi-objective
optimization problem that seeks to maximize both the
business perspectives as well as the synergy between
features from effort saving perspectives

4. The solution approach (i.e. BORPES) generates
alternative release plans to address decision-making under
uncertainty

5. It presents a case study to show the efficacy of the
proposed technique. Early results show good correlation
between release plans generated and their level of
satisfaction of coupling between features

The rest of the paper is organized as follows: first, we provide a
classification of dependency between features in Section 2. Section
3 discusses related work. We provide the details of our technique for
detecting and modeling coupling between features in Section 4.
Section 5 presents our new RP model. We discuss the application of
the techniques via a case study in Section 6. We conclude and
outline future research directions in Section 7.

2. BACKGROUND
The functionalities provided by a software system are derived from
the domain of the problem through collection of new features and/or
change requests. The users of a software system are primarily
interested in the functionalities that the system offers. Software
developers, on the other hand, examine the features and change
requests in terms of the development activities that are required to
implement the features. Thus, the developers are responsible for
exploring different solution possibilities in the solution space. We
would refer to these two views as the perspectives of the features of
a software system in the problem domain and the solution domain
respectively.

Given the two views above, it is expected that interdependencies
between the features would exist in both domains. This is the case
because features are merely the sets of requirements in the problem
domain, while the implementation of the features is their realization
in the solution domain [12], [28]. Turner et al. [28] observed that
features interact in the problem domain because they share
requirements or depend on each other for services, but interact in the
solution domain because they share subsystems, modules, and so
on. This implies that interdependencies between features may be
related to functionality or runtime-behavior of the system in the
problem domain, while interdependencies between features in the
solution domain are implementation-related. Functionality-related
interdependency can be extracted from the description of the
features in the requirements specification, while runtime-behavior-
related interdependency can be detected during actual usage of a
system or through scenarios describing usage patterns. On the other
hand, the solution domain interdependency refers to the
implementation-related interdependency discovered during impact
analysis and within the system design and/or code.

In Figure 1, we categorize interdependencies as either emanating
from the problem domain or the solution domain, depending on the
stage of development process that the interdependencies are
discovered. Figure 1 is a high-level development or change
management process. In the figure, requirements specification
contains the set of features and change requests, impact analysis

identifies the components that would need to be modified in the
existing system for each feature to be implemented, release
planning assigns the features into different release options, design &
implementation encompasses both development and testing
activities, while usage of the deployed system refers to the user
interaction with the product.

Problem Domain
Interdependency

(Functional)

Problem Domain
Interdependency

(Behavioral)

Requirements
Specification

Impact
Analysis

Release
Planning

Design &
Implementation

Usage of
deployed system

Solution Domain Interdependency
(Implementation)

Figure 1. Overview of interdependency classification
There are other attempts to classify requirements interdependencies
in the literature [25], [31]. These classification schemes have so far
not made any connection between the interdependencies and the
domains in which they exist.

3. RELATED WORK
3.1 Feature Interdependency
Interdependency between features (or requirements) has been
studied from different perspectives [6], [31]. A recent study [160]
reported that most of the existing requirement interdependency
approaches do not focus on the solution domain, as their views are
essentially limited to the requirements phase of software
development. Thus, there are still unanswered questions as to the
nature of the roles played by requirements interdependencies in the
solution domain [160]. Carlshamre et al. [5], to the best of our
knowledge, is the only reported work that studied interdependency
from the perspective of RP. They have classified interdependencies
as being functionality-related or value-related. Using the
classification scheme in Figure 1, both types would still fall within
the realm of functionality-related in the problem domain. The
authors did not discuss any technique to incorporate the
interdependencies into RP decisions, and did not consider
interdependency in the solution domain.

Research in feature interaction management [4],[17] and
requirements interaction management [9],[24] share similar goals,
which are to detect possible interactions between features or
requirements and providing methodologies for resolving the
interactions [28]. Robinson et al. [24] posits that the main essence of
requirements interaction management (and analogously, features
interaction management) is to analyze the degree to which a system
can satisfy multiple requirements at the same time. None of these
existing works on feature (or requirements) interaction management
considered RP [5].

In comparison to the above research, we study interdependency
between features in relation to the set of impacted components that
would be modified to implement the features in the existing system.
Since we investigate this interdependency with the aim to identify
the features that have overlaps in the components implementing
them, we refer to the resulting interdependency as feature coupling
in the solution domain (or simply SD-coupling). And we also refer
to interdependency discovered in the problem domain as problem
domain coupling (PD-coupling).

106

The closest to our approach for identifying coupling between
features in the solution domain is the study by Giroux and Robillard
[10]. Our study is fundamentally different from theirs, because they
examined coupling between already implemented features to
determine the existence of code decay. On the other hand, we
examine coupling between features that are yet to be implemented
in order to sequence their implementation.

3.2 Release Planning
A number of RP techniques have been proposed. In [27], we
performed a comparative analysis of existing RP techniques using
10 key dimensions that characterize RP. The evaluated techniques
include: Estimation-Based Management Framework for Enhancive
Maintenance [21], Incremental Funding Method [7], Cost-Value
Approach for Prioritizing Requirements [16], Optimizing Value and
Cost in Requirements Analysis [15], Next Release Problem [2],
Planning Software Evolution with Risk Management [11], and
Hybrid Intelligence (EVOLVE*) [25]. Except for our previous work
discussed in [26], none of these techniques considers the effects of
existing systems on RP decisions. In this paper, we focus on a
different aspect of planning releases of evolving software systems.
We investigate and incorporate the effects of SD-coupling on RP
decisions.

4. SD-COUPLING VIA IMPACT ANALYSIS
4.1 The Impact of Features on Components
Impact analysis is the process involved in identifying the entities or
elements of an existing software system that will be affected by a
change - or the activity of identifying the possible consequences of a
change - before the actual change is made [1],[22]. These
elements/entities of the existing software system are the components
that make up the system.

The approach that we present for determining SD-coupling is
independent of the level of granularity at which components are
defined, which ensures the scalability of the technique. The only
constraint imposed is that, the same granularity level of components
must be defined across any given software project.

