
Association for Information Systems
AIS Electronic Library (AISeL)

AMCIS 2008 Proceedings Americas Conference on Information Systems
(AMCIS)

2008

A Software Release Planning Methodology for
Developers
Jennifer Jewer
University of Waterloo, jljewer@uwaterloo.ca

Kenneth N. McKay
University of Waterloo, kmckay@ist.uwaterloo.ca

Follow this and additional works at: http://aisel.aisnet.org/amcis2008

This material is brought to you by the Americas Conference on Information Systems (AMCIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in AMCIS 2008 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Jewer, Jennifer and McKay, Kenneth N., "A Software Release Planning Methodology for Developers" (2008). AMCIS 2008 Proceedings.
367.
http://aisel.aisnet.org/amcis2008/367

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Famcis2008%2F367&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2008?utm_source=aisel.aisnet.org%2Famcis2008%2F367&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2008%2F367&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2008%2F367&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2008?utm_source=aisel.aisnet.org%2Famcis2008%2F367&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2008/367?utm_source=aisel.aisnet.org%2Famcis2008%2F367&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Jewer and McKay A Software Release Planning Methodology for Developers

Proceedings of the Fourteenth Americas Conference on Information Systems, Toronto, ON, Canada August 14th-17th 2008 1

A Software Release Planning Methodology for Developers
Jennifer Jewer

Department of Management Sciences
University of Waterloo
jljewer@uwaterloo.ca

Kenneth N. McKay
Department of Management Sciences

University of Waterloo
kmckay@ist.uwaterloo.ca

ABSTRACT

The process of assigning requirements to releases is difficult and release planning methodologies are becoming increasingly
complex in an attempt to take into account different stakeholder perspectives and criteria. However, there is a need to focus
on understanding the criteria used in release planning in order for the methodologies to adequately support this process. This
paper specifies the criteria for software developers to use when planning releases by operationalizing the risk criterion and
enhancing the interdependency criterion. A controlled experiment was conducted to evaluate release plans created with this
new versus an informal methodology. The results imply that the criteria specified in this new methodology are in fact used by
developers in the creation of releases. After further testing, this methodology could prove beneficial in helping developers
create release plans for large numbers of requirements.

Keywords

Incremental software development, software release, requirements prioritization, decision support, risk management.

INTRODUCTION

Many researchers have investigated ways of minimizing software project risks through systems development methodologies.
One such methodology has been incremental development because research suggests that delivering systems incrementally
with smaller functioning releases is less risky than implementing a complete system after a long development time (Beck,
1999; Greer and Ruhe, 2004). In fact, small project size has been identified as one of the most significant factors in project
success (Standish Group, 1995).

In order to develop software incrementally the requirements are assigned to different increments and each increment is
released in stages. This assignment of requirements to different increments is known as release planning (RP) and researchers
agree that it is crucial to incremental software development (e.g. Carlshamre, Sandahl, Lindvall, Regnell, and Natt och Dag,
2001; Karlsson, Thelin, Regnell, Berander and Wohlin, 2007). However, RP is a difficult process (Aurum and Wohlin, 2003;
Karlsson and Ryan, 1997; Lubars, Potts and Richter, 1993) and often done informally in organizations based upon individual
experience and tacit knowledge (Karlsson and Ryan, 1997; Lehtola, Kauppinen and Kujala, 2004). This informal RP could
cause misunderstandings (Lehtola et al., 2004), and if planning is done badly it could increase risks such as budget overruns
and a loss of market share (Wiegers, 1999). However, “[a]lthough requirements prioritization is recognized as an important
area, few research papers aim at finding superior prioritization techniques that are accurate and usable,” (Karlsson et al.,
2007, p.8). In a study comparing two different RP methodologies it was found that the resulting priority order was incorrect
and that users sometimes did not trust or have confidence in the results of these methods (Lehtola and Kauppinen, 2004).

