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Chapter 1

Introduction

Bio-inspired systems try to emulate the behavior of those systems that are found in

the nature. From this statement we could wonder why fishes have eyes. What do they

do with them? Which behaviors are being accomplished by means of the sense of

“looking at things”? It is obvious that image sensing helps living systems to interact

with their environment. Images are a rich source of information that can also be

exploited in non-favorable environments such as the underwater scenario.

When we try to emulate the sense of vision by means of a computer system, we

are entering the terrain of the Computer Vision field. Computer vision can be defined

as the process of extracting relevant information of the physical world from images,

using a computer to obtain this information [Mar82]. Indeed, this information can be

of different nature, going from measuring some statistical properties of an industrial

part to detecting possible difficulties in the surrounding area to allow autonomous

vehicle navigation.
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1.1 Underwater robotics

In the past years, the Unmanned Underwater Vehicles (UUVs) that have almost

always been used are the so-called Remotely Operated Vehicles (ROVs). That is, a

pilot/operator remotely controls the vehicle from a mother vessel. The connection

between the vessel and the robot could be an umbilical tether or an ultrasound link.

Both approaches have their advantages and drawbacks. While the umbilical provides

both control signals and power, it is affected by currents and difficults the vehicle

motion. On the other hand, ultrasound links can send the pertinent control signals and

are not affected by currents, but leave the robot on its own concerning the power

supply. This fact implies a reduction in the duration of the mission, limited by the

robot autonomy.

The second type of UUVs that are starting to appear in real missions are the

Autonomous Underwater Vehicles (AUVs). These submersibles take their own

decisions within the mission based on the readings of the on-board sensors and their

control architecture, without the need of a human operator. Currently, most AUVs

missions are limited to engineering demonstrations to prove new technologies and

perform simpler tasks than those performed by ROVs.

Typical missions for ROVs and AUVs include inspection of submersed structures,

sea-floor exploration, measurements within the water column, wreck discovery and

localization, pipe and cable inspection, etc. Independently of the mission, it is highly

important for all UUVs to incorporate the capability of positioning and localizing

themselves in the underwater environment. Once the positioning problem is solved,

the vehicle can perform navigation by means of achieving given positions through

the adequate path planning algorithms. These capabilities are not only necessary for

AUVs, but also for ROVs. Consider for example a typical survey mission, where the

vehicle has to follow a straight trajectory, or to keep station. The ROV operator

should constantly maneuver the vehicle with joysticks to perform these low-level

tasks. This is a very tedious operation, especially in presence of undersea currents,

and the success of the mission depends on the skills and experience of the operator to

control the vehicle. while the scientist provides mission-level directives to the pilot.

For this reason it is desirable that these low-level operations be performed directly by

the robot, allowing the operator to concentrate on the high-level tasks.
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1.2 Computer vision as a positioning tool

As already stated, all UUV missions require some method to sense vehicle position

and localization. Normally, most teleoperated vehicles incorporate a video camera to

provide a visual feedback to the robot operator. From this viewpoint, the idea of

using this sensor for positioning the vehicle is very attractive and cost-effective. The

following sections compare the different positioning sensors with computer vision.

1.2.1 Definition of the Positioning Problem

Let {B} be an earth fixed frame and {G} a robot-fixed frame. Solving the positioning

problem for an underwater vehicle in 6 degrees of freedom (DOF) means estimating

the position vector η=(x,y,z,φ,θ,ψ)T where x, y, z define the robot position with

respect to the earth fixed frame and φ, θ, ψ, are the rotation angles with respect to x,

y and z robot axis.

{E}

yE xE

zE

yG

zG

xG

Eη1=(x,y,z)T

φ

ψ

θ
{G}

{G}
Eη2=(φ,θ,ψ)T

Figure 1.1. Robot position and attitude.

1.2.2 Positioning sensors

It is possible to find a range of sensing technologies to provide the vehicle with

knowledge about its position: Doppler Velocity Log (DVL), Acoustic Transponder

Networks, Inertial Navigation Systems (INS) and Global Positioning System (GPS).

Those sensors are briefly analyzed below, paying special attention to the aspects of

accuracy, easy of use, limitations and cost.
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Compasses and Inclinometers: Compasses measure orientation with respect to the

Earth’s magnetic field. These sensors are inexpensive and drift-free, although

susceptible to local variations in the ambient magnetic field. When mounted

onboard, their response uses to be non-linear. Nevertheless it can be easily

linearized by means of deviation tables which can be obtained through a

calibration method. An inclinometer is a device that measures the orientation of

the gravity vector, thus it measures deviations from the gravity frame. The

underwater vehicle can take profit of inclinometers to sense variations in pitch

and roll due to unexpected depressions in its environment.

(a) (b)

Figure 1.2. Photograph of two commercial INS: (a) ISIS;  (b) TriPos.

INS: Inertial Navigation Systems are an integrated system (see Figure 1.2) composed

by gyros and accelerometers. Gyros measure angular velocity by exploiting

basic Newtonian mechanics. The first form of this device was a rapidly spinning

mass, having a strong kinetic momentum and being suspended in a gimbal.

Because angular momentum is conserved, any attempt to change the orientation

of the gyroscope results in an effective force that would lead to precession.

Measuring this force determines the angular velocity of the gyro. Although

mechanical gyros based on this principle can achieve a very good accuracy (bias

error ≅ 0.015º/h), they are big, heavy and expensive (above 10.000$), so they are

not suitable for small low cost underwater robots. Nowadays gyroscopic sensors

are based on Ring Laser Gyro (RLG) or Fiber Optics Gyro (FOG) technology

avoiding moving parts [Law98]. Both technologies are based on the “Sagnac

effect”. The principle of function involves the determination of the phase shift

between two counter-propagating light beams. For a RLG this occurs in an

evacuated mirrored cavity, but in the FOG the same effect can be obtained in a

fiber coil, obtaining a lower-cost solution. While RLG gyros are more accurate
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(bias error ≅ 0.1-0.001º/h), FOG sensors are cheaper at cost of lower accuracy

(bias error ≅ 10-0.01 º/h).

The principle of operation of accelerometers is based on the sensing of small

accelerations in each of the three directional axis. Physically, accelerometers are

spring-mounted masses whose displacement under acceleration can be measured

from the spring-mass relation and the second Newton’s Law. For low-speed

underwater robots, the experimented acceleration is normally very small (≅ 0.1

m/s2), hence only high accuracy accelerometers can be used.

An INS estimates the position by dead reckoning, as illustrated in Figure 1.3.

The sensed acceleration (Ga) is first integrated to get the lineal velocity (Gν1) and

then composed with the angular rated (Gν2) sensed by the gyros to compose a 6

DOF velocity vector. Using a simple cinematic transformation J(η) [Fos95], the

rate of change of position and orientation with respect to frame E is computed

and then integrated over time to get the position and orientation vector. This

double integration  quickly generates uncertain estimates. For a reasonable

accuracy, both inertial systems are much too big and expensive to be used in a

small UUV, while smaller and cheaper ones suffer from excessive drift to be

used in real missions.

Figure 1.3. Position estimation by dead reckoning.

Sonar: It is the acronym for SOund Navigation And Ranging. The good propagation

properties of sound waves through water has been exploited by a wide variety of

devices to construct object detection systems. These devices are collectively

known as sonar. Typically, a sonar system emits ultrasonic pulses and listens for

reflected pulses from potential obstacles. Sonar equipment has been used to

perform several tasks in the underwater environment, such as determination of

Εη

Ga3-axis
accelerometers

3-axis
gyroscopes

Gν2

∫
Gν1

J(η) ∫
Εη

.
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altitude above the sea-floor and multi-image surveys of the marine terrain. A

serious limitation of the sonar systems is the multi-path problem, derived from

the reflection of the acoustic signals from different objects. The speed of sound

is dependent upon properties of the material through which it travels (see Table

1.1). Since it is an active sensor –the sensed energy is originally emitted by the

device itself– it might not be adequate for some applications, i.e. tracking

ultrasound-sensitive animals or military surveillance. Other problems of sonar

systems include signal refraction, 3D spatial variation of the sound speed and

different sources of noise (including the biological sources, the mother vessel or

the submersible itself).

Table 1.1. Speed of sound in the air and water media

Medium Speed (meters/second)

Air at 0°C 331 (increases with temperature and pressure)

Water 1400-1600 (increases with temperature, salinity, and depth)

Doppler Sonar: The operation of this device is based on the Doppler principle: the

frequency of the received signal differs from the frequency of the emitted one

when the source and the reference point are in motion relative to each other

[Jor93]. This frequency is proportional to the relative velocity of motion. Many

systems use 3 or 4 sonar beams. In the 4-beams configuration (Janus

configuration) the transducers are located forward, backward, port and

starboard, at right angles to each other. In the 3-beams configuration (Figure 1.4)

they are located every 120º. In this way, three or four velocity vectors

corresponding to the speed of the vehicle in every direction are obtained. The

precision and accuracy of the Doppler sensor is a complex function which

depends on various factors: altitude from the seabed, signal power, frequency,

pulse length, velocity of sound accuracy and transducer alignment [Lar00a].

When the Doppler sonar is used far from the seabed, its measurements are

highly inaccurate. There exists, hence, a range of altitudes where the sensor

works efficiently. Low frequency Dopplers (300 Khz) can operate at altitudes up

to 200 meters, while high frequency Dopplers can be operated at altitudes up to

30 meters. Errors in the assumed velocity of the sound are critical in the Doppler
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equation. Unfortunately, the speed of sound is subject to considerable variations

depending on the temperature, salinity and depth of the water medium [Wil60]

(see Table 1.1). Therefore, the main drawbacks of this system are the variations

of the speed of sound depending on the water conditions and the stationary drift,

affecting more seriously to slow moving vehicles.

Figure 1.4. External aspect of the SonTek Doppler Velocity Log sensor for UUV applications.

Acoustic Transponder Networks: Various acoustic emitter/receiver devices can be

placed covering the site of interest. Thus, accurate 3D positioning is achieved by

navigating within the volume covered by this network. This positioning

technology usually includes long baseline (LBL), short baseline (SBL) and

ultra-short baseline (USBL) systems. Long Baseline consists of at least three

transponders anchored in the water column, as shown in Figure 1.5. The

underwater robot interrogates all transponders simultaneously using a given

frequency. Each transponder replies using its own frequency. Once the

underwater robot has received the responses, it computes their time of flight and

estimates the XY position by triangulation. The update rates in position are

typically from 1 to n seconds, depending on the area of influence of the LBL.

For a distance of 750 meters, updates of 1 second are possible. This setup is a

good solution for performing several missions in the same area [Lar00b]. The

main drawback relies in the need of a careful calibration of the transponder

position before the robot can operate. Short and ultra-short baselines systems do

not require the need to deploy additional equipment in the water. For short

baseline, two transponders are located in the mother-ship hull as far away as

possible. The range measurements obtained from these transponders are
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combined with the ship position estimated by the ship instrumentation, obtaining

the robot position. On the other hand, ultra-short baseline requires only one

transducer installed in the ship hull. This transducer provides three

measurements: the slant distance and two bearing angles (horizontal and

vertical). As in the case of the SBL, combining an USBL with the mother-ship

positioning system, absolute position estimates are possible.  System reliability

is quite high and positioning area is also large. However, it has the disadvantage

of the high operating cost.

(a) (b)

Figure 1.5. (a) Long Baseline Acoustic Transponder Networks (b) Detail of how position is

computed by triangulation.

GPS: It is the acronym for Global Positioning System. It is a radio navigation system

based on an array of 24 space-satellites that orbit the earth and some antennas

for ground support. It provides three-dimensional position, velocity, and time, 24

hours a day, everywhere in the world and in all weather conditions.

Unfortunately, GPS signals do not penetrate the water, so its use in underwater

robotics is seriously limited. An alternative consists on equipping an UUV with

a GPS system, and bring it to the surface at periodic intervals. In this way, the

GPS signal can be used to reset accumulated drift errors in position that arose

from the integration of inertial sensor measurements. In the case of Differential

GPS (DGPS), the GPS signal is combined with a differential signal emitted by a

Robot Position
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ground station located at a fixed position, thus improving the accuracy of the

system. Position accuracies in the order of 1 to 2 meters can be obtained on the

ocean surface with DGPS.

GPS-equipped sonar buoys: A good solution taking the best of both worlds is

obtained integrating GPS and a network of sonar buoys [You91]. In this way, the

UUV can estimate its position relative to the network of GPS receiver-equipped

buoys. These buoys should also carry acoustic transponders to send sonar signals

to the vehicle. Then, the UUV can obtain absolute 3D positioning from decoding

the acoustic signals sent by the buoys and measuring the phase shifts. The

accuracy does not match LBL, but the system is much easier to deploy. Some

authors have referred to this system setup as “Underwater GPS” [An96,Tho97].

1.2.3 Computer Vision

Most of the UUVs which are being used nowadays in real sea missions are equipped

with cameras to provide a comprehensive feedback to the robot operator and/or

oceanic researchers. Vision is a natural choice in science-oriented missions that

provides low-cost, high-rate and high-resolution information. Images are inherently

intuitive to provide humans with a view of the underwater environment. Moreover,

when this information is treated and processed adequately, it can be converted into

position measurements.

A vision system for aiding UUV’s navigation is composed of an on-board camera,

a video digitizer, a host computer and, depending on the working depth, a source of

light. Comparing these requirements with the sensors described above, it is obvious

that Computer Vision emerges as a very low-cost sensing technology. Moreover,

given the high resolution of digital imaging, measurement accuracy can be on the

order of millimeters, while other sensing technologies obtain much less accurate

resolutions. However, these measurements can only be used when the vehicle is

close to the underwater terrain, and is limited by the visibility of the working area.

Light attenuation in the water medium is one of the main problems the vision system

has to face. Moreover, as the submersible increases the working depth, it has to carry

artificial lights, increasing the power consumption of the vehicle.

There exist a set of situations within a mission in which the UUV should remain

at the same position for a certain period of time, such as inspection or welding
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operations. Underwater currents or other disturbances obligate the vehicle to

continuously correcting its position to keep station. In these situations, computer

vision appears as a very good sensing technique, since its accuracy is not affected by

any sort of drift as the mission time goes by. Although vision is an extremely

accurate sensor for relative measurements, integration of these measurements to

estimate absolute positions leads to error propagation problems as the vehicle moves.

In conclusion, cameras can provide good information in terms of resolution and

actualization rate, but are limited to a very short range (much shorter than sonar) and

in some cases can became “blind”. In ROV systems they provide a good interface to

the user to teleoperate the robot. However, we should bear in mind that the different

sensing systems that are equipping an UUV could be used together to map the ocean

floor and, therefore, obtain position estimates. This sensor fusion means that the

sensors can complement each other and give rise to a much more stable, robust and

reliable system.

1.3 Experimental platforms for underwater exploration

The Computer Vision and Robotics Group of the University of Girona (UdG) has

developed two underwater platforms to test different control and sensing strategies.

The first underwater prototype was constructed in cooperation with the Polytechnical

University of Catalonia (UPC) in the frame of project TAP 92-0792, funded by the

Spanish CICYT organism. The aim of this project was to develop a remotely-

operated underwater robot (GARBI), equipped with to arms to carry out simple

manipulation tasks. From the results of this work, a second project, TAP95-0425-

C02-02, consisted in introducing some improvements in the prototype and the tele-

operational system. This project included the construction of an exoesqueleton,

shown in Figure 1.6(a), to carry out the tele-operation of the arms. The system

reproduces the movement of the operator’s arms making easier the manipulation of

objects in the underwater environment. A camera located inside the robot provided

the operator with a view of the robot’s environment. Figure 1.6(b) shows GARBI

during a test mission.
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(a) (b)

Figure 1.6. (a) Exosqueleton used for the tele-operation of the arms;

 (b) GARBI UUV in a sea mission.

A second prototype of GARBI was constructed within project MAR 97-0925-

C02-02. This project consisted in studying the coordinated remote operation of both

vehicles. Finally, the last CICYT project (MAR99-1062-C03-02), represents our first

attempt to build a fully autonomous underwater vehicle. This is a joint project

involving three universities: UdG, UPC and UIB (University of the Balear Islands).

The main goal consists of building an AUV prototype called URIS1 (see Figure 1.7),

which will be able to execute simple missions like exploring an area while gathering

information. Currently, the Computer Vision and Robotics Group plans to hand over

to industry a simplified version of this vehicle which will be restricted to tele-

operational tasks. The expected applications for the commercial version are

observation of dams and collector walls, helping in rescue tasks, observation of the

bottom of commercial and recreational ports, inspection of ship bottoms, and so on.

                                                 
1 URIS AUV is inspired on ODIN AUV developed in the Autonomous System Laboratory of the

University of Hawaii at Manoa.



CHAPTER 1. INTRODUCTION 12

(a) (b)

Figure 1.7. (a) URIS on the dock at the Banyoles lake; (b) URIS being recovered.

Next, a brief introduction to the underwater vehicles designed and built by the

Computer Vision and Robotics Group is given below. A further detailed description

of these vehicles can be found in [Rid01].

The GARBI Underwater Vehicle

GARBI was conceived as a Remotely Operated Vehicle (ROV) for exploration in

waters up to a depth of 200 meters. It was designed with the aim of building an

underwater vehicle using low cost materials such as fibber-glass and epoxy resins.

To solve the problem of resistance to underwater pressure, the vehicle is servo-

pressurized to the external pressure by using a compressed air bottle, like those used

in scuba diving. Air consumption is required only in the vertical displacements.

When the robot dives in the heave direction, a servo system introduces air into the

hull in order to increase the internal pressure until it reaches the external pressure. In

addition, when the robot goes to the surface, decompression valves release the

required amount of air to maintain the internal pressure at the same level as the

external one (see Figure 1.8(b)). The vehicle can be equipped with two mechanical

arms which would perform some simple tasks of object manipulation through

remote-operation.
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(a) (b)

Figure 1.8. (a) Structure of GARBI UUV. (b) GARBI UUV while surfacing.

The vehicle has 4 thrusters: two for horizontal movements (x axis) and two for

vertical movements (z axis), as illustrated in Figure 1.8(a). It is possible to add a fifth

thruster in the transverse direction (y axis). Due to the distribution of weight, the

vehicle is passively stable in roll and pitch. The vehicle also has several sensors: 2

compasses, 2 pressure sensors and water speed and water leakage sensors.

Dimensions are: 1.3 m length, 0.9 m height and 0.7 m width. Maximum speed is 1

knot and the weight is approximately 150 kg. Table 1.2 shows the principal

characteristics of the GARBI UUV.

Table 1.2. Characteristics of GARBI.

Type ROV

D.O.F. 4 (x,y,z,Yaw)

Stability Passively stable in Roll and Pitch

Propulsion 4 thrusters (120 W approx.)
1 lateral thruster (optional)

Energy DC power source
Umbilical cable (video, power, ethernet)

Max. depth 200 meters

Sensors 2 Magnetic compasses (Yaw)
2 Pressure sensors (z and air bottle)
Color Camera
Water speed sensor
Water leakage sensor

Other 2 arms with 3 DOF.
Servo-pressurized.
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An on-board i486 embedded computer is in charge of controlling the vehicle’s

sub-systems. The robot is connected to the surface station by means of an umbilical

cable for power, video and Ethernet communication.

The URIS Underwater Vehicle

The URIS (Underwater Robotic Intelligent System) vehicle was designed with the

aim of developing a small, light-weight, low-cost AUV to be used as a research

testbed in a water tank testing facility. URIS minimizes the amount of operators

which are necessary to run an experiment with the vehicle to a single person.

Moreover, the vehicle is small enough to transport in a conventional car. This vehicle

has been conceived as an AUV, hence it carries its own source of power, which

provides about an hour of autonomy. The vehicle can also be powered by an external

source using an umbilical cable. This option facilitates running long-term

experiments. The hull has been designed as a sphere, as illustrated in Figure 1.9. As a

result, it offers equal hydrodynamic coefficients in any direction.  There have been

precedents with this shape, such as the ODIN AUV from the University of Hawaii

(U.S.A.) or the ROBIN robot from CNRIAN (Italy), as well as the HYBALL from

the Heriot-Watt University (U.K.). The hull consists of two stainless steel

hemispheres joined with wing nuts and bolts.

(a) (b)

Figure 1.9. (a) Synthetic image of URIS AUV. (b) Photograph of URIS AUV.
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The mass of the vehicle has been distributed in such a way that the center of mass

is below the buoyancy center (as in the GARBI prototype) making the vehicle

passively stable in roll and pitch. Propulsion is achieved by means of 4 thrusters

placed equidistant on the exterior of the vehicle, as illustrated in Figure 1.9(a). Due

to its stability in pitch and roll, there are only four degrees of freedom; X, Y, Z and

Yaw. The vehicle incorporates a magnetic compass, a pressure sensor, water speed

sensors, DGPS, water leakage sensors and computer vision system. An on-board

Pentium PC 104 is in charge of the control of the vehicle’s sub-systems. An 80552-

based microcontroller is used to reduce the computing load of the main computer,

taking charge of peripheral computations. During development, the optional

umbilical cable is used to connect the on board computer to the surface computer

where the development environment (Tornado/VxWorks) resides. The sphere radius

is about 35 cm and the weight is approximately 35 kg. Table 1.3 summarizes the

main characteristics of this robot.

Table 1.3. Characteristics of URIS.

Type Autonomous Underwater Vehicle (AUV)

D.O.F. 4 (x,y,z,Yaw)

Stability Passively stable in Roll and Pitch

Propulsion 4 thrusters (20W x 15V DC motor + dynamo)

Energy 4 packages of NiCd batteries (50 W x 12V)

Max. depth 30 meters

Sensors Magnetic compass (Yaw)

Pressure sensor (z)

Vision system (RGB+laser)

Speed sensor

DGPS

Water and battery charge detection

1.4 Objectives

The main objective of this work is to design and develop a vision-based sensing

system to serve as a positioning tool for an underwater vehicle. This sensing system

should have the capabilities of automatic sea-floor mapping and station keeping, in

order to aid the vehicle to perform local navigation.
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Taking into account the main goal described above, the research described in this

thesis will meet the following specific objectives:

• Analyze and compare the existing techniques to create visual maps of the

ocean floor, pointing out the advantages and drawbacks of the different

approaches.

• Design and implement a new system to create maps of the bottom of the sea

(known as visual mosaics). This system should be able to run in real time and

provide robust estimates of the vehicle motion as the map is being constructed.

This capability of simultaneous localization and map building is known as

Concurrent Mapping and Localization (CML) in the literature [Leo92,Smi97].

• Propose a framework to update the position estimates as new information

becomes available.

• Construct a testing system to evaluate the accuracy of the vision-based sensor

against truth measurements.

1.5 Organization

The different chapters of this work outline a strategy for detecting the position of an

underwater vehicle through the construction of a mosaic. This mosaic is, therefore, a

visual map which the vehicle utilizes to navigate.

This dissertation has been structured as follows:

Chapter 2 establishes a theoretical basis for the methods and strategies presented

in subsequent chapters. The basis of the different tools which are used in our

approach to solve the problem of underwater mosaic construction is described. These

tools range from the properties of projective geometry to the characterization of

image texture, or optimal estimation techniques. Since we are working with

underwater vehicles, the problems caused by the transmission properties of the

medium are also considered.

Chapter 3 analyzes a review of the existing mosaicking systems for UUV

navigation. The advantages and drawbacks of the presented algorithms are compared

and analyzed. A comparative table illustrating the main differences of the existing

methods is provided at the end of the chapter.
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The fourth Chapter proposes some alternatives to solve the correspondence

problem in an accurate and reliable way. The use of texture analysis as a

characterization feature which improves the quality of the detected correspondences

is demonstrated in this Chapter. At the end of the Chapter, a new approach to detect

correspondences in consecutive images of a sequence is proposed. The partial results

of this phase are also presented in this Chapter.

Chapter 5 details the phases of a methodology to construct visual mosaics of the

underwater environment while simultaneously using this map to compute absolute

vehicle location (CML). This methodology makes use of the strategy proposed in

Chapter 4 to detect reliable correspondences, and applies a robust regression

technique is used to estimate the planar transformation which explains the apparent

motion of the image. Then, this planar transformation is used to relate every image to

the common mosaic frame, constructing a composite image with all the frames of the

sequence.

As the mosaic increases in size, image local alignment errors increase the

inaccuracies associated to the position of the vehicle. For this reason, the sixth

Chapter extends the mosaicking system of Chapter 5 to obtain trajectory estimates

from the information of the crossover trajectories in the mosaic. In this way, when

the arbitrary path of the submersible describes a loop, the images forming the mosaic

are re-aligned and a better position estimation is obtained.

In Chapter 7, the different experimental results obtained from simulations,

laboratory tests with real images, and sea trials are presented. A method to evaluate

the accuracy of the path reconstructed from the mosaic is described.

Finally, Chapter 8 presents the conclusions derived from this work. A summary of

the contributions of this dissertation is presented, and the future directions of

research are outlined.

The bibliographical references have been located at the end of the corresponding

Chapter.
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Chapter 2

Theoretical Background

This chapter establishes a theoretical basis for the methods and strategies presented

in subsequent chapters. Our approach to solve the problem of underwater mosaic

construction involves using tools of different nature, ranging from the properties of

projective geometry to the accurate use of image texture, or optimal estimation

techniques. Concretely, this chapter starts with the exposition of the general

assumptions that delimit the work of this dissertation. Then, the peculiarities of the

underwater environment are analyzed from a computer vision viewpoint,

emphasizing the aspects that directly affect image-processing algorithms. Next, an

accurate analysis of image texture is performed. Texture will allow to a large extent

the improvement of the detection of feature correspondences in image pairs. Then,

the general aspects of classical projective and algebraic geometry are studied in the

frame of fundamental problems in computer vision. The projective geometry will

explain how is it possible to align the different images forming the mosaic by means

of projective transformations or collineations. Next, these basis are used to explain

the modeling of the distortion produced by the camera lenses and the ray diffraction

at the water-camera housing and the air-camera housing interfaces. Finally, some

aspects of stochastic processes and Kalman Filtering are described. These
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techniques will allow the integration of any new information regarding the vehicle

positioning while the visual mosaic is being constructed.

2.1 General assumptions

In order to keep the work described in this thesis in a realistic plane, some

assumptions have to be made. The algorithms detailed in the following chapters are

valid only if the following assumptions are met:

• The underwater vehicle carries a camera looking down to the seabed.

• The turbidity of the water allows a reasonable visibility at the working area.

• The submersible, and therefore the camera carried by the vehicle, is close to

the ocean floor. This proximity aspect is quite related to the previous point.

Consequently, we understand “closeness” as a function of the visual range

allowed by the underwater medium.

• The underwater terrain is assumed to be planar. This hypothesis can be

relaxed in the sense that the differences in depth within the seabed are

assumed to be negligible with respect to the average distance from the camera

to the seabed.

• Lighting conditions are adequate to obtain images of the ocean floor.

Definitively, the considerations stated above assume that the images captured by the

camera contain sufficient information to be processed by means of image processing

strategies. It will be assumed for the rest of this dissertation that these assumptions

are met, and when they are not fulfilled or additional assumptions are made, it will be

clearly stated in the text.

2.2 Underwater optical imaging

The application of standard computer vision techniques to underwater imaging

involves dealing with additional problems. This is mainly due to the transmission

properties of the medium [Fun72]. The optical properties of different water bodies

depend on the interaction between the light and the aquatic environment. This

interaction includes basically two processes [Neg95]: absorption and scattering (see

Figure 2.1).
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• Absorption. It is the process whereby light energy is converted to a different

form (principally heat). Therefore, light disappears from the image-forming

process.

• Scattering. It is produced by change of direction of individual photons, mainly

due to the different sizes of the particles forming the water. It is nearly

independent of wavelength. Scattering can be further divided into backscatter

and forward scattering:

- Backscatter appears when the light is reflected in the direction of the imaging

device.

- Forward scattering is produced when the light reflected by the imaged object

suffers from small changes in its direction. This effect normally produces a

blurring of the object when viewed from the camera.

Backscattering is normally reduced by increasing the distance (l) between the light

source and the imaging device, and forward scattering can be attenuated by

decreasing the distance Z to the sea floor (or the imaged object).

Scattering

Absorption

Backscatter

Light
source

Camera

Small-angle
forward scattering

l

Z

Figure 2.1. Lighting problems to be faced in underwater image processing.

For all the transmission properties of the media described above, processing of

underwater images suffers from the following problems:
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• Lack of image features. They often lack distinct features (e.g. points, lines or

contours) that are commonly exploited in terrestrial vision systems for tracking,

positioning, navigation, etc. There are two main reasons for this absence of

features: firstly, the sea-floor lacks well-defined contours. Even man-made

objects such as pipes or cables loose their straightness due to the proliferation of

marine life. Secondly, the light reflected by the objects suffers from forward

scattering [Jaf91] (as described above), which causes a blurring of these

elements in the image.

