Ten Misconceptions about Product Software Release Management explained
using Update Cost/Value Functions

Slinger Jansen, Sjaak Brinkkemper
Information and Computing Sciences Institute
Utrecht University
Utrecht, the Netherlands
{s.jansen, s.brinkkemper} @cs.uu.nl

Abstract

The decision for a young product software vendor to re-
lease a version of their product is dependent on different
factors, such as development decisions (it feels right), sales
decisions (the market needs it), and quality decisions (the
product is stable). Customers of these products, however,
are much more cost oriented when deciding whether to up-
date their product or not, and will look mainly at the cost
and value of an update. Product software vendors would
gain tremendously if their release package planning method
was supported by a similar cost/value overview. This paper
presents cost/value functions for product software vendors
to support their release package planning method. These
cost/value functions are supported by ten misconceptions
encountered in seven case studies of product software ven-
dors that these vendors had to adjust during their lifetime.
Finally, a number of cost saving opportunities are presented
to enable quicker adoption of a release and thus shorten re-
lease times and customer feedback cycles.

1 Introduction

Product software release planning has been characterised
as a “wicked” [4] and “complex” [1] problem for which no
perfect solution exists. One part of release planning, release
package planning, is often underestimated due to its seem-
ingly innocent and uncomplex nature. Product software
vendors that do not have much experience in release plan-
ning often publish their release packages because a team
of experts within the organization deems the release good-
enough, which results into some releases that are hardly
adopted by customers, whereas others are much more pop-
ular.

Simultaneously, release packages are created often dur-
ing the lifecycle of a product, which suggests that processes
such as release package creation, release package publica-
tion, informing the customer of a new release, and updating

are repetitious processes that must be automated as much
as possible, to ease both customer update effort and ven-
dor release package creation effort. Decreasing this effort
results into customers that are more willing to update, and
vendors who are more willing to release regularly, as sug-
gested by the agile development methods, such as extreme
programming [2]. However, from a number of case studies
performed in the past it is found that product software ven-
dors generally do not sufficiently plan their releases [10].

We define Software product release management as the
storage, publication, identification, and packaging of the el-
ements of a product. Release package planning, which is
part of the release planning process, is the process of defin-
ing what features and bug fixes are included in a release
package and the process of identifying these packages as
bug fix, minor, or major updates, taking into account re-
leases that have been published in the past and the possible
update process required to go from one release of the prod-
uct to another release. To illustrate, figure 1 displays a re-
lease snapshot from a recent case study [7], in which major,
minor, feature, and bug fix releases are shown.

An update package is a package that promotes a cus-
tomers configuration to a newer configuration. Secondly,
a bug fix update package contains only bug fixes, a fea-
ture update package contains only new features, and mi-
nor and major update packages contain both bug fixes and
new features. The distinction between minor and major up-
date packages is usually that major update packages change
structural parts of a product, such as the architecture or the
data model. Our view of software evolution described here
is similar to Rajlich and Bennet’s staged model [3], which
addresses evolutionary changes (minor and major update
packages) first, and then continues to see patches (bug fix
packages) until a release is phased out and closed down.

The objective of this paper is to create release package
planning awareness within software product management
research. This is achieved by the presentation of cost/value
functions that support misconceptions found in seven real-
life cases about software product release management. Two

@ Branch, release and
freeze datamodel

O Stop supporting

4.30 4.31 4.32 5.00

>©7

feature
update

4.30 4.31 4.32

Figure 1. Typical Versioning Example

complementary cost/value functions are presented that en-
able a product software vendor to estimate whether a release
package will actually be downloaded and installed by its
customers. Also, two complementary Cost/Value functions
are presented to help a software vendor decide whether the
next release package will be marked a bug fix, minor, or
major release.

The presented Cost/Value functions provide an extra
check before publishing a release package for product soft-
ware vendors. In that, the presented decision method is a
useful extension to product road mapping methods, such
as the one presented for small product software businesses
[15], the method that supports the product software knowl-
edge infrastructure [17], and other methods that support re-
lease planning [14]. Section 2 presents and describes the
Cost/Value functions. Section 3 describes ten misconcep-
tions encountered in seven case studies that support the
Cost/Value functions as a valid release package planning
method. In section 4 methods are described to save either
customer update costs or vendor side release costs. Finally,
in section 5 we discuss the presented method and describe
the conclusions.