Given this gap in the literature and the apparent challenges with the use of these methodologies in practice, this paper focuses
on specifying criteria that software developers may use when RP. The RP methodologies in the literature acknowledge
different knowledge areas of stakeholders and suggest that one group of stakeholders consisting of users and/or customers
should rank the requirements on criteria such as value and business relevance, and that another group of stakeholders
consisting of developers should rank the requirements on other, more technical, criteria. This paper introduces further
guidance on what these technical criteria are in order to facilitate RP. Specifically, the methodology introduced this paper
operationalizes the risk criterion and enhances the interdependency criterion. Risk is part of many of the other RP
methodologies; however, this paper introduces an operationalization of risk that is grounded in literature to provide guidance
to developers when assessing the risk of a requirement in order to create release plans. The methodology enhances the
interdependency criterion by including guidance on the assessment of functional interdependencies between requirements.

There is a need to focus on understanding the criteria used in RP, rather than relying on the developers to make their own
assessments of criteria such as risk and interdependencies, in order for the methodologies to adequately support this process
(Wohlin and Aurum, 2005). A review of the literature indicated that no RP methodologies have specifically looked at the
criteria that developers use when assigning requirements to releases, therefore, the methodology presented in this paper is a

Jewer and McKay A Software Release Planning Methodology for Developers

Proceedings of the Fourteenth Americas Conference on Information Systems, Toronto, ON, Canada August 14th-17th 2008 2

first step towards filling this gap. This study offers some preliminary findings based on data from a controlled experiment
with developers using an informal versus this new methodology.

Following this introduction, an evaluation of the RP methodologies is presented, and then the new RP methodology for
developers is outlined and explained. Finally, the experimental design and findings are discussed and the paper concludes
with a summary of the significance of the research findings, and identification of the limitations and areas for future research.

EVALUATION OF RELEASE PLANNING METHODOLOGIES

The RP methodologies are becoming increasingly complex as they attempt to take into account different stakeholder
perspectives and criteria. These methodologies are briefly discussed below according to the (1) stakeholders, (2) criteria, and
(3) processes to assign requirements to releases.

First, all the methodologies stress the importance of including input from multiple stakeholders in the planning of releases.
Most methodologies include at least representatives from business and software development; however, other methodologies
also include stakeholders, such as: different types of users of the system, customers, investors and shareholders.

Second, the methodologies also suggest multiple criteria upon which to base the assignment of requirements to releases;
however, no study providing conclusive evidence that one set of criteria is superior to the others was found in the literature.
In an empirical evaluation of two methodologies it was found that participants found the resulting priority order incorrect and
some participants did not trust the results (Lehtola and Kauppinen, 2004). They also found that the practitioners did not know
on what information they should base their evaluations of value or cost. This is an important finding because “prioritization
results are never better than the raw data inserted,” (Lehtola and Kauppinen, 2004, p.168). Therefore, it is essential that the
user of the RP methodology understand the criteria and know how to assign values to requirements based on these criteria.
However, it is difficult to determine what criteria should be included in a RP model because the criteria used without the aid
of a RP methodology are often not stated and are instead implicitly used by the decision-makers (Wohlin and Aurum, 2005)
and decision-makers may not even be explicitly aware of which criteria they take into account (Lehtola et al., 2004). Some
studies provide no guidance and rely on developers to know how to rank the requirements. For example, the Incremental
Funding Method (Denne and Cleland-Huang, 2004) proposes that developers estimate the cost and effort involved in
developing each release; however, it offers no guidance on how these estimates are to be developed. Finally, it is also
important to consider interdependencies between the requirements in addition to their priorities when planning releases
(Carlshamrea et al, 2001; Karlsson and Ryan, 1997). Carlshamrea et al. (2001) found that only 20 percent of the requirements
have no interdependencies) and suggested the need for research on incorporating interdependencies in RP. Greer and Ruhe’s
EVOLVE (2003) is the only methodology found in the literature that specifically considers interdependencies between the
requirements in the ranking process.

Third, the methodologies have also suggested a number of processes by which to assign the requirements to releases, relying
on analytical tools to identify and integrate multiple stakeholders’ rankings and multiple criteria per requirement. Some
methodologies suggest relatively simple processes, such as Wiegers (1999) Value-Cost-Risk method where the requirements
are ranked from 1 to 9; whereas, other methodologies, such as the EasyWinWin (Boehm et al., 2001) groupware system to
capture individual ratings and to calculate and display level of consensus, are slightly more complex. However, there have
been some unsatisfactory performance results of these methodologies with findings such as tedious and resulting in a loss of
control (Karlsson and Ryan, 1997), difficult and pointless (Lehtola and Kauppinen, 2004), and untrustworthy results (Du,
McElroy and Ruhe, 2006). This is troubling because it has been found that unclear prioritization methods affected the priority
order of the requirements (Lehtola and Kauppinen, 2004). Recognizing the importance of clear and easy to use methods,
some researchers have created methodologies that concentrate exclusively on reducing the complexity of the process
(Bagnall, Rayward-Smith and Whitlley, 2001; Jung, 1998).