• Limited range. The range is limited due to light absorption and the need for

artificial light introduces many new properties to the image, such as low contrast

and non-uniform illumination.

• Clutter and lack of structure. Sub-sea scenes frequently present little structure

and high clutter in the regions of interest for exploration.

• Marine snow. Quite often, small observable particles floating in the water show

up as marine snow making feature extraction difficult (backscattering). This

effect is due to suspended particles, as much as the own water molecules

[Car94].

• Image distortion. A first ray diffraction is produced at the water-camera

housing, and a second one occurs at the air-camera housing interfaces, reducing

the effective focal length of the camera.

However, there is generally an advantage in the processing of underwater imaging

with respect to most terrestrial applications [Neg00], we are dealing with the 3D

rigid body motion of the underwater vehicle relative to a nearly motionless

background: the seafloor environment.

2.3  Image Texture

First of all, we should bear in mind why textures have been considered in this work.

We aim to develop a mosaicking system based on feature-based matching. In fact,

determining which feature in the first image corresponds to which item in the next
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one is known as the correspondence problem. Existing methods for solving the

correspondence problem normally assume that [Tru98]:

(i) Most scene points are visible from both images.

(ii) Corresponding image regions are similar.

Unfortunately, these assumptions may be false, and the correspondence problem

becomes considerably difficult. Hence, establishing correspondences between

features over the images is a process which is prone to gross error [Aye95], and it

does not exist a completely reliable method. For this reason, we propose the use of

image textures to provide more robustness to the matching process. We believe that

an accurate use of textures as characterization features canimprove to a large extent

the quality of the detected matches, thereby benefiting the overall mosaicking

process (as will be later shown in Chapter 4).

2.3.1 Introduction

It is difficult to find a universal definition of image texture, however, the following

intuitive properties of textures are admitted as essential characteristics [Tuc93]:

• Texture is a surface property, i.e., a texture is not defined on a single point.

Therefore texture is a property in which the obtained values are taken into

account considering a spatial neighborhood.

• Image texture depends on the scale or resolution at which it is displayed. A

texture with specific characteristics in a sufficiently small scale could become

a uniform texture if it is displayed at a larger scale.

• A region contains a texture when we can find a large amount of primitives in

that region. If only some primitives are creating the texture, they could

eventually be perceived individually instead of composing a texture.

In this work, we propose the use of image textures in order to characterize certain

zones of the images. In addition to standard correlation techniques, the information

that can be extracted from the textures of the objects, could help us to reach an

improvement in the establishment of correspondences between pairs of images.
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When studying texture, three approaches can be followed: statistical, structural

and frequential. In the first case, the statistical values of the gray-levels of an area or

the number of peaks or valleys or any other spatial property are analyzed. In the

second case, the structural approach tries to identify “structural” patterns in the

image. It is based on the existence of a set of primitives which compose the texture.

These primitives are combined by means of a set of placement rules. Finally, the last

case takes into consideration that the texture is a spatial repetition of a pattern;

therefore, high values of repetition are found in its Fourier transform at the repetition

frequency.

Since our aim is to obtain real-time performance, we have discarded the use of the

frequential approach, since it has a considerable computational cost. On the other

hand, it has been proved that the statistical methods are very adequate to describe

textures with a random gray-level distribution [Hue96]. Moreover, according to

[Jah95], the gray-level distribution in natural textures has a random behavior.

Therefore, the statistical approach seems more adequate than the structural technique

to process underwater images.

2.3.2 Statistical Texture Analysis

Statistical texture operators analyze the distribution of a given property for every

pixel of the image. Thereby, the statistical approach tries to describe the spatial

distribution of the gray levels of the pixels on the image by searching rules of

distribution and relationships among these levels. According to these methods, the

analysis of the textures consists in computing the characteristics for every point that

belongs to the image of the texture. These characteristics are defined as the

combination of intensities in different positions of the image. These positions are, by

no means, random: they have a specific emplacement with respect to the point which

is being evaluated. This definition involves two characteristics:

• The application of a statistical measure to every single pixel of the image

results in a new image where the gray level of every pixel reflects the value of

the statistical measure in that point.
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• The value of the statistical measure does not only depend on the current pixel

which is being evaluated but also depends on a set of pixels located on given

positions with respect to itself, i.e. its neighboring pixels.

Next, the texture operators which have been analyzed are described. Every texture

operator described below has a series of parameters which define its behavior.

Typical parameters range from distances, angles, to size of the neighborhood, etc.,

giving rise to a high number of combinations when selecting a texture operator.

First order statistics

First order statistics measure the probability of having a specific value on the

point which is being evaluated. The histogram of the image will become an

important tool to calculate this statistical value. Then, by looking at the image

histogram h, the following first order properties can be computed:
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Where the mean is the estimation of the gray-level of the texture; the standard

deviation shows the average dispersion with respect to the mean. The third moment

measures the asymmetry of the histogram, while the entropy measures the histogram

uniformity.

However, since the above properties are based on the histogram, they do not

perceive the spatial information. That inconvenience is solved by the texture

operators described below.
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Co-occurrence Matrix

This operator [Har73] searches the repeated occurrence of pairs of gray-level

configurations in the image according to two parameters: the distance and the angle

defined by the pair of points.

Consider d as the distance between two pixel positions. The immediate neighbors

of any pixel can lie on four possible directions: { }0º ,45º ,90º ,135ºθ ∈ , as shown in

Figure 2.2. The co-occurrence matrix computes the probability of two given gray-

levels to appear in the image at a distance d and angle θ . Then, for a given d and θ
the rows and columns of the matrix represent the different gray levels of the image,

and every position of the matrix corresponds to the frequency of occurrence of that

combination of intensities.

0º

45º90º135º

Figure 2.2. Possible directions of the neighbors of a pixel, considering distance d=1.

Many properties can be measured from the co-occurrence matrix. The set of

statistics illustrated in Figure 2.3 is computed for every co-occurrence matrix,

obtaining the textural characteristics of the image.
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Figure 2.3. Statistical measures performed to characterize the texture.

ijm  is the element of row i and column j of the co-occurrence matrix

Energy Filters

These operators [Law80] are derived from the computation of a series of statistical

measures (basically mean and standard deviation) on a pre-filtered image. This pre-

filtered image is obtained by applying a set of masks (3×3 or 5×5) which define some

textural properties of the image. In order to obtain these masks, a series of vectors

defining some textural proprieties are combined.

Consider the 1×3 vectors Level, Edge and Spot, which are defined as:
L3 = [ 1  2  1]

E3 = [-1  0  1]

S3 = [-1  2 -1]

These vectors represent the one-dimensional operations of center-weighted local

averaging, symmetric first differencing (edge detection) and second differencing

(spot detection). By combining these vectors in pairs, the following 1×5 vectors are

obtained:
L5 = [ 1  4  6  4  1] = L3*L3

E5 = [-1 -2  0  2  1] = L3*S3

S5 = [-1  0  2  0 -1] = S3*S3

W5 = [-1  2  0 -2  1] = L3*E3

 R5 = [ 1 -4  6 -4  1] = -E3*S3
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which correspond to the vectors Level, Edge, Spot, Wave and Ripple. Combining

again these vectors, by multiplying the column vectors of length 3 or 5 by row

vectors of the same length, a set of 3×3 and 5×5 masks can be obtained. Figures 2.4

and 2.5 show some of the considered masks.

Figure 2.4. 3×3 masks applied by the energy filter

-1 0 2 0 -1 -1 0 2 0 -1 -1 -4 -6 -4 -1

-2 0 4 0 -2 -4 0 8 0 -4 -2 -8 -12 -8 -2

0 0 0 0 0 -6 0 12 0 -6 0 0 0 0 0

2 0 -4 0 2 -4 0 8 0 -4 2 8 12 8 2

1 0 -2 0 1 -1 0 2 0 -1 1 4 6 4 1

E5S5 L5S5 E5L5

Figure 2.5. Sample 5×5 masks after multiplication of the indicated vectors of size 5.
The complete set of 5×5 masks can be found in [Law82]

Once the image has been convolved with these masks, a set of statistical measures

can be computed for every resulting image (mean, standard deviation and

positive/negative mean):

 1  2  1 -1  0  1 -1  2  -1
 2  4  2 -2  0  2 -2  4  -2
 1  2  1 -1  0  1 -1  2  -1
   L3L3 L3E3 L3S3

-1 -2 -1  1  0 -1  1 –2  1
 0  0  0  0  0  0  0  0  0
 1  2  1 -1  0  1 -1  2 –1
  E3L3 E3E3   E3S3

-1 -2 -1  1  0 -1  1 –2  1
 2  4  2 -2  0  2 -2  4 -2
-1 -2 -1  1  0 -1  1 -2  1
  S3L3 S3E3       S3S3
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These statistical measures properly indicate the energy of the texture. They are

applied to a neighborhood around the point where the texture is to be evaluated. The

above equations consider a region of size n, and ic  represents the ith element of this

neighborhood.

Local Binary Patterns

Local Binary Patterns (LBP) try to reduce the complexity of the previous texture

operators. They are based on a model of texture analysis described in [Wan91],

where a textured image is characterized by its texture spectrum.  This texture

spectrum is composed by the 8 neighbors of the selected pixel, every neighbor

having a value [0,1, 2]g = . The combination of values of the set of neighbors is

known as texture unit. Ojala et al. introduced in [Oja96] a variant of this idea,

reducing the value of every pixel to [0,1]g = . Then, the number of possible texture

units is shorten to 82 256= , instead of 83 6561= .

LBP work as follows: for every pixel of the image, its 3×3 neighborhood is

selected as region to analyze. The 8 neighbors of this region are compared to the

center pixel, creating a texture unit which has a value of 1 is the neighbor is greater

or equal to the center pixel, or 0 otherwise. Next, the binary values of this texture

unit are multiplied by the binomial weights given to the corresponding pixels, as

shown in Figure 2.6. Finally, the sum of the eight resulting values is computed,

giving rise to the texture value of this region (196 in the example of Figure 2.6).
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Figure 2.6. Local Binary Patterns (LBP). The pixels with a gray level higher than the center pixel are multiplied
by the binomial weights given to the corresponding pixels and the obtained values are summed for the LBP

number of this texture unit (4+64+128 = 196).

Contrast Operator

LBP describes the spatial structure of the local texture, but it does not address the

contrast of the texture. For this purpose, Ojala et al. proposed [Oja99] a contrast

measure. The contrast feature simply consists of performing a gray-scale

differentiation in the region which is being considered.  The neighboring pixels are

compared with the selected point, computing the average of those neighbors with a

gray-value higher than that of the center pixel. A second average is computed with

the neighbors with an intensity value below the selected pixel. Then, the difference

of both averages is computed. This value is known as contrast of the texture. Figure

2.7 summarizes the functioning of this texture operator.

Figure 2.7. Contrast Operator
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Center-symmetric covariance measure

It analyses the textures by performing some operations on the symmetric pixels

surrounding the point which is being characterized [Har95]. Consider the 3×3

neighborhood of Figure 2.8, defining the center-symmetric pairs of pixels ( , )i ig g′ .

Figure 2.8. 3×3 neighborhood with 4 center-symmetric pairs of pixels.

By looking at these pixels, four rotation-invariant measures can be computed: two

local center-symmetric auto-correlations, with linear and rank-order versions (SAC

and SRAC), together with a related covariance measure (SCOV) and variance ratio

(SVR).
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WVAR
SVR=

BVAR
(2.12)

where µ  is the local mean, ir  is the rank of the gray-level of pixel i, l defines the

number of different ranks, each it  is the number of ties at each ir , and n=3 is the size

of the considered neighborhood. For further details on these equations see [Har95].

The local variance VAR (=BVAR+WVAR) is a measure of local gray-scale

variation, very sensitive to noise and other local gray-scale transformations, as well

as the between-pair variance (BVAR) and the within-pair variance (WVAR). These

variances are defined as follows.
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All the above texture operators are abstract measures of texture pattern and gray-

scale, providing discrimination information about the amount of local texture.

2.4  Projective Geometry

This section introduces the concepts of projective geometry in general and planar

geometry in particular. The geometry of projective transformations of the plane

models the geometric distortion which arises when a plane is imaged by a

perspective camera. Projective geometry models this imaging and also provides an

adequate mathematical representation for computations. In the context of computer

vision, the use of projective geometry allows the expression of some geometrical

relationships in terms of linear equations, which makes them easier to deal with.

2.4.1 Definition of Projective Space

The set of points represented by a n+1 vector ( )T 1
1 2 1, , ... , , n

n nx x x x +
+ ∈\  of real

values is called a Projective Space PIn if and only if at least one of the n+1 vector

coordinates is different from zero and two vectors ( )T

1 1, ... , ,n nx x x + and

( )T

1 1ë ,...,ë ,ën nx x x + represent the same point for any ë 0≠ . The elements of a

projective space vector are usually called homogeneous or projective coordinates

[Fau93].

2.4.2 The 2D projective plane

In general, we can say that a linear transformation of a projective space PIn is defined

by a non-singular ( 1) ( 1)n n+ × +  matrix A. This transformation is also known as

collineation or projective transformation. The matrix A performs an invertible

mapping of PIn onto itself, and is defined up to a non-zero scale factor. In the case of
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2D projective transformations, PI2 is known as the projective plane. Its importance in

Computer Vision is derived from the fact that it is useful to model the image plane as

a projective plane, describing the geometrical relationships among image features.

Two different views of the same planar scene in 3D space are related by a

collineation in PI2. This collineation is also known as homography [Sze94].

Given a point ( )T
,x y in 2\ , it can be represented in homogeneous coordinates as

a 3-vector by adding a final coordinate of 1: ( )T
, ,1x y . Therefore, an arbitrary

homogeneous vector representative of a point and given by ( )T

1 2 3, ,x x x  represents

the point ( )T

1 3 2 3,x x x x  in 2\ , defined up to a scale factor. All the 2D points

represented by homogeneous vectors belong to the projective space PI2.

A 2D projective transformation is a linear transformation on homogeneous 3-

vectors represented by a non-singular 3×3 homography matrix:

1 11 12 13 1

2 21 22 23 2

3 31 32 33 3

x h h h x

x h h h x

x h h h x

′     
     ′ =     
′          

 or ′ =x Hx (2.16)

where ( )T

1 2 3, ,x x x′ ′ ′ ′=x  and ( )T

1 2 3, ,x x x=x  are the homogeneous vector

representations of two points, and H is a matrix defining the linear mapping of

homogeneous coordinates. It should be noted that matrix H may be multiplied by any

arbitrary scale factor ë 0≠  without altering the projective transformation. Therefore,

we could say that H is a homogeneous matrix, since only the ratio of the matrix

elements is significant, as in the case of homogeneous points. It can be seen that

there are eight independent ratios amongst the nine elements of H. For this reason a

projective transformation has eight degrees of freedom. It accounts for the

perspective mapping of a planar scene into the image plane of a camera, leaving all

the projective properties of the scene invariant. In the same way, the projective

transformation can relate two different images of the same planar scene, as shown in

Figure 2.9. Taking into account what we have described above, Equation (2.16) can

be expressed as:

11 12 13

21 22 23

31 32 1 1

x h h h x

y h h h y

h h

λ
λ
λ

′     
     ′ =     
          

(2.17)
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where ( ),x y′ ′  and ( ),x y  are the image coordinates of the same 3D point, viewed

from images I ′  and I, respectively; and ë 0≠  is a scaling factor. This inter-image

projective transformation can be computed by means of a minimum of four pairs of

correspondences between the two images.

It should be taken into account that if the scene is static, but not planar, parallax

effects would produce image misalignments, except for the case where the cameras

have the same optical axis. Consequently, a projective transformation is only valid in

3D scenes if the camera translates along the optical axis or rotates around the optical

axis, but no other translations or rotations are allowed. This is reasonable since we

are dealing with planar transformations, which are not able to cope with 3D

structures.

Figure 2.9. Projective transformations in perspective images. It relates two different images of the

same planar scene. Note the different distribution of projected points in both images.

2.4.3 A hierarchy of homographies

A general projective transformation takes into account translation, rotation,

scaling, shear and perspective deformation. Obviously, this homography may contain

1−

image I

x

X

x’

image I’

H

H
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more free parameters than necessary. For instance, consider a setup where the image

plane is always parallel to the planar scene, the camera is not allowed to rotate

around any axis, and it keeps constant its distance to the scene1. In this case, only the

two degrees of freedom (DOF) describing translation are necessary. Table 2.1 shows

the image of a square and the resulting transformations for different motion models.

The first row of the table shows the case described above, where only 2 DOF are

necessary. If we add rotation to the previous collineation, the Euclidean

transformation is obtained. The similarity and affine transformations are obtained if

when adding a scaling factor and shear, respectively. Finally, the last row of the table

shows the most general motion model, which also includes perspective deformation.

Table 2.1.  Motion models to describe a planar transformation. DOF: degrees of freedom.

Model Homography Matrix Distortion

Pure translation
2 DOF

1 0

0 1

0 0 1 1

x

y

x t x

y t y

λ
λ
λ

′     
     ′ =     
          

image I image I’

translation

Euclidean
3 DOF

cos sin

sin cos

0 0 1 1

x

y

x t x

y t y

λ θ θ
λ θ θ
λ

′ −     
     ′ =     
          

image I

translation

image I’

rotation

Similarity
4 DOF

cos sin

sin cos

0 0 1 1

x

y

x s s t x

y s s t y

λ θ θ
λ θ θ
λ

′ −     
     ′ =     
          

image I

translation

image I’

rotation
scale

Affine
6 DOF

11 12 13

21 22 23

0 0 1 1

x h h h x

y h h h y

λ
λ
λ

′     
     ′ =     
          

image I

translation

image I’

rotation
scale
shear

Projective
8 DOF

11 12 13

21 22 23

31 32 1 1

x h h h x

y h h h y

h h

λ
λ
λ
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image I

translation

image I’

rotation
scale
shear

perspective def.

In fact, when applying the 2D transformation matrices of Table 2.1, only in the

projective homography the scaling factor ë  would be different from 0, since all the

                                                
1 This is the case of mosaicking with some electronic microscopes or wafer masking systems for
integrated circuits.
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matrices have been scaled by imposing 33 1=h . It should be noted that not always the

most generic transformation will provide the best results in the determination of the

apparent motion between two images. Consider again the example of the microscope

sequence with 2 DOF. Suppose that the imaged object is the square of Table 2.1, and

the image measurements are the points located at the corners of the square. The

detection of points is performed in two images: I  and 'I , obtaining a set of four

points ix  and the corresponding points ′ix . In practice, the detection of points in both

images is subject to a zero-mean Gaussian noise. Imagine, for the sake of simplicity,

that error is produced only in the second image 'I , with points in the first measured

perfectly. This implies that the distance between any two corners of the square ix  in

the first image remains a constant value d. Then, the error in the determination of the

corners of the square in image 'I  would entail the distance between any two ′ix  to be

different from d. Therefore, when computing the apparent motion by using the most

general projective motion model, not only a 2D translation would be found, but many

other DOF would be estimated. However, the most simple homography tries to

explain the motion as only a 2D translation. This second approach would achieve a

more accurate result since the knowledge about the nature of has been used to choose

a motion model. Unfortunately, it is not always possible to know beforehand which

is the motion model which best describes the motion of the camera.

2.4.4 Non-linear planar transformations: the case of lens distortion

The homography matrix H described in the previous section is only able to describe

linear transformations, while the image-forming process suffers from a non-linear

distortion. For this reason a further analysis of the assumed camera model is

required. Moreover, one of the goals of this work is to perform measurements from

images taken from a standard video camera. Therefore, a qualitative model of the

camera would allow a comprehensive approximation of the camera projection. The

most commonly used model for a camera is the so-called pinhole model [Ito91]. It

assumes that each point of the scene is projected onto the plane where the image is

formed by a straight line through the projection center. This plane is known as image

plane, the projection center is known as focal point or optical center (denoted C) and

the distance between the image plane and C is known as focal length (f). Figure 2.10

illustrates the pinhole camera model, considering that the optical center C is located
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in front of the image plane. This situation is known as backprojection, since the

image is formed behind the optical center. In this case the image is inverted with

respect to the scene. A simpler situation can be found in Figure 2.11, where the focal

point is placed behind the image plane. Both camera configurations are modeled by

the same parameters, but considering a different sign of the focal length (f). From

both of these figures it can be seen that the relationship between image coordinates

( , )i ix y  and 3D space coordinates ( , , )i i iX Y Z  can be written as:

i i
i

f
x X

Z
= (2.18)

i i
i

f
y Y

Z
= (2.19)

x

X

y

Y

Z

"pinhole"

C

f

Scene point

( )X ,Y ,Zi i i

( )x ,yi i

projected 
point

Figure 2.10. Image formation in a camera assuming a pinhole model. Backprojection model.

Equations (2.18-19) can be expressed in matricial way,

1

1 0 0

0 1 0

0 0

i i

i i

if

x X

y Y

Z

λ
λ
λ

    
    =     
        

(2.20)

Unfortunately, in a practical situation the linear relationship illustrated in

Equation (2.20) does not hold true. This is due to some types of imperfections in the

design and assembly of the lens composing the optical system, which distorts the

projection of points in the image plane. In the case of underwater imaging, the non-
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linear distortion comes from two sources: the first one is the imperfection of the

camera lens, and the second comes from the light beam deflections at the water-

camera and air-camera housing interfaces.

projected
image

"pinhole"

f

object

Figure 2.11. Configuration of the pinhole camera model where the image is placed in front of the

focal point (frontprojection).

The total distortion can be divided into two components: radial component and

tangential component [Sla80].

Radial distortion: The radial distortion causes an inward or outward

displacement of a given image point from its ideal projection. This type of

distortion is mainly caused by flawed radial curvature of the lens. A negative

radial displacement of the image points is referred to as barrel distortion. It

causes outer points to spread and the scale to increase. This displacement can

be modeled by the following equations:

( )
( )

2 4
1 2

2 4
1 2

...

...

d du

u d d

x x k r k rx

y y y k r k r

 + + +   =   + + +   
(2.21)

where ( ),d dx y  are the distorted (measured) coordinates of the point,  and its

undistorted coordinates are ( ),u ux y ; 2 2
d dr x y= +  is the radial distance from

the projection of the focal point on the image plane (known as principal point),

and 1 2, ,...k k  are the coefficients of the radial distortion.

Tangential distortion: The optical centers of the lens elements are not strictly

collinear. This produces various degrees of decentering in the projection of
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points on the image plane. This effect is know as tangential distortion, and can

be modeled by another infinite series. However, since most of the distortion is

produced by the radial component, in many cases the tangential distortion is

not taken into account.

Once the image distortion has been removed, it is possible to perform metric

computations from the pixels measured on the image. This is possible only if the

parameters which model the internal geometry of the camera are known (provided

the optical characteristics are already known). Some of these internal camera

parameters have already appeared in the text:

• Focal length (f): it measures the distance (in mm.) from the optical center to the

image plane

• Conversion parameters kx and ky: provide horizontal and vertical adjustments to

go from millimeters to pixels. They account for the number of pixels per unit of

metric distance (mm.).

• Principal point of the image (x0, y0): it is defined by the projection of the optical

center onto the image plane. It is expressed in pixels.

Therefore, a complete modeling of the camera geometry implies the estimation of

five internal parameters (f, kx, ky, x0, y0), plus two or three lens distortion components

(r, k1, k2, ...). A description about how to compute these parameters will be given in

Chapter 5.

2.5 The Kalman Filter

The Kalman Filter (KF) is a recursive estimator for estimating the state of a linear

system [Kal60]. It consists of set of mathematical equations that provide an efficient

computational (recursive) solution of the least-squares method. The filter is very

powerful in several aspects: it supports estimations of past, present, and even future

states, and it can do so even when the precise nature of the modeled system is

unknown. It is very useful in the context of this work since it provides the basis for

re-aligning the mosaic map when the vehicle path crosses itself. The great popularity

and widespread use of the KF has resulted in a substantial corpus of literature

regarding the derivation, implementation and properties of the filter. KF equations
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are stated below in this section and will be invoked in following chapters without

proof. For a more thorough derivation of the Kalman Filter and detailed discussion

reference should be made to [Kal60, Kal61, May82].

The alignment of images within the mosaic is subject to the propagation of errors.

As the vehicle moves, uncertainty about its position increases. Therefore, if the

vehicle revisits an already mosaicked area, position uncertainty can be reduced to

that the vehicle had the first time this area was explored. This is a very challenging

idea since it allows the correction of error propagation in the alignment of images

within the mosaic. In this way, a Kalman Filter appears as an adequate tool to

improve the internal consistency of the mosaic, and at the same time it provides

better estimates about the position of the vehicle.

The KF addresses the general problem of trying to estimate the state x  of a

discrete-time process that is governed by the linear stochastic differential equation

[Kal60]:

1 1 1   k k k k k+ + += Φ + +x x B u w (2.22)

with a measurement z, which corresponds to:

k k k= +z Hx v (2.23)

The n×n matrix Φ  in Equation (2.22) relates the state at time step k to the state at

step k+1, in the absence of process noise 1k+w  and system input 1k+u  (control

injected at time k+1).. The m×n matrix H in the measurement Equation (2.23) relates

the state to the measurement kz .

On the other hand, the random variables w  and v  represent the process and

measurement noise, respectively. They are assumed to be independent of each other,

white, and with normal probability distributions with zero mean and known

covariances:

k(0, )k Nw Q∼ (2.24)

k k(0, )Nv R∼ (2.25)

The matrices describing the process noise covariance kQ  and measurement noise

covariance kR  may change with each time step or measurement.

The filter is able to compute an “a priori” state estimate 1ˆ k
−
+x  for the next time

step, before a measurement z for time step k+1 is available.
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1ˆ ˆ  k k k k k
−
+ = Φ +x x B u (2.26)

This state estimate has an “a priory” error covariance matrix 1k
−
+P :

T T
1k k k k k k k

−
+ = Φ Φ +P P B Q B (2.27)

The “super minus” ˆ( )k
−x  indicates that we are a priori estimating the state at step

( 1)k +  provided that the process is only known up to step k. Equations (2.26) and

(2.27) propagate the state estimation and its covariance matrix forward in time. They

are known as propagate equations, as shown in Figure 2.12.

Then, a gain matrix kK  relates the amount of influence the error between the

measurement kz  and the previous (a priory) estimation k
−x . So, it measures how

match the filter relies on the current observations kz , through the update equations:

T T 1( )k k k k k k k
− − −= +K P H H P H R (2.28)

1ˆ ˆ ˆ( )k k k k k k
− − −= + −x x K z H x (2.29)

It can be seen from equation (2.28) that the gain matrix kK  is computed by using

the predicted error of those elements in the state parameter vector that are obtained

from the image. kH  gives the noiseless connections between the measurement and

the state vector at time step k, and kR  is the measurement error. Then, equation

(2.29) updates the estimate with the measurement kz . The difference between the

estimated and measured parameters can be considered to be a prediction error, which

is caused by either faulty measurement, faulty prediction, or a combination of both.

A proportion of the predicted error is added to the parameter estimate ˆ k
−x  to produce

an updated state parameter vector ˆ kx , depending on the values of kK .

Next, updated state error covariance kP  is computed:

( )k k k k
−= −P I K H P (2.30)

where the portion of the gain matrix that is associated with elements measured from

the image is substracted from an identity matrix to yield a proportion of non-gain.

This is multiplied with the estimated error covariance to produce an updated error

covariance, reflecting the remaining uncertainty about the state parameters. This

implies that as kK  decreases, the estimated error used to update kP  increases

proportionally. The complete scheme of the equations involved in the filter are

shown in Figure 2.12.



CHAPTER 2. THEORETICAL BACKGROUND 42

Time Update (“Predict”)

(1) Project the state ahead

1ˆ ˆ  k k k k k
−
+ = Φ +x x B u

(2) Project the error covariance ahead
T T

1k k k k k k k
−
+ = Φ Φ +P P B Q B

Measurement Update (“Correct”)

(1) Compute the Kalman gain

T T 1( )k k k k k k k
− − −= +K P H H P H R

(2) Update estimate with the new measurement

1ˆ ˆ ˆ( )k k k k k k
− − −= + −x x K z H x

(3) Update the error covariance

( )k k k k
−= −P I K H P

Figure 2.12. A complete picture of the operation of the Kalman filter.

Therefore, the filter estimates the state of the system at some time and then

obtains feedback in the form of noisy measurements. As such, the equations for the

Kalman filter perform two distinct operations: time update (propagation) and

measurement update (correction). The time update equations are responsible for

projecting forward in time the current state and error covariance estimates to obtain

the a priori estimates for the next time step. The measurement update equations are

responsible for the feedback, i.e., for incorporating a new measurement into the a

priori estimate to obtain an improved a posteriori estimate. It should be noted that

the time update equations could also be viewed as predictor equations, while the

measurement update equations can be thought of as corrector equations.
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Chapter 3

Review of underwater vision systems for sea-
bed mosaicking

This chapter surveys the alternative methods of constructing underwater mosaics

that have been described in the literature. It pays special attention to analyze the

advantages and drawbacks of the reviewed systems. A comparative table is provided

at the end of the chapter.

