
University of Magdeburg

School of Computer Science

Master’s Thesis

Product-Line Verification with
Abstract Contracts

Author:

Stefan Krüger

December 15, 2014

Advisors:

Prof. Gunter Saake
Dipl.-Inform. Thomas Thüm

Department of Technical and Business Information Systems

Dr. Richard Bubel
Department of Computer Science

Krüger, Stefan:
Product-Line Verification with Abstract Contracts
Master’s Thesis, University of Magdeburg, 2014.

Abstract

Software product lines are used for highly efficient development of software products
with a common code base. As they are used increasingly often in safety-critical sys-
tems, means of verification have come into focus of research, but efficient verifications
of software product lines are still a challenge. To verify a software product lines all its
products need to be verified. Different approaches have emerged that try to accom-
plish this. In this thesis, we revisit the discussion about benefits and weaknesses of the
different approaches, with a focus on product line evolution. In product-based verifi-
cation approaches, all products are generated and verified individually, which becomes
infeasible with an increasing number of products. To solve this issue, in family-based
theorem proving, a single metaproduct is generated that incorporates the variability of
the whole product line. This approach, however, may cause problems because even for
small changes in a single feature, the verification must be repeated completely. Feature-
based approaches address this issue by verifying features in isolation, but as features
regularly interact with each other, solely feature-based cannot be realized.

In order to solve the problems the individual approaches have, we propose a new ap-
proach combining feature- and family-based theorem proving. In our approach, we
separate the verification in two phases. In the feature-based phase, feature modules
are transformed into feature stubs, which are then verified. The proofs are saved for
reuse. To realize feature module dependencies, abstract contracts are used to serve
as placeholders in the verification of the feature stubs. In the family-based phase, a
metaproduct is generated that is structured, so that the partial proofs obtained in the
feature-based phase can be reused. When a once verified product line evolves, the
feature-based verification needs to be repeated only for features with changes. Further-
more, we provide tool support for the feature-based verification phase for FeatureHouse
Projects specified with JML.

To evaluate our approach, we compare it with four completely family-based approaches
regarding overall proof complexity and reuse potential. We find, that our approach
can reduce the proof complexity up to 65% compared to a family-based approach.
Furthermore, we are able to reuse about 8.6% of an original full proof of a product line.

Acknowledgements

I would like to take the opportunity to thank my advisors Thomas Thüm, Dr. Richard
Bubel, and Prof. Gunter Saake for giving me the opportunity to write this thesis. I
especially want to thank Thomas for endless hours of valuable discussions, without
which I would not have been able to write this thesis in this scope, and Richard for his
advice on the usage of KeY and his enormous help with the evaluation.

Furthermore, I thank Sebastian Krieter for his support with Fuji and discussions about
this thesis.

Finally, I thank my family for all their support.

Contents

List of Figures ix

List of Tables xi

List of Code Listings xiii

1 Introduction 1
1.1 Goal of the Thesis . 2
1.2 Structure of the Thesis . 3

2 Background 5
2.1 Software Product Lines . 5

2.1.1 Feature Modelling . 6
2.1.2 Product Generation . 8
2.1.3 Feature-oriented Programming 8

2.2 Feature-oriented Specification of Software Product Lines 11
2.3 Verification of Software Product Lines 12

3 Feature-Familiy-Based Theorem Proving of Product Lines 15
3.1 Feature-Based Theorem Verification . 16

3.1.1 Generation of Feature Stubs for Feature Modules 16
3.1.2 Generation of Feature Stubs for Feature-oriented Contracts . . . 22
3.1.3 Feature-Based Theorem Proving 25
3.1.4 Re-Verification after Code Evolution 26

3.2 Feature-Family-Based Theorem Proving 27
3.2.1 Generation of the Metaprogram 27
3.2.2 Generation of the Metaspecification 34
3.2.3 Adaption of the Partial Proofs 36
3.2.4 Family-Based Theoreom Proving 38

3.3 Summary . 38

4 Implementation 41
4.1 Requirements for Tool Support . 41
4.2 Existing Tool Support . 42
4.3 Generation of Feature Stubs . 43

