
Work-in-Progress: Introducing Assume-Guarantee Contracts
for Verifying Robotic Applications

1Stefano Spellini, 1,2Michele Lora, 2Sudipta Chattopadhyay, 1Franco Fummi
1Dept. of Computer Science, University of Verona – name.surname@univr.it

2Singapore University of Technology and Design – name_surname@sutd.edu.sg

Abstract—This paper summarizes the first steps toward an automatic
framework, relying on Assume-Guarantee Contracts, for the verification
of robotics applications. Classic HW and SW design and verification
techniques are inadequate for robots due to the involved complexity.
In this paper we advocate that contract-based methodologies allow safe
problem decomposition easing system-level validation.

I. INTRODUCTION

Robotic systems are becoming every day more safety critical as
they exit the research laboratories to enter in the real world [1].
Consequently, reliable design and verification of systems are gaining
importance and interest. Traditionally, robots, as well as other families
of cyber-physical systems, are validated through simulation [2]: a
practice not providing the rigorousness required by safety-critical
applications. Recently, formal methods have been introduced in this
field [3]. However, formal verification is computationally demanding
as it requires to solve exponential problems. This fact is further
worsened by the increasing complexity of the application being
designed. As such, problem decomposition will be an important
feature for any future verification technique that targets robotic
systems.

The Assume-Guarantee (A/G) Contracts [4] theory allows to de-
compose system design both horizontally (among different compo-
nents), and vertically (among different levels of abstraction). An A/G
Contract formally represents a component as two sets of behaviors
defined over its variables: the assumptions and the guarantees [4].
A system can be represented as a composition of components at dif-
ferent levels of abstraction and according to diverse points of views.
A/G Contracts theory captures these aspects of design perfectly by
allowing the definition of the system using multiple contracts, and by
defining horizontal contracts and vertical contracts [5]. Horizontal
contracts are supported by the composition operation defined by the
Contract’s algebra, that composes two (or more) contracts into one.
Vertical contracts are supported by multiple operations. Conjunction
composes multiple contracts representing multiple viewpoints of the
same component. Refinement and Abstraction capture the different
abstraction-levels of a component. Furthermore, the theory defines
Compatibility and Consistency of a Contracts. A contract is com-
patible if an environment implementing the assumptions can exist.
Meanwhile, a contract is said to be consistent if an implementation
that respects its guarantees is realizable.

In this work, we introduce our contract-based approach to de-
compose the verification problem into multiple sub-problems that a
combination of formal and simulation-based techniques can solve.
We intend to build an automatic framework on top of the CHASE
(Contract-based Heterogeneous Analysis and Systems Exploration)
library [6], which provides an API for the representation and manip-
ulation of systems represented by using Assume-Guarantee Contract.

II. OVERVIEW OF THE APPROACH

Figure 1 depicts the structure of our approach. Initially, the robotic
system is represented by a set of requirements and the components

This work is partially supported by National Robotics Programme (NRP)
– Robotics Enabling Capabilities and Technologies (RECT), Grant no. 172
25 00022, and by the MIUR “Dipartimenti di Eccellenza” 2018-2022 grant.

Verification results

Environment
(implementation)

C
H

A
SE

A/G Contracts
Formalization

Formalization

System
Requirements

Formalization

System
Components

Specifications

System
(Abstract Contract)

Components
(Refined Contracts)

Problem

D
ecom

position

Components
(implementation)

Synthesis

System Simulator

Synthesis

Synthesis

Simulation

Refinement

Model Checking

Figure 1: Overview of the proposed approach.

composing the system. The system components and requirements are
formalized as a set of A/G contracts. In principle, the requirements
are used to generate the guarantees of the system. Meanwhile, the
components specifications are mostly used to create the assumptions
of the contract-based description. Intuitively, the components of the
system act as an environment for the requirements. As such, the
system can implement the requirements if it is consistent.

Consistency checking of a contract is an exponential problem
in general [7]. Thus, we exploit horizontal and vertical contracts
to decompose the problem. Abstract instances of the problem are
verified by using formal verification, such as model checking. Then,
the sub-parts of the abstract specification are refined and synthesized
to create their executable models for simulation. Finally, simulation
of the entire system is created by aggregating the implementations
of the sub-components into a single simulation.