A SOFTWARE RELEASE PLANNING METHODOLOGY FOR DEVELOPERS

The aim of the new methodology is that after further testing and refinement it will be effective in helping software developers
make ‘better’ decisions and consequently create release plans with less risk. This paper presents the first stage of this testing
and refinement process by introducing the methodology and presenting an exploratory examination of the effect it has on
developers’ release plans.

Rather than focusing on the process of RP (i.e. use of absolute versus relative rankings, or use of genetic algorithms versus
linear programming to calculate the increments), as is the focus of the majority of the literature, this methodology seeks to
establish a soundly based set of criteria against which a single developer or multiple developers may evaluate software
requirements thereby facilitating the assignment of these requirements to release plans. It is not the intention of this

Jewer and McKay A Software Release Planning Methodology for Developers

Proceedings of the Fourteenth Americas Conference on Information Systems, Toronto, ON, Canada August 14th-17th 2008 3

methodology to include the criteria that all stakeholders may use to create releases, but rather to include those criteria that
software developers may be best qualified to assess. A review of the literature indicated that it is suggested specifically that
developers should consider variables such as cost (Karlsson and Ryan 1997), technical issues (Boehm et al., 2001), cost and
value (Denne and Cleland-Huang, 2004), and cost and risk (Wiegers, 1999). Also, Greer and Ruhe’s EVOLVE (2003)
doesn’t specifically indicate what criteria developers should rank the requirements on versus other stakeholders, but some of
their criteria, seem to be best addressed by users - user priorities - and other criteria by the developers - risk factors,
development effort and precedence, coupling and resource constraints.

The criteria in this new methodology are Essence, Risk and Interdependency. These criteria encompass the criteria from the
RP literature with the exception of cost and effort, which were left out of the methodology presented in this paper for
practical reasons1.

Essence

The Essence criterion is used to determine the relative benefit that each requirement offers to the end product and indicates
the degree to which the success of the project depends on each requirement. The “essence” of the software represents the
minimum requirements necessary to satisfy the basic functionality of the software. For example, a requirement that is
mandatory for business functionality or legally required would be assigned a higher value than a requirement that provides
business value but has a feasible alternative such as a manual work-around. Furthermore, a requirement that is “nice-to-have”
would be assigned the lowest value. An important aspect of the Essence criterion is that the essence of each requirement is
determined independently of the technological constraints of that requirement.

Risk

The Risk criterion is used to determine the relative risk of developing each requirement. The risk refers to risk exposure
resulting from the development and implementation of each requirement. It is essential to consider the risk in the ranking of
the requirements to assign the riskier requirements higher priorities. The higher risk requirements should not be left to
implement last in the project when resources or time may be limited or when necessary changes cannot be made because of
technical constraints. Additionally, multiple high-risk requirements should not be scheduled for development at the same
time. Rather, their development should be distributed to reduce the risk at any one time.

This Risk criterion incorporates theories and practices from software risk management such as risk identification, risk metrics
and risk assessment, and considers the risk of each requirement from both the project and the technical perspectives. One of
the contributions of this new methodology is the operationalization of the risk criterion, which is part of many of the other RP
methodologies. For example, in Greer and Ruhe’s methodology (2003) it is specified that developers should rate the
requirements on the risk; however, no further guidance on what constitutes requirement risk is offered. This is where this new
methodology may prove useful - the operationalized risk criterion could be used by the developers to rate the risk of the
requirements.

The Risk criterion, briefly outlined in Figure 1, is composed of three main sub-criteria – Project Risk, Technical Process
Risk, and Technical Product Risk - that contain specific operationalized measures for each risk factor.

1 Cost and effort were excluded from the methodology because this would be difficult for the developers to estimate in an
experimental setting, and instead the experiment participants were not given any cost information and were told to allocate
the requirements into 12 equal releases.