2 Defining the Cost/Value functions

This section describes the Cost/Value functions for both
the customer (see figure 2) when updating its software and
the vendor (see figure 3) when releasing a new version.
These functions separately describe the cost of an update
for a customer, the value of an update for a customer, the
value of a new release for a vendor, and the cost to create
the release package for the vendor. The functions are based
on case studies performed at seven organisations [10]. Also,

the customer functions are based on different papers from
Enterprise Resource Planning (ERP) application updates
and migrations [13], and a recent case study we performed
at a content management systems vendor that also does up-
dates and migrations for customers [8]. The Cost/Value
functions are similar to the profit functions developed by
the Research Triangle Institute [16]. However, these profit
functions are used to calculate the impact of software testing
inadequacies to the software business and not specifically
for update release timing.

2.1 Customer Functions

A customer will base its decision to update a software
product on a number of factors. First and foremost, the cus-
tomer is interested in the value the update represents for her.
This value can be of many different forms, such as the ad-
dition of a new level to a game providing the customer with
more entertainment or a complete new production planning
module to an ERP package saving the customer many mil-
lions. Simultaneously the customer will take the cost of up-
dating into account. Such cost can be the downright effort
of downloading and installing the new level for the game or
downtime of the ERP system during the update costing the
company many millions.

A customer’s value of an update is defined as Cval (1).
The function defines the value of an update to a customer
as the value of new features the customer will use plus the
value of the removal of previous workarounds. The new
features include those features that have been added to the
new release, but also those that simply did not work in the
previous release and for which a workaround was not avail-
able.

Before a customer decides to update, however, the cus-
tomer will calculate the cost of an update to see if it is really
worth it. The cost function Ccost (2) defines the cost of an
update as the cost of downtime of a product, the cost of
training for the people using the new/changed functional-
ity, the cost of effort put into the update process, the cost of
functionality that was removed from the release or the cost
of customisations that can no longer be used after the up-
date, and finally the cost of the payments to the vendor for
the update.

For a customer to make the update decision, Cval must
exceed Ccost (3), especially when taking into account that
the resources that are required to perform the update nor-
mally perform other value adding tasks. It is quite surpris-
ing to see that many vendors do not invest structurally into
reducing these costs for the customer, especially since in
most of our case studies up to 70 percent of revenue was
coming from existing service contracts and only 30 percent
from new customers. Also, when a vendor sees that Ccost
exceeds Cval for a large number of customers, releasing an

Cval(update) = value(newFeatures) + value(removalO fWorkarounds) (1)

| cost(downtime) + cost(training) + cost(updateE f fort) +
Ceost(update) = { cost(lost Functionality) + cost(paymentToVendor) @)
Cwval(update) > Ccost(update) 3)
Figure 2. Customer Cost/Value Functions
| mnewCustomers priceNewRelease +
Vwval(newUpdatePackage) = { oldCustomers priceO fUpdate + costReduction(support) “)
cost(development) + cost(updateCurrentCustomers) +
Veost(newUpdate Package) = < cost(increasedSupport) + cost(marketing) + B

cost(deliveryToCustomers) +

cost(packageCreation)

Vwal(update) > Vcost(update) 6)

Figure 3. Vendor Cost/Value Functions

update becomes essentially useless, unless the vendor hopes
to attract a large number of new customers. This seems im-
probable though, since if current customers are not inter-
ested in the product, why would new ones be?

2.2 Vendor Functions

For a vendor the value of an update is much harder to cal-
culate, especially because it involves estimating how many
new customers are attracted with the new release and how
many customers are actually prepared to update. A vendor’s
value of a new release are new customers attracted by the
release that specifically targets a new market, the reduction
in support calls due to a bug fix to a commercial operating
system, or a customer that pays the vendor for an update of
their ERP product.

