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Abstract. We study the relation between specifications of component
behaviors and contracts providing means to specify assumptions on en-
vironments as well as component guarantees. We show how a contract
framework can be built in a generic way on top of any specification theory
which supports composition and specification refinement. Our contract
framework lifts refinement to the level of contracts and proposes a notion
of contract composition on the basis of dominating contracts. Contract
composition satisfies a universal property and can be constructively de-
fined if the underlying specification theory is complete, i.e. it offers op-
erators for quotienting and conjoining specifications. We illustrate our
generic construction of contracts by moving a specification theory for
modal transition systems to contracts and we show that a (previously
proposed) trace-based contract theory is an instance of our framework.

1 Introduction

Over the years we have seen a remarkable growth of complexity and size of
software systems. This growth has been possible due to rapid development in
hardware and software technology. Development of software today uses strong
abstraction and encapsulation principles, that allows componentizing systems
into comprehensible units.

This rapid growth of size and complexity of systems has inspired intensive
research into component-oriented design and analysis methods for software. In
the domain of safety critical concurrent software a number of interface theo-
ries have been proposed to this end, starting with the seminal work of Alfaro
and Henzinger [2] devoted to tracking communication errors in discrete systems,
followed by numerous extensions addressing other errors, or other forms of ab-
straction [1, 16, 17]. These include abstract specification of discrete finite-state
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systems exploiting may/must modalities [18, 20, 21, 23, 26, 33, 34, 36], specifica-
tion of systems manipulating complex data [4, 8, 35], specification of real-time
embedded systems and real-time communication protocols [3, 11, 14, 24], speci-
fication of randomized and probabilistic systems [12], and modeling of resource
usage [6, 13]. This proliferation of results is both positive and negative. Positive
since it is a sign of fast progress in the field. Negative, because many works
appear similar, yet it is difficult to compare them.

We attempt to develop a synthesis of the existing work in a uniform com-
mon framework. Altogether these theories have led to a shared understanding
of what are the main ingredients of a mature specification theory for behav-
ioral components; namely notions of satisfaction and refinement, together with
composition operators such as conjunction, parallel compositions, and quotients.
Nevertheless, despite this agreement, and despite the algebraic similarity of many
specification theories, no uniform meta-theory exists that would formalize the
abstract structure to enable better comparability of work, and reuse of results,
channeling proliferation into higher quality and impact.

Independently, a number of contract theories, based on assume-guarantee
(AG) reasoning have been developed, with a similar aim of approaching the
compositional design. Contract theories differ from specification theories in that
they strictly follow the principle of separation of concerns. They separate the
specification of assumptions from specification of guarantees, a choice largely
inspired by early ideas on manual proof methods of Misra, Chandy [30] and Jones
[22], along with the wide acceptance to pre-/post-condition style of specification
in programming [29]. Contract theories exist for discrete systems [10, 25, 31] and
probabilistic systems [15, 37].

Even though the specification theory, and the contract theory research have
similar objectives, it is not clear so far what the two approaches offer with respect
to each other, and whether their development is making the others complemen-
tary, or superfluous. So our second goal is to understand not only the essential
structure of specification theories, but also their relation to contract theories. All
in all we set off to organize (somewhat) the field of compositional specification
for behavioral components.

We define contracts as pairs, (A,G), whereA is a specification of assumptions,
and G is a specification of guarantees. This leads us to our hypothesis that most
specification theories should have enough structure to be used as a basis of an
associated contract theory with explicit assumptions and guarantees. Dually, we
observe that contract theories tend to degenerate to specification theories in the
following simple manner: a specification G is describing the same models as a
contract (tt, G) — so a contract without any assumption. Thus any reasonably
complete contract theory can be used as a specification theory.

We make this intuition formal by developing a meta-theory of specifications
and contracts. First, in Sect. 2, we propose a simple and general axiomatiza-
tion of specification theories, able to capture the algebraic structure of most of
the current specification theories (some frameworks require small adaptation,
because not all of them have been originally developed with a complete set of

2



operators in mind). Second, we demonstrate in Sect. 3 how a contract framework
can be derived from a specification theory, using our abstract constructions. As a
result we are able to instantiate “for free” a contract theory with good properties
of contracts from any specification theory fulfilling our axioms.

Any such derived contract theory is automatically equipped with:

– An implementation and an environment semantics reflecting the set of inter-
faces and environments that satisfy the guarantees and assumptions of the
contract, respectively.

– A refinement relation that allows to compare contracts in terms of sets of
implementations and legal environments.

– A structural composition, which encapsulates contracts for two communi-
cating components into one contract for the composition of the two.