Jewer and McKay A Software Release Planning Methodology for Developers

Proceedings of the Fourteenth Americas Conference on Information Systems, Toronto, ON, Canada August 14th-17th 2008 4

Figure 1. Overview of risk criterion

Interdependency

The Interdependency criterion addresses the relationship between the requirements and is used to determine the necessary
implementation order since in some cases the inherent characteristics of the requirements may dictate their implementation
order. The enhancement of the interdependency criterion to include functional interdependencies (referred to as Benefit
Interdependencies in this methodology), in addition to the technical precedence that is included in Greer and Ruhe’s
EVOLVE (2003) is another contribution of this new methodology. The Benefit Interdependencies criterion goes one step
further than the Essence criterion in that it considers whether the total functionality realized from implementing two
requirements increase due to their synergistic effects. For example, requirements’ interdependencies may stipulate their
implementation order by identifying those complimentary requirements that, if developed in parallel, may offer additional
business value, than if they were implemented independently. Technical Interdependencies, alternatively, incorporate the
consideration of technical precedence into the RP process. Technical Interdependencies are characterized by “depends on” or
“constrains” relationships. “Depends on” refers to whether the implementation of a requirement technically necessitates the
implementation of a related requirement. A “Constrains” relationship between two requirements refers to whether
implementing the first requirement limits the options of the second. If a requirement “constrains” another requirement(s) then
it should be implemented before the other requirement(s).

A requirement that should be implemented “before” another either because of technical or benefit interdependencies would
be assigned a higher priority than an “independent” requirement having no benefit or technical considerations constraining or
promoting its implementation. For example, a requirement with the most dependants, and thus having the biggest effect on

Jewer and McKay A Software Release Planning Methodology for Developers

Proceedings of the Fourteenth Americas Conference on Information Systems, Toronto, ON, Canada August 14th-17th 2008 5

the rest of the system if it changes (i.e. infrastructure) should be implemented before another requirement that does not affect
the system functionality or require other aspects of the system in order to function. The next section discusses the experiment
that was conducted to provide some initial testing of this methodology for software developers.

EXPERIMENT

This controlled experiment aims at comparing the release plans created with the use of the software RP methodology for
developers (referred to as formal methodology) introduced above with plans created using an informal methodology. The
consistency between the plans created formally versus informally will be calculated to compare the plans. Consistency refers
to the degree of similarity between the plans. The premise is that if the release plans created formally versus informally are
similar then the formal methodology includes criteria that the developers intrinsically use when informally developing the
release plans. The following hypothesis is investigated:

H
0

: The release plans created with the use of the software RP methodology for developers will not be consistent

with the plans created informally.

H
1
: The release plans created with the use of the software RP methodology for developers will be consistent with

the plans created informally.

Participants

A non-probability judgment sampling procedure was used to select participants for this exploratory study. Ten undergraduate
and graduate students in a university’s Computer Science and Software Engineering departments were selected to participate
in this study. These students all have one to two years work experience in software development and have studied similar
courses. The use of students is suitable in this study because other studies evaluating the efficacy of RP methods have also
used students as subjects in their experiments (e.g. Du et al, 2006; Karlsson et al., 2007) and because one of the situations in
which students most often seem to be suitable is when evaluating if a new technique is better than a known technique (formal
vs informal RP in this experiment) (Berander, 2004).

Experimental Design

Pre-tests were performed incrementally with three software developers. After each pre-test, any weaknesses were corrected
and the newest version of the instrument was given to the next pre-test participant. The pre-tests were useful for eliminating
errors in the experimental design and served as a trial for the full execution of this experiment.

For the experiment, a control group and an experimental group, each with five subjects, were selected to participate. All
participants were asked to rank 27, randomly ordered, software requirements for a spreadsheet program (listed in Table 1)
and assign the requirements to 12 releases.

Working independently, the participants in the control group created release plans for the software program informally. In
fact, this group was not told about this new RP methodology or about the purpose of the study. Each participant was left up to
his/her own to determine how he/she would rank the software requirements and create the release plan. Conversely, the
experimental group was given an introduction to the methodology and some supporting documentation, and each participant
was instructed to independently follow this new methodology to rank the software requirements and create a release plan.

