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Abstract. Formal methods (FM) are recognized by their characteristics of in-
creasing software quality through the use for formal specifications. On the
other hand, Model-Driven Engineering (MDE) is a software development ap-
proach that transforms abstract models into software code among others arti-
facts. However, FM faces difficulties of large-scale adoption in industry due
to difficulties developers face when deal with inherent complexity of FM. In
this direction, MDE can raise the level of abstraction for FM. Models can be
used to increase the level of abstraction in formal specifications, shifting formal
notation comprehension to models realizing. An association of FM and MDE
creates a lightweight model-driven formal method and improves communica-
tion among developers. Such approach provides communication alternatives
for stakeholders, and automates verification of formal models, minimizing time
and costs. However, tools, approaches, and methods to integrate MDE and FM
have not emerged. Thus, as an effort towards a tool support for integrating
both paradigms, this paper presents an architectural proposal for MODEFS, a
lightweight MOdel-Driven Environment for Formal Specification.

1. Introduction

Formal Methods (FM) are being increasingly widespread in Software Engineering
[Nakajima 1999]. They enhance safety, reliability, and quality of software systems. FM
provide formal software specifications, and a set of tools to validate them. However, un-
derstand those specificiations is still a complex and time consuming task that can make
it difficult to be largely adopted by industry. Model Finders as Z31, Model Provers as
Darwin [Baumgartner et al. 2004], and Model Checkers as NuSVM [Cimatti et al. 1999]
are samples of well-established tools that can be used in a software development process
that adopts FM.

On the other hand, Model-Driven Engineering (MDE) is a development approach
that relies on high level models to increase the level of abstraction in software production.
Therefore, MDE can be associated to FM. These models can raise abstraction in formal
specification representations, and automatically transform them into code. Additionally,
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traditional FM tools for formal specification and formal validation can be associated to
this process to create a lightweight model-driven formal method. However, an integrated
tool suite still lacks to support such association.

This paper presents MODEFS, a lightweight MOdel-Driven Environment for For-
mal Specification which composes and integrates FM tools, methods, repositories, and
Domain-Specific Languages to create an environment for automatic generation of soft-
ware based on MDE and FM. The main contribution of this paper is to provide a public
architectural proposal of such environment, highlighting its components and how they
interoperate. A specific viewpoint is adopted to provide evidences to our findings. Addi-
tionally, we built a prototype and a proof of concept implemented as an Eclipse2 plug-in.

The paper is structured as follows: Section 2 brings background; Section 3
presents the architecture; Section 4 presents the architecture and design of the Lexical,
Syntactic and Semantic Analyser and of a Model Finder; Section 5 discusses related
work; Section 6 presents conclusions and future works; and Section 7 presents some
Acknowledgements.

2. Model-Driven Engineering and Formal Methods

Software development techniques have been improved. However, concerns about sys-
tems development, modeling, reuse, productivity, maintenance, documentation, valida-
tion, optimization, portability and interoperability are still recurrent. MDE aims at solv-
ing these problems [Kleppe et al. 2003, da Silva et al. 2013]. It shifts focus of modern
development methodologies from implementation technology to a modeling perspective
[Costa et al. 2010].

In MDE, models are first-class citizen [Sendall and Kozaczynski 2003], and trans-
formation mechanisms are used to generate code from abstract models. A model is an ab-
stract description or specification of a system. It is usually represented as a combination of
graphical (Domain-Specific Modeling Languages-DSML) and textual elements (Domain-
Specific Languages-DSL). Traditionally, models are built in the design step, or even in the
earlier stages of the software development life cycle. However, as development proceeds,
models become inconsistent and lose their value due to the fact that changes are often
made directly in code. Moreover, to create and maintain updated documentation, man-
ual tasks are usually not much appreciated by developers. Thus, models quickly become
inconsistent and incapable of representing the system reality [Lucrédio 2009].

Domain-Specific Languages (DSL) are one of the perspectives of MDE imple-
mentation. A DSL is a small language, usually declarative, focused on a particular prob-
lem/domain [Deursen et al. 2000]. DSL are quite popular and traditional. Remarkable
examples include APT language for numerical control (1957-58), and the most famous
BNF, or Backus-Naur Form language for specifying grammars (1959). Since then, sev-
eral languages have been proposed, developed and used, what makes the literature in this
area very rich [Deursen et al. 2000, Mernik et al. 2005, da Silva et al. 2013]. A DSL can
be textual (DSL - allowing to specify programs) or visual (DSML - allowing to specify
diagrams). Language definition usually requires a metamodel. A metamodel captures the
main concepts of a specific domain.

