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Abstract
Termination is an important but undecidable program prop-
erty, which has led to a large body of work on static methods
for conservatively predicting or enforcing termination. One
such method is the size-change termination approach of Lee,
Jones, and Ben-Amram, which operates in two phases: (1)
abstract programs into “size-change graphs,” and (2) check
these graphs for the size-change property: the existence of
paths that lead to infinite decreasing sequences.

We transpose these two phases with an operational se-
mantics that accounts for the run-time enforcement of the
size-change property, postponing (or entirely avoiding) pro-
gram abstraction.This choice has two key consequences: (1)
size-change termination can be checked at run-time and (2)
termination can be rephrased as a safety property analyzed
using existing methods for systematic abstraction.

We formulate run-time size-change checks as contracts
in the style of Findler and Felleisen. The result compliments
existing contracts that enforce partial correctness specifica-
tions to obtain contracts for total correctness. Our approach
combines the robustness of the size-change principle for ter-
mination with the precise information available at run-time.
It has tunable overhead and can check for nontermination
without the conservativeness necessary in static checking.
To obtain a sound and computable termination analysis, we
apply existing abstract interpretation techniques directly to
the operational semantics, avoiding the need for custom ab-
stractions for termination.The resulting analyzer is compet-
itive with with existing, purpose-built analyzers.

CCS Concepts • Software and its engineering → For-
mal software verification; Functional languages.
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1 Size-change Contracts
A fool’s errand Imagine for a moment there existed a run-
time mechanism for checking whether a program, in its cur-
rent state, will run forever or eventually terminate. Such
a check would be eminently useful. Any run-time mecha-
nism for enforcing partial correctness could easily be made
to enforce total correctness by use of this check. Moreover,
static verification of termination would boil down to prov-
ing these run-time checks always succeed, much like how
type systems prove run-time tag checks always succeed.

Of course, whether a program eventually terminates is
one of the most useful, yet fundamentally and famously un-
knowable, properties of programs [16, 48]. Moreover, due to
its nature as a liveness property—it cannot be violated in a
finite execution—it cannot be directly checked at run-time.

An indirect tack Despite this situation, an indirect partial
solution is possible by instead considering a safety property
that implies the liveness property. This indirect approach
underlies successful static termination analysis tools such as
Terminator [14]. Given such a safety property, enforcing it
at run-time would ensure a nonterminating program would
eventually “go wrong” by violating the safety property, at
which point it could be stopped.The one, unavoidable, wrin-
kle is that there will be some programs that run astray of the
safety property, despite eventually terminating. In this ap-
proach, static verification of termination could, as suggested
before, be phrased and designed just as any other safety ver-
ification problem by proving the impossibility of a run-time
check failure. This approach has the added advantage that
any program can be dynamically monitored regardless of
whether it can be statically verified.
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A universal safety property for termination To design
a run-time termination checker, the critical question is: what
is a good safety property to enforce that implies termina-
tion? Tools such as Terminator, AProVE, and many others
discover a program-specific termination argument, either
through static analysis or CEGAR-style refinement. While
such approaches have proved quite successful in learning
complex termination arguments, these approaches under-
mine the ability to dynamically monitor termination.

To remedy the situation, we propose using a universal
property. A promising candidate is the so-called size-change
principle of Lee et al. [29]. The principle has proved useful
in static termination checking and has a well understood
theory. Unfortunately, the original work on size-change ter-
mination, which was developed for static verification, de-
fines the size-change principle as a property of a program
abstraction: a set of so-called size-change graphs (roughly a
program call graph annotated with information about non-
ascending data flows between function parameters).

This paper We propose a run-time check inspired by the
size-change principle for program termination that dynami-
cally builds and checks precise size-change graphs. This dy-
namic mechanism is useful in its own right, but also can
be used as a basis for designing static termination check-
ers. Such static checkers can benefit from advances in static
analysis, particularly in abstract interpretation, since termi-
nation checks are integrated into the language specification
and do not require custom abstractions or algorithms.

We formalize a semantics for a higher-order functional
language that enforces the size-change principle, thereby
ensuring all programs terminate (§3). Moreover, we intro-
duce a behavioral software contract, in the style of Findler
and Felleisen [17], that enables the selective enforcement
of size-change termination. Such contracts, when combined
with traditional pre- and post-condition contracts, form a
notion of contracts for total-correctness.

We also develop a static termination checker (§4) by ap-
plying the static contract verification technique of Nguyễn
et al. [34] to the size-change semantics. The resulting tool
has no termination analysis specific abstractions, it simply
treats the size-change principle check as it would any run-
time check, and yet an empirical evaluation (§5) shows that
it is competitive with several state-of-the-art purpose-built
termination analyzers: Liquid Haskell, Isabelle, and ACL2.

Contributions This paper contributes:

1. a semantic account of the size-change principle,
2. a proved-correct contract for size-change-based ter-

mination of functions,
3. an implementation technique that preserves proper

tail-calls and enables tunable run-time overhead, and
4. a static termination checker obtained by generic ab-

stract interpretation techniques.

2 Examples and Intuitions
This section develops intuitions for how dynamic checking
of size-change termination (SCT) works via worked exam-
ples. We begin by sketching how SCT works in the original
static setting of Lee et al. [29].

2.1 The Factorial of Termination Papers
Consider the Ackermann function, the standard-bearer of
examples for papers on termination due its simplicity as a
total—but not primitive recursive—function, presented here
in Scheme notation:
1 (define (ack m n)
2 (cond [(= 0 m) (+ 1 n)]
3 [(= 0 n) (ack (- m 1) 1)]
4 [else (ack (- m 1)
5 (ack m (- n 1)))]))

For themoment, assume the function is only applied to natu-
ral numbers. Under that assumption, ack always terminates
and the SCT method suffices to prove it.

Safe size-change graphs: Theapproach starts by using pro-
gram analysis or abstract interpretation to enumerate the
ways in which a call to ack could result in a subsequent call
to ack before returning. We can see there are three poten-
tial recursive calls within the function definition on lines 3,
4, and 5. For each of these calls, describe the pairwise rela-
tions between the arguments of the call and recursive call in
terms of their size. (The original SCT approach assumes the
language has only well-founded data types with a known
partial order.)

So for example, consider the possible call:

(ack m n) { (ack (- m 1) 1).

There are two parameters, so we consider four possible size-
change relations between the inputs and recursive call. It is
clear that the m parameter is strictly smaller in the recursive
call compared to the input of the original call. This change
is described with a “size-change graph,” {(m →

m)}, which is
a binary relation saying that whatever value is given for m
in the original call will become a strictly smaller argument
m in the recursive call. But there is no size-change relation
between the original input n and recursive parameter m or n,
nor between the original m and recursive n, which we know
is 1: each could become larger, smaller, or stay the same.

Moving on to the call in line 5:

(ack m n) { (ack m (- n 1)),

we can see that m is unchanged and n is strictly smaller be-
tween calls (but there’s no relation between m and n), so we
describe this call with the graph: {(m → =

m), (n →

n)}, which
says m is non-ascending and n is descending.

Finally, consider the call in line 4:

(ack m n) { (ack (- m 1) … ),
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where the elided code is the nested call to ack of line 5. Here
it is clear that m strictly descends, but unclear what happens
with n. So we can describe this call with the size-change
graph as used for the call in line 3.

At this point, we now have a sound collection of size-
change graphs for all possible successive calls to ack. They
are sound since they properly account for all possible strict
descent or non-ascending transitions that occur in recursive
calls at run-time. As a side note: it is always safe to omit
graph arcs (potentially losing sufficient evidence to prove
termination), but all arcs included in a graph must soundly
over-approximate all possible run-time behaviors.