DEFINITION 1 (COMPONENTS)
Given an evolving software system S and a set C of M components
C={c1, c2, … , cm}, the components mc C∈ (1)m M≤ ≤ of the
system are the elements that constitute the building blocks of S,
such that 1 .m M mS c== KU These components may be expressed in
the form of subsystems, classes, methods, procedure, or files. ⁮

DEFINITION 2 (SET OF IMPACTED COMPONENTS)
Given a set F of n features F={f1, f2, … , fn}, the set of impacted
components for a feature fi (1)i n≤ ≤ is the set of components Фi ⊂
C that would be modified when implementing feature fi in system S.
⁮

The set of impacted components are derived via impact analysis of
each feature on the components of the existing system. Since the
components to be modified are associated with the features, we can
infer the existence of SD-coupling between the features using the
overlap in their set of impacted components. Precisely, given any
two features fi and fj with corresponding sets of impacted
components Фi and Фj respectively, the two features are SD-coupled
if the intersection of Фi and Фj is non-empty.

4.2 Some Concepts from Hypergraph Theory
We adopt concepts from hypergraph theory to model the SD-
coupling between features. Hypergraphs are generalizations of the
usual graphs in the sense that edges are defined for subsets of
vertices. Hypergraph theory offers supportive visualization and
representation capabilities. In the sequel, we briefly present some
useful concepts in hypergraph theory.

A hypergraph H(X, ξ) consists of a set of vertices or nodes X and a
set of hyperedges ξ. Each hyperedge is a subset of X. We adopt
some of our definitions of hypergraph concepts from [3].

DEFINITION 3 (HYPERGRAPH)
Let 1 2{ , , , }nX x x x= K be a finite set of vertices, and let

(|)i i Iξ = Φ ∈ be a family of non-empty subsets of with

i
i I

X
∈
Φ =U (1)

Then H(X, ξ) is called a hypergraph. ⁮
To illustrate the concept of a hypergraph, we consider a sample set
of four features f1, f2, f3, f4, where each feature respectively impacts
the following sets of components of a given system

Ф1 = {c1, c3, c5, c7}, Ф2 = {c1, c3, c5},
Ф3 = {c1, c2}, and Ф4 = {c4, c6, c7}.
For this example, the vertices are X = C = {c1, c2, c3, c4, c5, c6,
c7}, and the collection of hyperedges are the impacted components
ξ = (Ф1, Ф2, Ф3, Ф4). The corresponding hypergraph is represented
in Figure 2.

C3

C4 C5

C6

C2

C7

C1

f3

f4

f2

f1

Set of features

Hypergraph of impacted components

Figure 2. Mapping of features to the impacted components in a

hypergraph H(X, ξ)
DEFINITION 4 (ADJACENT HYPEREDGES)
Two hyperedges are adjacent if their intersection is non-empty. In
the example above, Ф2 is adjacent to Ф3 (i.e. Ф2∈ adj(Ф3)), but Ф3
and Ф4 are not adjacent hyperedges (i.e. Ф3∉adj(Ф4)).⁮

DEFINITION 5 (2ND ORDER DEGREE OF A HYPEREDGE)
For any hypergraph H(X, ξ), the 2nd order degree (d2) of a
hyperedge is the number of other hyperedges that it has at least one
vertex in common with. ⁮

In the example above, d2(Ф1)= 3, d2(Ф2)= 2, d2(Ф3)= 2, d2(Ф4)= 1.

4.3 SD-coupling
To compute the SD-coupling between features, the set of
components that each feature impacts in the existing system must be
determined. Determining the set of impacted components is a pre-
processing step. Dependency analysis tools [14], [29] or expert
judgment-based techniques [26] could provide this set. In the sequel,

107

we define concepts employed in our models and algorithms for
computing SD-coupling between features.

DEFINITION 5 (SD-COUPLING)
Given a pair of features fi and fj with corresponding sets of impacted
components Φi and Φj, we say there is SD-coupling between the
features if there exists overlap in their implementation. That is,
Фi∈ adj(Фj). ⁮

DEFINITION 6 (SET OF COMMON COMPONENTS)
Given a pair of features fi and fj with their corresponding sets of
impacted components Φi and Φj, the set of common components
between the two features (denoted Ω(i,j)) is the collection of
components that appear in the intersection of the two adjacent
hyperedges Φi and Φj in the hypergraph. ⁮

DEFINITION 7 (SD-COUPLING MATRIX)
Given a collection of features fi∈ F (1)i n≤ ≤ and their
corresponding impacted components sets Фi∈Φ , the SD-coupling
matrix is a matrix of size |F| x |F| where Ω(i,j) = Фi ∩Фj if
Фi∈ adj(Фj) and Ø otherwise. ⁮

The SD-coupling matrix contains all the sets of common
components (i.e. Ω(i,j)) between every pair of hyperedges in the
hypergraph. The computation of the matrix can be achieved using
any of the existing algorithms for computing set intersections (e.g.
[30]). The intersection algorithm takes collection of hyperedges as
input and apply the adjacency operation Фi∈ adj(Фj) to obtain the
SD-coupling matrix. Due to the commutativity of the adjacency
operation (i.e. Ф2∈ adj(Ф5) = Ф5∈ adj(Ф2)), we only need to fill up
the upper or lower triangular matrix.

4.4 Strength of SD-coupling
A feature can share impacted components with one or more other
features, but the number of such shared components would vary.
The strength of SD-coupling between any pair of features refers to
the degree of coupling that exists between the two features. This
measure is normalized to allow for meaningful comparisons. The
higher the strength of SD-coupling measure, the more the two
features are assumed to be related. A perfect coupling exists
between a pair of features if and only if the two features are realized
by exactly the same set of components in the existing system. If this
is the case, then we have θ(i,j) = 1.

DEFINITION 8 (STRENGTH OF SD-COUPLING)
Given a pair of features fi and fj with corresponding sets of impacted
components Φi and Φj. Suppose Ω(i,j) is the set of common
components between Φi and Φj, we define strength of SD-coupling
as:

()
()

(,)
(,)

2

i j

i j

i j
i jθ

Ω ⋅ Φ + Φ
=

Φ ⋅ Φ
 (2)

where (0 (,) 1).i jθ≤ ≤ ⁮

Eq. (2) is based on the cardinality of the set of common
components, and the cardinalities of the set of impacted components
for each of the pair of features being evaluated.