The function for a vendor’s value Vval (4) describes the
value of a new release as the number of new customers
times the price of a new release, the current customers who
are prepared to update against reduced cost, and finally the
cost reduction in support calls due to the fixes in the new
release package. Calculating the Vval is hardest, mostly be-
cause it involves estimating the number of new customers
and estimating how many customers are willing to update
from any previous version, which might introduce differ-
ent prices for the different updates. If the release package
contains a large number of bug fixes there might be a cost
reduction in support costs. However, if many new features
have been introduced, this reduction might be cancelled out
by the cost increase in support.

The Vcost (5) function is defined as the cost of devel-
opment of the functionality and bug fixes for the new re-
lease package, the cost of updating the current customers,
the cost of increased support questions relating to the new
release, the cost of marketing, the cost of delivering the new

release package to customers, and finally the cost of pack-
aging the release. The cost of updating current customers
includes such things as update tools [11], renewing their li-
censes, and possible support questions that arise during the
update process. The cost of marketing includes informing
current customers of the new release, the marketing cam-
paign, creating release notes, and maintaining the product’s
website. The cost of delivering the update to customers en-
compasses the creation of the delivery medium (CD, DVD,
floppy, USB-stick, website, etc.), the assembling of all ar-
tifacts, the possible translations of the products language
files, and completeness checking of the release.

The Vcost/Vval functions are used to evaluate whether
it is time to create a release package. This is generally the
case when Vcost exceeds Vval (6), i.e., when the potential
value of releasing an update is higher than the cost that was
required to create the update. Automation of the processes
that make up release package creation and publication can
potentially reduce Vcost, enabling a software vendor to re-
lease more often. This is similar to condition (3), where
automation of the delivery and deployment processes can
decrease Ccost, thus making it more attractive for customers
to update.

The functions shown in this section tend to change
largely when looking at either a bug fix, a minor, or a major
release package. In the case of a bug fix package that is re-
leased on-line, contrary to a major release, no new storage
media need to be created by a vendor. The decision to re-
lease either a bug fix, minor, or major release package can
be made using these functions. If the reduction in support
costs justifies the effort put into fixing a number of bugs, a
bug fix release is justified. If the reduction in support costs
does not justify the effort put into fixing a number of bugs
and the addition of functionality, you might want to earn it
back by making the next release a minor release. If the ven-

dor feels that the next release should generate more revenue
from new customers and old customers as well, this might
be a justifiable case for a major release package. Of course
this is not a hard science. Especially in the case a bug cost a
disproportionate amount of time to fix, it might not be jus-
tifiable to publish a minor release package. A question the
vendor must ask itself then is whether it was worth it to try
and fix the bug in the first place.

3 Ten Misconceptions about Product Soft-
ware Releasing

All product software vendors undergo series of paradigm
shifts during their lifetime leading to radical changes in ear-
lier established principles [6]. These misconceptions are
generally strategic misconceptions that beginning software
vendors can easily have about product software manage-
ment and release management specifically. Here ten mis-
conceptions are presented that were encountered in seven
case studies of product software vendors. These product
software vendors have been the subject of study from 2004
until 2006, and include Dutch software organizations with
between 60 and 1500 employees [7] [8]. The main focus
of research were the vendors’ release, delivery, and deploy-
ment processes. For a further description on how the case
studies were undertaken we refer to the case study reports
and a paper describing all seven cases [10]. The value/cost
formulas presented in this paper support the lessons learnt
presented here.

1. Customers want to stay up-to-date - It is important
to realize that a customer of a software product uses it only
to make life better. If a newer release package does not
provide the customer with new functions, why would she
update? When, for instance, was the last time you updated
a computer game? Or your ftp client? To quote one of the
case study participant’s customers “Their software supports
our business process perfectly. Some of the workarounds
are strange, but as long as we don’t have to invest in the
ghastly process of updating, we’re happy.” This is a clear
example of where Ccost exceeds Cval.