3.1 Introduction

Ocean floor mosaics usually obtain the individual images to form the mosaic by

setting a camera on an Unmanned Underwater Vehicle (ROV or AUV). The camera

is attached to the submersible, looking down to the seabed. The acquired images

cover a small area of the ocean floor, as shown in Figure 3.1.

Several alternatives have been proposed to solve the mosaicking problem [Gar00].

First, we review the different strategies. Then, the common denominator among them

is used to propose a general approach to mosaic construction. This allows a

comparative study. Figure 3.2 shows a set of block diagrams that broadly describe
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the main different approaches that can be found in the literature regarding

underwater visual-based mosaicking systems.

Figure 3.1. Set-up of a mosaicking system for underwater sea-floor applications

One of the first computer-aided systems to automate the construction of

underwater mosaics was the one presented by Haywood in [Hay86]. In this work,

mosaicking was accomplished by snapping images at well-known positional

coordinates. These images were then warped together as the registration between

images was known beforehand.

Some years later, IFREMER researchers set the starting point for estimating the

motion of an underwater vehicle from a sequence of video images [Agu88,Agu90].

Their approach consisted of detecting and matching feature points in successive

images. A Kalman Filter was used to predict the position of the features in the next

image. The trajectory of the vehicle was estimated through the Generalized Hough

Transform (GHT).

Fiala and Basu [Fia96] patched images together into a large composite image, in

order to obtain a 3D representation of underwater objects. This vision system was

used in conjunction with a ROV equipped with 3D position and orientation

measuring devices. The authors limited their experiments to the mapping of planar

textures onto a model of a marine vessel. No attempt was made in [Fia96] to explain

how they solved the image registration problem.
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Stanford University, together with the Monterrey Bay Aquarium Research

Institute (MBARI), jointly developed a well-known underwater mosaicking system

[Mar95]. Their system created real-time mosaics from the images provided by the

OTTER semi-autonomous underwater robot, and the Ventana Remotely Operated

Vehicle. This high performance was possible due to the use of special purpose

hardware for image filtering and correlation. Figure 3.2(a) shows a block diagram (at

the highest level of abstraction) of their dataflow. It should be noted that their system

only adds a new image to the mosaic if sufficient motion is detected between the

present image and the last one added to the mosaic (fixed distance intervals).

Gracias and Santos-Victor have proposed a quite accurate mosaicking strategy,

based on the detection of corner points in one image and their corresponding points

in the next image [Gra98b,Gra00]. The accuracy of the system is improved due to the

implementation of robust outlier-detection techniques which eliminate false matches.

Finally, a planar transformation matrix relates the coordinates of the two consecutive

images (see Figure 3.2e). The same authors presented an alternative approach that

proposes the correlation of the present image directly with the mosaic image. This

improves accuracy because small errors in the estimation of motion in consecutive

images do not tend to accumulate.

Researchers at the University of Miami have implemented a mosaicking system

with real-time capabilities which is based on the Direct Motion Estimation algorithm

[Neg98c]. This algorithm allows the estimation of the vehicle motion without the

intermediate computation of image features, thus reducing the sources of error and

allowing a faster computation (real-time performance without special purpose

hardware). Their system only adds a new image to the mosaic every L image of the

sequence (fixed time interval). To refine motion estimation, an image is extracted

from the mosaic at the predicted location of the vehicle. The current actual image is

then compared with the predicted image (see Figure 3.2d).

Another interesting approach is that presented in [Rzh00], where the mosaic is

built based on image analysis of the frequency domain (Figure 3.2b). Their system

pays special attention to the equalization of non-uniform illumination in the images

to improve the Fourier-based image registration phase.

Researchers of the Woods-Hole Oceanographic Institution (WHOI) have used

image mosaics to obtain a better perspective in the study of the underwater
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environment [Sin98] (see Figure 3.2f). This work concentrates on the visual aspect of

the mosaics, equalizing the images to eliminate differences in intensity, especially at

image boundaries. They have recently proposed a featureless image registration

algorithm to automatically construct visual mosaics of the ocean floor [Eus00]. The

algorithm explicitly takes into account shadow effects caused by the motion of the

light sources.

From those systems described above, we have chosen a representative subset of

mosaicking alternatives in order to get an overview of the different philosophies that

can be used. For the sake of space not all the alternatives are illustrated in Figure 3.2.

Moreover, we should bear in mind that Figure 3.2 represents a quite simplified model

of every mosaicking system. If we analyze the main differences among the systems

illustrated above, we can realize that most of the techniques consist on comparing the

present image with the previous one, or with an image extracted from the mosaic.

The approach to perform this comparison significantly varies from one approach to

another.

3.2 A common frame to construct mosaics

The basis of a mosaic is the computation of the displacement of the camera relative

to its environment, for example, the sea floor. In order to construct a map of the

ocean floor, several short-range images have to be warped together. Normally, the

fusion of these images goes through some (or sometimes all) of the following steps:

1. Correction of geometric deformations (mainly due to lens distortion).

2. Lighting inhomogeneities/artifacts removal.

3. Motion detection between consecutive images of the sequence (Image

registration).

4. Mosaic actualization and motion detection between the mosaic and the current

frame (if the mosaic is to be actualized).

5. Image warping and mosaic construction.
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Figure 3.2. Block diagram of the different mosaicking systems proposed in the literature (a)
MBARI/Stanford approach, (b) Univ. New Hampshire/Heriot-Watt, (c) Heriot-Watt Univ. (d) Univ.

Miami, (e) IST&ISR, (f) WHOI
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3.2.1 Correction of geometric deformations

Real-world applications cannot rely on an ideal distortion-free image. If we attempt

to construct a mosaic from a sequence of well-known positions of the camera, the

visual appearance of the resulting mosaic might not be satisfactory due to the

discrepancies between the geometrical model of the camera and the behavior of the

physical sensor itself (see Figure 3.3). A commonly used geometrical model is the

pinhole model [Tsa87,Aya91], which assumes that the light beams pass trough a

small point (pinhole), forming the image on a plane placed at a fixed distance f of the

pinhole. This perspective projection provides a linear relationship relating a 3D-point

P of the scene with its corresponding 2D-point p on the image plane:

1

1 0 0

0 1 0

0 0

c w
u

c w
u

w
f

k x X

k y Y

k Z

    ⋅
    ⋅ =     
        

(3.1)

where ( , , )w w w TX Y Z  are the world coordinates of the 3D point P, ( , )c c
u ux y

correspond to its perspective projection expressed in the camera coordinate system,

and k is the scaling factor when expressed in homogeneous coordinates, obtaining

( , , )c c T
u uk x k y k⋅ ⋅ . Unfortunately, as a result of some imperfections in the design and

assembly of the lens composing the optical system, the linear relationship of equation

(3.1) does not hold true [Wen92]. In this way, the physical lenses introduce a non-

linear distortion in the observed image points. Moreover, when treating underwater

images, the ray deflections at the water-camera housing and the air-camera housing

interfaces introduce a second distortion [Xu00], which normally attenuates the lens

distortion. The total distortion can be modeled by a radial and tangential

approximation. Since the radial component causes most of the distortion, most of the

works correct only this one [Gra98a, Gar01]. Complete camera calibration is not

necessary for eliminating the distortion.

Severe lens distortion can be corrected by applying several calibration algorithms

[Fau86, Tsa87, Wen92]. A generic equation to compute the radial distortion is given

by:

( )2 2
1

c c c c c
u d d d dx x k x x y= + + (3.2a)

( )2 2
1

c c c c c
u d d d dy y k y x y= + + (3.2b)
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where ( , )c c
u ux y  are the ideal undistorted coordinates of the measured distorted point

( , )c c
d dx y , referred to the camera coordinate system and 1k  is the first term of the

radial correction series.

By applying the method of Faugeras [Fau86], c
dx  and c

dy  in equation (3.2)

should be set to:

0
i

c d
d

x

x x
x

k

−
=                     0

i
c d

d
y

y y
y

k

−
=  (3.3)

obtaining a cubic equation, where ,x yk k  are the scaling factors in the x and y

directions, respectively. They account for differences on the image axes scaling. The

principal point of the image is defined by 0 0( , )x y , and it represents the coordinates

of the projection of the optical center of the camera over the image plane. i
dx and i

dy

are the coordinates of the distorted point expressed in the image coordinate system.

Another widely used technique to solve equation (3.2) consists on applying the

method of Tsai, setting c
dx  and c

dy to:

( )0
i

x dc
d

x

d x x
x

s

−
=                     ( )0

c i
d y dy d y y= − (3.4)

where ,x yd d  are constant values computed from the parameters provided by the

camera manufacturer, and xs  is the scaling factors in the x direction. This is the

option taken by the researchers of the Instituto Superior Tecnico in [Gra97].

Negahdaripour et al. also take into account tangential distortion in order to

compensate the distortions of the lenses [Xu00]. It can be computed by an infinite

series [Wen92] that is normally approximated by one or two terms. However,

tangential distortion is the responsible of a small percentage of the total lens

distortion, and some authors consider that only the radial component should be

computed to avoid numerical instability in calibration [Tsa87].

The calibration phase has to be performed underwater, since the medium

properties can modify the camera parameters that would otherwise be measured out

of the water. Figure 3.3 illustrates this effect.
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Figure 3.3. Correction of lens distortion in underwater images (a) Image with severe lens distortion;
(b) corrected image. A white line has been overlayed on the contour of the object.

By correcting the lens distortion, the further steps of the mosaic construction will

be more accurate and reliable –although some authors consider that the effect of lens

distortion can be ignored. In this sense, the system presented in [Mar95] utilizes a

camera with a narrow field-of-view (less than 20°). By using a camera with such a

geometry, the perspective effects are minimized in two ways: first, data failing to

accomplish the unique-plane condition assumed by the mosaic are less annoying;

secondly, the effect of lens distortion can be ignored. Moreover, if we take into

account the 3D nature of the underwater terrain, it can be seen that the overlapping

area in two consecutive images is more similar as the field of view of the camera is

reduced, since the image approaches an orthographic projection, in spite of being a

perspective projection. However, as the field of view is small, more images are

needed to cover the same area.

3.2.2 Lighting inhomogeneities and artifacts removal

Often, natural light is not sufficient for imaging the sea floor. For this reason, a light

source attached to the submersible provides the necessary lighting. As well as the

artifacts described in the previous section (scattering, absorption, etc.), the artificial

light sources tend to illuminate the scene in a non-uniform fashion, producing a

bright spot in the center of the image with a poorly illuminated area surrounding it.

Also, brightness of the scene changes as the vehicle moves. Figure 3.4(a) shows a

typical underwater frame suffering from this effect.
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(a) (b)

Figure 3.4. Underwater image showing lighting (a) inhomogeneities and (b) artifacts

Some authors have proposed the use of local equalization to compensate for the

effects of non-uniform lighting [Sin98], darkening the center of the image and

lighting the dark zones of the sides. Moreover, the motion of the light source creates

a shift of the shadows induced in the scene. The motivation of the work described in

[Sin98] was to eliminate differences in intensity among the component images that

form the mosaic, thus enhancing the sense of continuity across the mosaic. This idea

was later applied in [Eus00] to make the image irradiance more uniform before

computing the registration parameters.

Rzhanov et al. presented in [Rzh00] a similar method for removal of lighting

inhomogeneities: the so-called de-trending technique. It consists in the fit of a

surface to every frame, and then subtracts it from the image. Knowledge about the

nature of the light may suggest the best shape for the surface function. A two-

dimensional polynomial spline is normally enough. Figure 3.5(a) illustrates the effect

of correcting the image shown in Figure 3.4(a) by using this method.

Marks et al. [Mar95] adopted an alternative technique to deal with lighting non-

uniformities. They proposed the use of a spatial filter that attenuates the lighting

inhomogeneities: the Laplacian-of-Gaussian (LoG), proposed by Marr and Hildreth

in [Mar80]. It was initially introduced as an edge detector, since it detects abrupt

intensity variations in the image. It consists of a Gaussian smoothing of the image,

which reduces the effect of noise on the image. When applied to underwater imaging,

this low-pass filtering reduces the high-frequency artifacts on the image originated

by backscattering, or “marine snow”, although it may also destroy part of the

information in the rest of the image. For this reason the standard deviation of the
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filter (σ) must be set up accurately. Next, a Laplacian operator performs a spatial

second derivative on the image. According to Fleischer et al. this has the effect of

separating the image into regions of similar texture. To obtain this effect, the filter

requires the use of larger masks.

(a) (b) (c)

Figure 3.5. (a) spline surface fitted to the image of  Figure 3.4a, (b) corresponding image, (c)
correction of non-uniform illumination through spline subtraction as described in [Rzh00].

Balasuriya and Ura [Bal01] have also used a LoG filter to reduce backscatter,

setting the mask size to 16×16. When both the Gaussian and the Laplacian filters are

applied together, the result is a band-pass filter, with a band frequency that can be

adjusted by means of the parameter σ of the Gaussian filter. Figure 3.6 shows the

shape of the LoG filter with σ=4 and a size of 25×25 pixels.

Figure 3.6. Laplacian-of-Gaussian convolution mask. Size: 25×25 pixels. 4σ =

In [Mar94b], the authors set the size of the filter to up to 40×40 pixels as typical

values. Figure 3.7 illustrates the effect of convolving the images (6a) and (7c) with
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the LoG filter. The binary image resulting from the SLoG filter is used in

[Mar94b,Fle97] to register the image with the rest of the mosaic.

Negahdaripour et al. take a different approach. Applying the so-called

Generalized Dynamic Image Model [Neg93] [Neg98c] solves the problem of light

variation in the temporal domain. In this case, temporal radiometric differences on

the image pixel values are taken into account by introducing two additional

parameters into the constant-brightness optical flow equations. In order to provide a

better global understanding, this method is explained in the next section, after the

description of the Direct Estimation method.

(a) (b)

(c) (d)

Figure 3.7. (a) and (b) gray-level images presenting different levels of illumination,  (c) and (d)
signum of Laplacian-of-Gaussian to the top images
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3.2.3 Motion detection between consecutive frames

3.2.3.1 Introduction

This phase consists of detecting the apparent motion of the camera. This

measurement will be computed in image coordinates. Most of the works that can be

found in this study consider that the vehicle has 4-degrees of freedom: they assume

that the vehicle is passively stable in roll and pitch, therefore only 3D translation and

yaw motion is taken into account. This is a very reasonable assumption when the

center of mass of the submersible is below its center of buoyancy. The literature

exhibits two different approaches in the selection of the coordinate system to

describe the vehicle motion. The first, assumes a coordinate system of the vehicle as

commonly taken in underwater robotics [Sna50] (Figure 3.8a), while the second

modifies the coordinate system to make it agree with the image plane of the camera

(Figure 3.8b). In this case, the coordinate origin OC is attached to the focal point of

the camera, as normally considered in visual servoing tasks [Lot01].

YR

XR

OR

RZ

roll

yaw

pitch

YC

XCOC

CZ

(a) (b)

Figure 3.8. Cartesian coordinate system attached to the underwater vehicle and associated angles.

The motion detection techniques can be classified according to different

parameters, as illustrated in Figure 3.9. The most general classification would

distinguish between techniques working in the spatial or frequencial domain.

Although it is known that a two-dimensional translation between two images can be

determined by a shift of their Fourier spectrums, very few works have used this

technique in order to construct a mosaic (only [Rzh00] to the best of our knowledge).

The rotation and scaling parameters can be obtained by using the Fourier transform

and a log-polar representation, then applying the Mellin transform. Moreover, some
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authors have compared spatial and frequencial techniques applied to underwater

image processing (i.e., Olmos et al. in [Olm00]), concluding that spatial methods

(feature-detection in their case) provided better results than the frequency-based

methods on both synthetic and real images, “although not for a significant

advantage”. However, because frequencial techniques in underwater mosaicking

systems have been used less in underwater mosaicking systems, they will not be

described in detail in this report.

Spatial domain Frequential domain

Motion detection

Feature-based
methods

SLoG filtering
+

Planar transf.

Corner Detection
+

Planar transf.

Sum of Squared
Difference (SSD)

+
Planar transf.

Shi-Tomasi-Kanade 
tracker

+ 
Planar transf.

Featureless
methods

Direct
Method

Figure 3.9. Classification of the main motion-detection techniques used in underwater mosaicking.

Spatial techniques can be further classified in two categories: feature-based and

featureless methods. The first presume that feature correspondences between image

pairs can be obtained, and utilize these matchings to find a transform which registers

the image pairs. The last, on the contrary, minimize an energy function searching for

the best transform without using any correspondences. In both cases, the aim can be

reduced to the estimation of the parameters 11 12 33, ,...,h h h  of equation (3.5), where

( ) ( ) ( )( , ,1)k k k T
i ix y=p  and  ( 1) ( 1) ( 1)( , ,1)k k k T

i ix y+ + +=p denote a correspondence point in the

images taken at time k and k+1, respectively, expressed in homogeneous coordinates.

The equations for perspective projection to the image plane are non-linear when

expressed in non-homogeneous coordinates, but are linear in homogeneous

coordinates. This is characteristic of all transformations in projective geometry, not

just perspective projection. It provides one of the main motivations for the use of

homogeneous coordinates, since linear systems are symbolically and numerically

easier to handle than non-linear ones.
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        

(3.5)

The estimation of 11 12 33, ,...,h h h  is known as image registration, and these 9

parameters relate the coordinates of two images in the sequence (determining a

projective transform). The symbol ≅  indicates equality up to scale.

Matrix kHk+1 represents a projective transform describing the inter-frame motion.

Some refer to this matrix as a homography (or collineation) [Sze94]. The

homography matrix kHk+1 relates the 2D coordinates of any point of image I(k+1)
 with

the coordinates of the same point expressed in the reference frame of image I(k).

3.2.3.2 Feature-based techniques

In terrestrial environments, typical features to track are points, lines or contours.

As pointed out in section 2, straight lines and contours are normally difficult to find

in the underwater environment. The feature-based methods normally solve the

registration by first detecting image corners or highly textured patches in one

image ( ) ( )( , )k k
i ix y , and then matching them through correlation on the next

image ( 1) ( 1)( , )k k
i ix y+ + , or minimizing a cost function, considering in both cases that the

same scene radiance is kept constant through the image sequence. Generally, images

are low-pass filtered before correlation, since correlation strength is sensitive to noise

[Gia00].

One of the first feature-based mosaicking systems was developed by

MBARI/Stanford researchers [Mar95, Fle96, Fle00]. They locate features with a

large image gradient (i.e. contours) through the use of the "Laplacian of the

Gaussian" (LoG) operator. Instead of correlating brightness values, a binary image is

obtained depending on the resulting signum of LoG. It simplifies the correlation to a

XOR operation. Moreover, as described in section 0, this method provides some

degree of robustness with respect to artifacts, due to non-uniform illumination.
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The researchers of Heriot-Watt/Udine Universities [Tom98, Fus99, Odo99, Pla00]

select the features to compute image registration by means of the Shi-Tomasi-

Kanade tracker [Shi94]. In this way, given a point ip for which the motion is to be

estimated, a small region iR  centered at this point is considered. Then, the matrix of

the partial derivatives G is computed as follows:
2

2
i

u u v

R u v v

I I I

I I I

 
=  

 
∑G , with u

I
I

x

∂ =  ∂ 
 and v

I
I

y

 ∂
=  ∂ 

(3.6)

A feature point ip  is a good candidate to track if G is well conditioned, that is, if

both eigenvalues of G are above a user-defined threshold. This means that the image

point ip  presents a rapid intensity variation on neighboring pixels in the x and y

directions. The entire image is scanned, searching for good candidate points ip . This

approach can be compared to the detection of corner points [Har88], since it

enhances regions with a high spatial frequency content in both x and y directions.

Considering that the time sample frequency is sufficiently high, the intensities of

every interest point and its neighboring pixels can be considered to remain

unchanged in two consecutive images, as introduced by the Brightness Constancy

Model in [Hor86]:
( ) ( 1)( , ) ( , )k kI x y I x x y y+= + ∆ + ∆ (3.7)

In this way, the motion is approximated by a simple translation ( , )x y= ∆ ∆d .

Since the assumed motion model is not perfect, and the image irradiance may not

remain constant, the problem is rearranged as finding the displacement d, which

minimizes the SSD residual:
2( 1) ( )( , ) ( , )

i

k k

R

I x x y y I x yε + = + ∆ + ∆ − ∑ (3.8)

If the image motion is assumed to be small, the term ( 1) ( , )kI x x y y+ + ∆ + ∆  can be

approximated by its Taylor series expansion, truncated to the linear term, and

imposing that the derivatives with respect to d are zero:

[ ]
2

( ) ( )
0 0 0 0( , ) , ( , )

i

k k
u v t

R

x
I x y I I I I x y

y
ε τ

 ∆  
≈ + + −  ∆  

∑ (3.9)

where ( )tI I t= ∂ ∂  and τ is the elapsed time between images ( )kI and ( 1)kI + .

Operating the terms in equation (3.9):
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[ ] [ ] ( )
2

2
( , ) , 2 ,
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u v u v t t
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ε τ τ
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Then, deriving ε  with respect to ( , )x y= ∆ ∆d , imposing / 0xε∂ ∂∆ =  and

/ 0yε∂ ∂∆ = , and operating we obtain:

[ ] [ ]2 , 2 , 0
i

u
u v u v t
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I x
I I I I I

I y
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∑ (3.11)

which can be arranged as:
2

2
0

i i

uu u v
t

R W vu v v

II I I
I
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τ

      
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∑ ∑d (3.12)

Then, the following linear system can be obtained [Odo99]:

i

u
t

W v

I
I

I
τ

 
⋅ = −  

 
∑G d (3.13)

The displacement vector d can be computed for every selected point ip  through

an iterative Newton-Raphson scheme that minimizes equation (3.13).

Another feature-based method can be found in [Guo00]. Although the authors do

not describe how they select the features, the most likely trajectory is computed for

every feature by means of a least-mean squared-error estimator and a Kalman Filter,

in the framework of a Maximum a Posteriori estimation technique. This approach

can be compared with the previous one in the sense that it also tracks a certain

number of features within a sequence, with the aim of constructing a visual map. In

[Guo00] the features are assumed to undergo 2D translations and rotations in a plane

parallel to the image.

We have described until now how to match feature points in two consecutive

images. However, this idea was later extended to compute the motion between the

first frame of the sequence (known as “reference frame”) and every incoming image,

tracking point features over longer sequences [Tom98, Tru00a, Tru00b, Odo99]. For

this reason, the translational consecutive-frame displacements, proposed initially in

[Tom91], have been extended to an affine model, which could cope with more
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complex motions over longer sequences [Shi94]. In this way the feature window can

undergo rotation, scaling and shear in addition to translation, and the affine model

can be used to monitor the quality of the tracking. Nevertheless, when constructing a

mosaic, the initially tracked features may disappear from the field of view. In this

case, a new reference image has to be selected and new features are chosen for

tracking.

Once the Shi-Tomasi-Kanade tracker has detected a set of correspondences

( )( ) ( ),k k n
i i

+p p  relating two images (consecutive or not), the nine unknown parameters

11 12 33, ,...,h h h  can be found by solving the following rank-deficient system of

homogeneous linear equations [Odo99]:

0⋅ =U h (3.14)
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(3.15)

Equation (3.14) can be obtained by expanding equation (3.5) for the case where

several point matches are available between images I(k) and I(k+n). Equation (3.15) is

solved in [Odo99] through Singular Value Decomposition (SVD), after imposing the

constraint of unit norm for h.

The computation of equation (3.15) requires at least four pairs of corresponding

points ( )( ) ( ),k k n
i i

+p p , as long as collinearity between any 3 points is avoided.

Normally, more than 4 points are used, obtaining an over-determined system of

equations solved through a least squares approach.
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Another feature-based strategy is used by Gracias and Santos-Victor

[Gra97,Gra98b,Gra99,Gra00], who detect features in image I(k) by means of a

slightly modified version of the Harris corner detector [Har87]. Then, the

corresponding matches in the next image I(k+1) are obtained through correlation. In

the correlation phase, they obtain sub-pixel accuracy by means of an optical-flow

technique applied to the patches around each corner [Gra98a]. It is also possible to

obtain sub-pixel accuracy by estimating the peak location of the cross-correlation,

and then fitting a parametric surface to the location of every corner [Mar95]. Once

the correspondences are available, matrix kHk+1 is computed following the same

strategy as described above.

When a new image has to be added to the mosaic, kHk+1 provides its best fitting

with respect to the previous image (or to the mosaic image). The most general

homography has 8 free parameters and is known as projective transformation

(translation, rotation, scaling, and perspective deformation). Since projective

transformation can be expressed in terms of 8 degrees of freedom, it may not be the

best way to describe a given motion, and a better motion model can be assumed.

As described in [Gra00], if the sort of camera motion is known beforehand, the

projective model may contain more free parameters than necessary. The simplest

transformation is pure translation, followed by translation and rotation (rigid or

Euclidean model) and next a more complicated motion model can be described by

introducing scaling (similarity model). More complex transformations are obtained

with the affine model (translation, rotation, scaling, and shear). Finally, the

projective transformation introduces the perspective deformation to the affine

transformation. Table 1 shows the homography representing some of the most

popular transformations. Depending on the nature of the motion, the most suitable

motion model will provide the best results in the image registration phase. The

problem is that in general, it is difficult to know the motion model that best describes

the motion of the vehicle beforehand.
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rigid transformation affine transformation projective transformation

translation and rotation translation, rotation, scaling

and shear

translation, rotation, scaling

and perspective deformation
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Table 3.1: Possible motion models for planar transformations.

As can be observed in Table 3.1, the most general planar transformation has eight

independent parameters (projective model). In the case of underwater imaging,

additional constraints can be available on the camera motion. For instance, if the

vehicle is known to be passively stable in pitch and roll, the parameters 31h  and 32h of

the projective model can be set to zero, since no perspective deformation will occur

on the image, obtaining the affine transformation of table 1. Therefore, the simplest

3x3 matrix that fits the motion of the camera will be the best approximation of its

described trajectory, with respect to more complex motion models.

Improving image registration

Before the computation of the homography that registers two consecutive images,

better results can be obtained by analyzing the data that is used to find matrix kHk+1.

Some of the homography-based mosaicking systems (i.e. [Gra99, Gra00, Odo99,

Gar01]) reduce the amount of “outliers” (data describing a movement in gross

disagreement with the general motion) by applying robust techniques to the pairs

point-matching [Rou87,Mee91].

A widely-used technique for detecting outliers is the Least Median of Squares

(LMedS) algorithm [Rou87]: given the problem of computing the homography

matrix kHk+1 from a set of data points, where n is the minimum number of data points

which determine a solution, compute a candidate solution based on a randomly

chosen n-tuple from the data. Then, estimate the fit of this solution to all the data,
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defined as the median of the squared residuals. The median of the squared residuals

is defined by:

( )( ) ( )( )2 ( ) ( 1) 2 ( 1) 1 ( )
1 1, ,k k k k k k

err j k j j k j
j

M med d d+ + −
+ += +p H p p H p (3.16)

where 1 2 3(x ,x ,x )=p are the homogeneous coordinates of a 2D point p  defined in

the image plane; and 2 ( ) ( 1)( , )k k
j jd +p Hp  is the square distance from a point ( )k

jp ,

defined on image I(k), to the projection on the same image plane of its

correspondence ( 1)k
j

+p  . Once the best solution has been found, a minimal median is

obtained. As from the median, the mean µ and the standard deviation σ can be

computed (see [Rou87] for details). Therefore, those points at a distance d larger than

µ±σ are eliminated, and matrix kHk+1 is recomputed with the remaining points,

through a Least Squares criteria. This outlier rejection process is called Dominant

Motion Estimation in [Odo99].

According to [Odo99], when Gaussian noise is present the relative statistical

efficiency of LMedS can be increased by running a weighted Least Squares fit after

LMedS. In this case, weights are selected depending on the residual of the LMedS

procedure [Rou87].

Gracias and Santos-Victor propose a two-step variant of LMedS, known as

MEDian SEt REduction (MEDSERE) [Gra98a,Gra00]. It consists on two iterations

of LMedS random sampling, choosing the best data points in fitting the cost function

of equation (3.16). This technique requires less random sampling than LMedS while

obtaining the same degree of outlier rejection.

Tommasini et al. [Tom98] devised a method called X84 to automatically reject

incorrect matching points in the image sequence, as initially proposed in [Ham86].