Algorithm 1.0 (see Appendix) describes the procedure for realizing
the strength of SD-coupling between every pair of features. This
algorithm issues a call to any algorithm that computes intersection
of sets to generate the SD-coupling. Then, it computes the ratio of

the number of common components shared by any two features
relative to the number of components required to implement each of
both features respectively. The premise of these ratios is that, even if
a pair of features fi and fj has the same number of common
components as another pair of features fx and fy, the two different
pairs should not necessarily have the same strength of SD-coupling.
That is |Ω(i,j)| = |Ω(x,y)| should not necessarily translate to θ(i,j)=
θ(x,y), because it is possible that (|Фi|, |Фj|) ≠ (|Фx|, |Фy|).

4.5 System Value for Features
The system value sv(i) of a feature fi is based on the number of other
features with which the feature shares impacted components.

DEFINITION 9 (SYSTEM VALUE)
Let fi be a feature and adj(Фi) the set of adjacent hyperedges of Фi.
Then the system value of a feature fi is defined as:

: ()
() (,)

j ij adj
sv i i jθ

Φ ∈ Φ
= ∑ (3)

Algorithm 1.3 (see Appendix) realizes the computation of sv(i) for
all features. The condition | (,) | 0i jΩ > in the algorithm ensures
that the two hyperedges representing feature fi and fj must be
adjacent in order for their intersection to count as part of the d2.

5. MODELING RELEASE PLANNING

5.1 Overview
We consider a model that focuses on the values of features from the
business perspective and the implementation perspective. To
address these two objectives at the same time, it is pertinent to
consider tradeoffs between them. Since it may not be possible to
achieve the best result from both perspectives, an increase in the
value from one perspective may lead to decrease in value from the
other perspective. Handling this type of tradeoff analysis between
two perspectives can be addressed by using bi-objective
optimization models [20]. The RP model encompasses three key
aspects: (i) the decision variables, (ii) the constraints, and (iii) the
objectives of planning. We discuss these aspects in the sequel.

5.2 RP Model
5.2.1 Decision Variables
Given a set of features F = {f1, f2, … , fn}. The goal of RP is to
assign the features to a finite number K of release options, while
postponing features that cannot be accommodated. A release plan is
characterized by a vector of decision variables x = (x(1), x(2), …,
x(n)) such that,

x(i) = k if feature f(i) is assigned to release k ∈ K (4)
x(i) = K+1 if feature f(i) is postponed (5)

5.2.2 Constraints
Constraints are conditions that all the features in a release plan must
satisfy. These constraints could be related to resources, budget, or
interdependencies between features. The resources required for the
implementation of the features refer to any input to the software
production process. Suppose there are T different types of resources,
each feature fi requires an amount r(i,t) of resource t∈T, and there is
a maximum amount of certain resource t∈T available for each
release option k. This available maximum per release is denoted

108

rmax(k,t). For a plan to be feasible, the resource usage for all features
assigned to release k must satisfy:

: () max(,) (,)i x i k r i t r k t k K and t T= ≤ ∀ ∈ ∈∑ (6)

Another dimension of constraint is the precedence between features.
Features in precedence relation P (i.e. (i,j)∈P) implies that fi must
be released before fj in that order. That is,

x(i) ≤ x(j) ∀ (i,j) ∈ P (7)
Also, problem domain coupling specified by the project manager
requires the features to be released jointly. The PD-coupling relation
(i.e. (i,j)∈PD) is given as:

x(i) = x(j) ∀ (i,j) ∈ PD (8)

5.2.3 Objectives of planning
Different factors contribute to the objective of RP. We consider two
perspectives– (i) business perspective and (ii) implementation
perspective (using feature synergies during implementation).

5.2.3.1 Business Related Objective
In consonance with the discussion on the business value of features
[25], we assume an additive function in which the total value of the
objective function from the business perspective is determined as
the sum of a weighted average priority WAP(i,p). Since several
stakeholders typically have varying interests in a software products,
we define WAP(i,p) based on the evaluation of the features fi by
stakeholder Sp from the perspective of value and urgency. Both
value and urgncy are defined on a nine-point scale for simplicity
reasons. Each stakeholder Sp is assigned a relative importance
λp∈[0,1], with ∑k=1…q λp=1.

Based on these assumptions, the total value of a feature fi from the
perspectives of all the business stakeholders is computed as:

WAP(i,p)=∑p=1…q λp⋅sat(i,p)⋅value(i,p) (9)
Value-based priority (i.e. value(i,p)) measures the expected value
that the implementation of the feature will add to the stakeholder,
while the satisfaction-based priority (i.e. sat(i,p)) measures the
extent of satisfaction with the situation that fi is assigned to an early
release. A measure of satisfaction expresses urgency.

Whenever feature fi is assigned to a release k, the WAP of the
feature becomes its overall priority Prior(i,k) in the corresponding
release option k. That is:

Prior1(i,k) = WAP(i,p) ∀ i : x(i)=k (10)
The concept that distinguishes the overall priority of a feature fi,
based on the release option k to which the feature is assigned, is the
importance σk∈[0,1] attached to the release option. Therefore, we
define an objective function F1(x) as:

1 11... : ()F () Prior (,)kk K i x i kx i kσ= == ⋅∑ ∑ (11)

5.2.3.2 Implementation Related Objective
It is more desirable to implement the highest system valued features
early because they possess the highest potential synergy with the
other features. Suppose that whenever feature fi. is assigned to a
release k we redefine the system-value sv(i) of the feature as its
priority Prior2(i,k) in the corresponding release option k. Then, we
have:

2Prior (,) () : ()i k sv i i x i k= ∀ = (12)

In implementation terms, we define the objective function that
captures the implementation views based on the potential synergies
between features as F2(x), such that:

2 21... : ()F () Prior (,)kk K i x i kx i kσ= == ⋅∑ ∑ (13)

The function F2(x) is a first approximation for the potential synergy
in the implementation of features. We call this an approximation,
because all the SD-coupled features that contribute to the system
value of a feature may not necessarily be assigned to the same
release as the feature. We recalculate the system value for each
feature once release plans are generated. These recalculated values
are a more accurate description of the system value, but cannot be
calculated upfront.