2. Customers must stay up-to-date - To guarantee
success of a product software vendor it is often assumed
that customers must stay up to date. The misconception is
demonstrated by the example of a content management sys-
tem product software vendor, where customers use versions
from years back who never updated due to the large number
of customisations and complex update process. These cus-
tomers, however, don’t feel limited in their use of the prod-
uct however, and will update when they require new func-
tionality. Once again Ccost exceeds Cval. The difference
between the first and second misconception is that they are
discovered at different times in the product lifecycle. The
first misconception is discovered once a new version of a

product is released and is not adopted at all by customers.
The second misconception is discovered once a vendor has
many different versions out in the field, without encounter-
ing life-threatening problems.

3. Release n + 1 is better for a customer than release
n - Many of a bookkeeping software vendor’s customers
were still using the MS-DOS based version of their prod-
uct until 2005 when the vendor declared it would no longer
support the DOS version. When attempting to update all
these small entrepreneurs to a GUI based version the main
complaint was that the graphic interface was less intuitive
than their previous DOS versions. The bookkeeping soft-
ware vendor ended up implementing all the same keystroke
combinations that were typical of the DOS era, into their
GUI based client. Even though from the vendor’s point of
view their update to the GUI based version was necessary,
customers could have worked with the DOS version for at
least the next ten years and considered Ccost to be larger
than Cval.

4. Fixes can be postponed to the next major release -
A typical mistake to make is to postpone bug fixes for later
releases, hoping to save the effort of having to implement
the fix into multiple releases. This works fine if customers
are eager to update, and the next major release is around
the corner. However, in one of the case studies performed
in 2004 we encountered a vendor who postponed many bug
fixes to its next major release package. The major release
package, planned for early 2005, still has not been released
mid 2006. Many of the bug fixes had to be back ported
to keep customers satisfied. This is a clear example where
Vcost seemed to be lower than Vval, but actually was not.

5. Workarounds must be avoided at all costs - Once
again, as long as Ccost exceeds Cval, workarounds are a
nice solution to a problem that would otherwise require a
large investment from an organisation or person. An ex-
ample of this is the Internet Explorer workarounds for style
sheets. Quite often style sheets will look different on In-
ternet Explorer 6 than other browsers, due to a bug. It is
common knowledge, however, that Internet Explorer’s in-
terpreter can be fooled by adding specific characters to the
code of a style sheet. Microsoft has chosen not to fix this
bug until Internet Explorer 7, mainly due to the fact that ev-
eryone is aware of the workaround and too many customers
would need to be updated.

6. Customers always want new features - This com-
mon misconception is that any release package can contain
new features, since the customer should be happy with (pos-
sibly) free new features. An example encountered is a point
of sale product software vendor, whose users typed more
or less blindly into the system and checked only every ten
seconds to see if the screen was showing the desired result.
The simple displacing of a button in the user interface raised
so many complaints (Ccost exceeds Cval) that they decided

to freeze the user interface to their application in between
minor releases as much as possible.

7. Releasing too often is bad - The aforementioned
bookkeeping product software vendor started releasing on
a weekly basis at some point, to shorten the feedback cy-
cle to developers. The vendor did receive more bug reports,
but product experience in general, declined. The vendor de-
cided that this was not caused by the fact that they released
too often, but that they released to their final customers too
often. The frequent releases were maintained, but only for
internal use, quality assurance, and pilot customers. Also,
customers are required to stay up to date to reduce the num-
ber of support calls.

8. A quiet customer is a happy customer - An in-
formal survey amongst a number of customers of a plug-
in software vendor showed that customers who contacted
the helpdesk in the early phases of its use were much more
content with the product than those customers who had not
called the helpdesk in the early adoption phases. Another
example encountered was a software vendor who called up
a customer for a yearly check-up, and heard that they had
recently decided to buy a competitors product, even while
the customer still had a contract with the current vendor.
This demonstrates the importance of regular customer con-
tact. The customer would still have been a customer if the
vendor had made the customer aware of the fact that Ccost
is smaller than Cval.

9. Customers read release notes - Especially system
managers of large software products are well accustomed
to browsing through release notes, trying to find that one fix
to a bug or that one new feature that justifies a customer’s
investment into updating the product. Clearly, this is a pro-
active customer that is looking to optimize the value of the
software product’s latest release package. These system
managers, however, would be much more interested in in-
formation about new releases that specifically targets them.
One software vendor [12] is currently experimenting with
a system that filters release notes for specific customers,
such that they do not receive information that is irrelevant
to them. An example of this is a bug fix to a component a
customer has not purchased.