Their method is based on a measurement of the residual of the match between the

initial image and every frame of the sequence. A tracked feature is considered to be

good (reliable) or bad (unreliable) according to this residual.

Moreover, in addition to the techniques described above, a better-conditioned

problem can be obtained if the data undergoes a standarization process [Gra98a],

achieving more accurate results. A typical standarization consists on placing the
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coordinate center of the images in the centroid of the data points. Then, the points are

re-scaled, so that the average distance from the center to all the points is 2 .

3.2.3.4 Feature-less techniques

An alternative to the methods described above is the computation of motion without

the need to estimate feature correspondences. Two approaches fall into the feature-

less group: (1) Homography-based global minimization techniques, which compute a

2D (projective) transformation matrix; and (2) a direct method –derived from the

optical flow equation– that is able to provide 3D motion estimation without the need

of intermediate 2D computations.

Estimating the 2D transformation through global minimization

The feature-less techniques minimize the sum of the squared intensity errors over all

corresponding pairs of pixels, which are present in two consecutive images, as was

shown in equation (3.8), but this time the window iW  is extended to the whole

image:
2( 1) ( 1) ( 1) ( ) ( ) ( )( , ) ( , )k k k k k k

i i i i
i

I x y I x yε + + + = − ∑ (3.17)

where I(k) and I(k+1) represent the images taken at time instant k and k+1, respectively.

The equation, which relates the pixels in both images by means of an homography

(equation (3.5)), is then taken as a cost function that minimizes the matching

criterion ε  of equation (3.17), in order to obtain the parameters 11 12 33, ,...,h h h

through a nonlinear minimization technique.

Acquisition and matching of good features for motion detection is a difficult task

in underwater images. In this respect, feature-based methods are error-prone.

However, since featureless methods do not rely on explicit feature correspondences,

they suffer no problems associated with feature detection and tracking. Nevertheless,

these methods require good initialization values in order to converge to a solution.

Moreover, they need a small change from one image to the next. But, even when the

motion between images is smooth, there is no guarantee that the parameter estimate
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process will lead to the optimal solution. Special efforts must be made to prevent the

parameter estimation from falling into local minima. Finally, when dealing with the

computation of the homography matrix, the computational requirements of the

featureless methods is higher than that of the feature-based approach.

For all the reasons explained above, homography-based feature-based methods are

more popular than featureless ones in sub-sea mosaicking applications.

Direct method of computing 3D motion

Direct motion estimation methods are based on the following statement: if the aim of

the mosaicking system is to obtain the 3D motion of the vehicle, it is not necessary to

first compute the 2D image motion and then to use this estimation to obtain the 3D

measure. The use of spatio-temporal image gradients ( ) ( ), , , ,I I I
x y tu v tI I I ∂ ∂ ∂

∂ ∂ ∂=

allows the computation of the 3D motion directly. Negahdaripour et al. derive their

solution of the motion problem by applying the Brightness Constancy Model (BCM)

[Hor86]. Then, revisiting equation (3.7), the BMC assumes that a pixel located at

coordinates (x,y) in one image conserves its brightness when located at position

( , )x x y y+ ∆ + ∆ in the next image.

Considering x u tδ∆ =  and y v tδ∆ = , equation (3.7) can be re-written as:

( 1) ( )( , ) ( , )k kI x u t y v t I x yδ δ+ + + = (3.18)

where (u,v) are the image velocity components of the pixel at time (k) in the x and y

directions, respectively.

Again, applying Taylor series expansion to equation (3.18), the optical flow

equation is obtained:

0u v tI u I v I+ + ≈ (3.19)

If the image motion is expressed in terms of the translational ( , , )x y zt t t and yaw

( )Ψ  motion of the vehicle, equation (3.20) can be derived.
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(3.20)

where f is the focal length of the camera (obtained through calibration), Z is the

average vertical distance to the sea floor at time instant k; ( ), , ,x y zt t t Ψ  represent the

3D translation and yaw rotation of the vehicle (the only unknowns in the equation);

and ( ),i ix y are the image coordinates of any pixel i. Equation (3.20) holds for all the

image, with ( ),i ix y  and It varying for every pixel. This equation is applied to n

pixels, solving the following system for the 4 unknowns through a least squares

method:

( ) ( )
1

x

Ty
t

i iz

t Z

t Z
ss sI

t Z

−

 
 

     = −         
 

Ψ  

∑ ∑ , where 

0

0 u

i i v

i i

f

f I
s

x y I

y x

− 
 −   = ⋅      − 

(3.21)

The solution of this system is constrained to a relatively flat bottom, as has also

been assumed by the homography-based methods. Therefore, the local differences in

depth all over the image should be insignificant relative to the average distance Z

from the vehicle to the seabed. The initial altitude Z(0) may be acquired from a sonar

reading, and can be considered to update Z at every time step.

Although equations (3.18) to (3.21) have been described for the constant

illumination case, Negahdaripour et al. [Neg99] have proved that temporal

radiometric differences on the image pixel values can be taken into account by

introducing two additional parameters: a multiplying factor m and an offset c. This

approach is based on the so-called Generalized Dynamic Image Model (GDIM)

[Neg93,Neg98c]. The radiometric transformation fields m and c are considered low

frequency spatial signals that explain the instantaneous rate of image irradiance

variation between a point (x,y) in one image with the same point ( , )x x y y+ ∆ + ∆  in

the next image of the sequence, as shown in equation (3.22).
( 1) ( )( , ) ( , )k kI x u t y v t m I x y cδ δ+ + + = ⋅ + (3.22)
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This equation can also be expanded to a Taylor series up to the first order terms,

expressing the two unknowns (u,v) in terms of the vehicle motion ( ), , ,x y zt t t Ψ :

   ( )

0

0 1
( , ) 1 0, for 1..

T

x

u ky
t i i

i i v z

i i

f t Z

f I mt Z
I I x y i n

x y I ct Z

y x

 −   
    − −         + ⋅ ⋅ + ⋅ ≈ =                − Ψ      

(3.23)

Although equation (3.23) holds for all the image points, parameters m and c vary

(smoothly) through the image. Bearing in mind this low frequency characteristic,

Negahdaripour et al. [Neg99] divide the image in small regions Ri, assuming a

constant value of m and c within these regions.

Direct methods [Neg99] present some advantages over optical flow or feature

correspondences, such as a lower computational cost, higher accuracy, and the

possibility of taking into account radiometric variations. For this reason it can be

efficiently implemented for achieving real-time performance.

3.2.4 Mosaic registration and actualization

Section 3.2.4 has described the methods to detect motion between consecutive

images. To facilitate the detection of correspondences between images, some of these

methods constrain the inter-frame motion to a small value. Obviously, small errors in

the detection of motion between consecutive frames provoke an accumulated error as

the mosaic increases in size. This error can be reduced if the current frame is

periodically registered with the mosaic image, as will be described in this section.

Once a first estimate of the image registration parameters is known, the

mosaicking system has to decide when, either it is worth actualizing the mosaic with

the present image, or it does not pay to update the mosaic because the contribution of

the present image to the mosaic is too small. Three criteria can be used to take the

decision of updating the mosaic: (i) use all the registered images to update the

mosaic; (ii) update at constant time intervals; and (iii) update at constant

displacement intervals.
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Strategy (i) is used by the Oceans Systems Lab [Odo99,Tru00b] and IST

[Gra98a,Gra00] researchers, capturing the images at quite a high frequency (close to

video rate), and then processing them offline. In general, this presents the advantage

of providing a rich amount of information, allowing the use of temporal filtering to

segment moving objects from the stationary background, as will be described later in

section 3.2.5. We could consider that Rhzanov et al. [Rhz00] also uses this

technique, although their approach is slightly different due to a lower capture rate (2-

3 fps), thus presenting a smaller overlap between consecutive images.

Strategy (ii) is taken by Negahdaripour et al. [Neg98a,Neg98e]. In order to

operate in real time, updating the mosaic with every new image of the sequence

implies a loss of computational efficiency. For this reason, a constant parameter L

governing the actualization rate of the mosaic is set in [Neg99]. In this way, the

mosaic is updated with a new image every L frames. Parameter L is adjusted

depending on the motion of the vehicle and its distance to the sea floor. When an

image is selected to actualize the mosaic, an “a priori” estimation of the location of

the image in the mosaic is computed through the registration of this image with the

previous one. Then, an image is extracted from the mosaic in the estimated location

and refined motion estimation is performed, thus reducing the accumulated error.

Strategy (iii) has been selected by MBARI/Stanford researchers as a good solution

to obtain real-time performance [Mar95,Fle98]. Their system captures images at 30

Hz. Then, every image is registered with the last image added to the mosaic. The

image may be selected to be part of the mosaic (“acquired”) depending on its

overlapping region with some previously acquired image. Marks et al. consider that a

new image is “acquired” only when it is fed into the composite mosaic image and not

when it is snapped by the camera. The live image is acquired only if the horizontal

and vertical image offsets are close enough to a desired set of offsets. In this way, the

amount of images composing the mosaic is kept to a small value in relation to the

mapped area. The authors consider that camera rotation and scaling can be

considered to be small since the special-purpose hardware allows a high enough

cycle time for processing the images. So this motion will not significantly degrade

correlation and the subsequent registration.
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Once the frame-to-frame motion parameters have been obtained, these

transformations are combined to form a global model. The global model takes the

form of a global registration, where all the frames are mapped into a common,

arbitrarily chosen, reference frame.

The last step consists on merging together the registered (aligned) images, in

order to create a mosaic. Some of the works in the literature refer to this step as

mosaic reference. Once the best transformation kHk+1 has been found, images I(k+1)

and I(k) can be warped together, but a base frame is necessary as an initial coordinate

system. Some approaches use the first image of the sequence as an initial coordinate

system, while other approaches map the first image into an arbitrarily chosen

reference frame. This second approach was introduced in [Gra98a], where the

mosaicking system was able to handle severe violations of the assumption of the

camera being parallel to the ocean floor. In this way, every live image of the

sequence can be registered with a virtual reference frame, as the one illustrated in

Figure 3.10.

Once the first image is attached to the mosaic, the following images have to be

registered not only to the previous image of the sequence, but also to the reference

frame. This process of global registration relates the image coordinates of any point

in image I(k+1)
 with respect of the coordinate frame of image I(1).

The global registration matrix 1Hk+1 is computed by multiplying the set of

transformation matrices:

1
1 1

1..

i
k i

i k

H H+ +
=

= ∏ (3.24)
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Figure 3.10. Arbitrary-chosen reference frame to obtain a better perception of the sea floor. It
simulates the effect of having the camera parallel to the floor. Bilinear interpolation has been applied

to the warped image.

3.2.5 Image warping and mosaic construction

Once the frame-to-mosaic motion parameters are known, the registered images are

merged into a composite mosaic image. Then, a same region of the scene is viewed

from different images, generating an overlapping area in the mosaic. As illustrated in

Figure 3.11, the set of pixels in the registered images belonging to the same output

point can be though of as lying on a line which is parallel to the time axis [Gra98a].

Several temporal filters can be used to “compose” the mosaic image on the

overlapping regions. They can be divided into two main approaches: (a) Every

mosaic pixel is obtained by combining the overlapping pixels; and (b) Only one of

the aligned images is taken into account

Method (a) requires accurate alignment over the entire image, otherwise the

resulting mosaic will present some blurred zones. Method (b) requires alignment

only along the seams. Some implementations, in trying to obtain a uniform-looking

mosaic image, also disguise the lighting differences along the seams through some

sort of correction of the lighting inhomogeneities.
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Figure 3.11. Space-time volume defined by the aligned images forming the mosaic. The line lp, going
along the temporal axe, intersects pixels that correspond to the same world point (in absence of

parallax).

The combination of pixels that overlap in time can be performed by means of

different strategies: (a1) temporal average, (a2) temporal median, (b1) most recent

pixel or (b2) less recent pixel. Temporal average attenuates the presentation of fast

moving objects (for example, fishes) onto the motionless background, generating a

slight blurring on the areas where the object has moved. Temporal median solves

more effectively this problem, but it is especially useful in the case of moving objects

that occupy background pixel-coordinates during less than half the frames. These

two temporal filters compromise the real-time performance of the mosaicking

systems, all at the time of demanding more memory resources in order to construct

the overlapping structure.

For all the reasons described above, the mosaicking systems that perform in real-

time normally choose strategy (b): taking into account only one of the aligned pixels.

In this case, one can select either the most recent information (called “use-last” in
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[Gra98a]) to update the mosaic, or the less recent information (or “use-first”), which

implies that every new image only actualizes the mosaic on that zones that have not

been updated before. Negahdaripour et al. have selected this last strategy in order to

obtain real-time performance [Neg99,Neg96]. In other respect, Odone and Fusiello

proposed in [Odo99] two more temporal filters: (a3) weighed temporal median and

(a4) weighed temporal average. In this case, weight decreases with the distance of

the pixel from the image center. Figure 3.12 illustrates a classification of the

temporal filters.

MBARI/Stanford researchers call to this phase the consolidation process. It uses

the registration parameters to determine how to fuse the acquired image to the

mosaic, but only the images that provide enough new information are consolidated

into the mosaic.

Combining the
overlapping images

Mosaic Rendering

(a)

Only one image
is taken into account

(b)

average
(a1)

most recent less recent
(b1) (b2)

median
(a2)

weighted
average

(a3)
weighted
median

(a4)

Figure 3.12. Classification of temporal filters to render the mosaic image.

3.2.6 Mosaic-driven navigation

In order to analyze the visual mosaicking systems, one further aspect has to be taken

into account. According to the obtained information related to the mosaic, the control

system has to decide how should the vehicle move to achieve the task of mosaic

construction in the most adequate manner. This vision-based vehicle control allows

the development of path-planning algorithms that aid the construction of mosaics. In

this way, the vehicle can revisit a zone that has been already surveyed when the

system detects that a gap has been left in the mosaic. Moreover, some authors have

proved through simulation [How00] that the best results in the construction of visual
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mosaics are obtained when the vehicle trajectory can be governed by the mosaicking

system.

A commonly used technique to construct seabed visual mosaics consists of

consecutive-image mosaicking. By using this strategy, every new image is registered

with the last image that was added to the mosaic. This technique is also known as

single-column mosaic and it is the strategy followed by most of the systems surveyed

in this work (i.e. [Gra98a, Xu97, Rzh00, Mar94d]). It is obvious that every time an

image is consolidated into the mosaic, there is a chance for error in the parameters

registering this image to any other image. Therefore, considering a sequence of n

images (from I(0) to I(n-1)), the total error accumulates with every new image

consolidated into the mosaic, obtaining an error o(n) if the n images are used to

update the mosaic. However, significant differences arise among the works that use

this technique, as was pointed out in section 0. While IST [Gra00] and Heriot-Watt

[Tru00b] researchers use all the images of the sequence to generate the mosaic,

MBARI/Stanford mosaicking system adds a new image I(k) to the mosaic only when

the overlapping region with the previously added image is small enough. This

operation is called “acquisition” in [Mar95]. This strategy reduces the drift error to

o(m), where m is the amount of images that have been consolidated into the mosaic

(with m<n). Negahdaripour et al. reduce the error to o(n/L) by registering the present

image with the mosaic image every L images.

In order to map a wide area of the ocean floor, sonar-scan mapping systems have

been using column-relative path planning for several years. This idea was applied to

visual mapping by Marks et al. in [Mar94d, Mar95], where the new image is

registered to the contiguous image of the previous column. In this way, the

construction of a square mosaic formed by n images reduces the accumulated error to

( )O n . The column-relative mosaic described in [Mar94d] could be accomplished

in real time thanks to a specific hardware for image processing, although an

additional constraint was introduced to simplify the registration phase: images had to

be acquired at the same orientation. Thereby, the motion of the vehicle is restricted to

a column, where the vehicle heading has to be kept constant, as shown in Figure

3.13. A significant contribution of [Mar95] was the demonstration of the possibility

of creating mosaics of the ocean floor in real time, as the vehicle was moving. This
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strategy allowed a proper image acquisition in order to avoid visual gaps in the

mosaic. However, on-line processing allows the mosaic data to be used immediately

for vehicle navigation.

Figure 3.13. Multiple-column mosaicking system of [Mar95]. The system requires the vehicle to
move forwards and backwards without altering its heading

The acquisition strategy of MBARI/Stanford researchers of [Mar95] was taken on

step forward in [Fle97], defining which previously acquired image has to be

correlated to every new live image (see Figure 3.14).

Consecutive-Image
Mosaicking

Column-Relative
Mosaicking

Structured
Mosaicking

Unstructured
Mosaicking

Acquisition Strategies

(a) (b)

(d)(c)

Figure 3.14. The acquisition module governs how to handle every new image. In strategy (a) every
new image is registered to the last image which was added to the mosaic; in (b) every new image is

registered to the contiguous image of the previous column.

As the size of the mosaic increases, distortions will usually appear in the mosaic

due to accumulated errors in registration. It means that as the vehicle moves, the

uncertainty (covariance) in the positional estimate of the vehicle increases with time.

For this reason, Fleischer et al. proposed in [Fle97] a continuous optimal estimation
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theory, so as to reduce the location error whenever the vehicle path crosses itself.

The basic idea of this technique is to propagate back the error corrections around

loops like the one illustrated in Figure 3.15. In this situation, the additional

knowledge on the position of the vehicle can be propagated back through the image

chain, improving the global placement of all the images of the mosaic.

Image n-1
Image jImage n

Smoother filter 
propagates back

the error correction

Figure 3.15. Arbitrary mosaic describing a rectangular trajectory in the XY plane while maintaining a
constant heading. At the end of the trajectory the smoother filter [Fle97] minimizes the errors in the

location of previous images of the mosaic.

By registering image n to image j, as well as image (n-1), an additional

measurement of the global state of the nth image is obtained. In addition, this new

measurement is more accurate, since image j was consolidated earlier in the mosaic,

and its location measurement had a lower variance. Therefore, drift can be corrected

when the vehicle revisits a previously mapped zone. In this way, all the images

placed between images n to j are relocated in the mosaic image by the filter, taking

advantage of the extra positional information gained with the loop.

In [Fle96] the smoother filter was applied in a discrete fashion, assuming that the

local displacements were constant between consecutive images. Unfortunately, this

assumption was difficult to achieve in practice, as the acquisition of a new image

before the vehicle has moved the desired displacement gave the system a higher
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degree of robustness. Moreover, the derivation and implementation of the discrete

algorithm when multiple loops of the vehicle are present is more difficult than its

derivation in the continuous scenario. For this reason, the same authors later

proposed a continuous version of its smoother filter [Fle97], preventing the system

from experiencing the problems described above.

Unfortunately, the smoother filter used by MBARI/Stanford researchers assumes

that the errors accumulate smoothly all over the loop. However, in practical

situations the errors in building the mosaic are not distributed uniformly across the

mosaic. On the contrary, at some points the error can be much larger than at other

points, even though the line where the images are joined together at their edges has

good visual registration. This effect is proved in [Sin98] (see Figure 4 in [Sin98]),

where the researchers of WHOI together with the Johns Hopkins University analyze

the quality of the visual mosaics by using extremely accurate (and expensive)

navigation data. In [Sin98] the distortion across the mosaic is quantified by

comparing the average distance of separation between the images that form the

mosaic and the actual distance provided by the vehicle’s accurate navigation system1.

3.3 A comparative Classification

Several criteria can be applied in order to classify the previously described

mosaicking techniques. A comparative scheme can be considered by categorizing the

systems according to their motion detection technique. Using this principle, Table 2

proposes a general classification distinguishing between spatial (feature-based or

featureless) and frequential methods.

The first row of the table identifies the different systems by giving the

institution’s name and the referred articles. The next two rows consider the necessity

of correcting the distortions introduced by the lenses and the on-board lighting,

respectively. It can be observed that while some of the works correct the lens

                                                 
1 This system is comprised of a conventional long-baseline acoustic navigation, a bottom-lock Doppler multibeam sonar, and a

ring-laser gyroscope heading reference.
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distortion, other systems have chosen a large focal-length camera to minimize this

effect (reducing the field of view). Several techniques have been proposed to solve

lighting inhomogeneities. Normally, scene radiance is assumed to change smoothly

along with the image. Therefore, some authors [Neg98c] propose a radiometric

model to compensate for variations in the scene illumination, while others [Rzh00]

suggest the fitting of a surface to the gray-levels of the image, and then subtracting it

from the original frame (de-trending technique in the table).

The following three rows of the table provide information about the nature of the

motion performed by the vehicle, the assumed motion model and the technique that

has been used to detect motion, respectively. Most of the systems consider the

vehicle to be passively stable in pitch and roll; therefore those angles are not taken

into account in order to estimate the vehicle motion. Furthermore, note the low

incidence of frequential methods in the phase of motion estimation (only one of the

systems that have been analyzed computes motion by means of the Fourier

Transform). Feature-based techniques select image regions that maximize an interest

criterion, such as the presence of zero-crossings of the Laplacian of the image

[Mar95,Fle97], or a high-spatial gradient in both x and y directions [Gra00,Tru00a].

Some of those methods detect outliers among the selected features by means of

robust techniques to discard false matches, such as X84 [Tru00a], LMedS [Odo99]

or MEDSERE [Gra00].

The next two rows compare the image capture rate and the mosaic actualization

rate, while the following row details whether the mosaicking system is able to work

in real time as the vehicle is moving, or if the mosaic has to be constructed off-line.

Next, the table specifies what is the main purpose of the mosaic: the construction of a

visual map itself, or to serve as a navigation tool to estimate the motion of the

submersible. Finally, the last two rows indicate which technique (if any) is applied to

correct drift as the mosaic increases in size and how the input images are merged

together to construct the mosaic.
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3.4 Conclusions

The main mosaicking techniques for aiding to autonomous underwater navigation

have been reviewed in this Chapter, in order to point out the strengths and

weaknesses of the different strategies. The comparative study could assist researchers

in the decision on which techniques and solutions are the most appropriate to equip

their vehicle with visual mosaicking capabilities.

One of the principal difficulties underwater vision systems have to face is that

related to the lighting effects. The vehicle has to carry its own light source,

producing non-uniform illumination, shadows and scattering effects. Several

techniques have been proposed to compensate for these effects: LoG filtering, de-

trending, radiometric models, etc. When using feature-based techniques, the

Laplacian of Gaussian (LoG) operator has appeared as a widely used technique to

locate features in front of lighting inhomogeneities. However, none of the proposed

methods produces satisfactory results in the presence of backscatter or “marine

snow”.

Image registration is a key step in the construction of visual mosaics. However,

there is not a perfect methodology to recover the registration parameters between two

images. Optical flow strategies are typically affected from the aperture problem,

while feature methods do not suffer from this difficulty. However, feature-based

correlation techniques have serious problems dealing with image rotations (yaw

motion in mosaicking), and zooming effects. Most authors attenuate this problem by

introducing the constraint of a high image capture rate. However, dense flow-based

methods, though accurate, are computationally expensive and sensitive to local

minima.

An evolution of flow methods can be found in the direct methods for motion

estimation, which allow the estimation of 3D motion directly from spatio-temporal

image gradient, without the need of any intermediate measure (such as: feature

correspondences or the flow field). However, they suffer from the problems inherent

in flow-based methods. Its accuracy also decreases as the apparent image motion is

larger than one pixel. This inconvenience can be tackled by introducing a multi-

resolution pyramidal scheme. In other respects, direct estimation methods are more
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accurate than cross-correlation techniques in the estimation of motion over non-flat

terrains. This is related to the fact that differences in depth create intersections in the

image that do not correspond to a physical point of the scene. Nevertheless, it has

been proved that when the texture is poor, the use of correlation-based algorithms

provides better results than those obtained with differential techniques [Gia00].

Unfortunately, an open issue remains unsolved by present mosaicking systems:

non-planar effects are extremely difficult to handle when the underwater

environment is approximated by a plane. In this framework, the appearance of

objects at different ranges produces a false perception of the world due to the

perspective projection, as already stated in the literature [Mar95,Tiw96]. New

strategies should be devised to find out when 3D effects are degrading the mosaic,

leading to the construction of 3D underwater mosaics, that could be represented by a

3D virtual world, instead of a planar image.

According to [Sin98], there is no guarantee that, in practice, mismatches in the

mosaic construction occur gradually and smoothly (as has been assumed in some

looping-based mosaic correcting schemes [Fle95,Fle00]); on the contrary, sporadic

impulse-type errors in the estimation of camera motion are more likely. For this

reason, some authors (i.e. [Neg99]) uniquely actualize the mosaic within regions

where no previous information exists. Then, when the vehicle moves to a zone where

the image completely maps onto some part of the existing mosaic, this new

information is only used for positioning correction. In our opinion, the looping

strategy applied by Fleischer et al. [Fle97,Fle98] could be improved by introducing

the error covariance of the correlation procedure into the system, instead of assuming

the error propagates uniformly within the looping path.

Several researchers have already demonstrated real-time mosaicking with

standard hardware. The advantages of real-time systems are twofold: firstly, they

offer the possibility of providing navigational information while constructing the

mosaic (Concurrent Mapping and Localization); secondly, the detection of gaps in

the mosaic can be corrected within the same mission by revisiting the zone of

interest. These mosaics should aid the robot navigation by acting as a world

representation in which natural landmarks and areas of interest could be identified.

These landmarks, together with the path planning algorithms, can be used to compute
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the best paths towards the interest areas. However, other applications of visual

mosaics do not require necessary on-line processing of the acquired images, such as

the visualization of thermal vents, submerged structures, archeological sites or any

observation performed by oceanic researchers in which the aim is to obtain a global

perspective of the site of interest. In these cases, off-line construction of the mosaic

should be enough providing that the mosaic covers the surveyed area without visual

gaps.
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Chapter 4

Solving the correspondence problem

Detection of point correspondences is an essential part of the feature-based

mosaicking strategies. Since our aim is to develop a mosaicking system based on the

detection and matching of features, solving the correspondence problem in an

accurate and reliable way is fundamental. Different alternatives to solve this

problem by introducing texture analysis are considered in this Chapter. This is done

in two phases: (a) comparing different texture operators individually, and (b)

selecting those that best characterize the point/matching pair and using them

together to obtain a more robust characterization. Various alternatives are studied

to merge the information provided by the individual texture operators. Finally, the

best approach in terms of robustness and efficiency is proposed.

4.1 Introduction

After analyzing the main mosaicking techniques described before, we aim to develop

a feature-based mosaicking system. As can be derived from the previous Chapter,

one of the key points of such a system is the accurate detection of correspondences.

The correspondence problem can be stated as follows: given a set of features
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detected in one image, find those same features in the next one, provided that the

camera has undergone a small motion. Since there are, in general, several

possibilities for the choice of the corresponding features in the second image, the

correspondence problem is said to be ambiguous [Fau93], and therefore two

questions emerge: which features are adequate? which constraints can be used to

reduce this ambiguity? The selection of features is normally a complex task. Usually,

points, lines or contours are selected. However, in the underwater environment, the

already mentioned lack of well-defined image features and contours reduces this

choice to points. The problem of feature detection will be described in Chapter 5,

presenting an algorithm to detect the image points (called “interest points”) which

are to be matched in the next image. In this Chapter we will focus on the detection of

point correspondences in two consecutive images, without analyzing how the initial

interest points are detected. The establishment of point correspondences will be done

uniquely based on the information available in the images [Gar00,Gar01a].

Therefore, the second question, concerning the reduction of ambiguity from

additional constraints will not be analyzed at this point. However, Chapter 5 will

describe how the selection of a motion model serves as an additional constraint to

reduce the ambiguity in the selection of matches, allowing the detection of false

correspondences not describing the dominant motion [Gar01c].

The proposed solution for the correspondence problem involves two phases. In the

first phase, intensity-based correspondence analysis detects a set of possible matches

of a given interest point. Then, the second phase applies texture analysis to this set of

candidate matches, deciding which one among them corresponds to the correct

match. Section 4.2 describes the first phase, while section 4.3 analyses the second

one.

4.2 Intensity-based correspondence analysis

Within this Chapter we will assume that a set of points have been detected in the first

image. These points, called “interest points”, determine the areas of the image which

present a higher contrast. Starting from the interest points, this Chapter uniquely

aims to find the corresponding points in the next image. In order to establish

correspondences between the images, it is often assumed that corresponding pixels

have a similar intensity value. However, identical intensity values occur in many
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points of a given image. Therefore, several neighboring pixels in an image window

are defined as one block. The assignment of corresponding points in both images is

done using a similarity measure [Kle98], which is applied to the blocks associated

with every point. As will be described later in this section, a classical correlation

technique can be used as similarity measure [Gia00], obtaining the so-called

“correlation score”. This correlation is normally computed in intensity images.

However, since our images are acquired by a color camera, we have found that in

some cases the correlation produces better results in the blue band of the image. This

fact is related to the variation of the optical properties of different water bodies de-

pending on the interaction between the light and the aquatic environment [Fun72].