These results follow automatically as soon as the specification theory is
equipped with parallel composition, conjunction, and a quotient of parallel com-
position. A number of specification theories have been proposed recently that
satisfy our assumptions. In the course of this paper, we illustrate our general
constructions by moving two specification theories to two contract theories: a
simple trace-based specification theory, in which specifications are represented
as sets of runs or traces (inspired by Benveniste et al. [10]), and as a more de-
tailed example, we use modal specifications [32] in Sect. 4 to derive so-called
modal contracts. All proofs can be found in [5].

We would like to stress that there are many other specification theories that
fit into our framework, for instance, timed specifications [11], which allow us to
derive “for free” a contract theory for timed systems, which has not yet been
proposed in the literature.

2 Specification Theories

In our study the abstract concept of a specification theory defines rudimentary
properties that should be satisfied by any formal framework for component be-
havior specifications. Given a class S of specifications, a specification theory
includes a composition operator ⊗ to combine specifications to larger ones.5

Additionally, a specification theory must offer a refinement relation ≤ to relate
“concrete” and “abstract” specifications, i.e. S ≤ T means that S refines T . To
obtain a specification theory, refinement must be compositional in the sense that
it must be preserved by the composition operator.

Formally, a specification theory is a triple (S ,⊗,≤) consisting of a class S of
specifications, a parallel composition operator ⊗ : S ×S → S and a reflexive
and transitive refinement relation ≤ ⊆ S ×S , such that for all S, S′, T, T ′ ∈ S ,

whenever S′ ≤ S and T ′ ≤ T , then S′ ⊗ T ′ ≤ S ⊗ T . (A1)
5 The composition operator is, in general, partial since it is not always syntactically

meaningful to compose specifications, due to syntactic constraints. In this work,
however, to avoid a lot of technicalities, we will restrict ourselves to total composition
operators – though the theory is easily extendable to partial composition operators.
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The refinement relation induces an equivalence relation = on specifications,
by S = T if and only if S ≤ T and T ≤ S. The composition operator is
commutative and associative with respect to this equivalence relation.

Obviously, in a top-down design, the requirements for a specification theory
support independent development of components. To a certain extent a specifi-
cation theory supports also bottom-up design, where existing components can
be reused as parts of a larger system architecture, as long as local refinements
are correct and local specifications fit into the context.

Specification theories sometimes come along with an operator /, called quo-
tient, which is dual to parallel composition and which allows to synthesize spec-
ifications: When given a requirement specification T of the overall system and a
smaller specification S, then the quotient T/S is the most general specification
such that S⊗(T/S) ≤ T . Formally, quotient is a partial operator / : S×S ↪→ S
that satisfies

T/S defined if and only if ∃X ∈ S : S ⊗X ≤ T. (A2)

If T/S defined, then S ⊗ (T/S) ≤ T . (A3)

If T/S defined, then ∀X ∈ S : S ⊗X ≤ T =⇒ X ≤ T/S. (A4)

When two separate teams independently develop specifications that are in-
tended to be realized by the same component, then it is useful to have a con-
junction operator ∧ that computes the most general specification that realizes
both specifications (if this is possible). Formally, conjunction is a partial operator
∧ : S ×S ↪→ S such that

S ∧ T defined if and only if ∃X ∈ S : X ≤ S and X ≤ T. (A5)

If S ∧ T defined, then S ∧ T ≤ S and S ∧ T ≤ T . (A6)

If S ∧ T defined, then ∀X ∈ S : X ≤ S and X ≤ T =⇒ X ≤ S ∧ T . (A7)

When a specification theory supports quotient as well as conjunction, then
we call it a complete specification theory.

Example 1. As our running example we revisit the contract framework of Ben-
veniste et al. [10], for two reasons: first, it uses a simple trace-based language to
represent behavior of components, and specification operators boil down to sim-
ple set operations which we believe helps to understand the abstract requirements
of specification theories; second, we will show that in fact our general construc-
tions applied to this trace-based specification theory exactly results in the contract
framework (in a simplified version) described in [10].

In this simple theory, a global set P of ports is assumed over which components
can communicate by reading and writing port values. The class of specifications
consists of all (possibly empty) subsets of R(P) which is the set of all runs over
P where each run assigns a history of values to the ports in P. For example, a
run could be a function ρ : R≥0 → (P → V) from the time domain R≥0 to a
valuation P→ V of the ports, for some value set V.

In this setting, refinement is simply defined by set inclusion, composition
and conjunction is intersection (they are the same since we are dealing with
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a single global signature). Note that conjunction is total, as the empty set is
also a specification. For any two specifications T and S, the dual operation to
composition, quotient, is defined by T/S =def T ∪¬S, where ¬A =def R(P) \A.
Notice that indeed quotient is the maximal specification X such that S composed
with X refines T , i.e. S ∩X ⊆ T .

In the following we will see that if we apply the general constructions of our
contract framework to the trace-based case we will obtain the contract framework
of Benveniste et al. [10].

3 Building a Contract Framework

For the development of our abstract contract framework, we assume to be given
a specification theory (S ,⊗,≤) as defined in the previous section.