Size-change principle: The next task is to check this set
of graphs for the size-change termination principle (SCP) to
see if every infinite computation would give rise to an in-
finitely decreasing value sequence, according to the size-
change graphs. To do this, we consider closing the set of
graphs under sequential composition of size-change graphs.
The sequential composition of two graphs models two suc-
cessive calls to construct the size-change from the first to
last call, and is defined, informally, as follows: there is a
strict descending arc between two parameters, if there exists
a path between the parameters containing a strict descent;
there is a is a non-ascending arc if there exists a path con-
taining only non-ascent arcs. Otherwise, there is no path.

Coincidentally, the set of graphs for ack is already closed
under sequential composition, but to see an example, here’s
the sequential composition of calling ack on line 3 (or 4)
followed by ack on line 5:{(m →

m)}; {(m → =
m), (n →

n)} = {(m →
m)},

which is equivalent, in terms of size-change, as calling ack
on line 3 (or 4).

Once closed, we check each size-change graph to see if it
1. is idempotent, i.e. 𝑔; 𝑔 = 𝑔, and
2. lacks a self descending arc, i.e. (𝑥 → 𝑥) for some pa-

rameter 𝑥.
If such a graph exists, it represents a potential sequence of
calls that can be iterated infinitely often with no descent
and thus it violates the size-change principle. If it lacks such
a graph, the program terminates. In the case of ack both
graphs have self-descending arcs and therefore terminates.

Dynamic size-change graphs: Having established the ba-
sic notions of the static SCT approach, we now turn to a
dynamic approach to monitoring size-change termination.

The main idea is that rather than rely upon a program
analysis to enumerate the various ways a function may call
itself, we simply run the program and observe such calls.
Each time a function invokes itself, a size-change graph is
dynamically generated. Throughout a computation, the call
sequence of size-change graphs is accumulated. Before en-
tering a function call, the current call sequence is checked

(ack 2 0)

{(m

→
m),(m

→
n)}

(ack 1 1)

{(m

→=m),(m

→

n),(n

→=m),(n

→
n)}

(ack 1 0)

{(m

→
m),(m

→=n),(n

→=m)}

(ack 0 1)

{(m

→
m),(n

→

m)}

(ack 0 2)

Figure 1. Calls and size changes for (ack 2 0)

for the size-change principle. If it is violated, the program is
stopped and an error signalled; otherwise the call proceeds.

A program violating the size-change principle eventually
accumulates a call sequence witnessing the violation; a pro-
gram maintaining the principle eventually terminates.

In a similar vein, we need not rely on static analysis to
infer the size-change relation between arguments. At run-
time, there are concrete values available at both the call
and recursive call site. Inferring the size-change graph boils
down to checking a partial order pairwise on the arguments.
This is both easy to do and potentially much more precise
than the static approach. For example, there may be size-
change relations that hold on the particular path of execu-
tion under scrunity, which do not hold in general.

To make things concrete, reconsider ack. When switch-
ing perspectives to the dynamic setting, we are no longer
concerned with proving termination for all possible execu-
tions of the function, but ratherwith a particular application.
Consider (ack 2 0). The complete tree of call sequences
and generated size-change graphs is shown in Figure 1, but
let us step through its construction. In calling (ack 2 0),
control reaches the recursive call on line 3, so we have the
call sequence:

(ack 2 0) { (ack 1 1),

fromwhich we can read off the size-change graph. Just as in
the static case, we have (m →

m), but additionally, we know
that (m →

n). This fact does not hold in all runs of ack, but it
holds in this one.

Aside: it is worth noting that this additional program fact
is not necessary in this particular example. After all, we
have statically proven ack terminates in all cases using less
information. But for the purposes of illustration, we can see
that more information is available at run-time; and in princi-
ple, it is possible to safely execute size-change terminating
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programs that are not statically verifiable, just as by anal-
ogy it is possible to dynamically monitor type safety of pro-
grams that do not trigger run-time type errors, yet are stat-
ically ill-typed.

Returning to the example: having generated the graph
for this call, we then check the SCT principle for the active
sequence of calls; in this case there is just the one graph:{(m →

m), (m →

n)}, which satisfies the size-change property,
so execution proceeds.

Now (ack 1 1) reaches the else branch and invokes a
recursive call to (ack 1 0) on line 5.This call generates the
graph {(m → =

m), (m →

n), (n → =
m), (n → =

n)}. We now check
the size-change graphs of the sequence leading to this point,
i.e., the size-change graphs of:

(ack 2 0) { (ack 1 1) { (ack 1 0),
and determine if the size-change property holds, which it
does. Now (ack 1 0) reaches (ack 0 1)with graph {(m →
n), (n →

m), (m → =
m), (n → =

n)}, and the call sequence still sat-
isfies SCP. At this point (ack 0 1) terminates with 2. This
brings control back to the evaluation of (ack 1 1), which
is now ready to proceed to second call to ack on line 4 with
the arguments (ack 0 1). At this point, we have the call
sequence:

(ack 2 0) { (ack 1 1) { (ack 0 2).
Note the calls to (ack 1 0) and (ack 0 1) are no longer
active since they have returned. Again we check the SCP of
the size-change graph sequence for active calls, which holds
and the program terminates.

A sometimes-buggy Ackermann: We have seen how run-
time SCT monitoring works for programs that maintain the
size-change principle, but what about buggy programs that
do not? Consider the ack example, but change the call on
line 4 from (ack (- m 1) … ) to (ack m … ). Computing
(ack 2 0) would proceed as before until reaching the call
on line 5, corresponding to the right branch of the tree in
Figure 1, i.e. representing the call sequence:

(ack 2 0) { (ack 1 1) { (ack 1 2),
whose last size-change graph is now {(m → =

m), (n → =
m)}.

But this graph is idempotent and contains no self-descents,
so at the point of this call a size-change violation is signaled.

2.2 Keeping Closures in Order
The original formulation of SCT was for a first-order func-
tional language with a well-founded partial order on values.
Thiswas done largely to simplify the first phase of static SCT
verification where call-graphs and size-change relations are
generated. In higher-order languages, however, computing
call-graphs is itself a significant, extensively studied prob-
lem [32]. In the dynamic formulation, higher-order func-
tions do not pose a serious challenge since calls are observed
as they occur.

The one remaining issue concerns the choice of partial or-
der for functions. We make a simple choice and consider all
closures to be incomparable. Consequently, no termination
proof goes through by an argument about closure size. This
is not to say that all programs that use higher-order func-
tions will be rejected by the size-change monitor, just that
they must have some descent on base values between calls
to the same function. Our empirical evaluation (§5) confirms
this is a reasonable choice. To illustrate, let us consider a pro-
gram that recursively accumulates a closure and eventually
applies it in the base case of the function.

Consider a len function for lists, written in CPS:
1 (define (len l) (loop l (𝜆 (x) x)))
2 (define (loop l k)
3 (cond [(empty? l) (k 0)]
4 [(cons? l)
5 (loop (rest l) (𝜆 (n) (k (+ 1 n))))]))

Static analysis of size-change termination relies on an un-
derlying control-flowgraph,whichmust eventually conflate
all closures generated on line 5, regardless of call-sensitivity.
This results in a spurious loop where each closure bound to
kmay appear to call one with a larger argument, failing the
size-change principle.

Dynamic checking of size-change termination does not
have this problem, because all the closures are exact and dis-
tinct. Even though the number of closures is arbitrary, they
are finite up to the previous loop descending on l, which
has been proven to terminate. The call sequence for (len
'(2 1)), which is a sequence of tail-calls:

(len '(2 1)) { (loop '(2 1) (𝜆 (x) x)) {

(loop '(1) 1) { (loop '() 2) {
( 2 0) { ( 1 1) { ((𝜆 (x) x) 2) { 2

The recursive calls of loop to itself are easily proven safe
through descent on the list. The successive calls to continu-
ations are arbitrarily many but finite. Here 1 and 2 stand
for different closures of the (𝜆 (n) (k (+ 1 n))) term.
The computation proceeds to an answer since SCP is only
checked between calls to the same closure, directly or indi-
rectly.