10. Having many different releases out in the field is
bad - The earlier example of the content management sys-
tems product software vendor shows us that having many
different releases out in the field is not necessarily a bad
thing, as long as it is part of the business model. This
vendor, for instance, charges its customer for all services
in the form of a service contract, especially to those cus-
tomers with very old versions. To the software vendor
these customers present more of a knowledge management
problem, since many of the solutions built in the past have
to be reused for customers experiencing similar problems
now. The vendor does agree that this is only possible due

to its small “manageable” number of customers. The dif-
ference between the second and this misconception is that
the second misconception addresses the “happy” customer,
whereas this misconception concerns the successful product
software vendor.

Some other misconceptions encountered were “our next
release must contain less bugs than our previous release to
satisfy customers” and “we shouldn’t build an automatic up-
dater because the customer will feel they’re not in control”.
These misconceptions are proven wrong by our Cost/Value
functions as well, but we simply encountered them less of-
ten than the ten mentioned here. It is our firm belief that tak-
ing the profitability approach with regards to release pack-
age planning in a commercial environment is the way to go.
An interesting question of validity is whether this type of
anecdotal evidence is enough to prove that our Cost/Value
functions are correct. It is part of our future work to further
evaluate the validity of the Cost/Value functions based on
historical (cash flow) results from both software implemen-
tations at customers and software release history.

4 Reducing Costs of Release Management

Besides using the Cost/Value functions for daily deci-
sions, they allow us some thought experiments. Product
software vendors generally adhere to bug fix/minor/major
release scoping. When looking solely at version numbers,
an open source project such as Mambo/Joomla, has had
three major releases since 2001, approximately 10 minor
releases, and approximately 120 bug fix releases. These
numbers show that bug fix updates are released much more
often than major updates. Also, when looking at customer
behaviour, they are more inclined to regularly update to a
new bug fix release package than they will perform a costly
major update.

When looking at bug fix updates and the functions pre-
sented earlier the Cost/Value calculation impact factors
change compared to major updates. In the case of a major
update, the cost of development will largely exceed all other
costs, making those less important from a financial point of
view. For a major release, for instance, the completeness
checking of artifacts will be a relatively small step in the
release package creation project. When looking at a bug fix
project, however, the development might have taken only a
couple of days developing effort, whereas the creation of the
release package might take an equal amount of time and ef-
fort. If we then take into account that these bug fix releases
generally do not generate profit and only improve product
quality and reduce the number of support calls, other costs
are suddenly much more drastic.

Besides the scope of a release, the number of customers
who update to a new release determines how much effort
must be put into reducing the cost of release management.

For Exact Software and its 160,000 customers [9], for in-
stance, the reduction in cost by introducing a combined soft-
ware configuration management system and customer rela-
tionship system was huge. By combining these two systems
they enable customers to automatically download and de-
ploy bug fix and minor updates. However, if a vendor only
serves twenty customers and is not planning to extend their
customer base beyond one hundred customers, it must con-
sider whether it is worth investing much into automatically
releasing, delivering, and updating releases at its customers.

A product software vendor can reduce its costs in a num-
ber of areas. This cost reduction in turn enables a vendor
to release more often. Releasing more often generates feed-
back about new releases quicker, which enables a vendor
to improve its product and make better informed decisions
on development and fixing plans. Cleary, this theory sup-
ports the agile camp, in its “Release early and often” view-
point [2].

4.1 Vendor Side Cost Reduction

To begin with a vendor must strive to release often, if
not continuously [18]. The more a product under develop-
ment is in the shape it will be in when finally released, the
less chance there is for errors to be introduced during re-
lease package creation. After all, any party within the ven-
dor organization, be it pilot customers, other developers, or
the quality assurance department, will use this latest release
for internal evaluation. The parties responsible for the final
release will also have less work in the final stages of release
package creation, a process that takes place often. This pro-
cess is hampered by a product that supports different lan-
guages, since quite often these language files are translated
shortly before the final release date.