We rely on already well-known techniques for formal verification,
such as model checking [8] and reactive synthesis [7]. However,
contract-based formalization of components and requirements, as well
as contract-based simulation are still unexplored fields.

a) Specification of robotic applications: CHASE provides a
flexible mechanism that allows creating front-end tools for different
specification languages and input representations, and to formalize
as A/G contracts [6]. We are exploiting such features of CHASE to
define a Domain Specific Language (DSL) for robotic applications.
The DSL must be powerful enough to capture the requirements, as
well as to describe the features of the system. It must support different
kind spatial specifications (occupancy maps, graphs, etc. [9]), as
well as different timing models (real-time, discrete time, [10]).
Furthermore, it must allow specifying robotic requirements, such as
task planning, path planning and motion planning objectives. Finally,
it must also allow specifying the environment of the system.

b) Simulation-based verification from Contracts: The assump-
tions of a contract identify the “legal” environments for the system
being described. As such, they can be considered as the model
of the environment for the system to implement. Furthermore, if
the contract representing the system is compatible then there exists
an implementation of the environment. The simulation technique
we are developing exploits this feature. Each sub-component of
the system is synthesized by using their refined contracts. Then,
the overall contract representing the system is used to generate
implementations of the environments automatically. The set of gen-

978-1-5386-5562-7/18/$31.00 ©2018 IEEE

Target
1

Obstacle

Target
2

Robot
1

Robot
2

Robot
n

Requirements:
[]<>(Robot1.position = Target1)
[]<>(Robot2.position = Target2)

Components specification:

Figure 2: Example of experimental scenario instance.

erated implementations acts as testbenches for the ensemble of sub-
components implementations. As such, each agent (i.e., environment
and components) involved in the simulation is generated singularly
using formal methods. System-level validation, however, is performed
by using simulation. Moreover, the approach allows importing models
of previously designed components by exploiting state-of-the-art code
manipulation techniques for heterogeneous systems [11].

III. PRELIMINARY RESULTS

To evaluate the feasibility of combining assume-guarantee reason-
ing and simulation, we performed a preliminary experiment. A set
of robots moves in a 2-dimensional space, each of the robots must
eventually reach a target position. We automatically generated the
contract-based specification for scenarios with different dimensions
in terms of the number of robots and size of the 2-dimensional space.
Each robot can move in four directions and has sensors identifying
obstacles in each of the four directions. Figure 2 shows the case of
two robots moving in a 3x3 grid.

For each instance of the problem, three contract-based specifica-
tions have been created:
• CS : a single contract representing the entire problem. The rep-

resentation of the 2-dimensional space is discretized and repre-
sented as an occupancy grid [9]. Each robot is represented by
four boolean variables representing the four directional sensors,
an integer variable for the position, and an integer variable for
the robot command. For each robot and each tile of the grid, an
assumption assertion specifies the value of the robot sensors.

• CR: the contract representing a single instance of the robot,
assuming the environment. It has four sensors input (one for
each direction it can sense), its current position, and its target
position. Its assumptions describe the complete information about
the environment. For instance, the assertion describing the robot
number 2, when its position is the one depicted in Figure 2:

�(position = 2→ (¬up ∧ down ∧ ¬left ∧ right))

Its guarantees specify how the next command has to be computed.
For instance, when the robot number is in the top-left corner:

�(((position = 2) ∧ ¬up ∧ down ∧ ¬left ∧ right) →
X(command = go_down ∨ command = go_right))

• CE : the contract representing the environment (the 2-dimensional
space) and assuming the robots. Its inputs are the commands
generated by the robots, while its outputs are the robot positions
as well as the sensor values of each robot. In this way, the
contract represents “the physics” of the system. For each robot,
for each position and each command, an assertion is in charge
of computing the next position of the robot. For instance, the
assertion moving down robot 2:

�(robot2.position = 2 ∨ robot2.command = go_down →
X(robot2.position = 1))

Furthermore, CE also produces as output the target of each robot.
We started by specifying the entire problem in the CS . Contracts CR

and CE have been obtained by decomposing CS . The composition

Table I: Model checking versus simulation.

Grid Size # Robots # Safety
Invariants

Verification Time (s)
Reactive Synthesis Simulation-based

3x3 1 151 0.02 0.03
3x3 2 304 0.27 0.04
5x5 3 1583 2090.16 3.21
5x5 5 2855 Time Out (6 hours) 5.50

of CE with a number of instances of CR equal to the number of the
robots in the scenario is equivalent to CS .