Given that the light suffers less absorption when it has a higher frequency, the blue

component of the image provides higher contrast than the average of all frequencies,

that is, the intensity component. Before correlation, our images are low-pass filtered

with a Gaussian mask in order to reduce the inherent acquisition noise.

As the amount of interest points increases, the classic correlation approach is very

time consuming. For this reason, we use a subsampled version of the correlation

window. This means that if the correlation window has a size of n×n pixels, then

only every qth pixel of the window is taken into account, reducing the processed

pixels to a m m× matrix, where ( )( 1) 1m n q= − + . Figure 4.1 illustrates an example

with n=17 and q=4. The accuracy of reducing the amount of data in the correlation

window is practically the same as using the full window [Gia00]. This is due to the

strong correlation in the gray level of neighboring pixels, producing smooth intensity

variations, especially after the low-pass filtering.

q

(a) (b)

Figure 4.1. Data reduction of a correlation window of 17×17 pixels. (a) The whole set of 17 × 17

pixels is considered; (b) Only one pixel every four is taken into account to compute correlation,

resulting in an effective size of 5 × 5 pixels.
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Given an interest point m of the first image, with coordinates (x1,y1), the

subsampled correlation window is centered at this point. Then, a search window is

defined on the second image I ′ , also centered at (x1,y1), as can be seen in Figure 4.2.

Then the correlation operation is performed, computing a correlation score (CS) as

similarity measure in the following way [Zha94]:

( )
( ) ( )

( ) ( )

1 1 1 1 2 2 2 2

2 2 2

( , ) ( , ) ( , ) ( , )

CS i j
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where ( )( 1) 2n qα = − ⋅ ; I and I ′  are the first and second images, respectively,
2( )Iσ  is the variance of the image computed in the correlation window (see equation

(4.2)); and ( , )I x y  is the average of the correlation window in the image as shown in

equation (4.3).
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Figure 4.2: Typical situation where an interest point m  of image I has several possible matches

i′m in image I ′ .

The correlation score of equation (4.1) returns a value in the interval [ 1, 1]− + ,

where +1 means that the blocks associated to points m  and ′m  are identical, and 1−

indicates no similarity at all. Then, for a given interest point m, all the matchings i′m
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with a similarity higher than 85% (i.e., CS 0.7≥ ) are added to a list of candidate

correspondences of m. In this way, for each point in the first image, we thus have a

set of L possible matches in the second image. The number L of candidate matches

may be different from one interest point to another.

4.3 Point characterization from texture analysis

4.3.1 Introduction

Given an interest point m in I, the region-matching module provides a list

{ }1 2, ,..., L′ ′ ′m m m  of L possible correspondences in I ′ . To decide which of these

matches is the right one, the textural characteristics of these areas of image I are used

as a matching vector to be correlated with the selected matches of the next image I ′ .
An extensive study has been carried out in order to compare different texture

operators. We have implemented and tested different configurations of the texture

operators described in Chapter 2, i.e. co-occurrence matrix [Har73], energy filters

[Law80], local binary patterns [Oja96], contrast features [Oja99] and symmetric

covariances [Har95]. Some previous research of the Computer Vision and Robotics

Group [Cuf98, Mar98, Fre00] has provided us with a larger set of texture operators.

Among them, only non-structural operators have been considered since they are

more adequate for describing underwater images, due to the unstructured nature of

these images. These texture operators have also the advantage of being

computationally efficient at the same time they provide good results in unstructured

scenes. In this Chapter, the non-structural texture operators defined in Chapter 2 are

compared individually to decide which among them are adequate to solve the

problem of feature matching. Section 4.3.2 is devoted to this aspect.

Once the best textural parameters have been selected, it is then possible to merge

them appropriately to obtain a more robust estimate. This second aspect is tackled in

section 4.3.3. Different normalization approaches and comparison strategies will be

considered to obtain the most accurate results by using the selected operators

together. After this process, the texture analysis module will select the best candidate

match as the correct correspondence.
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4.3.2 Selection of the best texture operators

In this section the texture operators will be analyzed individually. Those texture

parameters which demonstrate a good performance in detecting the correct

correspondences from the list of candidate matches will be selected. The best texture

operators will then be used in section 4.3.3 to provide more robustness to the system.

4.3.2.1 Characterization vectors

Now, the problem to solve can be stated as follows: we have detected a set of interest

points in the first image I, and every interest point has several possible matchings in

the next image I ′ . The aim of the texture analysis is to characterize all the points with

their textural values, so that the best correspondence point-match could be

established.

For a given texture operator, point characterization is performed by selecting a

m×m window around the point. The texture operator is then computed in this

neighborhood. In this way, a characterization vector v  of size m×m is obtained.

Typical values of m are 7, 9 or 11. Therefore, if m=7 is selected, the characterization

vector stores 49 values. Every value iv  is the result of applying the considered

texture operator to that pixel (and its neighborhood). We should bear in mind that the

value given by a texture operator in a point involves not only a measurement on this

point, but in the whole region where this point is located, as stated in Chapter 2,

where we saw that texture is a property of regions. Taking this into account, it is easy

to see that there is a high degree of redundancy when characterizing the point

considering the texture of every pixel in its neighborhood. However, later in this

Chapter we will see that subsampling strategies can be applied to the m×m window,

saving computing effort at the cost of reducing redundancy.

4.3.2.2 Similarity Measures

Once the interest points and matches have been characterized, it is necessary to find a

means to compare them, in order to decide which is the best correspondence for a
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given interest point. The values that form the characterization of a point are stored in

a characterization vector v.

Four different approaches have been considered to compare the textural

characterization vector of an interest point m: 1 2[ , ,..., ]Nv v v=v  and that of the

matching ′m : 1 2( [ , ,..., ])Nv v v′ ′ ′ ′=v . These similarity measures are the following:

(i) Mean distance. Compute the average (µ) of the values stored in both

characterization vectors, and then substract them to obtain a similarity

measurement ,n md .

, ,n m n n md µ µ′= −             with 1

N

i
i

v

N
µ ==

∑
(4.4)

where iv  is the ith element of the characterization vector , nµ  and ,n mµ′ are the

mean of the point n in image I and the mth candidate matching in image I ′ ,
respectively; and N is the size of the vector (N= m×m).

(ii) Standard deviation. Compute the standard deviation (σ) of both characteri-

zation vectors, and then compare them by subtraction.
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where nσ  and ,n mσ ′  are the standard deviation of the interest point n and the mth

candidate matching, respectively.

(iii) Mean of point-to-point distances. Compute an average of the point-to-point

distances ( , )δ ′v v  between every component of the characterization vectors of

the point 1 2( [ , ,..., ])Nv v v=v  and the matching 1 2( [ , ,..., ])Nv v v′ ′ ′ ′=v .

1( )

N

i i
i

v v

N
δ =

′−
′ =

∑
v, v (4.6)

(iv) Euclidean distance. Compute the Euclidean distance between both

characterization vectors.
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It should be noted that the first two similarity measures (mean and standard

deviation) fuse the spatial information available in the characterization vector into a

single value. On the contrary, similarity measures (iii) and (iv) analyze two

characterization vectors by comparing the components which belong to the same

spatial zone. In this way, spatial information is taken into account when analyzing

similarity. For this reason we expect a better “a priori” behavior of  (iii) and (iv).

The next section shows the experimental results obtained through testing the

different configurations of the textural operators described in Chapter 2. The

similarity measures detailed above are used to test the operators.

4.3.2.3 Results

4.3.2.3.1 Experimental methodology

We aim now to compare the different texture operators described in Chapter 2. Every

operator has different parameters which can be combined. Consider, for instance, the

energy filter: first a mask to pre-filter the image is selected (among the nine 3×3

masks and as many again of the 5×5 masks), then one of the statistical measures is

computed (mean, standard deviation positive mean or negative mean) in the selected

neighborhood (3×3 or 5×5). This results in a combinatory explosion if all the

combinations are to be considered. Taking this into account, it is necessary to devise

an automatic strategy to test the texture operators. With this purpose, the following

methodology has been applied:

1. First, a representative set of pairs of consecutive underwater images has been

selected in order to test the accuracy of the correspondences. These images try

to be a good representation of the different conditions that the submersible

could find in a real sea mission.

2. For every pair of images, the detector of interest points has been applied to the

first image of the sequence (as will be described in Chapter 5).
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3. The intensity-based correspondence analysis methodology described in

Section 4.2 detected a set of candidate matches in the second image. For every

interest point in the first image, all the matches with a correlation score higher

than 0.7 (i.e. a similarity measure of 85%) have been stored in the list of

candidate matches.

4. A specific software is then used to obtain the set of correct matchings through

the supervision of a human expert. The expert selects the correct matching of

every interest point among the candidate correspondences. If the correct match

does not appear in the list of candidate matches, it is manually included in this

list. Since this operation may be error-prone, five different human experts

have performed this operation.

By considering the last point, three types of matchings have been defined:

(a) correct, when the correspondence detected after texture analysis is the same

as the one selected by the human experts. A tolerance of one pixel is allowed.

(b) incorrect, the correspondence does not coincide with the right one, including

the one-pixel tolerance.

(c) nearly correct, which means that the obtained correspondence does not

coincide with the one selected by a minimum of three of the human experts,

but at least one of the human experts has selected this match (considering the

tolerance).

At this point, a list of interest points and their corresponding matches is available.

It should be noted that the methodology described above is uniquely used to obtain a

perfectly matched set of image points for every sequence. Information regarding

which are the correct matches (and the nearly correct ones) will be used “a

posteriori” in the next section only to check if a given texture operator has selected

the correct match within the candidate list.

4.3.2.3.2 Testing the individual texture operators

A total of 9 underwater sequences have been used to test the individual texture

operators. A comparison among the high amount of texture operators can be

performed automatically, since the right correspondences are known beforehand.

Figure 4.3 illustrates the algorithm which has been used to evaluate the individual
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texture operators. After executing this algorithm, considering all the texture operators

described in Chapter 2, a raking of the best texture operators can be extracted. A very

reduced set of representative results is shown in Figures 4.4 and 4.5. The interest

points are drawn in blue, and the matches in white. Every pair of corresponding

points is connected by means of a vector. These vectors are drawn in white if the

selected correspondence is the correct one, and in red otherwise. From the images in

Figure 4.4 it can be seen that the selection of an adequate similarity measure to

compare the characterization vectors of the interest points and the candidate matches

is very important. Euclidean distance (ED) and Mean of point-to-point distances

(MPTPD) provide better results than mean or standard deviation as similarity

measures. This result is directly related to the fact that ED and MPTPD keep the

information regarding the spatial distribution of the elements of the characterization

vector. In practically all cases, ED has performed a bit better than MPTPD, thought

with a small difference. Thereby, Euclidean distance is the similarity measure which

has been considered as the proper choice for comparing two characterization vectors.

ALGORITHM Test_Individual_texture_operators

   Load List of Interest_Points in I
   Load List of Candidate_Matches in I’
   Load List of Right_Matches in I’

   FOR every_Texture_Op DO

  FOR i = 1 TO Num_Int_Points DO

    
iv  = Char.Vector of the Interest_Point

    min = INFINITY

    FOR j = 1 TO Num_Candidate_Matches DO

      
,i j′v = Char.Vector of the Candidate_Match

      SM = Compute Similarity(
iv , ,i j′v )

IF SM < min THEN
   CM = Set j as Correct_Match
ENDIF    

    ENDFOR
    IF CM = Right_Match(i) THEN
       Update count of Wrong_Matches
    ENDIF    

  ENDFOR
  Return num. Wrong_Matches for this operator

   ENDFOR
ENDALGORITHM

Figure 4.3. Algorithm to automatically test all the texture operators. It is executed
for the nine test sequences.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.4. Detection of correspondences in two consecutive images from 232 points; Charac-

terization neighborhood (Char.); Similarity measure (S:); amount of wrong correspondences (W).

(a) Energy L3L3 with 3×3 Std. dev.; Char. 7×7; S: Euclidean distance; W: 6.
(b) Energy L3L3 with 3×3 Std. dev.; Char. 7×7; S:  Mean; W: 49.
(c) Energy L3L3 with 3×3 Std. dev.; Char. 7×7; S: mean of point-to-point distances; W: 7.
(d) Energy E3E3 with 3×3 pos. mean; Char. 7×7; S. Euclidean distance; W: 9.
(e) Energy E3E3 with 3×3 pos. mean; Char. 7×7; S: mean of point-to-point distances; W: 11.
(f) Energy E3E3 with 3×3 pos. mean; Char. 7×7; S: mean. W: 51.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.5. Detection of correspondences in two consecutive images from 232 points; Charac-
terization neighborhood (Char.); Similarity measure (S:); amount of wrong correspondences (W).

(a) Energy L5S5 with 3×3 pos. mean Char. 7×7; S: Euclidean distance; W: 9.
(b) Energy E5S5 with 3×3 neg. mean; Char. 7×7; S: Euclidean distance; W: 9.
(c) 16×16 co-occurrence matrix (d=1 and 0ºθ = ) with 3×3 Uniformity; Char. 7×7;

S: Euclidean distance; W: 31.
(d) 3×3 LBP; Char. 7×7; S: Euclidean distance; W: 29.
(e) 3×3 Contrast; Char. 7×7; S: Euclidean distance; W: 9.
(f) 5×5 Contrast; Char. 7×7; S: Euclidean distance. W: 11.
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Due to the high volume of data involved, the results global results of the

experimental validation of the individual texture operators have been summarized in

Figures 4.6–4.9 and their corresponding Tables 4.1–4.3. First, the algorithm of

Figure 4.3 has been applied to the nine selected underwater sequences. A

characterization vector of size 7×7 has been used. This strategy provides a

percentage of incorrect matches for every configuration of all the texture operators.

Then, this percentage can be averaged for all the sequences. The resulting list can be

ordered in such a way that the operators which detect less incorrect matches are

listed first. Figure 4.6 shows the percentage of incorrect correspondences obtained

when applying the algorithm to test the texture operators to the nine sequences. A list

of the best 20 texture operators is provided in Table 4.1. The average error varies

between a 5% and a 7%, approximately.

The same operation has been performed to compare again the whole set of texture

operators, but considering a characterization vector of size 9×9 and 11×11. Figures

4.7 and 4.8 and their corresponding tables show these results, respectively. It can be

observed from these data that the percentage of incorrect matches decreases as the

size of the characterization vector increases. For the sake of space, only the error

averages are shown in Figures 4.6–4.9. However, it should be remarked that when

the processed images undergo a rotation, accuracy decreases as size of the

characterization vectors increases. This reason, together with the loss of computing

efficiency as the neighborhood increases, has limited the size of the characterization

vectors that have been considered in this dissertation.

Once the individual performance of the best texture operators has been studied,

our aim is now to select some of them to be used jointly, providing a more measure

of correspondences. Unfortunately, for a given sequence, some of the best operators

detect the same wrong matches. For this reason, the criteria to select the most

efficient textural operators has to be applied taking into account that the incorrect

matches should be different from one selected operator to another. When two

operators provide quite similar results, our selection has taken into account their

computational cost.
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Table 4.1. List of the best texture operators of Figure 4.6. The characterization vector is
constructed considering a neighborhood of size 7×7.

Texture operator
7×7

Selected
( )

Percentage of
incorrect

correspondences

Energy L3L3 Negative mean 3×3 4.8241
Energy L3L3 Negative mean 5×5 4.8241
Energy L3L3 Negative mean 7×7 4.8241
Energy L3L3 Negative mean 15×15 4.8241
Energy L7S7 Positive mean 3×3 5.1446
Energy L7S7 Absolute mean 3×3 5.1610
Energy L3E3 Absolute mean 3×3 5.2548
Energy E7S7 Negative mean 3×3 5.3064
Energy E7S7 Positive mean 3×3 5.4337
Energy L3L3 Standard deviation 3×3 5.4374
Energy L5S5 Positive mean 3×3 5.5240
Energy L7S7 Positive mean 5×5 5.9288
Energy L5S5 Negative mean 3×3 6.0531
Energy L7S7 Negative mean 3×3 6.0741
Energy E3E3 Positive mean 3×3 6.4932
Contrast 3×3 6.5987
Energy E5S5 Negative mean 3×3 6.6539
Energy L5S5 Absolute mean 3×3 6.7935
Energy L3L3 Standard deviation 5×5 6.9031
Energy L3E3 Negative mean 3×3 6.9193
Energy E3E3 Negative mean 3×3 7.1013

Figure 4.6. Percentage of incorrect correspondences obtained by means of a 7×7 characterization
vector. The texture operators are ordered according to the obtained error percentage.
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Table 4.2. List of the best texture operators of Figure 4.7. The characterization vector is
constructed considering a neighborhood of size 9×9.

Texture operator
9×9

Selected
( )

Percentage of
incorrect

correspondences

Energy L5S5 Positive mean 3×3 2.7873
Energy L7S7 Positive mean 3×3 3.1107
Energy E7S7 Positive mean 3×3 3.4642
Energy E3E3 Positive mean 3×3 3.4898
Energy E7S7 Negative mean 3×3 3.7088
Energy L7S7 Absolute mean 3×3 4.0367
Energy L3E3 Positive mean 3×3 4.0510
Energy L3L3 Standard deviation 3×3 4.1372
Energy L7S7 Positive mean 5×5 4.1923
Energy E5S5 Negative mean 3×3 4.2704
Energy L7S7 Negative mean 3×3 4.2965
Energy L3E3 Absolute mean 3×3 4.3553
Energy L3E3 Negative mean 3×3 4.4483
Energy E3E3 Absolute mean 3×3 4.5453
Energy L5S5 Negative mean 3×3 4.5933
Energy L5S5 Positive mean 5×5 4.6348
Energy L5S5 Absolute mean 3×3 4.7818
Energy L3L3 Standard deviation 5×5 4.9313
Energy E7L7 Negative mean 5×5 5.0457
Energy L3L3 Negative mean 3×3 5.0473
Energy L3L3 Negative mean 5×5 5.0473

Figure 4.7. Percentage of incorrect correspondences obtained by means of a 9×9 characterization
vector. The texture operators are ordered according to the obtained error percentage.
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Table 4.3. List of the best texture operators of Figure 4.8. The characterization vector is
constructed considering a neighborhood of size 11×11.

Texture operator
11×11

Selected
( )

Percentage of
incorrect

correspondences

Energy L7S7 Positive mean 3×3 1.7163
Energy L5S5 Positive mean 3×3 1.9151
Energy L3E3 Absolute mean 3×3 2.0697
Energy L3L3 Standard deviation 3×3 2.1015
Energy E7S7 Positive mean 3×3 2.1402
Energy E7S7 Negative mean 3×3 2.1555
Energy L7S7 Negative mean 3×3 2.1998
Energy L7S7 Absolute mean 3×3 2.2532
Energy E3E3 Absolute mean 3×3 2.2882
Contrast 3×3 2.3391
Energy E3E3 Positive mean 3×3 2.4046
Energy L3E3 Positive mean 3×3 2.4096
Energy L5S5 Negative mean 3×3 2.4426
Energy L7S7 Positive mean 5×5 2.4752
Energy E7L7 Absolute mean 3×3 2.5637
Energy L3L3 Standard deviation 5×5 2.6966
Energy E7L7 Negative mean 5×5 2.6993
Energy E5S5 Negative mean 3×3 2.8360
Energy E5L5 Absolute mean 3×3 2.8686
Energy E5L5 Standard deviation 3×3 2.8933
Energy E3L3 Negative mean 5×5 2.9724

Figure 4.8. Percentage of incorrect correspondences obtained by means of an 11×11 characterization
vector. The texture operators are ordered according to the obtained error percentage.
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From this information, it can be seen that some of the texture operators have

provided quite good results. Nine of them have been selected among the whole set,

since their performance to solve the correspondence problem for the set of test

images has been clearly better than the others. These operators are the following:

• Operator 1 – L3L3 Energy with 3×3 Standard Deviation

• Operator 2 – E3E3 Energy with 3×3 Positive Mean

• Operator 3 – E3E3 Energy with 3×3 Negative Mean

• Operator 4 – L5S5 Energy with 3×3 Positive Mean

• Operator 5 – E5L5 Energy with 3×3 Standard Deviation

• Operator 6 – E5S5 Energy with 3×3 Negative Mean

• Operator 7 – Contrast feature considering a 3×3 neighborhood

• Operator 8 – Contrast feature considering a 5×5 neighborhood

• Operator 9 – Contrast feature considering a 7×7 neighborhood

The last two operators (8 and 9) do not appear among the very best ones (although

they are in the best 50 out of a total of 613 combinations). However, they have been

included here since present a completely different distribution of incorrect matches

when compared to the first 7 texture operators. Nevertheless, when real time

performance is required, the selection can be limited to the first 7.

Hereafter, some results are shown as a sample. Table 4.4 shows the results that

have been obtained for the nine selected operators, characterizing the interest points

and candidate matches with a neighborhood of size 7×7. The first column of the

Table indicates which images have been used and the amount of interest points

which have to be matched. The next columns show the results for every one of the

selected operators, and the last column indicates which results are obtained

considering the correspondence with the highest correlation score through intensity-

based correspondence analysis, as described in section 4.2. If only one number ap-

pears in a cell of the table, it indicates the amount of incorrect matches. When two

numbers appear, separated with a “hyphen”, the first digit denotes the amount of in-

correct matches, and the second one the number of nearly correct correspondences.
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Table 4.4. Amount of incorrect matches obtained by the selected operators. The characterization
vector is constructed considering a neighborhood of size 7×7.

Images

No.
pairs Op.1 Op.2 Op.3 Op.4 Op.5 Op.6 Op.7 Op.8 Op.9 Corr.

Seq. 1 232 6 8-1 9-3 9 19-4 7-2 9 9-2 10-1 6-2

Seq. 2 184 4 5 4 1 11 3 4 8 11 3

Seq. 3 169 11-2 15-1 8 8 15-1 12-1 10 13-2 15 6-1

Seq. 4 158 5 6 9 4 12 4 8 9 9 4

Seq. 5 294 3 17-2 18-1 13-2 10 21-3 17-2 13 12-3 2-1

Seq. 6 123 8 3 5 7 4 5 3-1 10 8-1 4

Seq. 7 301 8-2 11-1 17-2 14-2 28-4 9-1 18-2 11-3 7-5 11-4

Seq. 8 126 3-1 4 3 1 2 3 3-1 5-1 3-1 2-2

Seq. 9 229 2 5 4 6 7-1 5 3 8 14 1

The intensity-based correspondence analysis has been performed considering a

21×21 correlation window, and subsampling factor q = 2 (see equation 4.1, page 90

for details). These parameters have been chosen after an experimental validation,

since they provide the best ratio between the correct matches and the highest

correlation score among the candidate correspondences. From Table 4.4 it can be

seen that the amount of wrong matches detected by some texture operators for a

given sequence is better than those found by the correlation procedure. Nevertheless,

none of the texture parameters is able to provide a better average result than

correlation.

Tables 4.4 and 4.5 show the same results when characterizing the points with a

neighborhood of sizes 9×9 and 11×11, respectively. Larger neighborhoods have not

been considered due to the computational burden. From these tables, it can be

observed that the average incorrect matches detected by the texture operators is worst

than considering correlation, though not for a big difference. Initially, we expected to

find some texture operator which would perform better than correlation. However, it

was confirmed from these results, that the incorrect and nearly correct matches

where quite different in the selected operators. For this reason, the idea of using

several texture operators which form different incorrect matches seemed quite

attractive.
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Table 4.5. Amount of incorrect matches obtained by the selected operators. A characterization vector
of size 9×9 has been considered.

Images

No.
pairs Op.1 Op.2 Op.3 Op.4 Op.5 Op.6 Op.7 Op.8 Op.9 Corr.

Seq. 1 232 3-2 5-1 7-1 5 14-3 4-3 6 7 3-3 6-2

Seq. 2 184 3 4 3 1 7 1 3 5 7 3

Seq. 3 169 6-1 8 12-1 6 12-2 11-1 10 15-1 17-1 6-1

Seq. 4 158 5 3 5 1 6 2 7 7 9 4

Seq. 5 294 2-1 10 13 3 7 14-2 16-1 10 11-1 2-1

Seq. 6 123 7 2 5 4 2 3 3 7 9-1 4

Seq. 7 301 7-2 10-1 6-4 8-3 14-2 8 13-2 5 5-3 11-4

Seq. 8 126 3-1 2 1-1 0 0 1 3 4 3 2-2

Seq. 9 229 2 3-1 1 2 3 2 5 5 10 1

Table 4.6. Amount of incorrect matches obtained by the selected operators considering a 11×11
characterization vector.

Images

No.
pairs Op.1 Op.2 Op.3 Op.4 Op.5 Op.6 Op.7 Op.8 Op.9 Corr.

Seq. 1 232 1-4 1 6 3 8-2 1 2 3-2 1-3 6-2

Seq. 2 184 2 2 1 1 3 1 2 3 3 3

Seq. 3 169 5 8 6 4 8-1 11 9 10-1 13-2 6-1

Seq. 4 158 0 3 3 1 5 0-1 3 3 6 4

Seq. 5 294 0-1 7 3 4 2 11-1 7 6 5 2-1

Seq. 6 123 4 1 2 1 2 1 4 7 9 4

Seq. 7 301 2 7 5-3 5 12-3 3 10-2 3 5 11-4

Seq. 8 126 2 2 1 1 0 2 1 2 3 2-2

Seq. 9 229 1 1 2 2 4 2 2 5 4 1

Since the false matches detected by the selected texture operators are quite

different in every case, the next section is devoted to find the means of combining

these nine operators in an adequate manner to obtain a better correspondence

measure. Moreover, the experimental validation has also proved that the Euclidean

distance is the best similarity measure to compare two characterization vectors v

and ′v . Therefore, uniquely this measure will be used below.
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4.3.3 Characterization with multiple operators

Although the selected texture operators have provided quite good results, it is

possible to enhance the global result by using these texture operators together. In this

way, once the best individual operators are selected, they have to be combined

adequately to obtain a more robust operator, which should be able to efficiently solve

the correspondence problem. Thus, the difficulty is to find an adequate method to

combine these texture operators. Two different approaches have been considered for

merging the results obtained with these texture operators:

a) Sum of distances. Compute the distance between the texture vector of the

interest point v, and the vector of the matching ′v
 
for every texture operator, as

explained above for the case of a single texture operator. Then, the sum of

distances of the different texture operators is computed and a single value is

obtained.

b) Vote Assignation. Assign votes to every candidate correspondence i′m

depending on how good this match is for every texture operator. Thus, for L

possible correspondences, the best match would receive L votes, L–1 the

second best, and so on. Once all the texture operators have voted, the selected

match will be the one which has obtained more votes.

4.3.3.1 Sum of distances

This alternative consists of applying the nine selected operators to a given interest

point and all its candidate matches. Then, for every texture operator the Euclidean

distance can be computed and the average of the resulting distances can be computed

for every candidate match. The correspondence with the smaller average distance can

be taken as the right one. However, this approach has a serious limitation: the

dynamic range of every operator may be different, and the true correspondence could

be affected by a high distance in one of the texture operators, being discarded in front

of some other match. We will illustrate this problem with an example. Consider for

instance the pair of images shown in Figure 4.9. Given the interest point m =

(332,14) detected in the first image, two candidate matches detected through

correlation will be taken into consideration: 1 (330,42)′ =m  and 2 (313, 27)′ =m ,
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being 1′m  the right one. It should be mentioned that correlation selects 2′m  as the

correct one.

(a) (b)

Figure 4.9. Two consecutive images of one of the sequences. The interest point is drawn in image (a),

while matches 1′m  and 2′m  are drawn in image (b) in red and green, respectively.

The interest point and the two matches will be characterized by means of the 9

selected texture operators and considering a 7×7 neighborhood. When the point m is

characterized, the distribution of values illustrated in Figure 4.9 is obtained. As can

be seen in this Figure, every texture operator generates a distribution of values with a

different dynamic range. The Figure shows a darker point in the areas where more

points are concentrated, and the point is lighter when few values coincide in that

area. Then, both candidate correspondences are also characterized, and the Euclidean

distance between the interest point m and every match is computed for each and

every texture operator. Table 4.7 shows the resulting values for every texture

operator. It is clear from both the Table and Figure 4.10 how the operator 5 (E5L5

Energy with 3×3 Standard Deviation) generates very high values in the

characterization vector, giving rise also to a high Euclidean distance measurement.

Although this operator provides good results in other cases, in this case it does not

identify which one is the right correspondence, while all the other texture operators

do. It is obvious from this example that a normalization or reparametrization strategy

is needed to prevent one operator to have more weight than all the others.
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Table 4.7. Euclidean distance computed without normalizing the characterization
vector. The incorrect match has a smaller Euclidean distance when no
normalization is performed.