3.1 Contracts and Their Semantics

On top of the specification theory we define a notion of a contract which explicitly
distinguishes between assumption and guarantee specifications.

Definition 1. A contract is a pair (A,G) where A,G ∈ S are two specifica-
tions.

In a contract (A,G), the specification A expresses the assumption on the envi-
ronment of the component, whereas the specificationG describes the guarantee of
any component implementation to the environment given that the environment
respects the assumption A. For the definition of implementation correctness,
we use a notion of relativized refinement which is derived from the refinement
relation of the underlying specification theory.

Definition 2. Relativized refinement is the ternary relation in S × S × S
defined as follows: for all S,E, T ∈ S ,

S ≤E T if and only if ∀E′ ∈ S : E′ ≤ E =⇒ S ⊗ E′ ≤ T ⊗ E′.

S ≤E T intuitively means that S refines T if both are put in any context E′

that refines E; in particular, S ⊗ E ≤ T ⊗ E. The following lemma summarizes
properties of relativized refinement that are easy consequences of the definition.

Lemma 1. Relativized refinement is a preorder, and for all S,E,E′, T ∈ S ,
whenever S ≤E T and E′ ≤ E then S ≤E′ T .

The implementation semantics of a contract (A,G) is given by the set of all
specifications that satisfy the contract guarantee G under the assumption A:

JCKimpl = {I ∈ S | I ≤A G}.

This is a significant generalization of pure specification theories where it is usu-
ally assumed that implementations must literally satisfy the specification. The
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environment semantics of the contract (A,G) consists of all (environment) spec-
ifications for (or users of) the component satisfying the assumption A of the
contract:

JCKenv = {E ∈ S | E ≤ A}.

In summary, the semantics of a contract is given by both implementation se-
mantics and environment semantics. Two contracts are semantically equivalent,
if they have the same (implementation and environment) semantics.

Example 2. In our trace-based example the relativized refinement S ≤E T can
be easily shown to be equivalent to S∩E ⊆ T ; note that all specifications describe
sets of runs over the same global set of ports P.

Our first result is a direct consequence of the definition of a contract and
contract semantics: Whenever one has a correct environment and a correct im-
plementation of a contract, then their composition is a refinement of the com-
position of assumption and guarantee of the contract.

Theorem 1. Let C = (A,G) be a contract. For all E, I ∈ S , if E ∈ JCKenv
and I ∈ JCKimpl then E ⊗ I ≤ A⊗G.

Proof. We have E ≤ A and I ≤A G. The latter implies that A ⊗ I ≤ A ⊗ G.
From compositionality of refinement it follows that E ⊗ I ≤ A ⊗ I ≤ A ⊗ G,
hence by transitivity E ⊗ I ≤ A⊗G. ut

The implementation semantics of a contract in general depends on both the
assumption A and the guarantee G. However, if the implementation semantics
of (A,G) is independent of the assumption A, we say that the contract (A,G)
is in normal form.

Definition 3. A contract C = (A,G) is in normal form if for all specifications
I ∈ S , I ≤A G if and only if I ≤ G.

It may be the case that a contract (A,G) can by transformed into a semanti-
cally equivalent contract (A,Gnf ) in normal form by weakening of G to Gnf . In
the examples considered here the underlying specification theories are powerful
enough to allow such a weakening for any contract (A,G).

Example 3. For a contract (A,G) in our trace-based example, a semantically
equivalent contract in normal form (see [10]) is given by (A,G ∪ ¬A). It is
indeed in normal form according to our definition since for any specification I,
I ∩A ⊆ G if and only if I ⊆ G ∪ ¬A.

3.2 Refinement of Contracts

Next, we turn to the question how contracts can be refined. We follow here
a standard approach inspired by notions of behavioral subtyping [28] that a
contract C ′ refines another contract C if C ′ admits less implementations than
C, but more legal environments than C.
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Definition 4. Let C and C ′ be two contracts. The contract C ′ refines the con-
tract C (is stronger than C), written C ′ � C, if JC ′Kimpl ⊆ JCKimpl and JC ′Kenv ⊇
JCKenv.

The refinement relation between contracts is reflexive and transitive. Obvi-
ously, two contracts C, C ′ are semantically equivalent if and only if C ′ � C
and C � C ′. The following theorem characterizes contract refinement by contra-
/covariant (relativized) refinement of corresponding assumptions and guarantees.

Theorem 2. Let (A,G) and (A′, G′) be two contracts. Then (A′, G′) � (A,G)
if and only if A ≤ A′ and G′ ≤A G.

Proof. First we show that (A′, G′) � (A,G) implies A ≤ A′ and G′ ≤A G. A ∈
J(A,G)Kenv ⊆ J(A′, G′)Kenv implies A ≤ A′, and similarly, G′ ∈ J(A′, G′)Kimpl ⊆
J(A,G)Kimpl implies G′ ≤A G.