5.3 Bi-Objective Release Planning Model
The goal of our bi-objective model is to support RP decisions by
optimizing the assignments of related features in terms of both
potential synergies in implementation and the business values
(degree of stakeholder satisfaction) of the features. Because each of
the two objective functions mean different things and their values
are also on different scales, we cannot integrate them into a single
objective function upfront. Thus, we formulate the RP problem as a
bi-objective optimization problem as follows:

maximize 1 2((), ())Z F x F x= (14)
 subject to

: () max(,) (,),= ≤ ∀ ∈ ∈∑i x i k r i t r k t k K and t T (15)

() (), (,)= ∀ ∈x i x j i j PD (16)

() (), (,)≤ ∀ ∈x i x j i j P (17)
Where Eq.(14) represents the two objective functions and Eqs.(15)-
(17) are the constraints specified earlier. The release plan generated
using Eqs.(14)-(17) would be feasible under the constraints defined
in the model.
Once we generate release plans by solving the bi-objective
optimization problem stated in Eqs(14)-(17), we can treat the SD-
coupling as an additional concern upon which we can evaluate the
release plans for decision making. Thus, we determine the level of
satisfaction of SD-coupling in these release plans at a given
thresholdα . In order to measure the level of satisfaction of SD-
coupling, we define a similarity measure.

5.4 Measuring the Level of Satisfaction of SD-
coupling in a Release Plan
The notion of level of satisfaction of SD-coupling is reflected by the
similarity between the set of SD-coupling identified in the problem
and the set of SD-coupling fulfilled by a release plan. Our approach
for determining the similarity is to represent the entire set of SD-
coupling at the chosen threshold by a weighted graph G=(F, E, w).
The graph G=(F, E, w) consists of F={f1, f2, … , fn} set of vertices
(features), the set E of edges (SD-coupling), and the edge weights w
(strength of SD-coupling).

To determine the level of satisfaction of the SD-coupling, we then
compute the similarity between the graph G of the original SD-
coupling and the graph Gx of SD-coupling satisfied in the release
plan. According to the definition of SD-coupling, we define the
edge weights of the SD-coupling graph as:

109

 (,) (,) (,) (,)w i j i j i j and i jθ θ α= ∀ Ω ≠ ∅ ≥ (18)
And for the generated release plan, we determine the edge weights
of its SD-coupling graph as:

()(,), () (), (,) 0, (,)
(,)

0x
i j if x i x j i j i j

w i j
otherwise

θ θ α⎧ = Ω ≠ ≥⎪= ⎨
⎪⎩

 (19)

In Eq.(19), the conditions (,)i jθ α≥ and |Ω(i,j)|≠0 show that there
is SD-coupling between features fi and fj at the chosen threshold α ,
while x(i)=x(j) implies that this SD-coupling is fulfilled in the
release plan. If the SD-coupling is not fulfilled in the release plan,
then we have a null edge with weight 0. The SD-coupling graph of
the release plan x, which is given as Gx=(F, E, wx), is a replica of the
original graph except that the edges where the SD-coupling is not
satisfied are labeled with weight 0.

Therefore, we define the level to which release plan x satisfies all
the SD-couplings at threshold ,α which is denoted x

αμ

(0 1),x
αμ≤ ≤ by the similarity measure:

(,)
(,)

(,)
(,)

(,)

(,)

x
i j SD

i j
x

i j SD
i j

w i j

w i j
θ αα

θ α

μ
∈
≥

∈
≥

∑

=
∑

 (20)

5.5 Solution to the Bi-Objective Model
In bi-objective optimization problem, the task is to determine a
solution which optimizes the two objective functions, and also
satisfies the constraints x∈ X. Bi-objective optimization problems
typically present set of compromised optimal values. The set of
solutions resulting from these optimal values are said to be Pareto-
optimal solutions if there are no other solutions that are superior to
them when the two objectives are considered [20]. These set of
solutions are usually referred to as non-dominated.

DEFINITION 10 (PARETO-OPTIMAL SOLUTION)
Given a bi-objective optimization problem F(x), an n-tuple x* is said
to be a Pareto-optimal solution of the bi-objective problem if x*∈ X
and there does not exist any other x∈ X such that [18]:

(i) Fi(x) ≥ Fi(x*) {1,2}i∀ ∈ and
(ii) Fv(x) > Fv(x*) for at least one v∈ {1,2}. ⁮

If any of the two conditions above is violated, then the solution x*
does not dominate solution x and could therefore not be a Pareto-
optimal solution. The goal of any solution approach to bi-objective
optimization problem is to find several Pareto-optimal solutions in
order to uncover tradeoff information among the two objectives
considered [20]. The Pareto-optimal solutions are alternatives for
decision-making under uncertainty. Thus, once a set of solutions is
obtained, a decision maker would be able to analyze the tradeoff in
order to choose a final solution.

Generation of release plans depends on the solution to our bi-
objective optimization model, because each Pareto solution
corresponds to an alternative release plan. Ehrgott and Gandibleux
[8] presents a detailed survey of existing methods for solving multi-
objective optimization problems. In this work, we adopt the method
of objective-converted inequality constraints [19], or simply the ε-
Constraint method proposed by Haimes et al. [13]. The

implementation of this method can be achieved in different ways
[18]. Due to space limitations, details of our implementation of the
algorithm cannot be presented here.

5.6 Summary of the BORPES Technique
Figure 3 gives a high level summary of the entire BORPES
technique that we have discussed so far. We also follow this
workflow overview in discussing the case study. Since the figure
summarizes our discussion so far, it is self-explanatory and would
not be further discussed in details.

 Component 3

Component 2

Component 1

Component 4

Figure 3. Overview of the activities in BORPES

The entire BORPES process is aimed at supporting decision-making
under uncertainty, with focus on release planning. Uncertainty can
be addressed in different ways. Providing alternative solutions is
one means to address this, and the level of satisfaction of SD-
coupling is one approach to support the decision-maker in
evaluating and choosing from the alternatives.