The participants in the experimental group were instructed to rank the requirements against the Essence and operationalized
Risk criteria on 7-point Likert scales. Then, the participants were instructed to assign one ranking to each requirement based
upon the Essence and the Risk scores. This helps the participants to make trade-off decisions regarding Essence and Risk
when assigning the rankings. Finally, the participants were asked to estimate the Interdependencies between requirements,
and assign each requirement to a release.

Jewer and McKay A Software Release Planning Methodology for Developers

Proceedings of the Fourteenth Americas Conference on Information Systems, Toronto, ON, Canada August 14th-17th 2008 6

Table 1. Software requirements for spreadsheet program

Results

Refer to the Appendix for the release plans created by the participants. The data was analyzed using nonparametric measures
of correlation for ordered data. Measures of correlation determine the probability associated with the occurrence of a
correlation as large as the one observed in the sample under the null hypothesis that the variables are independent or
unrelated in the population. Nonparametric measures are suitable for the analysis of the data in this study because the sample
size is small, and because the data is ordinal instead of ratio or interval data which is preferred for parametric tests.

The analysis suggests that the release plans created with the use of the methodology are consistent with the plans created
informally. Kendall’s Coefficient of Concordance W was used to test the correlation of the release plans of all participants
(control and experimental groups). For Kendall's W, 1 is complete agreement and 0 is no agreement. In this study Kendall’s
W of 0.319 with a probability of occurrence of p<0.001 reflects a modest, but highly-significant, amount of agreement
between all participants. Therefore, it can be concluded that the agreement among the participants is higher than it would be
had their rankings been random. Thus, the null hypothesis is rejected for these cases.

Due to the modest amount of agreement between all participants, additional analysis was performed to see what effect the use
of the methodology had on the consistency of release plans within the experimental and control groups. As shown in Table 2,
Kendall’s W for each group has a probability of occurrence of p < 0.02 and p<0.001 respectively. This means that there is
significant agreement within each group of participants. Since W=.498 for the experimental group is bigger than that of
W=.347 for the control group, it would suggest that the experimental group participants are in more agreement than the
control group. The analysis suggests that participants exposed to the formal methodology are more consistent as a group. This
is not surprising given that generally if a treatment relates to the topic it should create a more consistent response. Further
research is warranted in this area, but consistency in using this methodology versus informally creating release plans may be
beneficial as it may increase the agreement among participants and make the resulting releases more predictable. The larger
consistency among the experimental group participants than the control group may also reflect the fact that use of the

Jewer and McKay A Software Release Planning Methodology for Developers

Proceedings of the Fourteenth Americas Conference on Information Systems, Toronto, ON, Canada August 14th-17th 2008 7

methodology does change the way that release plans are created with a small number of requirements and it raises the
question of what would be the affect with large numbers of requirements.

Additional Test

Since the release plans created formally and informally are highly correlated, further analysis of the plans was conducted to
determine if the participants did, in fact, apply the methodology to rank the requirements and to create their releases, or did
they seem to rank the requirements using the methodology, but in the end create releases based on their own assessment?
Refer to Table 3 for the average Essence and Risk rating and associated ranking assigned to each requirement by the
experimental group using the methodology.

* Avg refers to the average of the Essence and Overall Risk ratings assigned to each requirement by the study participants.

Table 3. Rankings assigned by the experimental group

The Spearman Rank-Order Correlation Coefficient was calculated to test the correlation between the average Essence and
Risk rating of each requirement and its ranking, refer to Table 4. The requirements were ranked (from 1 to 27) and then

Jewer and McKay A Software Release Planning Methodology for Developers

Proceedings of the Fourteenth Americas Conference on Information Systems, Toronto, ON, Canada August 14th-17th 2008 8

assigned to releases based on that ranking and any interdependency considerations. It was found that the correlation for each
participant was at the 0.01 level, therefore the results from this test indicate that those participants exposed to the RP
methodology do in fact follow the methodology to create the release plans. Those requirements that were rated high on
average on the Essence and Risk criteria were also ranked high (e.g. requirement 3 for participant B1 received the highest
rating of 7 and was ranked number 1), and therefore would be assigned to an earlier release. This means that a requirement
regarded as part of the basic functionality of the software and that had higher risks to develop would be recommended to be
developed first by the participant. This is important because it suggests that the methodology is trustworthy as the resulting
release plans reflect the participants’ opinions.