Second, for the other direction, we have to show that A ≤ A′ and G′ ≤A G
imply (A′, G′) � (A,G). Thus we have to show

(1) J(A′, G′)Kimpl ⊆ J(A,G)Kimpl,
(2) J(A,G)Kenv ⊆ J(A′, G′)Kenv.

To show (1), let I ∈ J(A′, G′)Kimpl, so I ≤A′ G′. Then also I ≤A G′. From
G′ ≤A G it follows that I ≤A G which is I ∈ J(A,G)Kimpl. To show (2), let
E ∈ J(A,G)Kenv, so E ≤ A. From A ≤ A′ and transitivity of refinement it
follows that E ≤ A′, and thus E ∈ J(A′, G′)Kenv. ut

An immediate consequence is that whenever two contracts (A,G), (A′, G′)
are in normal form, then (A′, G′) � (A,G) if and only if A ≤ A′ and G′ ≤ G.

Example 4. Refinement of contracts (A,G) by (A′, G′) is called dominance in
[10] (not to be mixed up with our notion of dominance later on), and is defined
by A ⊆ A′ and G′ ⊆ G which matches our definition of contract refinement
if contracts are in normal form. For the other cases we have achieved a more
thorough (weaker) definition of refinement which we would suggest to use for the
trace-based approach as well.

3.3 Composition of Contracts

When implementations I1 and I2 of individual components are composed, their
composition is only semantically meaningful if the contracts, say C1, C2, of the
single components fit together. This mean that there exists a ‘larger’ contract
C which subsumes C1 and C2 such that (1) the composition I1 ⊗ I2 is a correct
implementation of C, and (2) each correct environment of C controls the single
implementations in such a way that they mutually satisfy the assumptions of
the single contracts. Inspired by [31] we call such a contract C a dominating
contract for C1 and C2.

Definition 5. Let C, C1, and C2 be contracts. C dominates C1 and C2 if the
following two conditions are satisfied:
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1. Any composition of correct implementations of C1 and C2 results in a correct
implementation of the contract C:
– ∀I1 ∈ JC1Kimpl : ∀I2 ∈ JC2Kimpl : I1 ⊗ I2 ∈ JCKimpl

2. For any correct environment of the contract C1, the composition with a cor-
rect implementation of the C1 (C2) results in a correct environment of C2

(C1). Formally, for all E ∈ JCKenv,
– ∀I1 ∈ JC1Kimpl : E ⊗ I1 ∈ JC2Kenv,
– ∀I2 ∈ JC2Kimpl : E ⊗ I2 ∈ JC1Kenv.

We say that two contracts C1, C2 are dominatible if there exists a contract C
dominating C1, C2.

A composition of two contracts C1 and C2 is a strongest dominating contract
for C1 and C2.

Definition 6. A contract C is called contract composition of the contracts C1

and C2 if

1. C dominates C1 and C2,
2. for all contracts C ′, if C ′ dominates C1 and C2 then C � C ′.

Contract compositions, if they exist, are unique up to semantic equivalence
of contracts. We will now turn to the questions (1) whether two contracts are
dominatible and (2) whether the composition of two contracts exists and, if so,
whether it can be constructively defined. For this purpose we generally assume in
the following that any contract has a normal form, i.e. for any C = (A,G) there
exists a semantically equivalent contract Cnf = (Anf , Gnf ) which is in normal
form. Due to the definition of environment semantics, without loss of generality,
we can always assume in the following that Anf = A.

We consider first question (1), for which the following lemma is useful. It
follows directly from the definition of a dominating contract.

Lemma 2. Two contracts C1 and C2 are dominatible if and only if their normal
forms Cnf

1 and Cnf
2 are dominatible.

Proof. This simply follows from the fact that the definition of dominance of
two contracts C1 and C2 only relies on the semantics of them, and the fact
that normal forms Cnf

1 and Cnf
2 of C1 and C2, respectively, are semantically

equivalent. ut

The next theorem provides a characterization of dominatability. The idea is
that there must be an environment under which implementations of the single
contracts can be adapted to meet each others assumptions.

Theorem 3. Let C1 = (A1, G1) and C2 = (A2, G2) be two contracts with nor-
mal forms Cnf

1 = (A1, G
nf
1 ) and Cnf

2 = (A2, G
nf
2 ) respectively. C1 and C2 are

dominatible if and only if ∃E ∈ S : Gnf
1 ⊗ E ≤ A2 and Gnf

2 ⊗ E ≤ A1.
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Proof. By Lemma 2, we can show the equivalence for contracts in normal form.
First, assume that Cnf

1 and Cnf
2 are dominatible, say by a contract C = (A,G).