It is possible to define a partial order on closures, and this
may be a worthwhile addition to our approach. For example,
Jones and Bohr [25] extend SCT to the untyped 𝜆-calculus
and use a partial order based on closure depth to order func-
tions. In theory, this could be used to dynamically order
closures in our approach, too, however pragmatically, it re-
quires run-time facilities for “opening” closures [43], which
are not typically available.

2.3 Termination and Blame
It is useful to assert size-change termination of particular
functions, without necessarily asserting termination of the
whole program. For this reason, we introduce a contract,
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terminating/c, in the style of Findler and Felleisen [17].
One key component of contract semantics is blame to ex-
plain the party at fault in contract errors. While our formal
model does not represent blame, our implementation does.
The addition of blame is at once simple and powerful in the
setting of termination contracts. Each terminating/c use
marks a blame party, and if the function so wrapped fails
to terminate on some call, that location in the program is
blamed. No sophisticated run-time machinery is required.

The addition of blame enables a virtuous cycle in program
development. If a terminating function f calls g, then any
failure to terminate on the part of g will be blamed on f. To
protect themselves from being blamed, the author of f can
in turn impose the same contract on g, leading to richer spec-
ifications and precise errors pinpointing the faulty compo-
nent. Finally, the provision of size-change termination con-
tracts enables a gradual-typing-style integration of total and
partial program components.

2.4 The Power of Dynamic Enforcement
Checking termination of a interpreter for a language that
is Turing-complete is challenging—after all, the interpreter
does not terminate on all programs. Nevertheless, dynamic
size-change monitoring allows the interpretation of many
interesting programs to finish. In Figure 2, we present a 𝜆-
calculus implementation that first compiles the term to a
procedure and then applies this procedure to an environ-
ment. The compilation itself terminates by structural recur-
sion, which is simple to check, but the compilation result is a
procedure whose termination is not obvious. In fact, in this
example, the first test program c1 terminates when run, but
c2 loops infinitely. Dynamic size-change monitoring flexi-
bly allows the first one to finish, and quickly catches the
divergence in the second one. The ability to check for termi-
nation of specialized programs highlights the advantages of
dynamic termination checking.

Execution of (c1 (hash)) terminates because no func-
tion ever calls itself with a non-decreasing argument. In con-
trast, during the execution of (c2 (hash)), the compilation
result of (𝜆 (y) (y y)) calls itself (indirectly) with a non-
decreasing argument (in this case, identical), hence caught
by the monitoring. As shown in the evaluation section (§5),
our implementation is able to confirm the termination of a
Scheme interpreter executing merge-sort.

3 Dynamic SCT Monitoring
This section introduces language 𝜆SCT, which is 𝜆-calculus,
extended with base values and primitive operations, and
with a modified semantics ensuring that all programs ter-
minate. Figure 3 shows 𝜆SCT’s syntax and semantics.

1 (define comp
2 (terminating/c
3 (𝜆 (e)
4 (match e
5 [`(𝜆 (,x) ,e)
6 (let ([c (comp e)])
7 (𝜆 (𝜌) (𝜆 (z) (c (hash-set 𝜌 x z)))))]
8 [`(,e1 ,e2)
9 (let ([c1 (comp e1)] [c2 (comp e2)])

10 (𝜆 (𝜌) ((c1 𝜌) (c2 𝜌))))]
11 [(? symbol? x) (𝜆 (𝜌) (hash-ref 𝜌 x))]))))
12 (define c1
13 (terminating/c ; Okay
14 (comp '((𝜆 (x) (x x)) (𝜆 (y) y)))))
15 (define c2
16 (terminating/c ; Okay
17 (comp '((𝜆 (x) (x x)) (𝜆 (y) (y y))))))
18 (c1 (hash)) ; Okay
19 (c2 (hash)) ; Error

Figure 2. A checked 𝜆-calculus implementation

3.1 A Terminating Semantics
Thedomain of values (𝑣) in 𝜆SCT includes primitives (o), inte-
gers (𝑛), pairs (𝑣1, 𝑣2), and closures (( ⃗⃗⃗𝑥, 𝑒, 𝜌)). No primitive
in 𝜆SCT is allowed to cause divergence.

We present the semantics of 𝜆SCT in Figure 3. The seman-
tics is defined by relation 𝜌, 𝑚 ∪ {⊥} ⊢ 𝑒 ⬇ 𝛼, which ex-
tends the standard semantics by accumulating a size-change
table 𝑚. The size-change table maps each function (𝑣) to the
most recent arguments it was applied to, in the current dy-
namic extent, as well as a sequence of size-change graphs
( ⃗𝑔) recording ways in which arguments of (𝑣) descend. A
size-change graph (𝑔) is a set of arcs of the form (

→

) or
(

→ = ), indicating that the -th argument always strictly
descends (

→

) or never ascends (

→ =) to the -th argument.
An evaluation answer (𝛼) can be a value, run-time er-

ror (errorRT), or size-change error (errorSC). A run-time er-
ror is one resulting from misuse of language constructs as
standard in a programming language (e.g. applying a prim-
itive to arguments not in its intended domain, applying a
non-function, or a function of the wrong arity, etc.). A size-
change error is one raised by size-change monitoring upon
detecting a size-change violation. We omit rules that intro-
duce run-time errors and error propagation, as they are en-
tirely standard and not the focus of this paper.

Rule [SC-App-Clo] shows application of a closure. In 𝜆SCT,
all applications are enforced to have the size-change prop-
erty. Before executing the function’s body as in the stan-
dard semantics, we update the size-change table and guard
against a violation to the size-change property. Helper func-
tion upd updates the size-change table with the function’s
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[Expressions] 𝑒 ∶∶= o | 𝑏 | (𝜆 ( ⃗⃗ ⃗⃗𝑥) 𝑒) | 𝑥| (𝑒 ⃗𝑒) | (if0 𝑒 𝑒 𝑒)
[Value Literals] 𝑏 ∶∶= 0 | − 1 | 1 | …

[Primitives] o ∶∶= + | cons | car | cdr | …
[Values] 𝑣 ∶∶= o | 𝑏 | (𝑣, 𝑣) | (⃗⃗ ⃗⃗𝑥, 𝑒, 𝜌)

[Standard Answers] 𝑎 ∶∶= 𝑣 | errorRT
[Answers] 𝛼 ∶∶= 𝑎 | errorSC

[Environments] 𝜌 = 𝑥 → 𝑣
[Size-change Table] 𝑚 ∈ 𝑣 ⇀ ⃗𝑣 × ⃗𝑔
[Size-change Graph] 𝑔 ∈ 𝒫(ℕ × 𝑟 × ℕ)

[Change] 𝑟 ∶∶= → | → =
SC-E𝜌, ⊥ ⊢ 𝑒 ⬇ errorSC

SC-P i𝜌, 𝑚 ⊢ o ⬇ o

SC-Ba𝜌, 𝑚 ⊢ 𝑏 ⬇ 𝑏 SC-La𝜌, 𝑚 ⊢ (𝜆 ( ⃗⃗ ⃗⃗𝑥) 𝑒) ⬇ (⃗⃗ ⃗⃗𝑥, 𝑒, 𝜌)
SC-Va𝜌, 𝑚 ⊢ 𝑥 ⬇ 𝜌(𝑥) SC-I -T𝜌, 𝑚 ⊢ 𝑒 ⬇ 0 𝜌, 𝑚 ⊢ 𝑒1 ⬇ 𝛼𝜌, 𝑚 ⊢ (if0 𝑒 𝑒1 𝑒2) ⬇ 𝛼