CONCLUSIONS

This new methodology is a first step towards a theoretically based methodology to improve RP and reduce software
development risks. As discussed, it is proposed that there are characteristics of requirements such as essence, risk and
interdependencies that are considered in parallel, weighted, and reflected upon by software developers both consciously and
intuitively in the RP process. No other studies have looked specifically at the criteria considered by developers so this is
where this paper makes its greatest contribution. The findings of the experiment comparing the release plans created by
developers using an informal versus this new methodology suggest that these criteria may be considered by developers. At
this point in the research it is not possible to conclude if the fact that the releases created informally and formally are
consistent is due to the fact that the participants did not use the methodology and therefore just ranked the requirements as
they would have informally, or if the participants did in fact use the approach and it does reflect the essence, risk and
interdependency criteria that are inherently considered (i.e. part of their own schema) when creating releases . However, the
additional test did indicate that the developers did in fact use the methodology, and that the resulting release plans do reflect
the participants’ opinions.

This study found that with small sets of requirements there is no significant difference in releases created with a formal
versus an informal methodology; however, where benefits may be felt is as the number of requirements increases. With large
numbers of requirements it may be difficult for developers to intrinsically rank the requirements and they may need such a
formal methodology with operationalized criteria as the methodology introduced in this paper. This RP methodology for
developers could be used in conjunction with other existing RP methodologies to supplement the decision making process of
the developer stakeholder group. For example, it could be used with EVOLVE where the developer’s plans captured through
the methodology introduced in this paper could be incorporated with other stakeholders’ plans through EVOLVE’s genetic
algorithms.

Limitations

The exploratory nature of this study must be reiterated. The scope of this study involved a small number of participants and
involved one experimental problem (the spreadsheet program); therefore, the representativeness of the participants and the
spreadsheet program used in this study is unknown, thus limiting the ability to generalize the findings. Consequently, the
results of this study are discussed as preliminary findings and as areas requiring further research. However, other studies of
RP methodologies have faced similar limitations due to small sample sizes (e.g. Du et al., 2006; Karlsson et al., 2007;
Lehtola and Kauppinen, 2004) while still contributing to the literature.

When considering the results of the experiment a couple of points should be considered. First, the subjects may be limited in
their ability to apply the criteria in this experimental situation. In the “real-world” they could talk to users or other developers
to clarify requirements, risks, etc. Second, it is not possible to completely control how the control group did the RP.
However, as Ziemer and Calori (2007) noted when they used students as a control group in their RP experiment, the students
“will probably have no knowledge about RP methods, and will just try to solve the problem as best they can,” (p.110).

Jewer and McKay A Software Release Planning Methodology for Developers

Proceedings of the Fourteenth Americas Conference on Information Systems, Toronto, ON, Canada August 14th-17th 2008 9

Implications for Future Research

The findings of this study are preliminary and offer a framework for future analysis. More definitive research studying the
impact of use of the new methodology on developers’ creation of releases is needed to determine whether the results of this
study are generally applicable. For example, additional studies could examine the impacts of the use of this methodology on
multiple projects with different software programs, and with more developers and requirements. Studies could be designed to
test the impact of the use of this method in conjunction with other methodologies, and against informal and other formal
methodologies. It may prove useful in the future to compare the resulting releases created by developers at varying levels of
expertise to determine how the releases differ and to see if specifically identifying and operationalizing criteria upon which to
base the releases has an impact. Finally, further testing is necessary before it can be determined whether these criteria are
sufficient and if other criteria, such as essence, can be operationalized (i.e. need for compliance, aides usability, functionality,
manual workaround possible, etc.). Research in all these areas could have impacts on RP in the future.

Jewer and McKay A Software Release Planning Methodology for Developers

Proceedings of the Fourteenth Americas Conference on Information Systems, Toronto, ON, Canada August 14th-17th 2008 10

APPENDIX

Jewer and McKay A Software Release Planning Methodology for Developers

Proceedings of the Fourteenth Americas Conference on Information Systems, Toronto, ON, Canada August 14th-17th 2008 11

REFERENCES

1. Aurum, A., Wohlin, C. (2003) The fundamental nature of requirements engineering activities as a decision-making
process, Information and Software Technology, 45, 945–954.