Then Gnf
1 ∈ JCnf

1 Kimpl and Gnf
2 ∈ JCnf

2 Kimpl and A ∈ JCKenv, hence by the
conditions of dominance, we get that Gnf

1 ⊗A ≤ A2 and Gnf
2 ⊗A ≤ A1. Second,

for the other direction, we can assume that there is a specification E such that
Gnf

1 ⊗E ≤ A2 andGnf
2 ⊗E ≤ A1. But then the contract (E,Gnf

1 ⊗G
nf
2 ) dominates

Cnf
1 and Cnf

2 . ut

We now turn to question (2) from above. For this we assume from now
on a complete specification theory (recall that such a theory has quotient and
conjunction) over which contracts are constructed.

Definition 7. Let C1 = (A1, G1) and C2 = (A2, G2) be two contracts with
normal forms Cnf

1 = (A1, G
nf
1 ) and Cnf

2 = (A2, G
nf
2 ) respectively. C1 � C2 is

defined if and only if C1 and C2 are dominatible and then

C1 � C2 =def ((A1/G
nf
2 ) ∧ (A2/G

nf
1 ), Gnf

1 ⊗G
nf
2 ).

Note that, by Lemma 2, C1 � C2 is semantically equivalent to Cnf
1 � C

nf
2 .

The next lemma shows that C1 � C2 is indeed well-defined.

Lemma 3. Let C1 and C2 be two contracts with normal forms as in Def. 7.
(A1/G

nf
2 ) ∧ (A2/G

nf
1 ) is defined if and only if ∃E ∈ S : Gnf

1 ⊗ E ≤ A2 and
Gnf

2 ⊗ E ≤ A1, if and only if C1 and C2 are dominatible.

Proof. We only need to show that (A1/G
nf
2 ) ∧ (A2/G

nf
1 ) is defined if and only

if ∃E ∈ S : Gnf
1 ⊗ E ≤ A2, the rest follows from Theorem 3. For this proof, we

basically use the assumptions on the specification operators as listed in Sect. 2.
(A1/G

nf
2 ) ∧ (A2/G

nf
1 ) is defined if and only if there exists X such that X ≤

(A1/G
nf
2 ) and X ≤ (A2/G

nf
1 ) and both quotients involved are defined. This

is equivalent to the fact that there exists X such that Gnf
2 ⊗ X ≤ A1 and

Gnf
1 ⊗X ≤ A2. ut

The next theorem answers question (2) from above.

Theorem 4. If the contracts C1 and C2 are dominatible, then C1 � C2 is (up
to semantic equivalence) the composition of C1 and C2.

Proof. By the previous Lemma 3,

C1 � C2 = ((A1/G
nf
2 ) ∧ (A2/G

nf
1 ), Gnf

1 ⊗G
nf
2 )

is indeed defined.
We first show that C1�C2 dominates C1 and C2. The first condition simply

follows from compositionality of refinement. For the second condition, we have to
consider some E such that E ≤ (A1/G

nf
2 )∧ (A2/G

nf
1 ). It follows that Gnf

2 ⊗E ≤
A1 and Gnf

1 ⊗E ≤ A2. Then the second condition of dominance is satisfied, since
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for any I1 ≤ Gnf
1 , I2 ≤ Gnf

2 , have that I2 ⊗ E ≤ A1 and I1 ⊗ E ≤ A2 which
follows again from compositionality and transitivity of refinement.

Second, we have to show that C1 � C2 is the strongest dominating contract
of C1 and C2. Assume C ′ = (A′, G′) another dominating contract of C1 and C2.
We know A′ ∈ JC ′Kenv, hence by definition of dominance, we can conclude that
Gnf

2 ⊗ A′ ≤ A1 and Gnf
1 ⊗ A′ ≤ A2 which is equivalent to A′ ≤ (A1/G

nf
2 ) ∧

(A2/G
nf
1 ), thus A′ ∈ JC1 � C2Kenv. If I ∈ JC1 � C2Kimpl, then I ≤A1/G

nf
2 ∧A2/G

nf
1

Gnf
1 ⊗ G

nf
2 . Then we can infer that I ≤A′ Gnf

1 ⊗ G
nf
2 . By dominance we know

that Gnf
1 ⊗ G

nf
2 ∈ JC ′Kimpl which is Gnf

1 ⊗ G
nf
2 ≤A′ G′, hence by transitivity

I ≤A′ G′ which is I ∈ JC ′Kimpl. ut

The next statements deal with the relationship between contract composi-
tion and contract refinement. First, dominance is preserved under refinement of
individual contracts.

Theorem 5. Let C1, C
′
1, C2, C

′
2, C be contracts such that C ′1 � C1 and C ′2 � C2.

If C dominates C1 and C2, then C dominates also C ′1 and C ′2.