SC-I -F𝜌, 𝑚 ⊢ 𝑒 ⬇ 𝑣 where 𝑣≠0 𝜌, 𝑚 ⊢ 𝑒2 ⬇ 𝛼𝜌, 𝑚 ⊢ (if0 𝑒 𝑒1 𝑒2) ⬇ 𝛼
SC-A -C𝜌, 𝑚 ⊢ 𝑒 ⬇ (⃗⃗ ⃗⃗𝑥, 𝑒′, 𝜌′) 𝜌, 𝑚 ⊢ ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒𝑥 ⬇ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑣𝑥𝜌′[ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑥 ↦ 𝑣𝑥], upd(𝑚, (⃗⃗ ⃗⃗𝑥, 𝑒′, 𝜌′), ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑣𝑥) ⊢ 𝑒′ ⬇ 𝛼𝜌, 𝑚 ⊢ (𝑒 ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒𝑥) ⬇ 𝛼
Figure 3. Syntax and semantics of 𝜆SCT.

latest arguments and size-change graph, potentially return-
ing ⊥ if there is a size-change violation. If upd does not re-
turn a table, the evaluation aborts with an error as in rule
[SC-Err].

3.2 Updating and Monitoring Size-change Graphs
Figure 4 lists helper functions that update and monitor SCT.

Function upd takes the size-change table (𝑚), function (𝑣),
and its latest arguments ( ⃗𝑣𝑛). It computes a new size-change
graph (𝑔𝑛) for the transitions from the previous arguments
( ⃗𝑣𝑛−1) to these new arguments, ensures that the new graph
sequence (𝑔𝑛 ∷ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑔𝑛−1) does not violate the size-change prop-
erty, and then updates the graph in 𝑚. If function 𝑣 has not
been applied before and there is no entry in𝑚, a trivial entry

upd ∶ 𝑚 × 𝑣 × ⃗𝑣 → 𝑚 ∪ {⊥}
upd(𝑚,𝑣, ⃗𝑣𝑛) = 𝑚[𝑣 ↦ ( ⃗𝑣𝑛, [])], if 𝑣 ∉ 𝑚
upd(𝑚,𝑣, ⃗𝑣𝑛) = ⎧{⎨{⎩𝑚[𝑣 ↦ ( ⃗𝑣𝑛, 𝑔𝑛 ∷ ⃗𝑔𝑛−1)]

if prog?(𝑔𝑛 ∷ ⃗𝑔𝑛−1)⊥ otherwise
where ( ⃗𝑣𝑛−1, ⃗𝑔𝑛−1) ≡ 𝑚(𝑣)

and 𝑔𝑛 = graph( ⃗𝑣𝑛−1, ⃗𝑣𝑛)
graph ∶ ⃗𝑣 × ⃗𝑣 → 𝑔

graph( ⃗𝑣, ⃗𝑣′) = {( → ) | 𝑣𝑖 ∈ ⃗𝑣, 𝑣𝑗 ∈ ⃗𝑣′, 𝑣𝑗 ≺𝑣𝑖}∪ {( → = ) | 𝑣𝑖 ∈ ⃗𝑣, 𝑣𝑗 ∈ ⃗𝑣′, 𝑣𝑗 =𝑣𝑖}(; ) ∶ 𝑔 × 𝑔 → 𝑔𝑔0 ; 𝑔1 = {( → ) | ( → )∈𝑔0, ( 𝑟 )∈𝑔1}∪ {( → ) | ( 𝑟 )∈𝑔0, ( → )∈𝑔1)}∪ {( → = ) | ( → = )∈𝑔0, ( → = )∈𝑔1,∄ .( → )∈𝑔0 ∧ ( 𝑟 )∈𝑔1,∄ .( 𝑟 )∈𝑔0 ∧ ( → )∈𝑔1}
prog? ∶ ⃗𝑔 → 𝔹

prog?(𝑔𝑛…𝑔1) = ⋀1≤𝑖≤𝑗≤𝑛 desc?(𝑔𝑖; … ; 𝑔𝑗)
desc? ∶ 𝑔 → 𝔹

desc?(𝑔) = (𝑔 = 𝑔; 𝑔) ⟹ ∃ .( → )∈𝑔
Figure 4. Updating and monitoring size-change

with the current argument list as well as the empty graph
sequence is stored.

Function graph computes a size-change graph from two
value lists. For each value 𝑣𝑗 at index in the latter list that
is observed to be strictly smaller than some value 𝑣𝑖 at index
in the former list, an arc ( → ) is included in the graph.

When the values are equal, we include ( → = ) instead.
The composition (;) of two size-change graphs (𝑔0 and 𝑔1)

includes an arc ( → ) if there is an arc ( 𝑟 ) in 𝑔0 and( 𝑟 ) in 𝑔1, with at least one arc being a strict descent. If
propagates to only through non-ascendancy, the weaker
arc ( → = ) is included.

Finally, predicate prog? checks for the lack of violation
to the size-change termination principle: a graph sequence𝑔𝑛 … 𝑔1 violates the size-change principle if there exists a
sub-sequence 𝑔𝑖; … ; 𝑔𝑗 (where 1 ≤ ≤ ≤ 𝑛) that is both
idempotent and lacking of an strict descending arc of a pa-
rameter to itself.

3.3 Well-founded Partial Order
Figure 5 shows an example of a well-founded partial order
(⪯) on values in 𝜆SCT. It is defined on integers by compar-
ing absolute values, and a field of a data-structure is con-
sidered smaller than any data-structures that contain it (i.e.,
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Size-Change Termination as a Contract PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA≺ , ⪯ ⊆ 𝑣 × 𝑣𝑛1 ≺ 𝑛2 if |𝑛1| < |𝑛2|𝑣 ≺ (𝑣′, _) if 𝑣 ⪯ 𝑣′𝑣 ≺ (_, 𝑣′) if 𝑣 ⪯ 𝑣′𝑣 ⪯ 𝑣′ if 𝑣 ≺ 𝑣′ or 𝑣 = 𝑣′
Figure 5. Example well-founded partial order ⪯

the tail of any list is considered less than than the original
list). Although simple, this relation is sufficient to check for
termination in most programs that descend on integers and
data-structures. If a program descends following a different
order, the user of 𝜆SCT can replace the default order with an
appropriate one.

3.4 Totality of Evaluation
We may note that all programs in 𝜆SCT terminate, either by
adhering to the size-change principle, or by violating it and
aborting with an error.

Theorem 3.1 (Termination of 𝜆SCT). For all 𝑒, 𝜌, 𝑚, where
fv(𝑒) ⊆ dom(𝜌), 𝜌, 𝑚 ⊢ 𝑒 ⬇ 𝛼 for some 𝛼.

3.5 Soundness and Completeness
The size-change property is a safe over-approximation to en-
sure termination. The correctness of monitoring this prop-
erty can therefore be understood as any strategy that satis-
fies the following properties:

soundness: if a program evaluates to a value under the
modified semantics, running the programwithout ter-
mination checking gives the same result.

SCT-completeness: if a program terminates and main-
tains the under the standard semantics, running that
program under the modified size-change property un-
der the standard semantics, running that semantics
with termination checking gives the same result. pro-
gram under the modified semantics with termination
checking gives the same result.

In addition, because all programs terminate under the mod-
ified semantics when termination checking is enabled, all
diverging programs are caught as error-raising programs.