2. Bagnall, A. J., Rayward-Smith, V. J., and Whittley, I. M. (2001) The Next Release Problem, Information and Software
Technology, 43, 14, 883-890.

3. Beck, K., and Fowler, M. (2001) Planning Extreme Programming, Addison-Wesley, Toronto.

4. Berander, P. (2004) Using Students as Subjects in Requirements Prioritization, Proceedings of the 2004 International
Symposium on Empirical Software Engineering (ISESE’04), August 19-20, Redondo Beach, CA, USA, 167-176.

5. Boehm, B., Grunbacher, P., and Briggs, R. (2001) Developing Groupware for Requirements Negotiation: Lessons
Learned, IEEE Software, May/June, 46-55.

6. Boehm, B.W. (1991) Software Risk Management: Principles and Practices, IEEE Software, January, 32-42.

7. Carlshamre, K, Sandahl, M., Lindvall, B., Regnell, Natt och Dag, J. (2001) An industrial survey of requirements
interdependencies in software product release planning, International Symposium on Empirical Software Engineering,
CA, USA, 84–92.

8. Denne, M. and Cleland-Huang, J. (2004) The Incremental Funding Method: Data Driven Software Development, IEEE
Software, 21, 3, 39–47.

9. Du, G., McElroy, J., and Ruhe, G. (2006) A family of empirical studies to compare informal and optimization-based
planning of software releases, Proceedings of the 2006 ACM/IEEE International symposium on empirical software
engineering, Sept. 21-22, Rio de Janeiro, Brazil, 212–221.

10. Greer, D. and Ruhe, G. (2004) Software release planning: an evolutionary and iterative approach, Information and
Software Technology, 46, 243–253.

11. Greer, D., and Ruhe, G. (2003) Quantitative studies in software release planning under risk and resource constraints,
Proceedings of the 2003 International Symposium on Empirical Software Engineering (ISESE’03), September 30-1
October 2003, 262 – 270.

12. Hofmann, H.F., and Lehner, F. (2001) Requirements Engineering as a Success Factor in Software Projects, IEEE
Software, July/August, 58-66.

13. Jung, H.-W. (1998) Optimizing Value and Cost in Requirements Analysis, IEEE Software, 74-78.

14. Karlsson, J., Ryan, K. (1997) A cost-value approach for prioritizing requirements, IEEE Software, 14, 67–74.

15. Karlsson, L., Thelin, T., Regnell, B., Berander, P., and Wohlin, C. (2007) Pair-wise comparisons versus planning game
partitioning--experiments on requirements prioritisation techniques, Empirical Software Engineering. 12, 1, 3-33.

16. Lehtola L, Kauppinen M (2004) Empirical evaluation of two requirements prioritization methods in product
development projects, Proceedings of the European Software Process Improvement Conference, November 10-12,
Trondheim, Norway, 161–170.

17. Lehtola, L., Kauppinen, M., Kujala, S. (2004) Requirements Prioritization Challenges in Practice, Proceedings of 5th
International Conference on Product Focused Software Process Improvement, April 5-8, Kansai Science City, Japan,
497-508.

18. Siegel, S. and N.J. Castellan Jr. (1988) Nonparametric Statistics for the behavioural sciences, (2nd Edition), McGraw
Hill, Toronto.

19. Standish Group (The) (1995) The Chaos Report.

20. Wiegers, K.E. (1999) First things first: prioritising requirements, Software Development, 7, 9, 48–53.

21. Wohlin C, Aurum A. (2005) What is important when deciding to include a software requirement in a project or release?
Proceedings of the International Symposium on Empirical Software Engineering, Nov. 17-18, Noosa Heads, Australia,
237–246.

22. Ziemer, S. and Calori, I.C. (2007) An Experiment with a Release Planning Method for Web Applciation Development.
In: Lecture Notes in Computer Science, Springer, Berlin, Germany, 106-117.

	Association for Information Systems
	AIS Electronic Library (AISeL)
	2008

	A Software Release Planning Methodology for Developers
	Jennifer Jewer
	Kenneth N. McKay
	Recommended Citation

	Microsoft Word - $ASQ4286653_File000003_59032317.doc