Proof. This theorem follows from the semantic definition of contract refinement
and the fact that dominance of two contracts C1 and C2 is based on the semantics
of the individual contracts in such a way that by replacing C1 with C ′1 and C2

with C ′2 does not require to show more. Formally, we have JC ′iKimpl ⊆ JC ′iKimpl

and JC ′iKenv ⊇ JCiKenv, for i = 1, 2. Observing the conditions of dominance,
we can see that we can replace any occurrence of JC ′iKimpl by JC ′iKimpl without
changing the satisfaction of the statements, and similar for the environment
semantics. ut

Second, contract refinement is preserved under contract composition, thus
our contract framework satisfies itself the requirements of a specification theory
of Sect. 2 if we admit partial composition (which has been disregarded in Sect. 2
just for reasons of simplicity).

Theorem 6. Let C1, C2, D1, D2 be contracts such that C1 and C2 are dominat-
ible. If D1 � C1 and D2 � C2 then Dnf

1 �D
nf
2 � C

nf
1 � C

nf
2 .

Proof. In this proof, we omit the superscript nf for the guarantees to improve
readability.

Let E ∈ JC1 � C2Kenv, hence E ≤ (A1/G2) ∧ (A2/G1). From the contract
refinement of the individual contracts we can conclude that A1 ≤ A′1, A2 ≤ A′2,
G′1 ≤ G1 and G′2 ≤ G2. Applying the properties of conjunction, quotient, and
compositionality of refinement and composition (see Sect. 2) we can infer that
(A1/G2) ∧ (A2/G1) ≤ (A′1/G

′
2) ∧ (A′2/G

′
1), hence E ∈ JC ′1 � C ′2Kenv.

Let I ∈ JC ′1 � C ′2Kimpl, thus

I ≤(A′
1/G

′
2)∧(A′

2/G
′
1)
G′1 ⊗G′2.

Since G′1 ⊗G′2 ≤ G1 ⊗G2 we get that

I ≤(A′
1/G

′
2)∧(A′

2/G
′
1)
G1 ⊗G2
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and finally we can replace the context by the refined one (A1/G2) ∧ (A2/G1),
thus arriving at I ∈ JC1 � C2Kimpl. ut

Example 5. In [10], contract composition is defined by

(A1, G1)� (A2, G2) = ((A1 ∩A2) ∪ ¬(G1 ∩G2), G1 ∩G2).

Note that the assumption can be reformulated to (A1∪¬G1∪¬G2)∩ (A2∪¬G1∪
¬G2), and since the contracts (A1, G1) and (A2, G2) are in normal form we have
A1 ∪ ¬G1 = A1 and A2 ∪ ¬G2 = A2. Hence we get (A1 ∪ ¬G2) ∩ (A2 ∪ ¬G1) as
assumption which, all in all, exactly matches our definition of � for contracts.

4 Modal Contracts

To illustrate our general constructions for moving from a specification theory
to contracts, we consider a well-established specification theory based on modal
transition systems that has gained considerable interest in recent years, as it
nicely supports loose specifications together with stepwise refinement. Modal
transition systems [27] are labeled transition systems with two types of transition
relations: may transitions model optional (allowed) behavior that need not be
implemented in a refinement, and must transitions model required behavior.
In [32] a complete specification theory for modal specifications (which correspond
to deterministic modal transition systems) has been defined, which allows us to
get modal contracts for free. Modal contracts have been defined already in [19,
31] and we will comment on the differences in the next section.

We briefly sketch the specification theory for modal specifications, for a thor-
ough introduction see [32]. A modal specification (MS) is formally defined as a
tuple S = (St , s0, Σ, 99K,−→) where St is the set of states, s0 ∈ St is the ini-
tial state, Σ is the set of actions, and 99K,−→ ⊆ St × Σ × St are the may
and must transition relation, respectively, such that −→ ⊆ 99K. Any MS is re-
quired to be deterministic: for all states s, s′, s′′ ∈ St and all actions α ∈ Σ, if
(s, α, s′), (s, α, s′′) ∈ 99K then s′ = s′′. In the following, we usually write s

α
99K s′

for (s, α, s′) ∈ 99K, and similarly for must transitions.
We consider a simple component-based system consisting of two components:

component Server with contract (AServer , GServer ) over the action set ΣServer =
{msg , secret msg , auth, send} (i.e. both AServer , GServer have the set of actions
ΣServer ), and a component User with contract (AUser , GUser ) over set of actions
ΣUser = {auth, send}. The two contracts can be seen in Fig. 1(a)–(d). May
transitions are drawn with dashed arrows, and must transitions with solid arrows.
May transitions underlying must transitions are not drawn for simplicity.

The contract (AServer , GServer ) intuitively expresses the following protocol:
First, the environment can issue a message (msg) that is then sent by the server
to the user (send). Second, the environment can also issue a secret message
(secret msg), that is only sent to the user if the server receives an authentication
code from the user (auth). More precisely, the assumption AServer formulates
the following requirements on the environment:
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– The authentication code may always be received.
– New messages (secret or not) are only allowed to be sent in the initial state.
– Once a message is received, the environment must be ready to accept the

sending of the server.
– Once a secret message is received, the authentication code must be received.