6. CASE STUDY
6.1 Context
In order to investigate the efficacy of the proposed approach, we
present a case study based on a data collected on our evolving
system – ReleasePlanner [23]. The data contains information about
the new set of features required to be implemented in the
forthcoming releases, the business value of each feature as
determined by the stakeholders, and the resources required for
implementing the features. There were N=33 features in the project,
K=2 releases to be planned ahead, P=3 stakeholders and T=5 types
of effort-based resources: analysts, developers, tester, user interface,
and research. For all the resource types, the total amount required to
implement all features exceed the available capacity. Details of all
the data cannot be presented here due to space limitations. The
development team identified some set of PD-coupling dependencies
between. We have also collected data about impacted components.
The development team identified 8 high level components that
would be impacted during implementation of the features, as shown
in Table 3.

110

6.2 SD-coupling and System Value
Associating each feature with the corresponding set of impacted
components, via impact analysis, was performed by the developers
participating in the study. The result of this feature-components
association is given in Table 3 (see Appendix). Using our
dependency computation algorithm on the data in Table 3, we
compute the SD-coupling between every pair of features. Since we
need to determine whether SD-coupling exists between all possible
pair of features, the SD-coupling matrix easily grows large. The 33
features would require 528 comparisons to establish the SD-
coupling matrix. Since the strength of SD-coupling is also derived
from the SD-coupling matrix, the table easily grows and cannot be
replicated here. Table 1 shows the set of SD-coupling dependencies
when the strength of coupling α =1.0. In Table 1, we have a total of
16 pairs of features that are SD-coupled at α =1.0. The result in the
table also shows that a total of 17 features are involved in this SD-
coupling dependency, which constitutes 51.5% of the total features.

In fact, none of the SD-coupling identified at α =1.0 was initially
identified as a PD-coupling by the development team. The sets of
PD-couplings and SD-couplings do not have to be mutually
exclusive. There are possibilities that some of the PD-couplings
could correspond to SD-couplings, and vice versa. We did not have
this correspondence in the data collected from this study.

On reducing the value of α is to 0.90, there were more set of
features involved in the SD-coupling. A total of 28 SD-coupling
involving 24 features (i.e. 72.7% of the total features) were
identified at threshold λ=0.90. Figure 4 shows the total number of
SD-coupling identified at different α thresholds.

Table 1. SD-coupling between the features at α = 1.0
Adjacent
features
Ω(i, j)

|Фi| |Фj|
Adjacency Sets

Ω(i,j) |Ω(i,j)|
Coupling
Strength
θ(i,j)

(3,4) 4 4 {c1, c4, c7, c8} 4 1.000
(3,13) 4 4 {c1, c4, c7, c8} 4 1.000
(4,13) 4 4 {c1, c4, c7, c8} 4 1.000
(5,6) 3 3 {c4, c5, c7} 3 1.000
(5,7) 3 3 {c4, c5, c7} 3 1.000
(6,7) 3 3 {c4, c5, c7} 3 1.000

(15,20) 1 1 {c7} 1 1.000
(15,22) 1 1 {c7} 1 1.000
(19,27) 2 2 {c1, c7} 2 1.000
(19,28) 2 2 {c1, c7} 2 1.000
(20,22) 1 1 {c7} 1 1.000
(24,26) 2 2 {c3, c4} 2 1.000
(27,28) 2 2 {c1, c7} 2 1.000
(31,32) 3 3 {c1, c6, c7} 3 1.000
(31,33) 3 3 {c1, c6, c7} 3 1.000
(32,33) 3 3 {c1, c6, c7} 3 1.000

In Figure 4, the number of SD-coupling between the features
decreases with increasing α threshold. The interpretation for this is
straightforward. The more stringent the α threshold, the less likely
we would be able to find pair of features that would be SD-coupled
at that threshold. This is even more likely to be the case if the
impact analysis is conducted at a more fine-grained level (e.g.
method or class level). The decision regarding what α threshold to
adopt depends on the environment, granularity of the impact
analysis data collected, and experience of the development team.

0

50

100

150

200

250

300

350

400

450

500

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75 0.
8

0.
85

0.
90

0.
95

1.
00

α-Threshold

N
um

be
r o

f S
D

-c
ou

pl
in

g
D

ep
en

de
nc

y

Figure 4. Number of SD-coupling at different α thresholds

After the SD-coupling computation, we also compute the initial
system value for each feature using Algorithm 2.0. This system
values are part of the input to the objective function that represents
the implementation perspective.

6.3 Release Plan Generation
For release plans generation, we used the ILOG-CPLEX Optimizer
[16] to implement an ε-Constraint algorithm that solves the bi-
objective optimization problem. For every run of the experiment, we
set the time limit for release plan generation to 30 seconds in order
to balance the quality of solutions generated with performance of
the algorithm in terms of computational cost.

On applying this solution to the case study data, 3 release plan
alternatives which correspond to 3 Pareto-optimal solutions were
generated. Figure 5 shows the values of the objective functions F1
and F2 that correspond to each Pareto-optimal solution. These
solutions are indicated by points A, B, and C in the graph.

A (11370,
3438.455)

B (11320,
3451.832)

C (11315,
3622.903)

3400

3450

3500

3550

3600

3650

3700

11200 11250 11300 11350 11400

F1

F2

Figure 5. Objective values of the 3 Pareto-optimal solutions

In Figure 5, the release plan with objective values represented by the
point A is more biased towards the business perspective (F1), while
the plan with the objective values given by the point C is biased
towards the implementation perspective (F2). The plan whose
objective values are given by the point B is a tradeoff that is not bias
towards either of the two perspectives. However, if the two
objectives are taken together we cannot say that any of the solutions
(A, B, & C) is better than the other. Because the release plans are
derived from Pareto-optimal solutions.

Table 2 contains the structure of the three release plan alternatives
that correspond to the Pareto-optimal solutions shown in Figure 5.
In Table 2, the numbers (i.e. 1, 2) in the row of the alternative plans
represent the releases in which the corresponding feature in the
column is assigned, while number 3 represents the postponed
features.