The process of release package creation must be auto-
mated as much as possible to eliminate simple (error sen-
sitive) manual tasks. If a release package is checked for
completeness automatically each time a release package is
created, it does not need to be checked extensively by qual-
ity assurance, eliminating a large part of this process.

The cost of software delivery is greatly minimized if all
delivery is done through a network instead of expensive
media, such as CDs or DVDs. The releases stored on these
media are never as up-to-date as the ones stored in the ven-
dor’s release package repository, which could be accessible
through a network or secure Internet connection.

4.2 Customer Side Cost Reduction

Whereas the vendor might be reducing costs internally,
it must invest in making the deal to update to a new version
as attractive as possible. Though this seems like a large in-
vestment at first, the payoff comes quickly when customers

become more eager and better informed with regards to re-
leases a vendor offers.

Software deployment costs can be reduced for the cus-
tomer by automating the update process. This requires
the software vendor to seriously invest into an update tool
and to develop its architecture in such a way that customi-
sations remain functional after an update. Even though this
seems like a large investment up front, it makes the decision
for a customer to update easier, and as such makes them
more eager to update often. The same holds for the reduc-
tion of downtime, since customers will be much more eager
to update if downtime is reduced to a minimum.

Before customers can update to a new release, however,
they need to be informed about the new release package.
Currently, most product software vendors inform their cus-
tomers through information news letters, customer days, e-
mails, and many other ways. A higher rate of release pene-
tration can be reached, however, if the vendor uses the soft-
ware itself to inform the customer. This can range from a
small pop-up when the application starts up, to an automatic
pull of an update, such as Mozilla’s Firefox currently does.

With regards to informing customers, release notes are
an essential part of release management. When customers
are looking for a bug fix, for instance, they will browse
through the release notes looking for that specific piece of
information. Clearly these release notes need to be index-
able, such that customers who previously requested infor-
mation concerning a problem are informed as soon as a fix
for that problem has become available.

5 Discussion and Conclusions

This paper presents cost and value functions that product
software vendors can use to evaluate whether it is profitable
to release a version of their software. Simultaneously, func-
tions are provided that assist a customer in making the deci-
sion to update a vendor’s software product. These functions
support ten changed viewpoints that were encountered in
seven case studies. Finally, these functions show that costs
can be saved for both product software vendors and cus-
tomers on commonly occurring patch and minor updates,
which can shorten feedback cycles from end-user to prod-
uct software developer.

The process of release package planning is greatly sim-
plified with the use of the provided Cost/Value functions.
These functions also defend that product software vendors
invest into automating processes such as release package
creation, release package publication, informing the cus-
tomer of a new release, and updating. The fact that this
does not happen in practice raises a number of questions,
such as why the vendors do not invest more into these pro-
cesses. An answer often given when product software ven-
dors were confronted with this question was that they are

busy creating their specific software solution already, but
that they would be happy to buy a tool that helps automat-
ing these tasks.

A weakness of the Cost/Value functions is that being ob-
sessed with short-term profits will lead any product soft-
ware vendor without a long-term vision to the abyss. Ven-
dors must take into account customers will always be pre-
pared to offer large amounts of money to small vendors if
they just build one little feature that is extremely valuable to
them. The vendor must always keep in mind that it is creat-
ing software for a market and not one particular customer.
The functions must only be used once the prioritization of
requirements for the next couple of releases has been final-
ized.

These calculations provide a decision method for updat-
ing and releasing, but only in case all costs and prognoses
are exact. Knowing that this is impossible, we leave it to the
practitioner to perform data gathering [5] and implement a
risk factor for unforeseen costs (and unforeseen value). Cur-
rently the Cost/Value functions are still in an experimental
state even though we feel they are of great value to the field
of release package planning. Thus it belongs to our future
work to evaluate the functions in real world scenarios with
historical release and cash flow data. We do recommend us-
ing a currency as the unit of measurement, since both sales
and full time employment units can be expressed in money.