Correct match: 1 (330,42)′ =m Wrong match: 2 (313,27)′ =m

Text.op.1 54.506882 67.260689

Text.op.2 4.690416 10.392304

Text.op.3 5.000000 7.745967

Text.op.4 95.456795 74.752930

Text.op.5 347.692383 296.005066

Text.op.6 11.090536 23.302361

Text.op.7 11.618950 13.638182

Text.op.8 10.246951 15.165751

Text.op.9 9.000000 17.058722

Total 549.3029 525.3219

Figure 4.10. Distribution of the values that characterize the point m,
as defined by every texture operator.

4.3.3.1.1 Data Standarization

Five normalization/reparametrization methods have been proposed to adjust

(standarize) the values of the characterization vectors:

1. Independent normalization. Independent normalization of every charac-

terization vector. The normalization process takes into account the mean ( )µ

Distance
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and standard deviation ( )σ  of the vector. The normalized vector is obtained

from:

i
i

v
u

µ
σ
−

=     , 1..iv i N∀ = (4.8)

where 1 2[ , ,..., ]Nu u u=u  is the new normalized characterization vector of the

point m: 1 2[ , ,..., ]Nv v v=v ; and the mean and standard deviation are computed

as follows:
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2. Joint normalization. Normalization of every vector taking into account the

characterization vectors of the interest point v and the all candidate matches

j′v  to compute the global mean ( )Gµ  and standard deviation ( )Gσ :
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where L is the number of candidate correspondences of the interest point m.

Thus, the normalized characterization vector 1 2[ , ,..., ]Nu u u=u  of the interest

point is:

i
i

v
u

µ
σ
−

=    , 1..iv i N∀ = (4.12)

And the normalized vector of the jth correspondence 1 2[ , ,..., ]j j j jNu u u′ ′ ′ ′=u  is

obtained from:
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ji

v
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µ
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′ −
′ =    , 1.. , 1..jiv j L i N′∀ = = (4.13)
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3. Independent reparametrization. Independent reparametrization of every

characterization vector by taking into account the minimum and maximum

value of the vector.

Consider 1 2[ , ,..., ]Nv v v=v  the characterization vector of point m, and

1 2[ , ,..., ]Nu u u=u  the same vector once reparametrizated. Then:

min

max min

i
i

v v
u

v v

−
=

−
          , 1..iv i N∀ = (4.14)

where minv  is the minimum value of vector v, and maxv  is the maximum value

of v, i.e., min min( )v = v  and max max( )v = v .

4. Reparametrization considering all the candidate correspondences. Re-

parametrization of every characterization vector considering the minimum and

maximum value of the vectors of the interest point and all the candidate

matchings. Then:

( )min 1min min( ),min( ),...,min( )Lv ′ ′= v v v

( )max 1max max( ),max( ),...,max( )Lv ′ ′= v v v

min

max min
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5. Reparametrization considering the theoretical values. Reparametrization of

every characterization vector considering the theoretical minimum and

maximum values which every texture operator can achieve.

Consider the characterization vector v of a point m, with a given texture

operator, and u the normalized version of v. Then:

min minimum value that the texture operator can achievev =

max maximum value which can be achieved by the texture operatorv =

Again, the reparametrizated vector 1 2[ , ,..., ]Nu u u=u  can be computed from:

min

max min

i
i

v v
u

v v

−
=

−
       , 1..iv i N∀ = (4.17)



CHAPTER 4. SOLVING THE CORRESPONDENCE PROBLEM 111

It can be seen from the equations above that a normalization implies a centering of

the data set (substracting the mean), and a grouping of the further data (dividing by

the standard deviation). On the contrary, reparametrization simply adjusts the

dynamic range of the data, without taking into account its dispersion.

Retaking the example of the interest point m = (332,14) and the two candidate

matches 1 (330,42)′ =m  and 2 (313, 27)′ =m , Figures 4.11–4.13 show the distribution

of values obtained from every texture operator, after applying some of the previously

described normalization/reparametrization methods.

(a) (b)

Figure 4.11. Distribution of the normalized values that characterize the point m.
(a) Independent normalization. The normalization has been performed individually for

every texture vector.
(b) Joint normalization. Normalization taking into account the standard deviation and

mean which is obtained from the point and all its candidate matches.

The distribution of values shown in Figure 4.11(a) illustrates how independent

normalization produces a smaller dispersion of the data after normalization.

However, when the point m is normalized taking into account all the possible

correspondences (15 in this example), the range of values that form the

characterization vector shows again a higher dispersion (see Figure 4.11(b)). In this

second case, the characterization vectors are normalized taking the mean and

Distance Distance
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standard deviation of both the 15 matches and the interest point. Tables 4.8 and 4.9

show the resulting Euclidean distances in both cases.

Table 4.8. Independent normalization. Euclidean distance normalizing separately the
characterization vector.

Correct match: 1 (330,42)′ =m Wrong match: 2 (313,27)′ =m

Text.op.1 4.978095 5.221354

Text.op.2 3.294620 7.787081

Text.op.3 4.401453 7.071034

Text.op.4 2.873065 2.369292

Text.op.5 6.694543 7.667400

Text.op.6 1.944944 4.235385

Text.op.7 6.352748 7.417632

Text.op.8 5.705553 7.520783

Text.op.9 5.189359 8.151355

Total 41.4343 79.8900

Table 4.9. Joint normalization. Euclidean distance normalizing the characterization vector
with the standard deviation computed from the interest point and all the candidate
matches.

Correct match: 1 (330,42)′ =m Wrong match: 2 (313,27)′ =m

Text.op.1 3.769718 4.651776

Text.op.2 4.456625 9.874305

Text.op.3 8.131666 12.597523

Text.op.4 3.882510 3.040422

Text.op.5 8.114323 6.908063

Text.op.6 3.457730 7.265045

Text.op.7 6.282333 7.374125

Text.op.8 4.371123 6.469375

Text.op.9 3.395176 6.435265

Total 45.8612 64.6158

It can be seen from the Tables above that in both normalization cases the right

match obtains a smaller Euclidean distance. This means that the characterization

vector of 1′m  is more similar to that of m, giving rise to a proper selection of the

correct correspondence.
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Figure 4.12 shows the distribution of values of m performing a reparametrization

of every characterization vector. It can be observed from Figure 4.12(a) how the

values obtained by the texture operators after independent reparametrization have

been scaled so that all of them work in the same range.

(a) (b)

Figure 4.12. Distribution of values obtained from reparametrization.
(a) Independent reparametrization. Reparam. is performed individually for every texture

vector.
(b) Reparametrization considering the point and all the candidate correspondences.

Finally, Figure 4.13 illustrates the reparametrization of every characterization

vector considering the minimum and maximum theoretical value of the texture

operator. In this approach, the resulting values are very small, since for a given

example, it is very difficult to achieve the maximum and minimum theoretical values

which can be obtained by every texture operator.

Distance Distance
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Figure 4.13. Reparametrization considering the theoretical values. The minimum and
maximum theoretical value of every texture operator are considered.

Once the values of the characterization vectors have been normalized/reparametri-

zated by means of one of the methods described above, the sum of the distances

using the normalized vectors can be performed, since all the texture operators work

in the same dynamic range.

4.3.3.1.2 Weighting the distances

However, there is still a point that should be considered. Above we have made a

difference between normalize and reparametrize. In the second case, when we

reparametrize a characterization vector, the distribution of the values of the vector is

not taken into consideration. For this reason, it is convenient to weight the distances

(be it Euclidean or average of distances) with the standard deviation. The higher the

variability of the components of the vector, the higher the deviation and, therefore,

distance should be weighted to be less relevant if it has to be added with other

distances. But, this deviation can be computed in two different ways:

Distance
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(a) Taking into account both the components of the characterization vectors of the

interest point u and the candidate correspondence ′u . The standard deviation is

computed as follows:
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Then, the distance d measuring the difference between both vectors is weighted

with the standard deviation σ . This distance can be the Euclidean distance or

an average of distances, as detailed in Section 4.4.2.2.

(1)
weigh

dd σ= (4.19)

(b) Taking into consideration both the components of the characterization vectors

of the interest point u and all the candidate correspondences j′u  found by the

region correlation algorithm. The standard deviation is computed as follows:

22

1 1 1

( )( )N N L
jii

i i j

uu

N N

µµ
σ

= = =

′ −−
= +∑ ∑∑ , with 11

1

LN

jii N
ji

i

uu

N N
µ ==

=

′
= +

∑∑
∑ (4.20)

Obtaining the weighted distance (2)
weighd :

(2)
weigh

dd σ= (4.21)

4.3.3.2 Vote Assignation

A second approach to jointly use the nine selected texture operators consists in assign

votes to every candidate correspondence i′m  depending on how good this match is

for every texture operator. This idea is quite intuitive if we consider the example of

Table 4.7 (in page 108), where the different characterization vectors are considered

without data standarization. In that example, only 2 of the texture parameters have a

smaller Euclidean distance in the case of the wrong match, while the other 7

parameters consider the correct correspondence as the good one (because its
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Euclidean distance is lower). Therefore, the result would have been 7 votes against 2

(the “good match” wins). Instead of giving a unique vote to the best match, better

results are obtained as follows: for L possible correspondences, the best match would

receive L votes, second best L–1, and the worst match would receive just 1 vote.

Once all the texture operators have voted, the selected match will be the one which

has obtained more votes. With this second strategy, a match which is considered as

the second best for all the texture operators has a good chance to be elected, while it

did not have any if only one vote is emitted by every operator.

Vote assignation can also be used after some data standarization process has

occurred. Therefore, all the normalization/reparametrization methods presented in

the previous sections should be considered to test the results of this approach.

4.3.3.3 Subsampling the characterization vector

In order to speed up computation, one of the important issues to be addressed is

checking whether the subsampling of the characterization vector deteriorates texture

characterization. We expect the strong correlation between the measured texture in

neighboring points to allow a subsampling of the considered characterization

window without affecting too much the results. To perform the tests, parameter m

has been set to 7, 9 and 11, which typically represent a good trade-off between

accuracy and computational demands. Higher values of m have been avoided since

the hypothesis of negligible deformations of the pattern inside the window fails as

the characterization window increases its size. The considered subsampling

procedures are illustrated in Figure 4.14 for every case.

Table 4.10 shows the amount of values that are taken into account to characterize

the texture of a point, depending on the size of the selected neighborhood and the

subsampling strategy.
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(a1) (b1) (c1)

(a2) (b2) (c2)

(a3) (b3) (c3)

Figure 4.14. Proposed data subsampling for the characterization vector. In the first row, a

neighborhood of 7 × 7 pixels is considered; the second row takes a 9 × 9 neighborhood; in

the last row 11 × 11 pixels are considered. Different subsamplings are selected for every

column (a) – (c).

Table 4.10 Size of the characterization vector, depending on the neighborhood considered (7×7, 9×9
or 11×11), and the applied subsampling (a), (b) or (c) as shown in Figure 4.14.

Neighborhood
7 × 7 9 × 9 11 × 11

(a) 49 81 121

(b) 16 25 36

S
u
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(c) 9 9 9
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4.3.3.4 Results

Some of the results obtained for the previously described strategies are presented

below. However, a more detailed set of results can be found in Appendix A. These

results try to answer the main unknowns we aim to solve: (1) what is the ideal size of

the window used to characterize the region centered at an interest point? (2) which is

the best normalization/reparametrization method which should be applied? and  (3) is

it worth sub-sampling the characterization window in terms of efficiency and

accuracy?

First, we will look at the size of the characterization window. It was stated before

that the window should be big enough to keep a sufficient amount of information

inside the window, but it should also be small enough to keep negligible

deformations of the pattern inside the window. For this reason the tests have been

limited to square neighborhoods of size 7, 9 and 11. Both alternatives (sum of

distances and vote assignation) have been tested to use simultaneously several

texture operators. Figures 4.15 and 4.16 confirm our initial guess: the higher the

characterization window, the better the results. The results of obtained through

texture analysis are compared to those obtained from correlation.

Figure 4.15. Percentage of incorrect matches without normalization obtained by considering a
neighborhood of 7×7 (left) and 9×9 (right). The sum of Euclidean distances is drawn in red, and vote

assignation in green. The percentage obtained by Correlation is shown in blue.
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It can be observed from Figure 4.16 (left) that subsampling the characterization

window obtains worst results than using the whole window.

Figure 4.16. Percentage of incorrect matches without normalization obtained by considering a
neighborhood of 11×11 and subsampling (c3) of Figure 4.14: sum of Euclidean distances (red) and

vote assignation (green). The percentage obtained by Correlation is shown in blue.

In the case where neither normalization nor reparametrization is applied, the

voting strategy (green) provides better results than the sum of Euclidean distances

(red). This indicates that vote assignation is less sensitive to the different dynamic

range of the measures.

Next, both alternatives are considered when standarizing the data with the

strategies described in the previous section. These strategies are only shown for the

case of an 11×11 neighborhood. Appendix A shows the performance of the proposed

standarization strategies with further detail, including smaller characterization

windows. Figures 4.17 and 4.18 show the percentage of incorrect correspondences

obtained through independent normalization and independent reparametrization. As

it was discussed in the section devoted to data standarization, results are improved

after standarization, as expected. After data standarization, sum of Euclidean

distances produces better results than vote’s assignation. The reparametrization

strategy, which takes into account the minimum and maximum value of the

characterization vector, results in a slightly better percentage of correct matches than

normalization. It should be noted that subsampling with strategy (c3) of Figure 4.14

does not deteriorate to a large extent the accuracy, while drastically reducing the

complexity of a factor 14 (from 11×11 to 3×3).



CHAPTER 4. SOLVING THE CORRESPONDENCE PROBLEM 120

Figure 4.17. Percentage of incorrect matches (independent normalization), considering a
neighborhood of 11×11 and subsampling (c3): sum of Euclidean distances (red) and
vote assignation (green). The percentage obtained by Correlation is shown in blue.

Figure 4.18. Percentage of incorrect matches (independent reparametrization), considering a
neighborhood of 11×11 and subsampling (c3): sum of Euclidean distances (red) and vote
assignation (green). No weighting is performed. The percentage obtained by Correlation

is shown in blue.

If weighting is applied to the independent reparametrization procedure, the results

can still improve a little bit: Figure 4.19 shows the degree of accuracy obtained by

weighting the distances with the standard deviation computed from the interest point

and all the candidate matches.
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Figure 4.19. Percentage of incorrect matches (independent reparametrization), considering a
neighborhood of 11×11 and subsampling (c3): sum of Euclidean distances (red) and vote

assignation (green). Weighting is performed considering the interest point and all the
candidate matches. Correlation is shown in blue.

4.4 Conclusions

The performance of different texture operators has been tested in underwater images.

Due to the unstructured nature of the underwater environment and natural images in

general, only non-structural texture operators have been considered. The results have

proved that some configurations of the Energy Filters proposed by Laws are very

adequate to describe underwater images. The performance of the Contrast operator

has also proved to be very useful in this context.

As we expected, better results are obtained by characterizing the points with an

11×11 neighborhood, instead of a smaller one. Higher neighborhoods have been

avoided since the hypothesis of negligible deformations of the pattern inside the

window fails as the characterization window increases its size.  As it was initially

anticipated, the similarity measures which keep the information regarding the spatial

distribution of the elements (like Euclidean distance) of the characterization vector

perform better than the ones that fuse all the information in a single value (mean or

standard deviation).

The experimental validation for selecting a strategy to fuse the information

provided by every texture operator has shown that it is necessary a standarization

process, since the different texture operators work different dynamic ranges.

However, most of the methods which have been tested have provided satisfactory

results (better than the classical correlation strategy). Concretely, we have selected
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the following as the one which will be used to solve the problem of correspondence

in our mosaicking algorithm:

Independent reparametrization of every characterization vector by taking into

account the minimum and maximum value of the vector (Independent

reparametrization), and considering a neighborhood of 11 × 11 pixels.

Weighting is performed considering the interest point and all the candidate

matches (shown in Figure 4.19).

Subsampling with strategy (c3) is strongly recommended, since it is

computationally efficient (only considers 9 points in the neighborhood), and the

results are nearly as good as taking the whole set of neighbors to characterize the

point.

Therefore, the result of applying the selected feature characterization to every

candidate match is compared with the characterization vector of the interest point.

Then, the Euclidean distance as defined by the selected reparametrization strategy is

computed. Finally, the candidate correspondence with the higher similitude

measurement (lower distance) is selected.
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Chapter 5

Proposal of a method to construct visual
mosaics

In this chapter we present the new methodology to construct visual mosaics of the

underwater environment. The proposed system first performs a correction of the

geometric distortions produced by the camera lenses and the medium, and then takes

profit of the texture-based correspondence detector presented in the previous

Chapter to obtain a set of matched features. Next, a robust regression technique is

used to estimate the planar transformation which explains the motion of the majority

of the features. Then, this planar transformation is used to relate every image to the

common mosaic frame, constructing a composite image with all the frames of the

sequence. Finally, the procedure to obtain the 3D motion of the vehicle in the world

reference frame is described.

5.1 Overview

Since the texture characterization described in the previous chapter has proved to

obtain quite an acceptable ratio of correct correspondences in underwater images, a
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feature-based mosaicking system can be constructed. The creation of the mosaic will

be accomplished in the following stages (see Figure 5.1): First, a correction of the

geometric distortion caused by the lens and the interface of the camera housing is

performed. A detector of interest points then selects the most reliable features of the

undistorted image and the correspondences of these features are matched in the next

image of the sequence by means of the strategy proposed in Chapter 4. Next, the

system identifies the points which describe the dominant motion of the image by

means of a robust outlier-detection algorithm. Once the pairs of features describing

the dominant motion have been selected, a 2D projective transformation matrix

relating the coordinates of both images is computed. Finally, the registered images

are merged onto a composite mosaic image, and absolute 3D position estimates can

be obtained.
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Figure 5.1. Block diagram of the proposed mosaicking system.
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5.2 Lens distortion removal

Correcting the distortion produced by the camera lenses and the ray diffraction at the

water-camera housing and the air-camera housing interfaces requires the estimation

of a number of intrinsic camera parameters [Xu97]. A simplification of the Faugeras-

Toscani algorithm has been implemented to correct uniquely radial distortion, instead

of performing full camera calibration [Fau86]:

20 0
1

d d
u x

x x

x x x x
x k r c

k k

   − −
= + ⋅ ⋅ +   

   
(5.1)

20 0
1

d d
u y

y y

y y y y
y k r c

k k

   − −
= + ⋅ ⋅ +      

   
(5.2)

where ( , )u ux y  are the ideal undistorted coordinates of the measured distorted point

( , )d dx y , and ( , )x yc c  are the coordinates of the center of the image. The parameters

,x yk k  are the scaling factors in the x and y directions, respectively. They account for

differences on the image axes scaling. The principal point of the image is defined by

0 0( , )x y  and represents the coordinates of the projection of the optical center of the

camera on the image plane. 1k  is the first term of the radial correction series, and r

is the squared distance of ( , )d dx y  from the center of the image and accomplishes:

22

0 0d d

x y

x x y y
r

k k

  − −
= +        

(5.3)

Once these parameters are known, image correction for radial distortion can be

computed [Gar01d]. In order to compute the image correction parameters a planar

calibration grid with a set of equally spaced black dots can be used. When the

calibration grid is captured by the camera we obtain the coordinates of a set of i

distorted points ( , )i i
d dx y . By applying equations (5.1) and (5.2), we can obtain their

undistorted pairs ( , )i i
u ux y , and they can be compared with the target distortion-free

coordinates of the image grid ( , )i i
t tx y . Therefore, it is necessary to minimize the cost

function ( )f ⋅ :
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( ) ( ) ( )2 2

0 0 1, , , , i i i i
x y u t u t

i

f x y k k k x x y y= − + −∑ (5.4)

where the distance from the computed undistorted points to the target is to be

minimized by adjusting the 5-parameter set ( )0 0 1, , , ,x yx y k k k .

In our implementation, the undistorted values are computed offline. Then, two

Look Up Tables (LUT) are stored with these values. At run time, the LUTs are

addressed with the undistorted x and y coordinates and every LUT provides the

distorted coordinate from which the gray-level has to be taken.

5.3 Selection of interest points

The goal of our interest point detector is to find stable features in the image, i.e.

scene features which can reliably be found when the camera moves from one

location to another and lighting conditions of the scene change somewhat. The

strategy that has been used to detect these interest points is based on the corner

detector proposed by Harris and Stephens [Har88]. This corner detector finds areas

of high variation of the image gradient by using first-order image derivative

approximations. It is based on the computation of the following matrix:

2

2

x x y

x y y

I I I

I I I

 
 =
  

G , with x

I
I

x

∂ =  ∂ 
 and y

I
I

y

 ∂
=  ∂ 

(5.5)

where x yI I  is the point-to-point product of images xI  and yI , and  indicates 2D

Gaussian smoothing. The matrix G encodes the so-called local autocorrelation

function. According to [Har88] this Gaussian filtering should be performed before

edge extraction. It should be noted that this approach is quite similar to the Shi-

Tomasi tracker [Shi94]. A feature is a good candidate to track if G is well-

conditioned, that is, if both eigenvalues of this matrix are large. This means that the

image point in which the partial derivatives have been computed presents a rapid

intensity variation on neighboring pixels in the x and y directions. Therefore, this

point can be considered a corner. The corner response function R is given in equation

(5.6). This quantity measures the rate of change of gradient at every point of the

image and is regarded as a “cornerness” measure.
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k
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(5.6b)

In [Har88] the Gaussian smoothing is proposed to be a circular window. The

value k in the response function is the maximum ratio of eigenvalues of G for which

the response function is positive. Harris and Stephens [Har88] suggest a value of 25

to be used. In our implementation we consider a 3×3 Gaussian mask for smoothing.

However, this mask is applied after the computation of the partial derivatives, as can

be seen in Figure 5.2. On the other hand, a simplified version of the “cornerness”

measure is considered, avoiding the selection of parameter k. Equation (5.7) shows

the alternative computation of the “cornerness” measure (C).

2 2

2 2 2

x y

x y xy

I I
C

I I I

+
=

−
(5.7)

The “cornerness” is computed for all the pixels of the image. High values of

parameter C imply poor image gradient. On the contrary, as it gets smaller the

“cornerness” of this area augments. Then, for a considered neighborhood, any values

which are not local minimum are suppressed. This leads to a sparse corner point map

for each image. Finally, since C provides a measure of the quality of the corner, a

descending sorting is performed. In this way, the algorithm is able to provide the best

n interest points of the image.
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ALGORITHM Interest_Point_Detector
Ix  = CONVOLVE (Image, Prewitt_Hor / 3)

    Iy  = CONVOLVE (Image, Prewitt_Ver / 3)
Ixy = Ix * Iy

    Ix_Sq = Ix2

    Iy_Sq = Iy2

Ix  = CONVOLVE ( Ix_Sq, Gaussian )
Iy  = CONVOLVE ( Iy_Sq, Gaussian )
Ixy = CONVOLVE ( Ixy, Gaussian )
C = (Ix + Iy) / ((Ix * Iy) – Ixy2)
FOR Y = 1 TO ImsizeY DO
  FOR X = 1 TO ImsizeX DO

Define Local Minimum Neighborhood ( C )
Min(Y,X) = Minimum Neighbor ( C )

  ENDFOR
ENDFOR
FOR Y = 1 TO ImsizeY DO
  FOR X = 1 TO ImsizeX DO

IF Min(Y,X) = C(Y,X) THEN
Store Point (Y,X, C(Y,X))

ENDIF    
  ENDFOR
ENDFOR
Descending Sort according to C
Return Best n Points

ENDALGORITHM

Figure 5.2. Interest Point Detector algorithm

5.4 Detection of correspondences

Once the interest points have been detected in the one of the images, the next step

consists in finding their correspondences in the next one. Therefore, we propose the

use of the strategy discussed in Chapter 4, which can be summarized as follows.

Given an interest point m in image I, a m×m region centered at this point is selected

as correlation window. This window is subsampled as indicated in equation (4.1)

(page 90) according to the parameter q1. Then, a search window is defined in image

I ′ . This window is normally centered at the coordinates of the interest point. Then,

the correlation score (CS) is computed for all the points of the search window. The

set of matches with a similarity higher than 85% (CS 0.7)≥  are added to the list of

candidate correspondences of m. The interest point and its L possible

                                                 
1 Our default parameters are m=21 and q=2.
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correspondences are then characterized by means of a characterization vector (CV).

Nine texture operators will form every vector [Gar01a]. Every texture operator has

nine measures, for the nine neighbors of the point which is being characterized,

considering a neighborhood of 11 × 11 pixels, and subsampling strategy (c3) of

Figure 4.11. The characterization vectors are then reparametrized independently,

taking into account the minimum and maximum value of the vector in question.

Then, the Euclidean distance is computed between the CV of the interest point and

every candidate match, as defined in equation (4.7) (page 93). Finally, every distance

is weighted considering the interest point and all the candidate matches, as indicated

in equation (4.21) (page 115). Finally, the candidate correspondence with the smaller

distance is selected as the correct match i′m .

Further details of the above algorithm can be found in Chapter 4. This operation

has to be performed for all the candidate matches. Unfortunately, computing the CS

for all the points of the search window can be quite time consuming. For this reason

a series of optimizations are proposed below.

The size of the search window depends on the cycle time of the algorithm and the

apparent velocity at which the camera moves. Since the camera is mounted on a

UUV, we can assume that the motion of the camera is undergoes smooth changes of

velocity and direction. In this case, the search window can be centered at the position

predicted by the transformation matrix H which describes the motion of the vehicle

in the previous time instant. Therefore, the size of the search window can be reduced,

thus saving computing time.

A second optimization can be obtained if not all the pixels of the search window

in I ′  are correlated with the correlation window of I. We know that the matched

point is the projection of an interest point, which is a point with a high gradient

contrast in both directions of the image axis. Then, after the interest point detection

has been performed in image I, a subsequent detection of interest points has to be

performed in the second image I ′ . This second detection of interest points should be

performed with a lower threshold of the “cornerness” parameter, therefore detecting

more interest points than in the first image. And the values which are not local

minimum should not be suppressed, thus ensuring that the interest points of the first

image have been selected. Next, the search window is defined in I ′ , but now only

those points which have been selected as interest points are considered for
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correlation. Finally, the list of candidate matches will be formed by the interest

points of the second image whose CS is above the threshold, as described before.

5.5 Outlier removal and homography estimation

5.5.1  Introduction

After the correspondences have been solved, a set of displacement vectors relating

the features of two images of the sequence is obtained. Every vector relates the coor-

dinates of the same feature in both images. Our aim is now to recover the apparent

motion of the camera from these features. This can be done by computing a 2D

transformation matrix H which relates the coordinates of a feature in a frame with its

coordinates in the previous one:

′= ⋅m H m  or 
11 12 13

21 22 23

31 32 331 1

i i

i i

x h h h x

y h h h y

h h h

′     
     ′≅     
          

(5.8)

where ( , ,1)T
i ix y=m  and  ( , ,1)T

i ix y′ ′ ′=m  denote a correspondence point in two

consecutive images; the symbol ~ indicates that the points are expressed in

homogeneous coordinates, and ≅ expresses equality up to scale. The matrix H that

performs this transformation is known as “homography” [Sem52]. Since this matrix

is defined up to scale, equation (5.8) can be written as follows:

11 12 13

21 22 23

31 32 1 1

i i

i i

kx h h h x

ky h h h y

k h h

′     
     ′=     
          

(5.9)

where k is an arbitrary non-zero constant. By using inhomogeneous coordinates

instead of the homogeneous coordinates of the points, the projective transformation

of equation (5.9) can be written as:
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Each point correspondence generates two equations for the elements of H, which

after multiplying out are:

( )
( )

31 32 11 12 13

31 32 21 22 23

1

1

i i i i i

i i i i i

h x h y x h x h y h

h x h y y h x h y h
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

′ ′ ′ ′+ + = + + 
(5.11)

Operating the terms, the following linear system in the terms of H can be obtained:
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i i i i i i i
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(5.12)

which expressed in matricial form and considering n pairs point/matching gives rise
to:
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or ⋅A h = b . Therefore, the homography matrix H can be computed from equation

(5.13) if 4 or more pairs of matchings are available. The 8 unknowns in h could be

solved by means the pseudo-inverse least squares strategy:

( ) 1T T−
⋅ ⋅h = A A A b  (5.14)

However, this involves the inversion of the matrix ( ) 1T −
⋅A A . Unfortunately, this

operation could fail to give satisfactory results, since this matrix could be either

singular of very close to singular. For this reason we use the technique known as

Singular Value Decomposition (SVD). SVD methods state that any m × n matrix A

whose number of rows m is greater than of equal to its number of columns n, can be

written as the product of an m × n column-orthogonal matrix U, an n × n diagonal
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matrix W with positive or zero elements (the singular values), and the transpose of

an n × n orthogonal matrix V [Gol89].
T

m n m n n n n n× × × ×⋅ ⋅A = U W V  (5.15)

Then, the SVD solution of equation (5.13) can be obtained from:

( )
( )

1 ( , )

m
i

i
i i i=

 ⋅
  
 

∑
U b

h = V
W

 (5.16)

where ( ) 1,...,i i n=U  denote the columns of U (each one a vector of m elements);

( ) 1,...,i i n=V  are the columns of V (each one a vector of length n); and

( , ) 1,...,i i i n=W  denote the singular values of matrix A, as calculated in equation

(5.15).