111

Table 2. Comparison of alternative release plans

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 f20 f21 f22 f23 f24 f25 f26 f27 f28 f29 f30 f31 f32 f33
Alternative A 1 3 1 3 2 2 1 1 1 3 2 2 3 2 1 2 1 1 1 3 3 1 3 1 1 1 2 2 1 1 1 2 1
Alternative B 1 3 1 3 2 2 1 2 1 3 2 2 1 1 1 2 1 1 1 3 3 1 3 1 1 1 2 2 1 1 1 2 1
Alternative C 1 3 1 1 2 3 1 1 2 3 2 2 1 1 1 2 2 1 1 3 3 1 3 1 1 1 2 2 1 1 1 2 1
Release plan A assigned a total of 26 features into either of the two
release options, while release plans B and C assigned 27 features
each. All the release plan alternatives in Table 2 are structurally
different in terms of which release to which each feature in the
release plan is assigned.
As mentioned in Section 5.2.3.2, the initial approximation of the
system values of the feature is used to maximize the assignment of
SD-coupled features in the objective function F2(x). Since all the
SD-couplings would not necessarily be satisfied in the release plans,
the recalculated system values are expected to be lower in each
release plan. The reason is that, the postponed features would not
contribute to the recalculated system values. Figure 6 shows the
recalculated system values for the features in each alternative, in
comparison to the initial approximation. This figure shows that the
features in all the alternatives have lower system values than their
initial approximations. Since the release plan alternatives are
structurally different, we do not expect the system value of a feature
in a specific release plan to correlate with the system value of the
same feature in another alternative plan.

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 1213 14 1516 17 1819 20 2122 232425 2627 28 2930 31 3233

Feature ID

S
ys

te
m

 V
al

ue

Plan A Plan B Plan C Initial Approximation

Figure 6. Recalculated and initial system values

6.4 Evaluating Release Plan Alternatives
Our goal is to support software engineering decision makers (i.e.
with specific focus on RP), rather than making the decisions for the
decision maker. Since the structures of the release plan alternatives
are different and the objective values are also different, it is
important to have a human decision maker evaluate the alternatives.
We employed the level of satisfaction of SD-coupling to compare
the alternatives in this case study.

In the first instance, we chose threshold 1.0α = to evaluate the level
of satisfaction of SD-coupling in the alternative plans. Using the
similarity measure defined in Eq.(21), we compute the level of
satisfaction of the SD-coupling at threshold 1.0α = for the release
plan alternatives. The level of satisfaction for plan A is

1
Aμ =0.3125. That is, a total of 31.3% of the required set of SD-

coupling is satisfied by this alternative. On performing the same
computation for the other two alternatives B and C, the levels of

satisfaction of the SD-coupling are 1
Bμ =37.5% and 1

cμ =43.8%,
respectively. Apart from the fact that the levels of satisfaction of
SD-coupling are different for the different alternative plans, each
alternative plan also satisfies different SD-couplings (compare Table
1 at 1.0α = and their satisfaction in Table 2). In the absence of any
additional information, the level of satisfaction and/or structure of
the satisfied SD-coupling could be used to choose among the
alternatives. At threshold 1.0,α = alternative C is the best release
plan alternative. Again, we evaluated the release plans at thresholds

0.95,α = 0.9, 0.85, and 0.8, the levels of satisfaction of the SD-
coupling by the different alternatives are shown in Figure 7. At
these new thresholds, the alternative C also remains the best plan in
terms of SD-coupling satisfaction.

Another interesting result obtained is that, the release plan C that
exhibits the highest level of satisfaction of SD-coupling also
corresponds to the Pareto-optimal solution that is biased towards the
developers in the objective function. To some extent, this
correspondence validates our algorithm for computing the system
value, because the system value aims to assign as many SD-coupled
features in the same release as possible.

31.3% 31.3%
28.7% 28.6%

41.9%

37.5% 37.5%

32.4%
35.6%

45.9%
43.8% 43.8%

38.9%

47.6%

59.1%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

1.0 0.95 0.9 0.85 0.8

 Alpha Threshold (α)

Le
ve

l o
f S

at
is

fa
ct

io
n

of
 S

D-
co

up
lin

g

Alternative A Alternative B Alternative C

Figure 7. Satisfaction of SD-coupling by release plan

alternatives at different thresholds of α

6.5 Discussion
The SD-coupling dependency results we have discussed for this
case study need to be interpreted with caution. Because the impact
data was collected at a coarse-grained components level rather than
at a more fine-grained level (e.g. classes or files). Impact analysis
conducted at the level of components of an evolving software
system could easily lead to several features impacting common
components. This is not considered a drawback of our approach,
because scalability is guaranteed for any granularity of data used.
The more fine-grained the impact data, the better we can justify the
existence of SD-coupling between features. Although we have
performed our case study on a set of 33 features, the approach is
scalable to any number of features due to our formalization that
addresses the computational complexity.

112

7. CONCLUSIONS AND FURTHER WORK
In this paper, we have presented a decision support technique for RP
of evolving software system that considers both the business and the
implementation perspectives. We formulated the RP problem as a
bi-objective optimization problem that provides opportunities for
trade-off between the two perspectives. The alternative release plans
generated via Pareto-optimal solutions provide better support for
decision-making than providing just a single solution. This is partly
because we cannot claim that a formal model completely captures
all the decision parameters for such human-centric decision
problem.

The additional information required to select between alternative
plans must align with the project goal. Such information may be
related to the experience of the decision-maker, market forces, or
other project constraints that are missing in the formal model. In this
paper, we have supported this selection from alternatives using the
level of satisfaction of SD-coupling. Part of our future work would
investigate other evaluation criteria.

The SD-coupling computation discussed in this work would also be
useful in several other contexts. RP is just one of the several
application areas. The information derived from strength of
coupling between features would help developers scan through the
features assigned to a release in order to take advantage of their
relatedness during implementation. We have also discussed the
feasibility of the proposed approach in RP via a proof-of-concept
case study. Our future work would involve large scale validation of
the proposed approach.