We now formally establish the correctness of 𝜆SCT’s size-
change monitoring semantics with respect to its standard
semantics.1

Theorem3.2 (Soundness of size-changemonitoring in𝜆SCT).
If 𝜌, 𝑚 ⊢ 𝑒 ⬇ 𝑎, then 𝜌 ⊢ 𝑒 ⇓ 𝑎.
Proof. By induction on the derivation of 𝜌, 𝑚 ⊢ 𝑒 ⬇ 𝑎. □

1𝜆SCT’s standard dynamic semantics is unsurprising and can be found in
the supplemental material.

CC-Ba𝜌, 𝑚 ⊢ 𝑏 ↓↓ 𝑏, {𝑚}
CC-A 𝜌, 𝑚 ⊢ 𝑒 ↓↓ (⃗⃗ ⃗⃗𝑥, 𝑒′, 𝜌′), {𝑚′ …}𝜌, 𝑚 ⊢ ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒𝑥 ↓↓ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑣𝑥, ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗{𝑚𝑥 …}𝜌′ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗[𝑥↦𝑣𝑥], ext(𝑚, (⃗⃗ ⃗⃗𝑥, 𝑒′, 𝜌′), ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑣𝑥) ⊢ 𝑒′ ↓↓ 𝑎, {𝑚″…}𝜌, 𝑚 ⊢ (𝑒 ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒𝑥) ↓↓ 𝑎, {𝑚′ …} ∪ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗{𝑚𝑥 …} ∪ {𝑚″…}

ext ∶ 𝑚 × 𝑣 × ⃗𝑣 → 𝑚
ext(𝑚, 𝑣, ⃗𝑣𝑛) = 𝑚[𝑣 ↦ ( ⃗𝑣𝑛, [])], if 𝑣 ∉ 𝑚
ext(𝑚, 𝑣, ⃗𝑣𝑛) = 𝑚[𝑣 ↦ ( ⃗𝑣𝑛, 𝑔𝑛 ∷ ⃗𝑔𝑛−1)]

where ( ⃗𝑣𝑛−1, ⃗𝑔𝑛−1) ≡ 𝑚(𝑣)
and 𝑔𝑛 = 𝑔𝑟𝑎𝑝ℎ( ⃗𝑣𝑛−1, ⃗𝑣𝑛)

Figure 6. Call-sequence Semantics of 𝜆SCT.

Corollary 3.3 (Size-changemonitoring catches divergence).
If program 𝑒 diverges under the standard semantics, then{}, {} ⊢ 𝑒 ⬇ errorSC.

Proof. From Theorem 3.1, 𝑒 either evaluates to a standard
answer or errorSC under size-change monitoring. By con-
trapositive of Theorem 3.2, 𝑒 evaluates to errorSC if 𝑒 di-
verges. □

A semantics that produces call sequences Before stat-
ing and proving completeness of size-change monitoring,
we define a mostly-standard semantics that also evaluates
to set of size-change tables along with the answer, but per-
forms no guarding against any size-change violation. It is
in lock-step with the standard semantics, and resembles the
terminating semantics in accumulating the size-change ta-
ble. Figure 6 shows this semantics.

Lemma 3.4 (Completeness of call-sequence semantics).
If 𝜌 ⊢ 𝑒 ⇓ 𝑣 then 𝜌, {} ⊢ 𝑒 ↓↓ 𝑣, {𝑚 …} for some {𝑚 …}.
Proof. By induction on the derivation of 𝜌 ⊢ 𝑒 ⇓ 𝑣. □

Lemma 3.5 (Completeness of size-change monitoring with
respect to call-sequence semantics). If 𝜌, 𝑚 ⊢ 𝑒 ⬇ errorSC

and 𝜌, 𝑚 ⊢ 𝑒 ↓↓ 𝑣, {𝑚′ …} then there exists 𝑚𝑖 in {𝑚′ …}
and 𝑣 such that ¬prog?(𝑔) where ( ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑣𝑥, 𝑔) = 𝑚𝑖(𝑣).
Proof. By induction on the derivation of 𝜌, 𝑚 ⊢ 𝑒 ⬇ errorSC.

□

Theorem 3.6 (Completeness of size-change monitoring in𝜆SCT). If 𝜌, {} ⊢ 𝑒 ⬇ errorSC and 𝜌 ⊢ 𝑒 ⇓ 𝑣 then 𝜌, {} ⊢ 𝑒 ↓↓𝑣, {𝑚 …} such that there exists 𝑚𝑖 in {𝑚 …} and 𝑣 such that¬prog?(𝑔) where ( ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑣𝑥, 𝑔) = 𝑚𝑖(𝑣).
Proof. Follows from Lemma 3.4 and Lemma 3.5. □
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[Expressions] 𝑒 ∶∶= … | (term/c 𝑒)
[Values] 𝑣 ∶∶= … | term/c( ⃗⃗⃗𝑥, 𝑒, 𝜌)
W a -La𝜌 ⊢ 𝑒 ⇓ (⃗⃗ ⃗⃗𝑥, 𝑒, 𝜌)𝜌 ⊢ (term/c 𝑒) ⇓ term/c(⃗⃗ ⃗⃗𝑥, 𝑒, 𝜌)

A -T𝜌 ⊢ 𝑒 ⇓ term/c(⃗⃗ ⃗⃗𝑥, 𝑒′, 𝜌′) 𝜌 ⊢ ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒𝑥 ⇓ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑣𝑥𝜌′[ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑥 ↦ 𝑣𝑥], upd({}, (⃗⃗ ⃗⃗𝑥, 𝑒′, 𝜌′), ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑣𝑥) ⊢ 𝑒′ ⬇ 𝛼𝜌 ⊢ (𝑒 ⃗⃗⃗ ⃗⃗⃗ ⃗𝑒𝑥) ⇓ 𝛼
Figure 7. Syntax and semantics of 𝜆CSCT.

3.6 Termination Checking as a Contract
It can be useful to enforce termination checking selectively
on parts of the code rather than on the entire program. We
present a simple extension to 𝜆SCT called 𝜆CSCT, which adds
a construct (term/c 𝑒) that guards (𝑒) with a contract ensur-
ing it behaves as a size-change-terminating function. Other
than executing the bodies of contract-guarded functions, the𝜆CSCT semantics is similar to the standard semantics. Fig-
ure 7 shows the key extension to 𝜆CSCT’s syntax and se-
mantics. The [Wrap-Lam] rule shows the introduction of a
termination-checked function. Only closures are capable of
violating SCT in 𝜆SCT, so we only wrap closures and return
other values as-is.

4 Static SCT Verification
Given termination formulated as a dynamically checkable
property, we can systematically turn these dynamic checks
into static verification by building on prior work in higher-
order symbolic execution [34, 46, 50].

Symbolic execution extends the standard semantics with
symbolic values that can stand for any values (including
higher-order values), andmaintains a path-condition, which
is a formula about facts that must hold for symbolic values
on each path. Because termination checks ultimately decom-
pose into “less-than” checks, which check for a definite de-
scent of values along a well-founded partial order, there is
no special challenge in using symbolic execution for size-
change termination checking. Symbolic execution can read-
ily leverage SMT solvers for precise reasoning about path-
conditions, proving termination that depends on sophisti-
cated path-sensitivity.

Although symbolic execution has traditionally been used
to find bugs [7, 26, 30, 38, 39] as opposed to verifying pro-
grams as correct, we can apply a well studied technique for
abstracting the operational semantics through finitizing the
program’s dynamic components [15, 49] and obtain a verifi-
cation that particular errors cannot occur at run-time.