The contract (AUser , GUser ) for the user component is simpler: The guarantee is
that the messages can always be received from the server, however, the sending
of the authentication code may not be possible. The assumption AUser always
allows the actions auth and send, without any specific order.

(a) AUser (b) GUser (c) AServer

(d) GServer (e) Gnf
Server

(f) ASystem (g) GSystem

Fig. 1. Modal contracts for a simple message system.

Before we discuss how these two modal contracts are composed, we first have
to discuss the underlying specification theory, so refinement together with all the
specification operators for MS. Refinement of MS is defined as follows: an MS
S refines another MS T , written S ≤m T , if they have the same set of actions
Σ and if there exists a relation R ⊆ StS × StT such that (s0, t0) ∈ R and for
all (s, t) ∈ R and all α ∈ Σ, whenever s

α
99K s′ then there exists t

α
99K t′ and

(s′, t′) ∈ R, and whenever t α−→ t′ then there exists s α−→ s′ and (s′, t′) ∈ R. For
instance, in Fig. 1, GUser is a refinement of AUser , i.e. GUser ≤m AUser .

The specification operators composition, quotient and conjunction are de-
scribed hereafter and we assume that the involved MS always have the same set
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⊗ s2
α−→ s′2 s2

α
99K s′2

s1
α−→ s′1 (s1, s2)

α−→ (s′1, s
′
2) (s1, s2)

α
99K (s′1, s

′
2)

s1
α
99K s′1 (s1, s2)

α
99K (s′1, s

′
2) (s1, s2)

α
99K (s′1, s

′
2)

/ s2
α−→ s′2 s2

α
99K s′2, s2 6

α−→ s2 6
α
99K

s1
α−→ s′1 (s1, s2)

α−→ (s′1, s
′
2) (s1, s2) ∈  (s1, s2) ∈  

s1
α
99K s′1 (s1, s2)

α
99K (s′1, s

′
2) (s1, s2)

α
99K (s′1, s

′
2) (s1, s2)

α
99K u

s1 6
α
99K (s1, s2)

α
99K u

∧ s2
α−→ s′2 s2

α
99K s′2 s2 6

α
99K

s1
α−→ s′1 (s1, s2)

α−→ (s′1, s
′
2) (s1, s2)

α−→ (s′1, s
′
2) (s1, s2) ∈  

s1
α
99K s′1 (s1, s2)

α−→ (s′1, s
′
2) (s1, s2)

α
99K (s′1, s

′
2)

s1 6
α
99K (s1, s2) ∈  

Fig. 2. Transition relations for the specification operators ⊗, /, ∧ on MS.

of actions. Composition of MS (⊗) is defined by synchronizing on shared actions.
The rules of ⊗ for MS can be seen in Fig. 2; note that only the synchronization
of two must transition yields a must transition, in all other cases it yields a may
transition.6

The two missing operators quotient and conjunction need some more involved
definition, because both are partial operators. During quotient as well as con-
junction, inconsistencies may arise, however, that does not mean that the whole
result is inconsistent; we instead apply a pruning operator ρ to remove all those
inconsistent states. More precisely, given an MS S with a set of inconsistent
states  ⊆ St , the pruned version ρ(S) gives the largest MS which refines S but
no state of ρ(S) is related (in the sense of refinement) to an inconsistent state
in  . The formal definition of pruning can be found in [32].

With pruning at hand, we can define quotient S1/S2 (as the dual operator
to composition) and conjunction S1 ∧ S2, as shown in Fig. 2. The set  models
in both cases the set of inconsistent states, and in the definition of quotient, the
state u is a new universal state in which, for every action, there is a looping may
transition to the same state u.

For writing down contracts based on MS, it is useful to be able to handle
dissimilar set of actions when applying specification operators, see [32]. Given
an MS S over the set of actions Σ, and a larger set of actions Σ′ ⊇ Σ,

– the strong extension of S, written S↑Σ′ , adds for each new action a ∈ Σ′ \Σ
a may and a must loop with that action to all states in S.

– Similar, the weak extension of S, written S⇑Σ′ , adds for each new action
(only) a may loop (for all new actions) to all states.

6 The notation s 6 α99K means that there does not exist s′ such that s
α
99K s′, and similar

for must transitions.
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The specification operators are, for the general case, extended to MS with dis-
similar sets of actions as follows. If S and T are two MS with sets of actions ΣS
and ΣT , respectively, and Σ = ΣS ∪ ΣT , then S ⊗ T is defined by S↑Σ ⊗ T↑Σ ,
S ∧ T is defined by S⇑Σ ∧ T⇑Σ , and T/S is defined by T⇑Σ/S↑Σ .