Our feature coupling detection method using the set of impacted
components is based on the assumption that, implementing features
that share common implementation components together would
reduce cognitive effort during implementation. This is expected to
result in development effort savings. Our future work would
empirically validate this assumption via industrial case studies. We
are also currently investigating an extension to the model that would
consider the technical risk involved in the implementation of each
feature.

8. ACKNOWLEDGMENTS
This research is partially funded by the National Sciences and
Engineering Research Council of Canada (NSERC) and Informatics
Circle of Research Excellence (iCORE).

9. REFERENCES
[1] Arnold, R. S. and Bohner, S. A. Impact analysis - Towards a

Framework for Comparison. In Proceedings of IEEE
International Conference on Software Maintenance (Montreal,
Quebec, Canada, 1993), 292-301.

[2] Bagnall, A. J., Rayward-Smith, V. J., and Whittley, I. M. The
Next Release Problem. Information and Software Technology,
43, 14 (2001), 883-890.

[3] Berge, C. Graphs and Hypergraphs. North-Holland Publishing
Company, Amsterdam, 1976.

[4] Calder, M., Kolberg, M., Magill, E. H., and Reiff-Marganiec,
S. Feature Interactions: a Critical Review and Considered
Forecast. Computer Networks, 41, 1 (2003), 115-141.

[5] Carlshamre, P., Sandahl, K., Lindvall, M., Regnell, B., and
Nattoch Dag, J. An Industrial Survey of requirements
interdependencies in Software Release Planning. In

Proceedings of 5th IEEE International Symposium on
Requirements Engineering (Toronto, Canada, Aug. 27-31,
2001), 84-91.

[6] Dahlstedt, A. G. and Persson, A. Requirements
Interdependencies - Moulding the State of Research into a
Research Agenda. In Proceedings of 9th International
Workshop on Requirements Engineering: Foundation for
Software Quality (REFSQ'03) (Klagenfurt/Velden, Austria,
Jun. 16-17, 2003), 55-64.

[7] Denne, M. and Cleland-Huang, J. The Incremental Funding
Method: Data Driven Software Development. IEEE Software,
21, 3 (2004), 39-47.

[8] Ehrgott, M. and Gandibleux, X. A Survey and Annotated
Bibliography of Multiobjective Combinatorial Optimization.
OR Spektrum, 22, 4 (November, 2000 2000), 425-460.

[9] Feather, M. S., Cornford, S. L., and Gibbel, M. Scalable
Mechanisms for Requirements Interaction Management. In
Proceedings of 4th International Conference on Requirements
Engineering (ICRE'00) (Schaumburg, IL, USA, June 19-23,
2000), 119-129.

[10] Giroux, O. and Robillard, M. P. Detecting Increases in Feature
Coupling using Regression Tests. In Proceedings of 14th ACM
SIGSOFT International Symposium on Foundations of
Software Engineering (FSE 2006) (Portland, Oregon, USA,
November 5-11, 2006), 163-174.

[11] Greer, D., "Decision Support for Planning Software Evolution
with Risk Management", in 16th International Conference on
Software Engineering and Knowledge Engineering (SEKE'04).
Banff, Canada, 2004, pp. 503-508.

[12] Griffeth, N. D. and Lin, Y.-J. Extending Telecommunications
Systems: The Feature-Interaction Problem. IEEE Computer,
26, 8 (August, 1993 1993), 14-18.

[13] Haimes, Y. Y., Lasdon, L. S., and Wismer, D. A. On a
Bicriterion Formulation of the Problems of Integrated System
Identification and System Optimization. IEEE Transactions on
Systems, Man, and Cybernetics, 1, 3 (1971), 296-297.

[14] Hassan, A. E. and Holt, R. C. Predicting Change Propagation
in Software Systems. In Proceedings of International
Conference on Software Maintenance (Chicago, Illinois, USA,
Sept. 11-17, 2004), 284-293.

[15] Jung, H.-W. Optimizing Value and Cost in Requirements
Analysis. IEEE Software, 15, 4 (1998), 74-78.

[16] Karlsson, J. and Ryan, K. A Cost-Value Approach for
Prioritizing Requirements. IEEE Software, 14, 5 (1997), 67-74.

[17] Keck, D. O. and Kuehn, P. J. The Feature and Service
Interaction Problem in Telecommunications Systems: A
Survey. IEEE Transactions on Software Engineering, 24, 10
(October 1998), 779-796.

[18] Lin, J. G. Multiple-Objective Problems: Pareto-Optimal
Solutions by Method of Proper Equality Constraints. IEEE
Transactions on Automatic Control, 21, 5 (October, 1976
1976), 641-650.

[19] Lin, J. G. Proper Inequality Constraints and Maximization of
Index Vectors. Journal of Optimization Theory and
Applications, 21, 4 (April, 1977 1977), 505-521.

[20] Obayashi, S., Sasaki, D., and Oyama, A. Finding Tradeoffs by
Using Multiobjective Optimization Algorithms. Transactions
of the Japan Society for Aeronautical and Space Sciences, 47,
155 (2004), 51-58.

[21] Penny, D. A. An Estimation-Based Management Framework
for Enhancive Maintenance in Commercial Software Products.

113

In Proceedings of International Conference on Software
Maintenance (ICSM'02) (Montreal, Canada, 3-6 October,
2002), 122-130.

[22] Rajlich, V. Modeling Software Evolution by Evolving
Interoperation Graphs. Annals of Software Engineering, 9, 1-4
(2000), 235-348.

[23] ReleasePlanner(R), Intelligent Decision Support Tool. Software
Engineering Decision Support Lab, Date Accessed: June 13,
http://www.releaseplanner.com, 2006.

[24] Robinson, W. N., Pawlowski, S. D., and Volkov, V.
Requirements Interaction Management. ACM Computing
Surveys (CSUR), 35, 2 (June 2003), 132-190.

[25] Ruhe, G. and Ngo-The, A. Hybrid Intelligence in Software
Release Planning. International Journal of Hybrid Intelligent
Systems, 1, 2 (Jan. 2004), 99-110.