Part of the work thus is to find methods and tools that as-
sist product software vendors in automating the tasks of re-
lease creation, release publication, informing the customer
of a new release, and updating a customer’s configuration.
In earlier work the lack of tools for software deployment
was identified [11] and possible solutions were presented.
With respect to continuous software releasing the tool Sisy-
phus was built to support product software vendors with
automatically creating their software releases [18]. Work
recently has started on the Pheme prototype, a communica-
tion infrastructure that assists product software vendors in
sharing software, data, feedback, licenses, and commercial
information with its customers.

References

[1] A.J.Bagnall, V.J. Rayward-Smith, and J. M. Whittley. The
next release problem. In Information and Software Technol-
ogy, volume 43, pages 883-890, 2001.

[2] K. Beck and M. Fowler. Planning Extreme Programming.
Addison-Wesley, 2001.

[3] K. Bennet and V. Rajlic. A staged model for the software

lifecycle. In IEEE Computer; July, 2000.

[4] P. Carlshamre. Release planning in market-driven soft-
ware product development: Provoking an understanding.
Springer-Verlag, 2002.

[5] C. Ebert, R. Dumke, M. Bundschuh, A. Schmietendorf, and
R. Dumke. Chapter 1. In Best Practices in Software Mea-
surement, 2004.

(6]

(7]

(8]

(9]

(10]

(1]

(12]

[13]

(14]

[15]

[16]

(17]

(18]

I. Heitlager, S. Jansen, S. Brinkkemper, and R. Helms. Un-
derstanding the dynamics of product software development
using the concept of co-evolution. In Second International
IEEE Workshop on Software Evolvability (at the Interna-
tional Conference on Software Maintenance). IEEE, 2006.
S. Jansen. Software Release and Deployment at Planon: a
case study report. In Technical Report SEN-E0504. CWI,
2005.

S. Jansen. Software release and deployment at a content
management systems vendor: a case study report. Institute
of Computing and Information Sciences, Utrecht University,
Technical report UU-CS-2006-0XX., 2006.

S. Jansen, G. Ballintijn, S. Brinkkemper, and A. van Nieuw-
land. Integrated development and maintenance for the re-
lease, delivery, deployment, and customization of product
software: a case study in mass-market erp software. In Jour-
nal of Software Maintenance and Evolution: Research and
Practice, volume 18, pages 133-151. John Wiley & Sons,
Ltd., 2006.

S. Jansen and S. Brinkkemper. Definition and validation
of the key process areas of release, delivery and deploy-
ment of product software vendors: turning the ugly duck-
ling into a swan. In proceedings of the International Confer-
ence on Software Maintenance (ICSM2006, Research track),
September 2006.

S. Jansen, S. Brinkkemper, and G. Ballintijn. A process
framework and typology for software product updaters. In
Ninth European Conference on Software Maintenance and
Reengineering, pages 265-274. IEEE, 2005.

S. Jansen and W. Rijsemus. Balancing total cost of own-
ership and cost of maintenance within a software supply
network. In proceedings of the IEEE International Con-
ference on Software Maintenance (ICSM2006, Industrial
track), Philadelphia, PA, USA, September, 2006, 2006.
C.S.P. Ng, G. G. Gable, and T. Chan. An erp maintenance
model. In 36th Hawaii International Conference on Systems
Sciences (HICSS), 2003.

J. N. och Dag, V. Gervasi, S. Brinkkemper, and B. Regnell.
A linguistic-engineering approach to large-scale require-
ments management. /[EEE Software, 22(1):32-39, 2005.

K. Rautiainen, C. Lassenius, J. Vahaniitty, M. Pyhajarvi, and
J. Vanhanen. A tentative framework for managing software
product development in small companies. In Proceedings
of the 35th Hawaii International Conference on System Sci-
ences, 2002.

Research Triangle Institute. The economic impacts of inad-
equate infrastructure for software testing. National Institute
of Standards and Technology, 2002.

I. van de Weerd, S. Brinkkemper, R. Nieuwenhuis,
J. Versendaal, and L. Bijlsma. Towards a reference frame-
work for software product management. In Proceedings
of the 14th International Requirements Engineering Confer-
ence (Accepted for publication), 2006.

T. van der Storm. Continuous release and upgrade of
component-based software. In Proceedings of the 12th Inter-
national Workshop on Software Configuration Management

(SCM-12), 2005.