2http://www.eclipse.org/



On the other hand, FM are recognized as a solution for problems in software
engineering concerning quality assurance, traceability, correctness, consistency, and oth-
ers [da Silva et al. 2013]. They have been used to construct models without ambiguity
and inconsistencies [Valles-Barajas 2012]. Adoption of FM requires lightweight process
[Agerholm and Larsen 1999, Breen 2005]. Software engineering environments should
support FM with quite simple mathematical notations to support, for example, require-
ments specification [Breen 2005].

Model Finders are a class of software used in FM approaches. They verify if a set
of logical statements is consistent, i.e, if they are not contradictory between each other.
They can be useful, for example, to check consistency in requirements when they are
specified in a formal notation. When statements are logically consistent, they are called
satisfiable or SAT. Z3 [De Moura and Bjørner 2008] is an example of Model Finder de-
veloped by Microsoft Research in USA (An on-line version is available3). Essentially,
a Model Finder can work under different theories. Z3 is based on satisfiability mod-
ule theory (SMT). Solvers for SMTs are concerned with the problem of determining the
satisfiability of a set of formulas in some first order theory [Reynolds et al. 2013]. Oth-
ers remarkable notations in FM include Model Checkers and Model Provers. ‘Model
Prover’ is a term used for tools that add theorem proving techniques to the model checking
procedures. ‘Model Checking’ usually assumes that such a proof is done automatically
[Berezin 2015]. A model proving usually involves a model checking. A model check-
ing can be performed by a model finder, which finds a combination of values assigned to
propositions that make the conjunction of them true. Thus, the model is checked when a
model finder finds a satisfiable model.

FM and Model-Driven do not often appear in the same sentence
[Graciano Neto 2014]. MDE could be applied to FM and vice versa
[Gargantini et al. 2010], but there are not many tools that implement these ideas,
what can be critical since the adoption of a technology uses to depend on available tools
[Hutchinson et al. 2011]. Therefore, the subject should be better explored. Software are
represented as models, but there is no guarantees about its correctness, conformance,
quality or rigor [Graciano Neto 2014]. On the other hand, applying formal specification
and validation is worth since FM allow a software engineer to create consistent, and
unambiguous specification. However, FM are not enoughly abstract as the models
used in software engineering industry. Thus, an association among these concepts and
an associated tool support can bridge a gap on both sides, exploring their inherent
complementary weaknesses.

3. A lightweight MOdel-Driven Environment for Formal Specification
(MODEFS)

MODEFS is a lightweight environment proposal to support formal specification and val-
idation using models in high level of abstraction. The intention is bridging the gap be-
tween formal specifications and code through model transformations. Figure 1 presents
the MODEFS architecture under a specific viewpoint, depicting the structural (develop-
ment) view proposed by Kruchten [Kruchten 1995].

3http://z3.codeplex.com/



Figure 1. MODEFS: structural view.

The proposed architecture is composed by six modules: Semantic Repository,
Reuse Repository, Formal Software Requirements Specification (FSRS) Module,
Models Manager Module, Model Prover, and Model Transformer, as depicted in Fig-
ure 1. This figure shows that the component located in left side of the arrow uses services
provided by that located in the right side of the arrow. Additionally, bold arrows indicates
that the element at left side is/delivers an input for the another located in right side of the
arrow.

Two repositories are used. Semantic Repository stores language structures to sup-
port the automatic identification of requirements. The idea is converting requirements to
logic propositions and then validate these requirenments by a Model Prover, such as Z3.
Structured and delimited portuguese can be used to specify requirements. An electronic
dictionary as WordNet [Gomes et al. 2013] automatically classifies words according to its
potential grammar class and subsequently identifying potential logic prepositions struc-
tured in a form Subject Verb Predicate.

FSRS module uses services provided by the repositories. It is responsible for sup-
porting the software requirements specification. An environment is provided to specify
software requirements in a structured way. After specification, services are provided by
the Semantic Repository to classify identified words. Those services make it possible to
identify phrases that are offered to users in such a way they could confirm if it is really a
potential logic preposition that will compose the formal specification.

Model Prover module embodies two integrated tools: a Model Finder (such as Z3)
and a Model Checker (such as NuSMV). Model Finder solves the satisfability problem
to assure the set of propositions have logic values assigned to them in a way that the
conjunction between them are true. Model Checker is responsible to check consistency
between those logic prepositions elicited. Consistency, ambiguity, and redundancy are
automatically verified using a Model Checker.

Components will be used according to a restrict domain. For example, if a soft-



ware is being developed to a home security system, words as alarm, and invasion could
be associated to COTS (Commercial-of-the-shelf) components that could be composed in
a transformation process to generate a software product. Thus, the generated software has
a component-based architecture.

Models Manager Module manages models generated by Formal Software Re-
quirements Specification Module, as the formal software requirements specification and
other models derived from that one in a more concrete level. And finally, Model Trans-
former module holds a model transformer component which is used to automatically gen-
erate software from formal models.