[26] Saliu, O. and Ruhe, G. Software Release Planning for Evolving
Systems. Innovations in Systems and Software Engineering - a
NASA Journal, 1, 2 (Sep. 2005), 189-204.

[27] Saliu, O. and Ruhe, G. Supporting Software Release Planning
Decisions for Evolving Systems. In Proceedings of 29th

IEEE/NASA Software Engineering Workshop (SEW-29)
(Greenbelt, MD, USA, 6-7 April, 2005), 14-26.

[28] Turner, C. R., Fuggetta, A., Lavazza, L., and Wolf, A. L. A
Conceptual Basis for Feature Engineering. Journal of Systems
and Software, 49, 1 (1999), 3-15.

[29] Walker, R. J., Holmes, R., Hedgeland, I., Kapur, P., and Smith,
A. A Lightweight Approach to Technical Risk Estimation via
Probabilistic Impact Analysis. In Proceedings of ICSE
Workshop on Mining Software Repositories (MSR'06)
(Shanghai, China, May 20-28, 2006), 98-104.

[30] Yellin, D. M. Algorithms for Subset Testing and Finding
Maximal Sets. In Proceedings of 3rd Annual ACM-SIAM
Symposium on Discrete Algorithms (Orlando, FL, USA, 1992),
386-392.

[31] Zhang, W., Mei, H., and Zhao, H. Feature-Driven Requirement
Dependency Analysis and High-Level Design. Requirements
Engineering, 11, 3 (Jun. 2006), 205-220.

APPENDIX
Algorithm 1.0: COUPLING_STRENGTH
Input: A set of features F and a collection of hyperedges Фi

,∈Φ and the SD-coupling matrix
Output: Strength of SD-coupling θ(i, j) between pair of features.
1. BEGIN
2. Ω(i, j) =ADJACENCY_ELEMENTS (Ф1, Ф2,…,Фn)
3. FOR i = 1 to n-1
4. k = i + 1
5. FOR j = k to n
6. RCI= (,)Ω Φii j /*Relative changes to fi (RCI)*/

7. RCJ= (,)Ω Φ ji j /*Relative changes to fj (RCJ)*/

8. (,)θ =i j (RCI + RCJ)/2
9. END FOR
10. END FOR
11. RETURN (,)θ i j
12. END

Algorithm 2.0: SYSTEM_VALUE
Input: Strength of SD-coupling θ(i,j) and sets of all elements in the
adjacent hyperedges computed from Algorithm 1.0.
Output: System-value sv(i) for all features.
1. BEGIN
2. FOR i = 1 to n
3. sv(i) = 0
4. FOR j = 1 to n
5. IF (|Ω(i, j)| > 0 AND i ≠ j) /* ()i jadjΦ ∈ Φ */
6. sv(i) = sv(i) + θ(i, j) /* Sum sv(i) over d2(Фi) */
7. END IF
8. END FOR
9. END FOR
10. RETURN sv(i)
11. END

Table 3. Features and their set of impacted components

R
ep

or
tin

g

Va
lid

at
or

IP
 C

om
po

ne
nt

Ja
va

 B
ro

ke
rs

Im
po

rt
/E

xp
or

t
C

om
po

ne
nt

St
ak

eh
ol

de
r

Vo
tin

g
A

na
ly

si
s

D
B

C

on
ne

ct
iv

ity

C
la

ss
A

lte
rn

at
iv

e
A

na
ly

si
s

W
iz

ar
d

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

ID Set of Impacted Components

1 Comparative analysis manual versus RP
solutions X X X X X X {c1, c3, c4, c5, c7, c8}

2 Record of history of sets of alternative
solutions X X X X X {c1, c4, c5, c7,c8}

3 Conformance measure for requirements
across alterantive solutions X X X X {c1, c4, c7, c8}

4 Comparison between solutions: within one
set and across sets X X X X {c1, c4, c7, c8}

5 MS excel advanced compatibility X X X {c4, c5, c7}

6 MS Project compatibility X X X {c4, c5, c7}

7 Analysis of compatibility requirements with
existing RM tools (DOORS, Requisite Pro) X X X {c4, c5, c7}

8
Generation of solutions based on selected
criteria (Stakeholder in isolation, criteria in
isolation, trade-off)

X X X X {c1, c3, c4, c7}

9 Planning across projects X X X X X X X {c1, c2, c3, c4, c6, c7, c8}

10 Re-planning capabilities X X {c1, c8}

11 Allowing splitting of features over two
releases X X X X X X {c1, c2, c3, c4, c7, c8}

12 Accomodation of different skill sets X X X X X X X X {c1, c2, c3, c4, c5, c6, c7, c8}

13 Fuzzy boundaries X X X X {c1, c4, c7, c8}

14 Value-risk trade-off analysis X X X {c1, c7, c8}

15 Multiple windows accessible X {c7}

16 Integrated Excel sheet with effort data,
voting and generated alternatives X X {c5, c7}

17 Dashboard to show user actual study of
Project Planning X X {c4, c7}

18 Professional UI re-development X X X {c1, c6, c8}

19 Extending reporting component X X {c1, c7}

20 Explanation Component X {c7}

21 Visualization of Output X X X X {c1, c6, c7, c8}

22 Context sensitive explanation of terms X {c7}

23 Further development of the validator to
give on demand help X X X X {c2, c3, c4, c7}

24 Fine tuning optimization algorithms (back
tracking strategies, heuristics) X X {c3, c4}

25 Elimination of open source code X {c3}

26 Caching mechanisms X X {c3, c4}

27 Stakeholder allowed to enter request for
requirements X X {c1, c7}

28 Stakeholder to enter resource estimates X X {c1, c7}

29 Multiple stakeholder weights based on
groups of reqs. they are voting on X X X X {c1, c5, c6, c7}

30 Improved stakeholder conformance
(percentages of the idea solution model) X X X X X {c1, c3, c4, c7, c8}

31 Individual stakeholder voting feedback X X X {c1, c6, c7}

32 Competitor stakeholder voting X X X {c1, c6, c7}

33 Stakeholder Voting analysis extension X X X {c1, c6, c7}

Feature Description Impacted components

114

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