[Values] 𝑣 ∶∶= … | 𝑠
[Symbolic Values] 𝑠 ∶∶= 𝑥 | 𝑏 | (o ⃗𝑠)
[Path Conditions] 𝜙 = ⃗𝑠

Sy -I -T𝜌, 𝜙 ⊢ 𝑒 ⇓𝑠 𝑠, 𝜙′ 𝜌, (= 𝑠 0)∷𝜙′ ⊢ 𝑒1 ⇓𝑠 𝛼, 𝜙″𝜌, 𝜙 ⊢ (if0 𝑒 𝑒1 𝑒2) ⇓𝑠 𝛼, 𝜙″
Sy -I -F𝜌, 𝜙 ⊢ 𝑒 ⇓𝑠 𝑠, 𝜙′ 𝜌, (≠ 𝑠 0)∷𝜙′ ⊢ 𝑒2 ⇓𝑠 𝛼, 𝜙″𝜌, 𝜙 ⊢ (if0 𝑒 𝑒1 𝑒2) ⇓𝑠 𝛼, 𝜙″

Figure 8. Semantics of symbolic 𝜆SSCT.

4.1 Extended Semantics
Figure 8 shows extension to 𝜆SCT, called 𝜆SSCT that allows
symbolic execution, as well as the key extension to the se-
mantics that enables symbolic execution.

We extend the set of values (𝑣) with symbolic values (𝑠),
which can stand for any value. The semantics of 𝜆SSCT must
then account for symbolic values, which means some ex-
pressions can nondeterministically evaluate to multiple an-
swers to soundly over-approximate all the cases resulting
from possible instantiations of symbolic values. Symbolic
execution maintains a path-condition (𝜙) that characterizes
each path, which is a set of symbolic values assumed to have
evaluated to true (interpreted as a conjunction).

With symbolic values, orders between values are neces-
sarily more conservative.The size-change graphs computed
between symbolic value lists in Figure 4 have, in general,
no more arcs than in the concrete case. Each arc now repre-
sents a must-descend or must-non-ascend relationship over
all possible concrete paths. A sufficiently precise symbolic
execution, coupled with effective SMT solving, can main-
tain a graph with enough arcs to prove that functions will
always maintain their size-change properties.

Proposition 4.1 (Soundness of static verification). If {} ⊢𝑒 ⇓ 𝑣 and {} ⊢ 𝑒1 ⇓ 𝑣1 and (𝑒 𝑒1) diverges, then {}, {} ⊢
((term/c 𝑒) 𝑠) ⇓𝑠 errorSC, 𝜙′ (𝑠 is a fresh symbolic value).

Proof. Follows from soundness of dynamic checking of size-
change termination (Theorem 3.2) and soundness of higher-
order symbolic execution [33]. □

4.2 Ackermann Revisited
Nowconsider again the example ack, a termination-checked
Ackermann function shown in Section 2.

Suppose ack’s precondition is that its arguments are nat-
ural numbers. To verify ack, we apply the function on sym-
bolic natural numbers m and n that have passed ack’s pre-
condition with the path-condition {(≥ m 0), (≥ n 0)}.
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(ack m n)
where (≥ m 0)∧(≥ n 0){(m

→

m)} {(m

→=m),(n

→

n)}

Figure 9.Abstract call and size-change graphs for ack.

With these symbolic inputs, execution considers all three
branches, and accumulates in the path-condition assump-
tions about the values: in the first branch, m is 0; in the sec-
ond branch, m is positive and n is 0; in the last branch, both
m and n are positive.

The first branch simply returns and does not trigger any
size-change monitoring. The second branch reaches a recur-
sive call with the path-condition {(≥ m 0),(≠ m 0),(=
n 0)}. The recursive call proceeds, checking for all relation-
ships that can be established between the old and new argu-
ments as in Figure 4. In this case, with the path-condition
that m is positive, symbolic execution easily proves that (-
m 1) is less than m according to the partial order defined in
Figure 5. No other definite order can be established between
the new arguments (- m 1), 1 and the old ones m, n. This
gives the new size-change graph of {(𝑚 → 𝑚)}.2 We ex-
tend ack’s set of size-change graphs with this new graph.
In addition, symbolic execution can prove the new call to
ack receives the same path-condition as the previous call:
both new arguments (- m 1) and 1 are natural numbers.

The third branch reaches the inner recursive call to ack
before reaching the outer one. The path-condition, again, is
sufficient for establish the descent from n to (- n 1) and
maintenance of m, yielding the new graph {(𝑚 → = 𝑚), (𝑛 →𝑛)}. When execution reaches the outer recursive call to ack,
the descent from m to (- m 1) can be straightforwardly es-
tablished. In each case, symbolic execution can also prove
that the new arguments are natural numbers.

Figure 9 summarizes all the ways ack can call itself re-
cursively. Because no composition of size-change graphs
drawn from this set can yield a graph that violates the size-
change principle (i.e. one that is both idempotent and lack-
ing of a self-descent arc), ack never violates size-change ter-
mination.

5 Implementation and Evaluation
We implement the semantics presented in Section 3 as a li-
brary in the Racket programming language through instru-
mentation of the application form.

2We use variable names instead of indices for graph nodes in this section.

An application (f x ...) in Racket is syntactic sugar for
(#%app f x ...), and libraries can modify what an appli-
cation means by redefining the #%app form. For our pur-
poses, we redefine the application form to implement the
rules [SC-App-Clo] in Figure 3 [App-Term] in Figure 7. If
size-change termination is being enforced, the #%app form
looks up the size-change table to guard against violations.

We evaluate two techniques to maintain size-change ta-
bles. The first technique wraps each application with code
that imperatively updates and restores the table. The sec-
ond uses continuation-marks [10]. The former can be imple-
mented in most languages, and gives relatively good perfor-
mance, but breaks proper tail calls.The latter is simple to im-
plement in languages with support for continuation marks,
and preserves tail calls, but shows high overheads in tight
loops.

Our semantics implicitly assumes that closures can be
compared structurally for equality, which is not possible in
practice. We instead hash the closure and consider all clo-
sures with the same hash code to be equivalent. This pre-
serves soundness as the table 𝑚 cannot grow infinitely, but
could produce false positive error reports. Note that this in-
completeness does not affect the static analysis, which is
derived from the semantics itself. Future work includes run-
time support for more precise comparison between closures.

In addition, we expose a parameter specifying the custom
partial order for use in termination checks, with a default
implementation as described in Figure 5.

Although a naive implementation would be prohibitively
expensive, with a few optimizations, the overhead can be
brought down to acceptable for the goal of debugging

Reducing monitoring frequency The construction and
checking of size-change graphs is expensive, but need not
be performed each time a function calls itself recursively.
Because strict progress down any well-founded partial or-
der can only be maintained a finite number of times, any
non-SCT program will violate the size-change principle re-
gardless of the monitoring frequency. We therefore use ex-
ponential backoff to reduce the frequency of extending and
monitoring each function’s size-change. This significantly
reduces the monitoring overhead, although risks keeping
data from earlier iterations live for longer necessary.

Avoiding instrumentation for known functions Func-
tions that are known to terminate need no instrumentation.
We maintain a white-list of primitives known to terminate.