5.5.2 Data normalization

The accuracy of the estimated homography H also depends on the coordinate

frame in which the points are expressed. We have applied a method of normalization

based on [Har97]. The normalization procedure is independently performed for the

interest points { }1 2, ,..., nm m m  in image I and the matches { }1 2, ,..., n′ ′ ′m m m  in image

'I .

The normalization for every image is accomplished as follows. First, the

coordinates in each image are translated (by a different translation of each image),

bringing the centroid ( , )x y  of the set of points { }1 2, ,..., nm m m  to the origin of

coordinates. Considering ( , ,1)T
i i ix y=m ), the centroid can be computed from:

1

n

i
i

x
x

n
==
∑

  and  1

n

i
i

y
y

n
==
∑

(5.17)

Then, the coordinates have to be scaled so that the average distance from a point to

the origin is 2 . To perform this change of scale, we should know the initial

average distance ( )d  from every point to the origin of coordinates:

( ) ( )2 2

1

n

i i
i

x x y y
d

n
=

− + −
=

∑
(5.18)

and then the scaling factor s can be computed from 2d s⋅ = .  The translation and

scaling can be performed by means of the transformation matrix T.
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( )
( )

2 2

2 2

0

0

0 0 1

d d

d d

x

y

 −
 
 = −
 
 
 

T (5.19)

Since the same type of normalization is applied to the matches { }1 2, ,..., n′ ′ ′m m m  a

transformation 'T  can be computed:

( )
( )

2 2

2 2

0

0

0 0 1

d d

d d

x

y

′ ′

′ ′

 ′−
 
 ′ ′= −
 
 
 

T (5.20)

Therefore, given an interest point m  and its correspondence ′m , the normalized

coordinates N′m  and N′m  can be obtained by applying transformations T and 'T :

N =m Tm (5.21)

N′ ′ ′=m T m (5.22)

Then, equation (5.13) can be applied to find an homograhy NH  from the

normalized data. Finally, a denormalization is required to obtain the “standard”

homography H:

( ) 1

N

− ′=H T H T (5.23)

In summary, the estimation of the homography matrix H a set of points

{ }1 2, ,..., nm m m  and correspondences { }1 2, ,..., n′ ′ ′m m m  is detailed in Figure 5.3:

5.5.3 Detection of outliers

Although an accurate texture analysis is devoted to the matching procedure, some

false matches (known as outliers) could still appear among the right correspon-

dences. For this reason, a robust estimation method has to be applied. The Least

Median of Squares (LMedS) algorithm can be used for finding the matrix H which

minimizes the median of the squared residuals errM  [Gar01b]:

( ) ( )( )2 2 1, ,         err j j j j
j

M med d d j−′ ′= + ∀m Hm m H m (5.24)

where 1 2 3(x ,x ,x )=m  are the homogeneous coordinates of a 2D point m  defined in

the image plane I, being 1 3 2 3( , ) (x x , x x )i ix y= =m  its corresponding Cartesian
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coordinates; and ( )2 ,j jd ′m Hm  is the square distance from a point jm , defined on

image I, to the projection on the same image plane of its correspondence j′m . Hence,

the error residual errM  is defined by the distance of a point to the projection of its

correspondence [Rou87], and vice versa, the distance from the correspondence to the

point, considering the inverse homography 1−H .

ALGORITHM Hom_Estimation_from_Normalized_Data

    1. Compute the centroid of the set of points ( , )x y  and the

set of matches ( , )x y′ ′ , as shown in equation (5.17).

    2. Compute the average distance from every point to the

origin of coordinates, as shown in equation (5.18). A

distance is obtained for the interest points ( )d , and the

correspondences ( )d ′ .

    3. Compute the matrices T  and 'T , as in equations (5.19)

and (5.40).

    4. Find a set of normalized points                and

correspondences                by applying transforma-

tions T  and 'T , as shown in equations (5.21) and (5.22).

    5. Compute a homography matrix NH  from the normalized

points, though SVD.

    6. Compute the homography H  from NH , T  and 'T , as shown

in equation (5.23).

ENDALGORITHM

Figure 5.3. Algorithm to compute the homography H  normalizing the image coordinates.

The LMedS algorithm works as follows: given the regression problem of

computing the matrix H from a set of data points, compute a candidate solution

based on a randomly chosen d-tuple from the data. Then, estimate the fit of this

solution to all the data, defined as the median of the squared residuals errM .   The

amount of randomly chosen data d may vary depending on the motion model which

is used in the mosaic. For instance, in the case of a general projective homography

where 8 parameters have to be estimated d has a value of 4, while in the case of an

affine homography only 6 parameters have to be found, reducing d to 3.

{ }1 2, ,...,N N nNm m m

{ }1 2, ,...,N N nN′ ′ ′m m m
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The LMedS algorithm has a breakdown point of 50%, i.e., the algorithm can

tolerate up to 50% of outliers, but not more. In principle, all the d-tuples should be

evaluated; in practice a Monte Carlo technique is applied, in which only a random

sample of size r is considered. Assuming that the whole set of points may contain up

to a fraction of ε  outliers, the probability that at least one of the k d-tuples consists

of d “inliers” (correct data) is given by:

( )1 1 (1 )
kdP ε= − − − (5.25)

Therefore, k can be found from:

( )
log(1 )

log 1 (1 )d

P
k

ε
−

=
− −

(5.26)

Table 5.1 shows the number of samples required to ensure, with a probability

P=0.99, that at least one sample has no outliers for different sample sizes (d) and

percentage of outliers ( )ε .

Table 5.1. Number k of samples required to have a probability of 0.99
that at least one sample has no outliers.

Sample Size Proportion of outliers ( )ε

d 5% 10% 20% 30% 40% 50%

2 2 3 5 7 11 17

3 3 4 7 11 19 35

4 3 5 9 17 34 72

It can be seen from the table that considering the worst case, where 50% of the

data are outliers, the affine model would require 35 samples, while the projective

model goes up to 72.

As noted in [Rou87], the LMedS efficiency is poor in the presence of Gaussian

noise, considering the efficiency of a method as the ratio between the lowest

achievable variance for the estimated parameters and the actual variance provided by

the given method. To compensate for this deficiency, we further carry out a weighted

least-squares procedure. The robust standard deviation estimate ˆ( )σ  is obtained

through:
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5
ˆ 1.4826 1 errM

n d
σ  = + − 

(5.27)

where errM  is the minimal median as defined in equation (5.24). Once the robust

standard deviation σ̂  is known, a weight can be assigned to each correspondence:

2 2ˆ1   if (2.5 )

0   otherwise,
i

i

r
w

σ ≤
= 


(5.28)

where

( ) ( )2 2 2 1, ,i i i i ir d d −′ ′= +m Hm m H m (5.29)

The pairs of interest point/correspondence having 0iw =  are considered outliers.

Therefore, in our implementation, those points at a distance larger than 2.5 times the

robust standard deviation are eliminated, and matrix H is recomputed with the

remaining points. In this was new homography matrix H is robustly estimated.

5.6 Image warping and mosaic construction

As soon as the best transformation H between two frames has been found, the two

images could be warped together. According to our definition of matrix H (see

equation (5.8), page 131), given the homogeneous coordinates of a point ′m  in

image I ′ , the product ′Hm  provides the coordinates of this point ( )m  in image I.

However, it is necessary to find a transformation which maps the present image with

the mosaic image. The successive frame-to-frame transformations can be combined

to form a global model, where all the frames are mapped into a common, arbitrarily

chosen, reference frame, as shown in Figure 5.4.

Normally, the first image of the sequence is chosen as reference frame. Then, the

set of incremental transformation matrices of the form 1
k

k +H  can be cascaded

together to form the global model 1
1k +H , which relates the (k+1)th image with the

first image of the sequence.

1
1 1

1..

i
k i

i k
+ +

=

= ∏H H (5.30)

Once the matrix 1
1k +H  has been computed, image ( 1)kI +  can be added to the

mosaic image, since all the pixels of ( 1)kI +  hold:

(1) 1 ( 1)
1

k
k

+
+= ⋅m H m (5.31)
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By measuring the relative position of image ( 1)kI +  with respect to the mosaic

reference frame a measure of the vehicle motion is obtained, at the same time that a

visual map is constructed. Figure 5.4 illustrates the relationship between every

consecutive homography and the mosaic frame [Gar00,Gar01c].

Reference frame

Image 

Hk+1
1

Hk+1
k

I ( )k+1

Image I ( )2

H2
1

Figure 5.4. Mosaic common reference frame. The global registration matrix 1Hk+1 relates the image
coordinates of any point in image I(k+1)

 with respect of the coordinate frame of the first image I(1).

5.7 Motion estimation

The aim of this phase is to estimate the position of the vehicle as the mosaic is being

constructed, following the Concurrent Mapping and Localization (CML) paradigm.

At this point, the 2D motion of the camera is known in pixels from one image to the

next, as an affine or projective measure (rotation, translation, scaling, shear, etc.).

With the aid of an ultrasonic altimeter, and the knowledge of the intrinsic parameters

of the camera, 3D metric information about vehicle motion can be recovered. This is

done in the following way. As the distortion produced by the camera lenses and the

ray diffractions at the air/camera housing/water interfaces has been corrected in the

first phase of the mosaicking process, the processed images are an ideal projective

projection of the ocean floor. That is, the camera behaves as a perfect pin-hole

model, producing an ideal linear projection of the incident image rays, as shown in

Figure 5.5.
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Image I’

m m’

Z

y0

Figure 5.5. Motion estimation in world (metric) coordinates. The incremental motion d is obtained in
pixels from the mosaic. Taking Z from the altimeter sensor, and knowing the camera focal length f, a

measure D can be obtained in world coordinates.

Therefore, the metric measure Z provided by the altimeter, together with the

knowledge of the camera focal length f, can be used to convert the incremental

motion estimation from the camera coordinated system (in pixels) to the world

reference system (metric information). Applying the geometric law of the perspective

relation [Kan91], the following equation can be obtained:

d D

f Z
= , then 

d Z
D

f

⋅
= (5.32)

When the first image of the sequence is placed mosaic in the mosaic, the world

coordinate system { }wO  is aligned to the XY plane defined by this image, and the

initial Z is measured from the altimeter. For every new image, the subsequent

homographies provide a 2D estimation of the vehicle motion. Considering the picture

illustrated in Figure 5.4, incremental measure d can be decomposed in xd  and yd ,

measured with respect to the coordinate system of the previous image. Therefore,

equation (5.32) can be decomposed in
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;       yx
x y

d Zd Z
D D

f f

⋅⋅
= = (5.33)

where ( , )x yD D  are the components of the incremental motion from image I to 'I ,

expressed in world coordinates [Gar01d].

Therefore, the 3D position of the vehicle can be obtained from incremental

motion ( , )x yD D  and absolute measure Z. This metric information relative to the sea

bed can be very useful for navigation and mission planning.
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Chapter 6

Mosaic correction from crossover paths

This Chapter describes a methodology that can be used to obtain trajectory estimates

from information of the crossover trajectories in the mosaic. As the mosaic increases

in size, image local alignment errors increase the inaccuracies associated to the

position of the vehicle.  When the arbitrary path of the submersible describes a loop,

the images forming the mosaic are re-aligned and a better position estimation is

obtained. Kalman filtering appears as an extraordinary framework to deal with

position estimates and their associated covariance.

6.1 Introduction

In the previous section a feature-based mosaicking strategy has been proposed to

estimate the position of an underwater vehicle, while a visual map is being

constructed. When performing a mission, the submersible follows an arbitrary path.

Then, the mosaicking system will construct a mosaic of the surveyed area,

reconstructing the trajectory followed by the vehicle. As the mosaic increases in size,

image local alignment errors increase the error margin associated to the position of

the vehicle. Even though the relative motion measured between images is very
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precise, the error in absolute position increases indefinitely because of the small

errors that accumulate over the length of the vehicle path. Occasionally, this path

may cross over itself. In this situation new information is available, and the system

can readjust the position estimates. Chapter 3 already introduced the work of

Fleischer et al. [Fle96,Fle97] which was also based on the idea of reducing the

vehicle drift when it revisits an already mosaicked area. However, their approach

suffers from some limitations, e.g., those derived from the batch methods, such as the

requirement of all the data (present and future) before optimization can start.

In order to describe our proposal, consider the situation of Figure 6.1, where the

vehicle describes an arbitrary path. The mosaicking system estimates the motion of

the submersible by registering every pair of consecutive images. At time step (i), let

the variance of the vehicle position 2
iσ , i.e., statistical inaccuracy about where

exactly the vehicle is. When image (i+1) is added to the mosaic, a small misalign-

ment error is introduced. Therefore, the associated variance at time step (i+1) be-

comes 2
1iσ + , with 2 2

1i iσ σ+ > . As vehicle moves, the variance of its position augments.

Therefore, at time step (k), after registering images ( 1)k −  and (k), the variance 2
kσ

can be reduced if this image is directly registered to the mosaic. In this way, an

inconsistency can be detected in the mosaic: the center point of image (k), denoted p

in the Figure, corresponds to the same scene point which was located in image (i),

and denoted ′p . Therefore, vehicle position can be corrected and the uncertainty on

the location of the vehicle can be reduced to the existing uncertainty when image (i)

was added to the mosaic. However, it is not sufficient to simply update the current

vehicle position, reduce the error variance 2 2( )k iσ σ=  and continue the construction

of the mosaic. It is necessary to propagate this improvement back through the image

chain, to improve the placement of all images within the mosaic. In this manner, two

objectives are achieved:

1. The variance associated to the position of the images within the loop is

reduced. Therefore, if a new crossover of the vehicle path is detected later in

the area between image (i) and image (k), a lower variance would be obtained

and, therefore, a better estimation of the vehicle position.
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2. The visual quality of the mosaic will be improved, solving the inconsistencies

in the mosaic. Therefore, the final map would be more adequate for

positioning in future missions.

Image i

Image k

p

p'

Figure 6.1: Arbitrary mosaic describing a crossing path.

Fleischer et al. proposed in [Fle96, Fle97] a continuous optimal estimation theory,

so as to reduce the location error whenever the vehicle path crosses itself. In [Fle96]

the smoother filter was applied in a discrete fashion, assuming that the local

displacements were constant between consecutive images. Unfortunately, this

assumption was difficult to achieve in practice, as the acquisition of a new image

before the vehicle has moved the desired displacement gave the system a higher

degree of robustness. Moreover, the derivation and implementation of the discrete

algorithm when multiple loops of the vehicle are present is more difficult than its
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derivation in the continuous scenario. For this reason, the same authors later

proposed a continuous version of its smoother filter [Fle97], preventing the system

from experiencing the problems described above.

The smoother filter implemented by MBARI/Stanford researchers assumes that

the errors accumulate smoothly all over the loop. However, in practical situations the

errors in building the mosaic are not distributed uniformly across the mosaic. On the

contrary, at some points the error can be much larger than at other points, even

though the line where the images are joined together at their edges has good visual

registration. We solve this problem by introducing a measurement of the estimated

variance of the image placement.

6.2 Crossover detection

It has been seen that drift can be corrected when the vehicle revisits a previously

mapped zone, taking advantage of the extra positional information gained with the

loop. Therefore, one of the first tasks that have to be achieved is the detection of

crossover points in the image sequence. The straight solution is to take into account

how the error variance propagates as the mosaic increases in size, as shown in Figure

6.2. This Figure gives an intuitive evolution of the error variance of the current

image through the error variance window. This window represents the bounded area

in which the image is located. To determine if a crossover has occurred, the system

checks whether the area covered by the error variance of the current image intersects

the mosaic image in an already surveyed zone. Indeed, crossover detection can only

be accomplished if the present image and the overlapping area are far enough in the

image sequence. That is, given an image (i) of the sequence, the error variance

window of next image (i+1) will intersect the part of the mosaic image contributed by

image (i). Therefore, the loop-detection algorithm keeps a list of the location of the

center of every image in the sequence. When an image is added to the mosaic, the

system checks if its error variance window is close enough to the center of a

sufficiently “old” image. This is one of the parameters which has to be adjusted in

the algorithm, preventing the system to stack at continuous crossover detection

events. If a crossover is detected, the present image is registered against the mosaic

area which is included in the corresponding error variance window. This operation
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will normally lead to a new position estimate, and the error variance window will be

adjusted according to the variance of the image closer to the present image.

It should be noted that registering two images like image k and the area of the

mosaic corresponding to image i in Figure 6.1 requires the creation of a new search

image, which is filled with the part of the mosaic that intersects the error variance

window of image k.

error variance window 
of image k

intermediate error 
variance windows

Initial error 
variance window 

p

p'
error variance window 
of image k

Initial error 
variance window 

p

p'

(a) (b)

Figure 6.2. Evolution of the error variance windows for every new image. (a) before loop detection
and image registration; (b) after registering image k against the part of the mosaic corresponding to its

error variance window.

6.3 A Kalman filtering approach to smoothing

6.3.1 Introduction

Once the crossover has been detected, the next step consists in re-aligning the

sequence of images that form the mosaic, taking into account:

(a) the incremental homographies computed by the mosaicking algorithm (as

described in Chapter 5),

(b) the crossover data.
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This implies to estimate, at time k, the position and orientation of the images prior

to time k. The estimation of the state of a system ˆ ix  at time instant i, based on the

measures up to time k, with i k< , is known as smoothing in the literature [Jaz70,

Bar93]. An optimal estimation technique is needed to minimize the variances on the

image positions. MBARI/Stanford researchers perform this optimization through a

batch algorithm [Fle97,Fle98]. They re-align the mosaic propagating back the error

corrections when a crossing path is detected. In this case, the smoother filter is

applied as a batch technique. This approach has the limitation of needing of all the

measurements of the image chain to re-align the mosaic, since in a batch algorithm

the position estimate of a given image depends on both past and future

measurements. On the contrary, we propose to estimate the vehicle motion by means

of classical filtering techniques and, at the same time, use them to improve mosaic

alignment when crossovers occur [Gar02].

The proposed strategy consists of developing a Kalman filter [Kal60,Kal61]

capable of dynamically estimating both the current vehicle position and past

trajectory.  The state vector ( )kx  of our filter includes 3D position (X,Y,Z) and yaw

orientation ( )Ψ of the submersible. Therefore, the vehicle is assumed to be passively

stable in pitch and roll, since its center of mass is below its center of buoyancy.

At every time step, the mosaicking system measures local displacements, which

are converted into global position estimates build upon consolidating every image

into the global mosaic frame. The measured local displacements are always

referenced to a node of the image chain that form the mosaic. The nodes are defined

by the location of the central point of an image. Normally, this node is the previous

image of the sequence, but eventually it could be another node of the image chain as

a consequence of a crossover detection. A general block diagram of the overall

smoothing process is illustrated in Figure 6.3. The incremental information provided

by the mosaicking system (dashed box at the left of the Figure) feeds the smoother

module, which provides a new state estimation. This estimation is used to update the

mosaic and vehicle positioning, as well as providing information for detection of

future crossovers.
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Figure 6.3. Block diagram of the KF smoother for global state estimation

Therefore, the state vector of the system has to keep the information regarding the

position of the center of all the images of the sequence. Moreover, since

measurements are incremental, it is necessary to keep track of all measures. This is

not possible with a standard state vector ( )kx , since ( )kx  contains only information

about the current state of the system (at time step k). This problem can be solved by

augmenting the state vector every time a new measure has to be added to the system.

Therefore, the state vector of our filter has the following form [Gar02]:

1 2 0( ) ( ) ( ) ( ) ( )
TT T T T

aug v k kk k k k k− − =  x x x x x… (6.1)

where ( )v kx  is the state of the vehicle and { ( ) ,  0,.., 1}i k i k= −x  are the locations of

the central point of the first k images which form the mosaic. When augmenting the

state vector, the current estimate covariance error has also to be augmented, to reflect

the new state.
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which is obviously symmetric and where submatrix , ( )v v kP  represents the covariance

of the vehicle (uncertainty in the vehicle’s position at time k); and submatrices

, ( )v j kP  and , ( )i j kP  are the covariance between the vehicle and the jth image and the

covariance between the ith image and the jth image, respectively.

This leads to the implementation of an augmented state Kalman filter (ASKF)

[Smi90,Dea99,Ten01], which integrates either the filtering of the vehicle motion and

the smoothing of the mosaic based on intersecting trajectories. This approach has

several advantages over batch smoothing techniques:

• It is able to integrate all the available information: vehicle’s dynamic model,

correlation of consecutive (adjacent) images, crossover correlation and other

sensor measurements (e.g. sonar-based altimeter).

• It continuously updates, with a simple procedure, the state of the vehicle and

that of the images which form the mosaic. At the same time, it updates their

associated covariances: vehicle-to-vehicle, vehicle-to-image and image-to-

image.

• It permits dealing with trajectories of any complexity (i.e. multiple loops) in a

simple manner. If multiple crossovers occur, the state estimation error

covariance ( )aug kP  would evolve accordingly to the complexity of the

trajectory, due to smoothing in intermediate loops.

Therefore, ASKF is a good framework to keep track of the state of the vehicle and

those of every image of the mosaic images; containing all this information in a single

state vector.
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6.3.2 Constructing the filter

The state estimation ˆ ( )aug kx  and its associated covariance ( )aug kP  are propagated

according to KF time update equations:

ˆ ˆ( 1) ( ) ( ) ( ) ( )aug aug aug aug augk k k k k− + = +x A x B u  (6.3)

 ( 1) ( ) ( ) ( ) ( ) ( ) ( )T T
aug aug aug aug aug aug augk k k k k k k− + = +P A P A B Q B (6.4)

where, as the position of images does not vary as a function of time, the system

dynamics ( )aug kA  and the system noise covariance ( )aug kQ  are:

( ) ( )
( ) ;     ( ) v v

aug aug

k k
k k

   
= =   
   

A 0 Q 0
A Q

0 I 0 0
(6.5)

where the identity matrix I has a size dim( )ik ⋅ x , and matrices ( )v kA  and ( )v kQ

will be detailed later in this section.

At every time step k, the mosaicking system finds the registration parameters

between two consecutive (adjacent) images. Therefore, a new measure ( )adj kz  is

obtained at every time step. However, when a crossover is detected, an additional

measure ( )cross kz  is obtained.

In the case of registration of consecutive images (adjacent case), the measure

( )kz  measures the position of the kth image (which corresponds to the position of the

vehicle) with respect to the th( 1)k −  image, so that:

( ) ( )adjk k=z z (6.6)

[ ]1( ) ( ) ( )  aug v kk k k−= −H H H 0 0" (6.7)

However, when a crossover is detected, the current image kth also intersects with

the mosaic image. Then, the measurement vector ( )kz  becomes:

 
( ) ( ) ( )

TT T
adj crossk k k =  z z z (6.8)

which means that we have two measures, a measure with respect to the previous

image ( )adj kz , and a second one with respect to the area where the crossover has

been detected ( )cross kz . If the crossover corresponds to an image j, the measurement

matrix ( )aug kH  incorporates a measurement in column j, becoming:
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(6.9)

The form of the measurement matrix of the vehicle ( )v kH , image measurement

matrices 1( )k k−H  and ( )j kH , and measuring subvectors { }, adj crossz  are detailed in

later in this section.

Then, difference between the measurement ( )kz  and the previous “a priory”

estimation is given by:

ˆ( ) ( ) ( ) ( )aug aug augk k k k−= −r z H x (6.10)

This difference is called innovation, and its covariance ( )kS  is:

T( ) ( ) ( ) ( ) ( ) aug aug augk k k k k−= +S H P H R (6.11)

where ( )aug kz  is the measuring vector, ( )kR  the measurement error covariance and

( )aug kH is the matrix of the measuring model.

The measures allow the correction of the estimated state and its associated

covariance are corrected according to the KF measurement update equations. So, the

filter gain can be expressed as:
 1( ) ( ) ( ) ( )  T

aug augk k k k− −=K P H S (6.12)

the corrected state estimate corresponds to:

ˆ ˆ ˆ( ) ( ) ( )( ( ) ( ) ( ))aug aug aug augk k k k k k− −= + −x x K z H x (6.13)

and its error covariance becomes:

( ) ( ( ) ( )) ( )( ( ) ( ))

                                                                ( ) ( ) ( )

T
aug aug aug aug

T

k k k k k k

k k k

−= − − +

+

P I K H P I K H

K R K
(6.14)

Jazwinski [Jaz70] proved that equation (6.14), which updates the error covariance,

is better conditioned for numerical computation than the equivalent usual form

shown in equation (6.15) [Kal60].

( )( ) ( ) ( ) ( )aug aug augk k k k−= −P I K H P (6.15)
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Once the phases of propagation and correction have been completed, the state

and covariance are augmented to add the positioning of the new kth image.

Vehicle model

Although an accurate dynamic model of the vehicle which has been used in

simulation is available [Rid01], our KF approach assumes a mathematical description

based on a linear model. This assumption is made to obtain a more generic and

simple filter, which can be more easily adapted to other submersibles. The vehicle

state is described by its position and velocity in the following way:
 

( )
T

v k x y z x y z = Ψ Ψ x �� � �  (6.16)

where (x,y) are relative to a mosaic-fixed coordinate system, z is relative to an earth

fixed coordinate system and Ψ is the rotated yaw angle in the vehicle fixed

coordinate system.

The considered dynamics of the vehicle ( )v kA  assumes a constant velocity

model:

4 4 4 4

4 4 4 4

( )     v

dt
k × ×

× ×

⋅ 
=  
 

I I
A

0 I
 (6.17)

where 4 4×I  is the 4-dimensional identity, and dt is the sampling period.

Finally, the process noise ( )v kQ is given by [Ten01]:

4 2 3 21 1
4 2

3 2 2 21
2

( )     v v
v

v v

dt dt
k

dt dt

σ σ
σ σ

 ⋅ ⋅
=  ⋅ ⋅ 

Q (6.18)

where 2
vσ  is the diagonal 4-dimensional matrix of process noise variances in the

coordinates (x,y,z,Ψ), used as tuning parameters.

Image model

Every image has an associated state vector which contains the information required

to position the corresponding image in the mosaic, so that:

[ ] 

 ( 0, ..., 1)( )     
T

i i i i i i kk x y z = −= Ψx  (6.19)
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The vectors measuring the displacement with respect to the previous image ( )adj kz ,

and the mosaic area where the crossover has been detected ( )cross kz , are described by

{ } [ ]  , ( )
T

adj cross k dx dy z d= Ψz (6.20)

where  (dx,dy,dΨ) are the coordinates of the position of the present image with

respect to the previous image (“adj” subindex) or with respect to the closer node of

the mosaic image (“cross” subindex). On the other hand, z represents the altitude of

the vehicle at the time the present image has been taken. This absolute measurement

can be obtained from a sonar altimeter.

Measurement matrix

Looking at equation (6.10) it can be seen that the vehicle measurement matrix ( )v kH

is only used to select the components of the previous “a priori” state estimation.

Therefore, it should be defined as

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0
( ) 

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

v k

 
 
 =
 
 
 

H (6.21)

while image measurement matrices 1( )k k−H  and ( )j kH  are

1

1 0 0 0

0 1 0 0
( ) ( ) 

0 0 0 0

0 0 0 1

k jk k−

 
 
 = =
 
 
 

H H (6.22)

Note that the component corresponding to measure z in equation (6.22) is not

updated from the image, but directly provided by the altimeter sensor.

The measurement noise covariance ( )kR  may change with each image

measurement. It depends on the accuracy of the estimation of the homography

transformation H described in Chapter 5. Therefore, the residual error errr  which

accounts for the uncertainty in H can be computed from [Har00]:
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( ) ( )
1 2

2 2 1
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1
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n n

err i i i i
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r d d
n

−

= =

 ′ ′= + 
 
∑ ∑m Hm m H m� � � � (6.23)

where n is the number of points which are used to estimate H. If n is sufficiently

high, the residual error errr  can be used as an approximation to the unknown

estimation error. Therefore, R(k) can be estimated at every time step from errr . A

detailed discussion appears in [Har01]. This residual error is proportional to the

standard deviation of the measurements in x, y and yaw. Therefore, it can be used to

estimate ( ), ( ) and ( )x yk k kσ σ σΨ  by introducing a multiplicative tuning factor.