Relativized refinement (see Def. 2), induced by modal refinement, can be
shown to be equivalent with the following direct definition: If S, T,E are MS
over the same set of actions Σ, then S ≤E T if and only if there exists a
relation R ⊆ StS × StE × StT such that (s0, e0, t0) ∈ R, and for all (s, e, t) ∈ R,
all α ∈ Σ,

1. if s
α
99K s′ and e

α
99K e′ then there exists t

α
99K t′ such that (s′, e′, t′) ∈ R,

2. if t α−→ t′ and e
α
99K e′ then there exists s α−→ s′ such that (s′, e′, t′) ∈ R.

Every modal contract can be transformed to an equivalent contract in normal
form, by weakening the guarantee by the assumption. It turns out that there is
a direct definition of a so-called weakening operator, that exactly does what we
are looking for: I ≤A G if and only if I ≤ A.G, where A.G is the weakening of
G by A. Formally, if A and G are two MS over the same set of actions Σ, then
A.G is defined to be the MS ((StA×StG)∪{u}, (a0, g0), Σ, 99K,−→) where u is
a fresh state (the universal state), and where the transition relations are defined
as shown in the table in Fig. 3.

. g
α−→ g′ g

α
99K g′ g 6 α99K

a
α
99K a′ (a, g)

α−→ (a′, g′) (a, g)
α
99K (a′, g′)

a 6 α99K (a, g)
α
99K u (a, g)

α
99K u (a, g)

α
99K u

Fig. 3. Rules for weakening (.).

Coming back to the example, the contract (AServer , GServer ) is obviously not
in normal form, but with the weakening operator at hand, we can transform
the contract to the semantically equivalent contract (AServer , G

nf
Server ) where

Gnf
Server =def AServer .GServer , see Fig. 1(e). As one can see, the normalized con-

tract has lots of additional transitions, and it is often better to draw non-normal
form contracts which are usually considerably smaller. Note that (AUser , GUser )
is already in normal form.

We can finally compose our two contracts. As the watchful reader might
have already noticed, AServer is expecting the user to answer in any case with
the authentication code once a secret message is received. But GUser does not
provide the authentication code because it may be the case that he/she is not
aware of the code. Thus we have an inconsistency arising here, and as a re-
sult of applying quotient and conjunction while building the new (weakest) as-
sumption ASystem = (AServer/GUser ) ∧ (AUser/G

nf
Server ), one can see in Fig. 1

that – as expected – the environment is not allowed to issue a secret message
anymore. The resulting guarantee GSystem of the composed contract has been
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slightly simplified by leaving out some may transitions to a universal state (as
in GServer ) but the overall contract (ASystem , GSystem) is obviously semantically
equivalent to (ASystem , G

nf
Server⊗GUser ).7 Our theory in Sect. 3 now tells us that

(ASystem , GSystem) is indeed the strongest contract that dominates the contract
of the server and the user.

5 Conclusion, Related Work, and Future Work

This paper studies the relationship between specifications of component behav-
iors and contracts. The general framework for contracts is inspired by the work
of Benveniste et al. [10]. They have chosen a trace-based approach to represent
interfaces which (as we have shown) is a specification theory and an instance
of our proposed abstract contract framework. The idea to equip a specification
with implementation and environment semantics has been used by the authors
already in [7] where UML protocol state machines were considered as specifica-
tions of component interfaces.

Modal contracts have already been introduced and investigated in several
previous works, including [19, 31]. Raclet and Goessler [19] propose an imple-
mentation semantics that is slightly different to ours. In their paper, an imple-
mentation I satisfies a contract (A,G) if A∧ I ≤m G whenever A∧ I is defined,
which is in fact equivalent to our definition of contract satisfaction, but only for
implementations (that are modal specifications where the must and may transi-
tion relations coincide). Our satisfaction relation is more powerful as it works for
arbitrary modal specifications. Refinement and composition is only syntactically
defined, without any semantic considerations as we do it in this paper, hence they
lack the universal property for contract compositions. In [31], Quinton and Graf
define an abstract framework of contracts which however tends to be technically
overloaded due to the integration of complex composition operators. Besides this
difference, the satisfaction relation of contracts is the same as in our work. Our
notion of (semantic) dominance is inspired by their (syntactical) definition, but
still their work lacks of a careful discussion about dominance and the universal
property of contract composition. In summary, in comparison to both works [19,
31], we consider our work as “more semantical” as implementation and environ-
ment semantics of contracts are carefully taken into account for the definition of
contracts and contract operators.

There are various directions for future work. As an example, we have simpli-
fied our setup in this work by ignoring compatibility and consistency issues be-
tween interfaces, although we are convinced that they can be integrated without
problems. Another major objective is to implement our modal contract theory
in the MIO Workbench [9].

7 This “inverse” operation to normalizing contracts is in fact useful when drawing
larger specifications, and can be automatically applied to a (composed) contract to
reduce its number of states and transitions while remaining semantically equivalent.
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