Monitoring size-change graphs only for loop entries
We identify “loop entries” to monitor instead of construct-
ing and monitoring a size-change graph for each function.
For example, suppose even? and odd? are mutual recursive
functions, where the top-level context calls even?, then only
even? is a loop-entry and requires size-change monitoring.
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Table 1. Evaluation on terminating programs

Program Dyn. Static LH Isabelle ACL2
sct-1 (rev) ✓ ✓ ✓R ✓ ✓

sct-2 ✓ ✓ ✗ ✓R ✓

sct-3 (ack) ✓ ✓ ✓A ✓ ✓

sct-4 ✓ ✓ ✗ ✓ ✓

sct-5 ✓ ✓ ✗ ✓ ✓

sct-6 ✓ ✓ ✗ ✓ ✓

ho-sc-ack ✓ ✗ -T -T -H
ho-sct-fg ✓ ✓ ✓ ✓ -H
ho-sct-fold ✓ ✓ ✓A ✓ -H
isabelle-perm ✓ ✓ ✗ ✓ ✓

isabelle-f ✓ ✗ ✗ ✓ ✓

isabelle-foo ✓ ✗ ✗ ✓ ✓

isabelle-bar ✓ ✗ ✗ ✓ ✓

isabelle-poly ✓ ✗ ✗ ✗ ✗

acl2-fig-2 ✓O ✗ ✗ ✗ ✗

acl2-fig-6 ✓ ✓ ✗ ✗ ✗

acl2-fig-7 ✓ ✗ ✗ ✗ ✓

lh-gcd ✓ ✗ ✓ ✓ ✓

lh-map ✓ ✓ ✓ ✓ -H
lh-merge ✓ ✓ ✓A ✓ ✓

lh-range ✓O ✗ ✓A ✗ ✓

lh-tfact ✓ ✓ ✓ ✓ ✓

dderiv ✓ ✓ A: With annotations
deriv ✓ ✗ O: Custom partial order
destruct ✓ ✗ H: No H.O. functions
div ✓ ✓ T: Not typable
nfa ✓ ✓ R: Rewritten to use
scheme ✓ ✗ pattern matching

5.1 Evaluation
We evaluate the effectiveness and efficiency of size-change
monitoring. Effective monitoring should allow all or most
terminating programs to finish execution, and quickly catch
diverging programs. Efficient monitoring should introduce
little overhead compared to execution without monitoring.

5.1.1 Effectiveness and Efficiency on Terminating
Programs

Table 1 shows terminating programs we use to evaluate the
dynamic checks and static analysis of terminating contracts.
The programs were collected from previous work on termi-
nation checking: size-change termination for first-order pro-
grams (sct) [29]; size-change termination for higher-order
programs (ho-sct) [41]; LiquidHaskell (lh) [52]; Isabelle [28];
ACL2 [31]; and a collection of larger Scheme benchmarks
that terminate by the size-change principle.

The table shows the precision of dynamic checking and
static analysis, as well as comparison with other systems
where possible. Most programs are small and under 15 lines.

The largest program is scheme with 1,100 lines, which im-
plements an interpreter for R5RS Scheme that interprets the
mergesort algorithm on a list of strings. We did our best ef-
forts to translate programs from one system to another. For
example, sct-2 is originally an untyped program compos-
ing a heterogeneous list which cannot be typed in Liquid
Haskell and Isabelle. We translated sct-2 to work with an
equivalent custom tree data-type.

Several cases where the programs need modifications to
be successfully verified by the systems are annotated in the
table. For example, sct-1 and sct-2 originally use condi-
tionals, and can only be verified when converted to use pat-
tern-matching. Some other programs are only verified suc-
cessfully with annotational help on termination, such as ex-
plicit lexical ordering (e.g. lh-merge), or a custom partial-
order (e.g. acl2-fig-2). Some programs are not express-
ible in all systems. For example, ACL2 cannot check higher-
order programs, and the type systems in Liquid Haskell and
Isabelle do not support the Y-combinator that has self-app-
lications (e.g. ho-sct-ack). To our surprise, current versions
of the tools cannot check some of their own benchmarks de-
spite our best efforts to reproduce (e.g. isabelle-poly for
Isabelle; acl2-fig-2 and acl2-fig-6 for ACL2). Overall,
our system works well for a wide range of programs and id-
ioms, including higher-order untyped programs with mod-
erate side effects (such as in the Scheme benchmarks).

Figure 10 shows the slowdown of dynamic checks for se-
lect programs: factorial, sum, and merge-sort, as well as
their interpreted version inside a Scheme interpreter. These
programs demonstrate that different patterns of computa-
tion incur different amounts of overhead from size-change
monitoring. For programs that do significant work between
recursive calls, such as factorial or the Scheme interpreter,
overhead is negligible. For programs that don’t do signifi-
cantwork between recursive calls, such as sum, the overhead
is significant. For programs that operate over large data-
structures such as merge-sort, overhead is much more sig-
nificant.That the overhead stays fixedwhen the input grows
(for continuation-mark implementation on tight loops, ap-
proximately two orders of magnitude) suggests that further
optimization effort to trim down the constant factor can
make monitoring suitable for realistic uses.

5.1.2 Effectiveness on Diverging Programs
We also evaluate dynamic monitoring on non-terminating
programs to determine how quickly the monitoring system
catches divergence. These programs include modified ver-
sions of correct programs, as well as one originally incorrect
program (nfa) that our static analysis discovered. Because
violation of the size-change principle tend to show up in
early iterations, our dynamic contracts catch the error very
early, resulting in immeasurable delay from the start of the
program to the point where divergence is detected.
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Figure 10. Slow-down of monitoring factorial, sum, and merge-sort, and the Scheme interpreter running them

The nfa program is particularly interesting, because it is a
Scheme benchmark that has been around for decades. It is a
program that implements a non-deterministic finite automa-
ton of the regular expression ((a|c)*bcd)|(a*bc), then
run the automaton on the string a133bc. The following func-
tion implements one state recognizing the sub-expression
(a|c)* with the bug underlined:

1 (define (state1 input)
2 (and (not (null? input))
3 (or (and (char=? (car input) #\a)
4 (state1 (cdr input)))
5 (and (char=? (car input) #\c)
6 (state1 input))
7 (state2 input))))

Thebugwas never discovered, because the particular bench-
mark input did not trigger the divergence, and most static
analysis only check for partial correctness. Our static anal-
ysis was the first to discover this error after many years.

6 Related Work
Our work builds on the size-change termination (SCT) ap-
proach [29] and on approaches to static contract verifica-
tion via symbolic execution [33, 34]. We relate our contribu-
tions to dynamic and static termination checking, and then
to static contract verification.

6.1 Dynamic Termination Checking
To the best of our knowledge, no existing work enforces ter-
mination dynamically using behavioral contracts. Related
work has investigated dynamic loop detection, nontermina-
tion auditing, and more restricted declarative languages.

The auditing tool L [6] dynamicallymonitors a Java
program in order to detect nontermination using concolic
(concrete and symbolic) execution. Along the path of a po-
tentially nonterminating loop, it derives a path condition
paired with a memory map (an encoding of heap values at
the end of a loop iteration as a function of their initial val-
ues), and uses an SMT solver to check if the initial path con-
dition (after zero iterations) implies itself under the loop it-
eration’s memory map. If this fails, L will observe an-
other iteration and record a new path condition and mem-
ory map. When each path condition implies the next (under
that iteration’s memory map), in a cyclic chain that termi-
nates with the original path condition, the program will not
terminate.

Unlike our contracts, L does not monitor code for
nontermination during normal execution; instead, it is de-
ployed by an auditor to determinewhether an apparent loop
is an actual one. While L can provide an affirmative
proof that code will not terminate, our approach will signal
that a function does not obey SCT, a more conservative no-
tion of termination. This means our approach is susceptible
to false positives and may blame functions which do always
terminate, but will never permit nontermination. L ,
on the other hand, is susceptible to false negatives and may
fail to prove an execution to be definitively nonterminat-
ing. L ’s soundness is also contingent on all changes
to memory being visible and accounted for in the memory
map, which is not always the case in C due to external state
and shared-memory parallelism.

J [8] (and successor B [27]) is an infinite-loop de-
tection and recovery tool for C programs. It instruments C
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code to dynamically monitor for loops that are in the ex-
act same state at two consecutive iterations. Compared with
L , this is an especially conservative detection for non-
termination, however J also has a facility for skipping
the program counter past the end of the loop to recover from
nontermination and show that this simple technique is effec-
tive in many cases (sometimes depending on inputs).