viii Contents

4.4 Feature-Based Theorem Proving With KeY 47
4.5 Limitations of the Implementation . 49
4.6 Summary . 49

5 Evaluation 51
5.1 BankAccount SPL . 51
5.2 Experimental Design . 56
5.3 Results . 59

5.3.1 Verification Effort . 59
5.3.2 Product-Line Evolution . 61

5.4 Discussion . 65
5.5 Summary . 66

6 Related Work 67

7 Conclusion 71

A Appendix 75

B Appendix 81

Bibliography 91

List of Figures

2.1 Feature Model of BankAccount SPL 7

3.1 Method Calling Hierarchy in Metaproduct 32

4.1 Screenshot of Context Menu Entry For Activation of Feature Stub Gen-
eration . 44

4.2 Class Diagram of the Implementation 46

4.3 KeY Proof Management . 47

5.1 Overview of Evaluated Versions . 52

5.2 Feature Model for BankAccount SPL with Feature Fee 55

5.3 Overview of Evaluated Approaches . 57

5.4 Comparative Overview of Proof Steps 61

5.5 Comparative Overview of Verification Times 62

5.6 Comparative Overview of Reused Proof Steps 64

x List of Figures

List of Tables

4.1 Overview of Tool Support . 50

5.1 Comparison Parameters For Family-Based Verification Strategies . . . 56

5.2 Proof Steps for Verification . 60

5.3 Comparative Overview of Verification Times 62

5.4 Comparative Overview of Reused Proof Steps 63

List of Code Listings

2.1 Propositional Formula for BankAccount SPL 7

2.2 Role Account of Feature BankAccount 9

2.3 Role Account of the Feature DailyLimit 9

2.4 Composition of Features BankAccount and DailyLimit 10

3.1 Role Transaction of Feature Transaction 18

3.2 Role Account of Feature Stub for Feature Transaction 19

3.3 Role Account of Feature Stub for Feature DailyLimit 20

3.4 Role Account of Feature CreditWorthiness 20

3.5 Role Account of Feature Stub for Feature CreditWorthiness 21

3.6 Class FeatureModel For Feature Stub of Feature DailyLimit 22

3.7 Role Account of Feature Stub For Feature DailyLimit, Part 2 - Abstract
Contract . 24

3.8 Class FeatureModel in Metaproduct . 28

3.9 Role Account of Feature Overdraft . 28

3.10 Class Account in Metaproduct . 28

3.11 Role Money of Feature A . 32

3.12 Role Money of Feature B . 33

3.13 Class Money in Metaproduct . 33

4.1 Partial Proof For Method update of Role Account of Feature DailyLimit 48

5.1 Ensures Clause of Method calculateInterest in Versions One and Two . 53

5.2 Role Account of Feature BankAccount in Version Two 53

5.3 Method update in Versions One and Three 53

5.4 Role Transaction of Feature Fee . 54

xiv List of Code Listings

1. Introduction

In the last couple of years software product lines emerged as a new paradigm in soft-
ware engineering. Both in the industry and in research, they become more and more
popular [Thüm et al., 2014a]. They are used to develop software products that share a
common code base, but differ nonetheless gradually. Common and separate code parts
are modelled as features (i.e., properties that are visible for end users). The achieved
variability leads to increasing complexity regarding the possible variants. They addi-
tionally provide cost-efficient reuse of code and the means to automatic product gener-
ation [Apel et al., 2013a]. By that, they enormously help dealing with software systems
that are getting even more complex. Following that direction, SPL technology is also
increasingly used in safety-critical software. In this context program errors are even
less tolerable.

For traditionally developed single software products, different means of analysis were
established over the years. Formal specification and verification proved as useful instru-
ments to ensure code quality [Hatcliff et al., 2012]. Hence, implementations for these
methods are fairly advanced and tools executing them have been established. Speci-
fication can be used to define properties of code parts. One specification technique is
design by contract [Jézéquel and Meyer, 1997]. It is used in object-oriented and imper-
ative programming to define properties of single modules and by that their behaviour.
These definitions are called contracts and for methods they serve as an agreement be-
tween caller and callee about how a method functions [Hatcliff et al., 2012]. They at
least consist of pre- and postconditions, but can be extended by other elements such
as assignable clauses. Preconditions are used to define which properties need to be
fulfilled before the respective method can be executed in the expected way. Postcondi-
tions define the properties a method guarantees to establish if the caller establishes the
precondition. Assignable clauses serve as a list of fields a method can change and can
so be used to specify side effects of methods. Contracts only define the behaviour. It
is possible to verify the method against its specification with a theorem prover such as
KeY [Beckert et al., 2007]. For theorem proving a program is symbolically executed to

2 1. Introduction

transform it into a logical formula. This formula is then proven to show the correctness
of the program with respect to its contracts [Beckert et al., 2007].