Then, the measurement covariance matrix in the case of adjacent measure is
2( ) ( )adjk kσ=R . If there is a crossover measurement in addition to the adjacent one,

R(k) becomes:

2
4 4

2
4 4

( )
( )   

( )
adj

cross

k
k

k
×

×

 
=  
 

0
R

0

σ
σ

(6.24)
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2

2
2
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2

( ) 0 0 0

0 ( ) 0 0
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0 0 ( ) 0
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z

k

k
k

k

k

σ
σ

σ
σ

σΨ

 
 
 =
 
 
  

and 2 2 2,  and x yσ σ σΨ  are the measurement variances of image correlation in the

mosaic, and 2
zσ  is the variance of the sonar altimeter.

State augmentation

Finally, the information of the present image which is necessary to augment the state

vector and its covariance matrix can be obtained from the terms relative to the

vehicle. Therefore:

ˆ ˆ( 1) ( 1)k vk k+ = +x x (6.25)

,( , , 1,...,0) ,( , , 1,...,0)( 1) ( 1)k v k k v v v kk k− −+ = +P P (6.26)

where equation (6.26) selects the information from the row and column

corresponding to the vehicle.
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6.4 Optimizations

In order to take advantage of the sequential character of the filter, we should pay

attention to its computational cost. Obviously, as the ASKF incorporates new

measures at every iteration, its size will increase. Given that it essentially involves

matrix multiplications, the cost will be approximately O(n3), where n is the number

of images added to the mosaic. However, in this implementation, the cost can be

significantly reduced considering the trivial submatrices (zeros and identities) in

Aaug(k), Qaug(k) and Haug(k). Then, only the products which involve non-trivial

submatrices have to be computed, and then the trivial and non-trivial parts of the

matrices can be linked together to form the final matrix. In this way the

computational cost can be reduced from O(n3) to O(n).

Although this improvement is quite significant, as state augments it becomes more

and more difficult to obtain real-time performance. Therefore, the number of images

which is added to the state should be kept to a minimum. Then, although new images

are processed at constant time intervals, incremental position estimations can be

injected into the filter only when overlapping between images is below a given

threshold, instead of using all the images to update the filter. In this way, the

matrices involved in the computations of the ASKF do not increase so rapidly.

6.5 Summary

This chapter completes the description of the visual mosaicking system. A method

for the optimal estimation of the position of every image of the sequence after a

successful crossover path has been described.

A Kalman filter with augmented state has proved to be the adequate framework

for the development the optimal estimator. Although the idea of taking profit of

additional information when the vehicle path crosses itself is not new, our approach

presents several advantages with respect to the batch system developed by MBARI/

Stanford researchers [Fle96,Fle97]:

• The system is able to cope with several loops.



CHAPTER 6. MOSAIC CORRECTION FROM CROSSOVER PATHS 156

• It is a sequential algorithm. It can optimize dynamically as new data gets into

the system, instead of having to wait for all the data to process it afterwards,

like batch filters.

• The filter performs forward iterations which allow the system to estimate the

trajectory from the noisy data.

• The measurement noise covariance matrix R(k) can be updated at every time

step depending on the results of the correlation phase. In this way the filter has

an idea of how the uncertainty (variance) in image positions evolves.
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Chapter 7

Results

This chapter is devoted to the presentation of some of the results obtained from the

techniques described in previous chapters. Different aspects of the work are tested

and analyzed. First, an experimental setup to perform laboratory tests and evaluate

the accuracy of the mosaic is presented. Then, some of the resulting mosaics of

several laboratory sequences are illustrated. Next, the results obtained from real sea

trials are shown. Finally, trajectory estimates are re-aligned from information using

the crossover data of the mosaic.

7.1 Experimental setup

As the mosaic increases in size, small errors in the motion estimation between

consecutive frames provoke an accumulated error. In this work we want to be able to

evaluate the nature of error propagation in the resulting mosaic quantitatively. A

laboratory setup to obtain an accurate error measurement has been used. The system

consists on a robot arm carrying a down-looking camera (see Figure 7.1). This robot

has limited accuracy, but good repeatability. The accuracy parameter is defined as

the distance between an arbitrarily prescribed location and the one that has actually
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been achieved, while the repeatability is measured as the radius of the sphere which

contains the points reached after positioning the tool in the same place repeatedly

[Sch90].

Figure 7.1. Experimental setup. A robot arm carries a down-looking camera and takes images of a
poster simulating the sea floor.

The robot arm is required to execute the same pre-defined trajectory twice. A

calibration pattern formed by a white background and a matrix of black dots

uniformly distributed along the surveyed scene is initially placed under the robot,

covering the working area. When the robot executes a trajectory (simulating the

motion of a submersible), a sequence of images of the calibration pattern is acquired

by the camera. These images will be used to detect the exact image registration

parameters. The radial distortion produced by the lenses is corrected for every image.

Then, a first motion estimation is obtained from the encoders of the robot, serving as

an initial estimate of the actual motion. Next, this estimate is refined by

automatically detecting, to subpixel accuracy, the black dots of the calibration pattern

in the image sequence. An initial estimate of the position of the black dots in the

image is predicted from the information provided by the robot. When these dots are

detected in the image the error can be corrected. From the new position of the

calibration dots, a 2D projective transform which relates every pixel to the virtual

mosaic image is computed. Finally, the pattern is substituted by a poster of the sea

floor and the trajectory is executed again. This second time, the acquired image

sequence is used as input to the mosaicking system. Since the real trajectory is

known, the correctness of the mosaic can be quantified.

Robot Arm

Camera Camera
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7.2 Laboratory tests

The use of the experimental setup enables a quantitative measurement of the

accumulated errors of the mosaics created in the lab. We have performed several

experiments to compare the accuracy of our mosaicking algorithm against the real

values. Normally, as the mosaic increases in size, drift error is expected to increase.

However, every time a new image is added to the mosaic, the displacement measures

are incremental and referred to the previous image. Therefore, it can be assumed that

every new measure is affected by a zero-mean Gaussian error. This means that the

trajectory error has a general tendency to increase, but eventually the small

misalignment errors can provoke the drift to reduce in certain areas of the path.

However, in consecutive images the error may not have a Gaussian distribution with

zero mean. This is due to the fact that the matchings detected in the overlapping

areas of consecutive images are the same for a few images. Consider for instance a

sequence of four images where the first and last images have an overlapping of the

50% of their area. If the most prominent features are detected in this area, the

consecutive measurements performed in consecutive images are strongly correlated

for a short period of time. And as the sequence gets further from the fourth image,

measurement correlation would decrease. Therefore, in the long term, measurements

can be considered to be independent, though this is not strictly true in the

measurements performed in consecutive overlapping images.

One of the first type of trajectories which has been tested with the experimental

setup is the execution of a straight path. Figure 7.2 shows two mosaics constructed

from two different image sequences acquired by means of the experimental setup. In

both cases a poster of an underwater sequence is placed under the robot. The nature

of the images is quite different. The sequence of Figure 7.2(a) shows a pipe

surrounded by small stones and some algae. The different depth of the algae and the

sea floor provokes a blurring of the image in some areas. The poster of Figure 7.2(b)

is a typical underwater scene with big rocks. This image has been taken at more

depth, and light turns to the green frequency, decreasing the dynamic range of the

image.
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(a) (b)

Figure 7.2. Visual mosaics of a straight trajectory generated from the experimental setup.
Both mosaics have been created from a sequence of 39 images.

The visual appearance of the generated mosaics is quite good, although small

differences in the lighting conditions are observable between images. Real and

estimated trajectories are plotted in Figures 7.3(a) and 7.4(a).
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The trajectory estimated by the mosaicking system has a drift to the left in the first

of the sequences, as illustrated in Figure 7.3(a). The evolution of this drift can be

observed in Figure 7.3(b). As expected, drift increases with time, although it is kept

nearly constant from images 11 to 17, with a small correction from images 18 to 22.

(a)

(b)

Figure 7.3. Reconstruction of the straight trajectory computed from the mosaic of Figure 7.2(a).
(a) Real trajectory (dashed-blue) versus estimated trajectory (green with markers).

(b) drift evolution. Final drift is 27 pixels (1.9% of the total trajectory).
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(a)

(b)

Figure 7.4. Reconstruction of the straight trajectory computed from the mosaic of Figure 7.2(b).
(a) Real trajectory (dashed-blue) versus estimated trajectory (green with markers).

(b) Drift evolution. Final drift is 19 pixels (1.3% of the total trajectory).

The trajectory estimated through the mosaic of Figure 7.2(b) follows accurately

the real one, although it shortens a the trajectory in the last part of the mosaic, from

images 25 up to the end of the path.
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Figure 7.5 shows another trajectory followed by the robot in the lab scenario. The

scene is a poster showing an aerial photograph of a mountain valley. The trajectory

starts at the middle bottom of the image. The size of the sequence is 208 images.

Figure 7.5. Mosaic created from a sequence of 208 images. The size of the mosaic is 2700 × 1600

pixels. The individual images are 384 × 288 pixels

Looking at the mosaic of Figure 7.5, it can be observed that the trajectory

described by the camera starts at the lower part of the picture and moves up. If we

analyze this mosaic, it appears as “visually correct” within the whole area, except a

small misalignment between the first images and the first time the camera crosses an

already visited zone, in the lower part of the image. In the second crossover, when

the camera passes through its way for a second time, no misalignments are visible. It

is not possible to quantify the distortion of the mosaic in any other area of the image

by means of a visual inspection. However, if we plot this path against the real one,

other drift errors can be detected, as shown in Figure 7.6.
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Figure 7.6. Reconstructed trajectory from the mosaic of Figure 7.5. Estimated (dashed) and real

(solid) trajectories followed by the robot arm.

The mosaicking algorithm has estimated this trajectory by computing the motion

between every pair of consecutive images in the sequence. Figure 7.5 represents the

temporal evolution of the trajectory followed by the pixel located at the center of

every image. Since there exists a considerable overlap between every image and the

next one, the same area is common to several images. In this case, an alternative

would be the selection of a reference image, and the estimation of motion between

this image and the next few frames. This second approach yields to a mosaic

presenting less drift (because incremental errors increase more slowly), but usually

with a worst visual appearance. On the contrary, the methodology that has been used

to create the mosaic of Figure 7.5 generates maps with a good visual appearance, but

is less adequate to estimate the position of an underwater vehicle.

The lower right corner of Figure 7.4 presents a drift of 46 pixels. If we want to use

the mosaicking system to position an underwater vehicle, this drift would suppose an

error in the order of 25 to 50 cm depending on the altitude of navigation of the

submersible. This drift is kept approximately constant along the horizontal path in

the lower part of the figure. This can be more easily observed in Figure 7.5. Almost

at the end of the path (in the second crossover), the drift has been reduced to 6 pixels.

In this case, local errors have produced a reduction of the drift. Then, the visual



CHAPTER 7. RESULTS 166

analysis of the mosaic looks nearly perfect, while errors in the estimation of the

trajectory have occurred. Figure 7.8 shows the peculiar evolution of the accumulated

drift in this sequence. The maximum error is 47 pixels (a 0.7% of the total path),

while the final error is 15 pixels, which represents only a 0.2% of the total trajectory.

This is a clear example of drift reduction from accumulative errors.

(a) (b)

Figure 7.7. Temporal evolution of the estimated (green) and real (blue-dashed) trajectories for the X

and Y coordinates, respectively (a) and (b), for the mosaic of Figure 7.5.

Figure 7.8. Drift accumulated by the mosaic of Figure 7.5.
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Figure 7.9 shows an oval trajectory. The robot starts and finishes at the center left

hand side of the image. It can be observed that the final position of the camera is

quite close to the original one. However, a small misalignment can be observed in

this area, while in the rest of the image sequence small accumulative errors are not

perceptible (although they occur).

Figure 7.9. Mosaic created from a sequence of 130 images. It starts and ends at the center left of the

image. A small misalignment of 37 pixels can be observed.

Figures 7.10 and 7.11 show the reconstructed trajectory and drift evolution of the

mosaic of Figure 7.9. Again the maximum drift occurs at the end of the path, being

lower than a 1% of the total trajectory. It can be observed from images 76 to 92 the

accumulative error produce a reduction of drift. However, from the image 93 up to

the end of the path drift increases quite seriously. This proves that in the long term

the measurements are uncorrelated, but there is a strong correlation in certain areas,

like in the last part of this oval trajectory.
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Figure 7.10. Reconstructed trajectory from the mosaic of Figure 7.9. Estimated (green with markers)

and real (dashed-blue) trajectories followed by the robot arm.

Figure 7.11. Drift evolution of the trajectory of Figure 7.9. The final drift of 37 pixels supposes an

error of a 1% of the total path.

7.3 Sea trials

After the encouraging results obtained from the previous section, several experiments

have been performed in the sea. All the field tests have been performed in coastal
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waters of Costa Brava, with the underwater vehicle URIS in teleoperated mode. To

perform each experimental run, the pilot teleoperates the vehicle positioning it at

suitable range above the seabed. Then, as the vehicle moves, the acquired images are

sent to the surface through the umbilical tether, where they are either stored to a tape

or processed in real time. The next figures show some of the constructed mosaics

from the sea trials that took place during the months of June and July, 2001.

   
(a) (b)

Figure 7.12. Two sample trajectories followed by the submersible during a sea trial.
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Figure 7.12(a) shows the mosaic constructed while the vehicle was following a

submersed chain. At the beginning of the sequence the chain is at the range of the sea

bed, but, as the image sequence progresses, it goes up from the floor. It is possible to

see how the underlying assumption of flat scene is violated. However, the vehicle

path can be reconstructed from the mosaic without a major problem. Although point

correspondences detected in the chain are correctly established, the points detected in

the chain undergo a different apparent motion than the background sea floor points,

due to differences in range. For this reason the LMedS algorithm detects them as

outliers. Unfortunately, it is not possible to quantify the errors which are produced in

real sea trials, since the real trajectory cannot be recovered from any other sensors.

   

Figure 7.13. Sample trajectories described by URIS at sea.

7.4 Considering crossover information

The KF approach to realign the mosaic has been tested with synthetic and real data.

In order to create a set of test trajectories, the Autonomous Underwater Vehicle

Simulator (AUVS) for virtual and/or real applications [Rid01a,Rid01b] has been

used. This simulator incorporates the identified dynamic model of GARBI, and it is

able to create the sort of trajectories that the vehicle would follow in a real mission.

Figures 7.15–7.18 show different crossover trajectories generated by means of the

AUVS. The correspondences in the intersecting path after crossover detection are
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illustrated with a thin dashed line. First, the trajectory without noise (dashed-blue) is

generated. Then, a trajectory simulating the robot drift is generated by adding

accumulative zero-mean Gaussian noise (green) to the real one. Finally, the KF

computes the smoothed trajectory (magenta).

Figure 7.14. Resulting mosaic constructed during a real mission. The zoom shows the noisy nature of

the images and the lighting effect produced by the camera at the bottom left hand side of every frame.

Figures 7.15(a) and 7.16(a) show a circular and square path, respectively. Their (b)

counterparts illustrate the evolution of the variance of the X and Y components before

(green) and after (magenta) smoothing. It can be observed that the variance

associated to vehicle position increases indefinitely as the vehicle moves. However,

when the vehicle detects a crossing path, variance is reduced to the previously

existing variance at the intersection node.
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(a)

(b)

Figure 7.15. Crossover simulation. (a) The graphic shows the trajectory without noise (dashed-blue),
trajectory with accumulative Gaussian noise (green) and smoothed trajectory (magenta) after applying

the ASKF. (b) Variance evolution in X and Y before (black) and after (magenta) smoothing.
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(a)

(b)

Figure 7.16. Square trajectory simulating a crossover. (a) The filter re-adjusts the estimated trajectory
after smoothing (magenta).The real trajectory is drawn in dashed-blue, and the simulation of the

trajectory computed by the mosaicking system in green. Every small square represents a measurement
point (image node) (b)Variance evolution before (green) and after (magenta) smoothing.
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(a)

(b)

Figure 7.17. Crossover simulation. (a) Trajectory without noise (dashed-blue), trajectory with
accumulative Gaussian noise (green) and smoothed trajectory (magenta); (b) Drift evolution: before

(green) and after (magenta) smoothing.

It should be noted that the evolution of the variance (uncertainty in the image

exact location) does not have a direct relation with drift error (difference between the
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exact path and the estimated one). We can observe from the preceding images that

the variance always increases linearly before smoothing (black), while after

smoothing (magenta) error variance decreases as the position of the images is closer

to the crossover point.

In order to test the capabilities of the ASKF to deal with several loops, we have

also used the AUVS to generate a trajectory with 3 crossing paths. In this experiment

the vehicle navigates in an area of 50×50 meters. Then, this trajectory has been

scaled and executed by the robot arm of our experimental setup, as described in

section 7.1. A poster of the sea floor is again placed under the robot, covering the

working area. The robot executes the trajectory (simulating the motion of a

submersible) and the camera acquires the image sequence which will be processed

by the mosaicking system. In this way the real and estimated trajectory followed by

the robot are known [Gar01]. Figure 7.18 shows the sample trajectory with 3

crossover paths. The dashed blue line represents the real trajectory and the trajectory

estimated by the mosaicking system is shown in solid green. The path of the vehicle

starts at the at the bottom left hand side of the figure. The evolution of the smoothed

trajectory can be followed in the different sub-figures (drawn in magenta with a

marker at every sample point). Figure 7.18(a) shows the trajectory filtered by the

ASKF before the first crossover is detected. It basically follows the trajectory com-

puted by the mosaicking system (solid-green). It can be observed that the smoothed

trajectory stops before intersecting its path. This means that the crossover detector

tells the robot that it has already arrived to a crossover point, although the robot

thought that it was further from that point. With this information, the ASKF smooths

back the positions of the previous images, and then it goes on filtering the vehicle

trajectory (Figure 7.18(b)). Again, an intersection is detected. It can be observed in

Figure 7.18(c) that the smoothed trajectory in the top of the map goes down, after the

second crossover, approaching the real trajectory. Finally, Figure 7.18(d) shows the

smoothed trajectory after the third path intersection. Here we have shown the

evolution of the smoothed trajectory superimposed on the final real and measured

paths; however, it should be noted that the smoothed trajectory is updated

sequentially, as the mosaic provides every new measurement.
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(a) (b)

(c) (d)

Figure 7.18. Sample trajectory with 3 intersections. The sequence shows the real trajectory (dashed-

blue), non-smoothed estimated trajectory (solid-green) and the evolution of the smoothed trajectory

(magenta with markers) as new crossovers are detected.

The accumulated drift is illustrated in Figure 7.19. Initially, both the trajectory

computed by the mosaic and the ASKF smoother present a similar drift. When the

first crossover is detected, drift of the smoothed path can be reduced to a very low

value. Then it increases again, but the second loop keeps the drift in a considerably

smaller range than the measured trajectory. Figure 7.20 shows the drift independently

plotted for the x and y coordinates. The diagonal components of the final state error

covariance Paug are used to compute the uncertainty bounds of the smoothed

trajectory, drawn as 3 times the estimated standard deviation at every point.
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Figure 7.19. Drift evolution of the vehicle trajectory in the mosaic plane. Drift of the smoothed

(magenta with markers) and non-smoothed  (solid-green) trajectories.

Figure 7.20. Drift of the smoothed (magenta) and non-smoothed  (solid-green) trajectories for the X

and Y coordinates. The uncertainty bounds of the smoothed trajectory (dashed) is drawn as 3 times

the estimated std. deviation (obtained from the final state error covariance matrix Paug).
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Finally, Figure 7.21 shows the result of applying smoothing to the oval trajectory

of Figure 7.9. The misalignment at the center left hand side of Figure 7.9 is not

perceptible in the smoothed version.

Figure 7.21. Resulting mosaic image after applying smoothing to the image of Figure 7.9. The
misalignment at the center left hand side does not exist.

7.5 Analyzing the efficiency of the system

At this juncture, it has become clear that the mosaicking system should serve as a

positioning tool to navigate close to the ocean floor. Therefore, the efficiency of the

algorithm is a key factor to allow the system to work in real time. The mosaicking

system has been coded in C++. Since our underwater vehicles are relatively slow

(typical speeds within a mission are below 0.5 m/s), a cycle time around 1 second

should be enough to achieve real-time performance. An adequate parametrization of

the system allows this performance to be reached without need of specific hardware.
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Table 7.1 shows the timing of the different phases of the algorithm. Tests have been

performed with an AMD-K7 1300 MHz, and the system has been parametrized with

the configuration used to create the mosaics of Figure 7.12. This configuration is

detailed in Table 7.2.

Table 7.1.  Timing of the different phases of the mosaicking algorithm.

Phase Time (in seconds) Accumulated Time
Detection of Interest points 0.170

Textural-aided Correlation 0.370 0.540

Outlier Rejection 0.340 0.880

Motion Estimation 0.060 0.940

Mosaic Construction 0.210 1.150

It can be observed from Table 7.1 that motion estimation parameters are available

after 940 ms. This means that the position of the vehicle can be updated every 940

ms. However, copying the present image to the mosaic frame takes 210 additional

milliseconds. Therefore, if we want to use the system just as a positioning sensor, the

cycle can be completed in less than a second, and if our aim is to construct a visual

map, the cycle goes up to 1.15 seconds, which can still be considered real time

performance.

Table 7.2.  System parametrization.

Module Parameter Value
- Image size 192 × 144

Interest-point detector Number of Interest Points 25

Correspondences Search Window 35 × 35

Correlation Window 17 × 17

Subsampling factor 4

LMedS Iterations 100

Motion Estimation Motion Model Affine

It can be observed from the parameters of Table 7.2 that the mosaicking algorithm

is searching for correspondences within a 35 × 35 search window. If the apparent

motion of the vehicle is too high, the system would fail to find the correspondences

in this area. A possible alternative would be to use a multi-resolution approach,
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keeping the size of the search window, but subsampling the image to half its size.

This solution has not been implemented in the present work but it will be included in

the future improvements.

7.6 Summary

We have presented in this Chapter some of the results which have been obtained

either from simulation, lab tests and real sea trials. From the set of tests which have

been performed it is obvious that as the mosaic increases in size, drift has a clear

tendency to augment in the long term. Unfortunately, it is not possible evaluate

quantitatively the accuracy of the resulting mosaics and their associated trajectory

estimation in real sea trials. However, the lab results obtained through an

experimental setup show that the errors in the estimation of the vehicle trajectory in

lab conditions may be below a 3% of the total trajectory. Nevertheless, meeting lab

conditions may be too difficult to achieve in real applications, where lighting

problems, scattering, bad visibility, etc. could deteriorate the signal-to-noise ratio of

lab images. For this reason, the possibility of exploiting the additional information

gained at crossover paths opens appears as an interesting alternative for applying

visual mosaicking to the Concurrent Mapping and Localization problem.

Summarizing, the quality of the obtained mosaics encourages the use of vision as

a positioning sensor for small AUVs, when these submersible navigate close to the

sea floor.
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Chapter 8

Concluding Remarks

This chapter summarizes the conclusions of the presented work.  This dissertation

has basically proposed a method to construct visual mosaics of the ocean floor at the

same time that this information is used to estimate the position of an underwater

vehicle. The application of computer vision to underwater navigation has proved to

be an effective tool when the media conditions are adequate.

8.1 Summary

One of the main interest points of this work is whether it is possible to make use of

computer vision in automatic UUV positioning and navigation. The answer is not

only affirmative, but strictly necessary for small low-cost vehicles where other

sensors are very limited due to both their size and price.

Therefore, the construction of visual mosaics of the ocean floor can provide

accurate position estimates for local navigation of underwater vehicles. We have

presented an approach to quantify the distortion across visual mosaics. A solution to

the problem of measuring error propagation in the construction of a mosaic has been
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proposed. This solution is valid for laboratory testing only, but it has also proved to

be helpful in testing and tuning the different parameters of our mosaicking system,

e.g. selection of texture operators, number of interest points, comparative of different

motion models, etc.

The construction of a mosaic for robot navigation suffers from drift errors, which

are not distributed uniformly across the mosaic, but rather appear in certain areas.

This is probably due to the lack of adequate information in the images acquired on

these areas to produce good motion estimates.

Our approach to construct underwater mosaics has been validated by means of the

experimental set-up. Further experiments will be carried out to enhance the

performance of the mosaicking algorithm. In this work we have only dealt with

planar scenes. In the future, perspective projection of non-planar objects should be

studied in the construction of mosaics. The use of this validation tool will suppose a

step forward towards the creation of a robust mosaicking methodology to be applied

in real missions.

Finally, a method for the optimal estimation of the position of every image of the

sequence after a successful crossover path has been described. The Kalman filter

with augmented state (ASKF) approach has proved to be the adequate framework for

the development the optimal estimator. Although the idea of taking profit of

additional information when the vehicle path crosses itself is not new, our approach

presents several advantages with respect to batch systems. First, the system is able to

cope with several loops. Second, it is a sequential algorithm. Therefore it can

optimize dynamically as new data gets into the system, instead of having to wait for

all the data to process it afterwards, like batch filters. Third, the filter performs

forward iterations which allow the system to estimate the trajectory from the noisy

data. Finally, the measurement noise covariance matrix R(k) can be updated at every

time step depending on the residual error measured from the images. In this way the

filter has an idea of how the uncertainty (variance) in image positions evolves.

8.2 Contributions of this research

The contributions of this dissertation can be divided in four blocks:
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• Comparative study of the state-of-the-art of mosaicking systems for underwater

navigation.

• Proposal of a method to solve the correspondence problem by exploiting the

textural characteristics of the selected features. An accurate use of the texture

information has proved to improve to a large extent the quality of the detected

features.

• Proposal of a new algorithm to construct mosaics of the ocean floor. The

computational cost of the method allows its use in real missions for the

navigation of underwater vehicles.

• Proposal of a smoothing strategy, that can be integrated in the mosaicking

system, which reduces the uncertainty of the vehicle location when the trajectory

of the submersible crosses itself.

8.3 Future work

The accuracy of the mosaicking systems is limited due to several factors.

Improvement on the reliability on any of these factors implies an improvement in the

accuracy of the whole system. Feature-based methods suffer from an inherent

uncertainty in the measurement of the image features. The impossibility of

measuring the exact position of the features in the image causes errors in the motion

estimation process and, therefore, in the mosaic alignment. However, improvement

could be obtained if all the incoming images are correlated directly with the same

base image, instead of incrementally registering consecutive images. When the

intersection between the present image and the base frame is smaller than a given

threshold, a new base frame has to be selected. In this way, accumulative error would

propagate slower through the image chain.

The work presented in this dissertation proves that the incorporation of texture

information can improve to a large extent the detection of feature correspondences in

consecutive images. For this reason, the system is opened to incorporate in the future

other texture operators which could be of interest in solving the correspondence

problem.
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Fortunately, robust algorithms such as LMedS or RANSAC can, to a large extent,

reduce the amount of anomalous data (so-called “outliers”). The development of new

algorithms that could effectively detect non-consistent data would improve the

results of mosaicking systems, as well as finding more accurate and reliable feature

detectors.

On the other hand, featureless methods face the problem of non-linear Least

Squares estimation. At the moment, these methods require a good initial guess at the

solution in order to converge to the global minimum. Otherwise the iteration may

lead to a local minimum, or may not converge at all.

Most of the mosaicking systems described in the scientific literature compute a

planar transformation to register the images. Some other systems estimate 3D motion

with respect to a sea floor which is assumed to be planar. However the mosaicked

area may not only be non-planar, but may also present high variations in depth. In

this case, new motion estimation and/or 3D structure recovering algorithms should

be developed to gain a global perspective of the surveyed zone. This is relevant in

the case of the exploration of wrecks or submersed structures with a considerable 3D

shape.

On the other hand, all the featureless methods, as well as some of the feature-

based, minimize a cost function that depends uniquely on the image intensity values

and (in some cases) variations in the radiosity of the image. Future research could

improve image registration by adding new parameters to the cost function, such as

textural characteristics, leading to more robust estimates.

Therefore, visual mosaics can be considered as an important tool that allows

accurate motion estimation and positioning of underwater vehicles. Although this

methodology has still serious limitations (e.g. limited surveyed areas, drift errors,

etc), the increasing computer power will allow the development of new real-time

mosaicking algorithms, thus providing more accurate estimates and increasing the

mosaic sizes in next few years. Moreover, most of the visual mosaicking systems that

have been analyzed are uniquely taking information from the on-board cameras. In

some cases, other on-board sensors such as compasses, Doppler sonar or inertial

navigation systems (INS) have been timidly used. It has been proved that local

accuracy provided by visual sensing is higher than that of any other sensor (with a

similar cost). However, as the mosaic increases in size, a considerable drift can bias
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the system. For this reason, sensor fusion integrating vision with other sensors that

are not subject to drift, such as compass sensors or some LBL sonar that are able to

provide absolute position readings, could considerably improve the accuracy of the

construction of a visual map, and, therefore, improve navigation.
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