There are also dynamic termination schemes for more re-
stricted languages. For example, dynamic checking for ac-
tive database rules [3], or queries in general logic programs
[12, 42]. Shen et al. [42] exploits features unique to SLDNF-
trees to identify loop goals with a provably finite term-size.
Codish and Taboch [12] provides a declarative fixed-point
semantics that captures termination properties (for an inter-
pretation of Prolog) with the explicit goal of facilitating the
extraction of a static analysis using abstract interpretation.

6.2 Static Termination Checking
A variety of approaches have been used for static verifica-
tion of termination and nontermination. None of these sys-
tems combine dynamic and static verification in a single sys-
tem, or allow terminating and nonterminating components
to be composed. We begin with the systems we compare
with in §5.1.

Jones and Bohr [25] extend the SCT approach to higher-
order languages—specifically, the untyped 𝜆-calculus. As all
values in this language are functions, they select the “height”
of a closure as its size. Sereni and Jones [41] then extended
this approach to handle user-defined datatypes and general
recursion. This work was not empirically evaluated in the
context of a real programming system [40], but establishes
techniques we build on. SCT has been extended to mono-
tonicity constraints, which have been shown to bemore gen-
eral than traditional SCT [11]; these could be formulated as
a dynamic contract in future work.

Manolios and Vroon [31] develops a static analysis for
automatic termination proofs in the context of the ACL2
system—a functional language and first-order logic for theo-
rem proving. All programs admitted by ACL2must be termi-
nating, as nontermination could render it inconsistent, how-
ever manual termination proofs are complex and require
deep expertise. The paper’s approach uses precise calling-
context graphs in order to refine static control flow with
path feasibility based on accumulating governors (sets of
branch points governing control flow for a subexpression).
Strongly connected components are then further refined us-
ing a calling-context measure in order to discover a well-
founded order over which parameters descend. A major in-
novation on traditional SCT approaches is the refinement of
feasible paths using governors. Our approach analogously
tracks path conditions for static verification. Their method
was effective at proving more than 98% of the roughly 10k
functions of the ACL2 regression suite terminating. Krauss

[28] then extends the approach to Isabelle/HOL and certifies
the termination proofs with LCF-style theorem proving.

Liqi Ha uses termination proving to ensure pre-
cision and soundness for its refinement type system in the
presence of lazy evaluation [51]. Subtle unsoundness can
result from using refinement types in conjunction with call-
by-name evaluation and the direct approach to fixing this
unsoundness, by expressing potential nontermination as a
type refinement, leads to substantial imprecision. Liqi -
Ha bridges this gap by encoding size-change invari-
ants, over user-specified well-founded metrics, directly into
the existing type system (as further type refinements). This
permits proofs over programs to circularly depend on ter-
mination proofs during SMT solving. Broadly this same ap-
proach is taken to directly encode termination proofs, via
size-change refinements, with dependent types in D -

ML [54]. Liqi Ha has a scalable implementa-
tion, used to verify correctness and termination properties
over a corpus of real-world Haskell libraries (≥ 10 LOC).
TEA is also a termination analysis for Haskell, based on tech-
niques of path analysis and abstract reduction [35].

TNT is a concolic executor for statically enumerating non-
terminating lassos in C programs—paths that fold back on
themselves, forming a nonterminating loop [23]. Unlike dy-
namic approaches such as ours, or that of L , TNT is
not statically precise enough to handle cases that rely on
symbolic shape information such as cyclic lists.

Velroyen and Rümmer [53] use a modal logic allowing
predicates to be written that are qualified by a program ex-
pression they pertain to.Qualified formulae are trivially ren-
dered true by a diverging program, so a manifest contra-
diction (i.e., false) being interpreted as true constitutes a
proof of nontermination for the qualifying expression. The
approach then uses a refinement process to identify the spe-
cific conditions on data that will lead to proving this con-
tradiction. This system was only evaluated on small expres-
sions (≤25 lines) in a language of pure built-in expressions,
assignments, conditionals, and while loops.

AP VE is a system for automating termination (and non-
termination) proofs of term-rewriting systems (TRSs) Giesl
et al. [18, 19, 22] built using the dependency pair framework
[2, 20]. Unlike previous methods for proving TRSs termi-
nating, which required the right-hand side of each rewrite
rule to be simplified compared with its left-hand side, the
dependency pair framework only requires corresponding
subterms at recursive calls be simplified. This innovation
is analogous to the SCT approach’s requirement that argu-
ments be descending over some well-founded order as op-
posed to static control-flow being strictly stratified. Giesl
et al. [21] extends the dependency pair framework to higher-
order functions. Thiemann and Giesl [45] contrast and syn-
thesize the dependency pair framework with SCT.

Numerous techniques have been proposed and evaluated
for verifying termination in languages such as C and Java,
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where higher-order programming is uncommon. T i a-
[13, 14, 36] and transition invariants [24, 37, 47] as well

as others [1, 4, 5, 44] have seen extensive development, and
share some key ideas with our approach, but differ substan-
tially in goals and language from our system, and thus make
significantly different choice in approach.

T i a is a program analysis and verification tool
for proving termination of C programs statically, which has
been used to prove the termination of low-level programs
such asWindows device drivers. Like our system, it relies on
the “indirect approach” described in the introduction—find
a safety property which implies termination, add a check
for that property to the program, and verify using an ex-
isting tool that the check cannot fail. The key difference
with our approach is in the choice of property. T i a
aims to prove termination of tricky first-order loops, and
thus must find potentially-complex custom ranking func-
tions (found via Podelski and Rybalchenko [36]) for each
program to be verified. To find these properties, it relies
on a counter-example guided abstraction refinement (CE-
GAR) [9] loop which attempts to verify termination using
an off-the-shelf verifier and refines the property upon fail-
ure. Terminator starts with a very simple property and re-
peatedly improves it, generating complex predicates with
non-trivial relationships between multiple variables. In con-
trast, our approach (similar to other approaches for higher-
order languages) picks a single general safety property and
uses it for all programs. This limits the ability of our tool
to verify the termination of loops such as those T i a-

aims at, but allows our tool to run as a contract without
first requiring several runs of a static verifier. Additionally,
constructing static verification tools for heap-manipulating
imperative programs is much trickier in the higher-order
setting we consider.

6.3 Soft Contract Verification
Our static termination checking relies on the ability to go
from an operational semantics with dynamic enforcement
to a sound static analyzer—a capability we take from a series
of results on static contract checking by Nguyen et al. [33],
Nguyễn et al. [34]. This work showed that sound higher-
order symbolic execution could be used to provide contract-
based soft verification and counter-example generation for
rich languages including user-defined data structures and
contracts as well as higher-order functions and state. We re-
use this work by retargeting it to contracts that enforce size-
change termination, but otherwise retain the central ideas;
it is a goal of our work that it composes with existing con-
tract systems.

7 Conclusion
Termination is a fundamental program correctness property,
but uncheckable even at runtime. To avoid this limitation,

we adapt the size-change principle from static termination
analysis to perform dynamic checking of termination, ex-
ploiting the insight that every infinite execution must have
a call that fails to follow the size change principle.This leads
to the first run-timemechanism for enforcing termination in
a general-purpose programming system. As it is formulated
as a behavioral contract, this also makes it the first contract
for total correctness. By checking termination as a contract,
we can enforce termination in settings where static check-
ing is fundamentally impossible, as in an interpreter.

Further, we compose our dynamic checking strategy with
priorwork showing how to statically verify compliancewith
contracts in higher-order languages to produce a novel static
checker for program termination—without any termination-
specific work. We compare our static checker against three
state-of-the-art custom tools on their own benchmarks, and
find that ours is able to statically verify programs that ex-
ceed the capacities of each of the existing tools.

Sound dynamic enforcement of liveness properties opens
up new possibilities for program correctness, analysis, and
specification—in this paper we have taken only the first step.
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