For software product lines, however, analyses are more complex due to their inher-
ent variability and complexity. Different mechanisms have nonetheless been applied
to software product lines [Meinicke et al., 2014; Thüm et al., 2014a] for example type
checking [Kolesnikov et al., 2013], model checking [Apel et al., 2013e], theorem prov-
ing, and combinations thereof [Thüm et al., 2014c]. In order to solve the problems of
software product lines, several strategies have evolved. One kind of strategy simply
takes the idea of verifying single products and employs it on software product lines.
In this product-based strategy, all products of a software product line are generated
and proven independently of each other. Using this approach, it is possible to perform
verifications with regular theorem provers. Due to the enormous amount of variants,
these approaches are infeasible even in small software product lines [Thüm et al., 2014a].
There is also a family-based verification approach in that a metaproduct is generated.
This metaproduct encodes the variability of the software product line in the source code
and by that transforms the variability at compile time in variability at runtime. How-
ever, every time a feature or contract is changed the verification needs to be performed,
again.[Thüm et al., 2014a] One last approach is feature-based, meaning that features
are verified in isolation. This procedure should prevent a complete re-verification as the
code evolves because only the features that changed need to be proven again. However,
this strategy has not yet been realized because, as due its notion of isolation, it is im-
possible to realize interactions between features. Interactions include a method that is
defined in one feature is called by a method from another feature [Thüm et al., 2014a].

Some of these approaches have also been combined to overcome weaknesses and increase
the benefits [Thüm et al., 2014a]. Both feature-product-based and a feature-family-
based approaches were developed. However there is no implementation of feature-
family-based strategy yet.

1.1 Goal of the Thesis

The goal of this thesis is to develop and implement a feature-family-based theorem
proving strategy. This strategy is aimed to increase proof reuse and hence works in one
feature-based and one family-based phase. In the first phase, we analyze features in
an isolated manner and therefore transform feature modules into valid Java programs
called feature stubs. To be able to verify features with feature module dependencies, we
employ the concept of abstract contracts. We then verify the created feature stubs and
save the resulting (partial) proofs. In the second phase, we generate a metaproduct.
Finally, we verify this metaproduct by reusing the saved partial proofs from phase one
and subsequently closing the remaining open proof goals.

We provide tool support for the feature-based verification phase including the gener-
ation of the feature stubs. This tool is based on the language-independent composer
FeatureHouse [Apel et al., 2013b] that is integrated in FeatureIDE [Thüm et al., 2014b],

1.2. Structure of the Thesis 3

a development tool for feature-oriented product lines. We further establish a coopera-
tion between FeatureIDE and KeY [Beckert et al., 2007] to provide a fluent verification
process. While we use KeY for the verification in both the first and the second phase,
our extension to FeatureIDE is used to prepare the feature modules.

Subsequently, we evaluate concept and implementation. We verify a case study with
the theorem prover KeY by applying several strategies including a family-based and our
feature-family-based approach. Finally, we compare the results with regards to several
suitable metrics and discuss found advantages and disadvantages.

1.2 Structure of the Thesis

In Chapter 2, we give an overview about the background the thesis and its contribution.
The escribes our approach from a conceptual perspective. Chapter 4 provides a detailed
explanation of the implementation of the concept described in Chapter 3 and also
includes its limits. The implementation is evaluated by verifying a software product line
with different mechanisms and compare relevant metrics in Chapter 5. In Chapter 6,
research related to this thesis is examined and presented. Finally, in Chapter 7, we
sum up our findings, provide concluding remarks, and questions still open for future
research.

4 1. Introduction

2. Background

This chapter introduces the reader to the basic concepts and terminology that are
required over the course of this thesis. Section 2.1 gives an overview about software
product lines and how they are modelled and implemented. Section 2.2 briefly describes
the concept of design by contract and its realization in JML. The chapter concludes with
an introduction to theorem proving strategies for software product lines in Section 2.3.

2.1 Software Product Lines

As mass-customization and product individualization arose, so did the demand for
ways of highly efficient production of these items. [Apel et al., 2013a; Clements and
Northrop, 2001] In software development, the concept of software product lines(SPL)
was introduced to match the requirements that emerged in fields such as databases and
embedded systems [Beuche, 2003]. They are defined as follows:

a set of software-intensive systems sharing a common, managed set of fea-
tures that satisfy the specific needs of a particular market segment or mission
and that are developed from a common set of core assets in a prescribed
way. [Clements and Northrop, 2001]

Their main purpose is to allow cost-efficient development of a wide spectrum of products
by reusing as much source code as possible [Kang et al., 2002]. In order to achieve these
goals a common methodology was established. The product-line engineering process is
distinguished into domain engineering and application engineering [Pohl et al., 2005].
Domain, in this context, is defined as follows:

an area of knowledge that is scoped to maximize the satisfaction of the
requirements of its stakeholders, includes a set of concepts and terminology

6 2. Background

understood by practitioners in that area, and includes the knowledge of how
to build software systems (or parts of software systems) in that area [Apel
et al., 2013a].