Figure 2. Process proposed to develop software using MODEFS.

A process is proposed to use the tool according to its main modules, as depicted
in Figure 2:

1. Step 1: Software Requirements Specification (SRS) with textual requirements
specified in a structured portuguese was used as input to FSRS module. This mod-
ule automatically converts those textual requirements in logic propositions written
in an specific formal notation through the use of Semantic Repository. Such logic
propositions are validated about their consistency with the model finder;

2. Step 2: FSRS module originates a formal model as output if requirements are
compatible among themselves. Such a model is delivered as input for Model
Manager module;

3. Step 3: Model Manager submits such model to a model transformer. Model trans-
former converts that formal model in software properly using Reuse Repository to
add COTS elements to the structure.

4. Proof of Concept for a Module of the Architecture
A Model Finder was implemented as a proof of concept. It is a part of the Model Prover
module, and integrates the MODEFS environment. The Model Finder engineering was
divided in two phases: analyser engineering (the component responsible for lexical, syn-
tactic and semantic analysis), and the SMT solver component engineering.

4.1. A Model Prover Component

MDE techniques and tool were used to support the Model Prover engineering. Xtext4 was
used as an MDE tool to automatically generate an analyser for our model finder. Xtext
is a model-driven framework for developing programming languages and DSL. We also
implemented a semantic checker.

4http://www.eclipse.org/Xtext/



4.2. SMT Solver Component
A Model Finder was implemented as part of the Model Prover to provide Model Checking
functionalities. Our Model Finder works under SMT theory.

SMT Solver follows the classic Tableau approach for satisfiability checking
[Keller and Heymans 2008]. A Tableau can be represented as a tree data structure. The
root stores a conjunction of axioms that have their satisfiability tested. There are specific
rules of expanding the tree. In our Tableau, the axioms are expressed in First Order Logic
and is restricted to logic formulas. We do not solve mathematical problems as Z3 does.
A set of deduction rules is used to construct the tableau. During the solution of Tableau,
priority is given to the solution of axioms with “implies” and “and” operations. “Or” op-
erations are solved as late as possible since they generate the opening of Tableau branches
and branches can open indefinitely. If the opening is unavoidable, it is done.

4.3. Example
This section brings a practical illustration of how MODEFS is supposed to be used and
applied using the process we detailed in the last section. Our practical example illustrates
some requirements and logic propositions related to a Home Security System.

Following the process proposed to use MODEFS, a meeting with the customer
happens. Requirements elicitation activities are performed, accomplishing Step 1. An
SRS is produced as the output of this activity. After this step, the Formal Software Re-
quirements Specification (FSRS) module is used to manage the requirements that were
collected. A model based on IEEE 830 standard [IEEE 1998] is used to document some
requirements. An excerpt of such a document is presented in Table 1.

An alarm system works as follows: if it is turned on and a invasion hap-
pens, then triggers the alarm; if it is turned on and a invasion does not
happen, no alarm. If it is off, regardless of there is or not an invasion,
alarm is not triggered.

Table 1. An excerpt of a Software Requirements Speficication.

In Step 2, using knowledge extraction techniques, FSRS module extract logic
propositions from the SRS document supported by the Semantic Repository. Such repos-
itory is capable of identifying potential grammar classes, converting text in logic propo-
sitions. Propositions are aligned with the aforementioned format Subject Verb Predicate.
Predicate is not mandatory:

• p: alarm triggers.
• q: alarm is on.
• r: invasion happens.

One possible logic formula that could be extracted from that excerpt is the illus-
trated in following formula:

p↔ q ∧ r (1)

The user (software engineer) is required to choose between conditional or bicon-
ditional operators since the semantic influences the final result. In this case, biconditional



is ideal since the alarm must not be fired when the alarm is turned off or when a invasion
does not happen, as illustrated in Table 2.

p q r q ∧ r p↔ q ∧ r
T T T T T
T T F F F
T F T F F
T F F F F
F T T T F
F T F F T
F F T F T
F F F F T

Table 2. Truth-table for the presented formula.

Table 2 have true values represented by character T and false values represented by
character F. Only the first, sixth, seventh, and eighth lines are true. This have an specific
meaning. It can be read in the following way: the assignments of values to propositions
are true when: 1) alarm rings if it is on and invasion happens (p = T, q = T, r = T); 2)
alarm does not ring if it is on but an invasion does not happen (p = F, q = T, r = F); 3)
alarm does not ring if it is off (independently if there is an invasion or not - seventh and
eighth lines: p = F, q = F, r = T or F). This exactly represents the behavior we expect for
situations where the alarm is on and a invasion occurs. Other situations are consequences.