The CR has been refined by removing the assumptions about
eventual obstacles. Then, its implementation has been synthesized.
as well as the environment contract. We carried out a consistency
checking of CS representing the entire system by using reactive
synthesis tools [12]. Finally, we performed the same consistency
checking through simulation by using the synthesized implementa-
tions of contracts CR and CE . Table I shows the results for different
sizes of the problem, it reports the number of safety invariants in each
specification and compares the time required using formal methods
and our simulation environment. Indeed the specifications have been
thought to be easily decomposed, and well suited for simulation:
thus, justifying the outstanding performance achieved. Still, these
results convince us to continue pursuing the road introduced in this
preliminary paper.

IV. CONCLUSIONS AND FUTURE WORK

In this paper we introduced our plan to exploit assume-guarantee
reasoning and simulation to efficiently verify robotic applications.
In the near future we target the definition of efficient and intuitive
specification methods for robotics applications. Furthermore, we aim
at proposing a complete end-to-end approach decreasing the time
required to verify robotic systems. The approach combines formal
methods and simulation techniques tied by the A/G contracts theory.

REFERENCES

[1] B. Kehoe, S. Patil, P. Abbeel, and K. Goldberg, “A Survey of Research
on Cloud Robotics and Automation,” IEEE Transactions on Automation
science and Engineering, vol. 12, no. 2, pp. 398–409, 2015.

[2] D. Bresolin, L. Di Guglielmo, L. Geretti, R. Muradore, P. Fiorini, and
T. Villa, “Open problems in verification and refinement of autonomous
robotic systems,” in Proc. of Euromicro DSD. IEEE, 2012, pp. 469–476.

[3] H. Kress-Gazit, “Robot challenges: Toward development of verification
and synthesis techniques,” IEEE Robotics & Automation Magazine,
vol. 18, no. 3, pp. 22–23, 2011.

[4] A. Benveniste et al., “Contracts for system design,” Foundations and
Trends R© in Electronic Design Automation, vol. 12, no. 2-3, pp. 124–
400, 2018.

[5] P. Nuzzo, A. L. Sangiovanni-Vincentelli, D. Bresolin, L. Geretti, and
T. Villa, “A platform-based design methodology with contracts and
related tools for the design of cyber-physical systems,” Proceedings of
the IEEE, vol. 103, no. 11, pp. 2104–2132, 2015.

[6] P. Nuzzo, M. Lora, Y. A. Feldman, and A. Sangiovanni-Vincentelli,
“CHASE: Contract-based requirement engineering for cyber-physical
system design,” in Proc. of IEEE/ACM DATE, 2018, pp. 839–844.

[7] R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Sa’ar, “Synthe-
sis of reactive (1) designs,” Journal of Computer and System Sciences,
vol. 78, no. 3, pp. 911–938, 2012.

[8] A. Cimatti, M. Dorigatti, and S. Tonetta, “OCRA: A tool for checking
the refinement of temporal contracts,” in Proc. of the 28th IEEE/ACM
ASE. IEEE Press, 2013, pp. 702–705.

[9] I. Gavran, R. Majumdar, and I. Saha, “Antlab: A Multi-Robot Task
Server,” ACM Transactions on Embedded Computing Systems, vol. 16,
no. 5s, p. 190, 2017.

[10] A. Desai, T. Dreossi, and S. A. Seshia, “Combining model checking and
runtime verification for safe robotics,” in International Conference on
Runtime Verification. Springer, 2017, pp. 172–189.

[11] M. Lora, S. Vinco, and F. Fummi, “A Unifying Flow to Ease Smart
Systems Integration,” in Proc. of IEEE HLDVT 2016. IEEE, pp. 113–
120.

[12] I. Filippidis, S. Dathathri, S. C. Livingston, N. Ozay, and R. M. Murray,
“Control Design for Hybrid Systems with TuLiP: The Temporal Logic
Planning Toolbox,” in Proc. of IEEE CCA 2016, pp. 1030–1041.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move down by 10.80 points
 Normalise (advanced option): 'original'

 32

 D:20170126085122
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Down
 10.8000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 2
 1
 2

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Up
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 2
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 2
 1
 2

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 2
 1
 2

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 2
 1
 2

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 2
 1
 2

 1

 HistoryList_V1
 qi2base