Logical treatment is done in the FSRSM. After that, the model is used as input
to the Model Prover where the consistency among propositions is checked. In our ex-
ample, we have only one proposition, but the work is designed to support a lot of them.
Consistency checking accomplishes Step 2.

Following the process, Model Manager Module uses the Model Transformer to
transform the model with other modules in a functional software, starting Step 3. Com-
ponents available in the Reuse Repository are used to compose the software product ar-
chitecture. The architecture is predefined (as components for an usual home security
system), and the components registered for this kind of software are available in the repos-
itory. Thus, the transformer can compose the software with quality assurance, since the
input model was validated and the software components are supposed to be tested in other
projects of the portfolio.

After that, the software product is complete and the customer can validate. The
cycle can be repeated again if requirements have been eventually misunderstood.

A first step towards the complete environment implementation was done. A part
of the Model Prover was implemented, and part of the generation used MDE paradigm.
Requirements granularity and conventions to document requirements to convert them in
logic propositions are not subject of this paper.

5. Related Work

Other remarkable initiatives to associate MDE and FM are available in literature. We
highlight two main tool proposals: Perfect Developer and Echo.



Perfect Developer5 is a software development tool for developing formal specifi-
cations and transforming them into code. The tool uses advanced automated reasoning
to discharge proof obligations without user intervention. Advanced mathematical knowl-
edge is not a pre-requisite, which means that any developer fluent in an object-oriented
language such as Java or C++ can be able to learn the notation. Perfect Developer is sim-
ilar to our proposal regarding the use of MDE in association with FM. However, in their
proposal, users must specify requirements using a DSL called Perfect. In our proposal,
we adopt structured portuguese, which is more abstract. Futhermore, we present flexible
process and architecture that any developer can use to build its own approach that can be
more aligned with its needs. The elements we presented are not rigid and unstead using
structured portuguese the developer could use, for example, english.

In parallel, Echo6 is a tool for model transformation based on the Alloy model
finder. It is also built over the Eclipse Modeling Framework (EMF). Echo is meta-model
independent, being able to process any meta-model specified in ECore and its respective
instances in XMI. Additional constraints, as well as operations, are specified by embed-
ding OCL in annotations, as prescribed by EMF. Inter-model consistency is specified by
the QVT7 Relations (QVT-R) transformation language. Echo works in a level similar to
Perfect Developer. In their tool, requirements must be directly specified in Alloy, what
is not trivial. Our proposal involves natural language, a human-readable abstraction that
becomes our proposal easier to use.

Furthermore, Miller et al. [Miller et al. 2010] also claims for a Model-Based ap-
proach for formal software engineering. They describe a translator framework developed
by Rockwell Collins and the University of Minnesota that allows them to automatically
translate from commercial modeling languages to a variety of model checkers and theo-
rem provers, validating the software code. Analogously to other proposals, they do not
work on automatic transformation of requirements to code, but from code to validated
code. Thus, our proposal is broader.

6. Conclusions and Future Work

This article presented an architectural proposal of an environment to support a lightweight
formal specification and validation for software based on MDE principles. The main
contribution against similar tools is proposing an automatic extraction of formal models
from a set of requirements specified in structured portuguese, a set that is not covered by
other proposals. Formality is provided by extracting logic propositions from a Software
Requirements Specification (SRS), transforming them in a textual formal model using
some type of formalism. Thus, formal specification must only be validated. Specification
effort remains at natural language level.

An Eclipse-based plugin was implemented as a prototype to perform model check-
ing of such a formal model with a SRS as a proof of concept. Requirements Engineering
is supported through the use of a controlled vocabulary to encompass linguistic equiva-
lences to support automatic transformation of structured language to a formal notation. A

5http://www.eschertech.com/products/perfect_developer.php
6https://github.com/haslab/echo
7http://www.omg.org/spec/QVT/



prototype of a Model Prover component was implemented as a proof of concept. Addi-
tional refinements are necessary for the plain working of such a Component.

As future works, we envision the use of complementary models such as Software
Requirements Specifications, UML class diagrams, use cases, and activity diagrams could
be adopted to SRS source model. Additionally, other functionalities specified at this ar-
chitectural proposal must be implemented to accomplish the whole established goal of
providing such an environment to support a lightweight model-driven formal method en-
gineering. Another future work can be increasing the scope of work to encompass other
types of logic. After all, propositional logic has limitations in semantics and expressive-
ness. Other formalisms can be adopted to increase expressiveness as First-Order Logic,
Modal Logic, and Temporal Logic.

Indeed, this is a first step towards effectively bringing formal methods (FM) to
software engineering tools reality. We believe that our contributions can foster the adop-
tion of FM since it makes it easy to use FM in a software specification and in automatic
generation of software from abstract models.
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