However, domain engineering starts with a comprehensive domain analysis which bases
upon the knowledge about the specific domain and results in a structured collection
of the features covered in the project, usually called feature model. The goal is to
determine dependencies between all involved features [Kang et al., 2002]. Depending on
the product derivation technique, a feature can represent different aspects of a product
line’s variability [Apel et al., 2013a]. Due to the nature of this thesis, we focus on the
composition-based techniques. In this approach a feature is the module, in which the
project’s code is to be encapsulated. These modules are called features modules. In the
literature, features are defined as follows:

a characteristic or end-user-visible behaviour of a software system. Features
are used in product-line engineering to specify and communicate commonali-
ties and differences of the products between stakeholders, and to guide struc-
ture, reuse, and variation across all phases of the software life cycle [Apel
et al., 2013a].

In the domain implementation phase, the necessary artefacts for every feature are cre-
ated. These artefacts serve as an intermediary result and mainly consist of executables,
but can also cover documentation or configuration. In application engineering, the cus-
tomer’s needs and features from the feature model created during domain analysis are
used for a requirements analysis to select the features, which are relevant for the final
product. Finally, the product is manufactured from implementation artefacts based on
the feature selection. The manufacturing can be done manually by the developer. How-
ever in most cases products are generated automatically due to the rapidly increasing
complexity [Apel et al., 2013a]. In the software product line context, product is defined
as follows:

specified by a valid feature selection (a subset of the features of the product
line). A feature selection is valid if and only if it fulfils all feature depen-
dencies [Apel et al., 2013a].

2.1.1 Feature Modelling

There are several ways of representing feature models (e.g., feature diagram, proposi-
tional formula), which can be converted into each other [Batory, 2005]. Feature dia-
grams are trees of features where dependencies can be described through the hierarchy
and different kinds of nodes, as well as additional propositional formulas. They are most
suitable for humans due their structure. Features with the same parent have a common
group type. If their group type is And, regularly all features need to be selected, but

2.1. Software Product Lines 7

more variability can be introduced by giving the possibility to make features either
mandatory or optional. The group type OR indicates that at least one of the features
needs to be selected. Finally, the group type Alternative only allows for exactly one
feature to be selected [Bontemps et al., 2004].

Figure 2.1 shows the feature diagram for the software product line BankAccount. Its
root feature BankAccount as the only mandatory feature serves as a base for all possible
products while all other features are optional. If a feature is selected, all its parent
features have to be selected as well. If Transaction gets selected, the feature Lock is
automatically selected, too. TransactionLog is a feature that implements code relevant
for both Transaction and Logging. Therefore, a custom constraint states that it is
selected if Logging and Transaction are selected.

Figure 2.1: Feature Model of BankAccount SPL

However, the feature model can also be modelled by means of propositional formulas,
avoiding problems of constraints additional to the actual model, but becoming relatively
complex even for yet simple models. Each feature is represented by a variable, which
is true if the feature is selected. The overall formula is true if a given selection is
valid [Batory, 2005]. The propositional formula in conjunctive normal form for the
feature diagram in Figure 2.1 is:

BankAccount
∧ (¬ DailyLimit ∨ BankAccount)
∧ (¬ Interest ∨ BankAccount)
∧ (¬ Overdraft ∨ BankAccount)
∧ (¬ Logging BankAccount)
∧ (¬ CreditWorthiness ∨ BankAccount)
∧ (¬ Lock ∨ BankAccount)
∧ (¬ InterestEstimation ∨ Interest)
∧ (¬ TransactionLog ∨ Logging)
∧ (¬ Transaction ∨ Lock)
∧ (¬ Logging ∨ ¬ Transaction ∨ TransactionLog)
∧ (¬ TransactionLog ∨ Logging)
∧ (¬ TransactionLog ∨ Transaction)

Listing 2.1: Propositional Formula for BankAccount SPL

8 2. Background

2.1.2 Product Generation

A subset of all features of the domain, called configuration, is used to generate products.
Only if the configuration is valid, a product will be created. The process of product
generation can be mathematically described as a series of applications of the operator •
on a set of features [Apel and Lengauer, 2008].

p = f1 • f2 • ... • fn (2.1)

The operator • represents a function over features used to compose them. It is defined
as follows: [Apel and Lengauer, 2008]

• : F × F → F (2.2)

In generative programming [Czarnecki and Eisenecker, 2000], several techniques such
as aspect- [Kiczales et al., 1997; Mezini and Ostermann, 2004; Wampfler, 2007], delta-
[Haber et al., 2012; Schaefer et al., 2010], or feature-oriented [Apel and Kästner, 2009;
Mezini and Ostermann, 2004] programming employ this approach of feature composi-
tion. As this thesis’ focus is feature-oriented programming, it is further introduced in
Section 2.1.3.

2.1.3 Feature-oriented Programming

Feature-oriented programming (FOP)[Prehofer, 1997] is a composition-based program-
ming paradigm for implementing software product lines. It is mostly used for object-
oriented programs, but its mechanisms can also be applied to functional programming.
In FOP, features are implemented by the means of feature modules. Each feature
module contains all artefacts relevant to a feature and hence represents a one-to-one
mapping of a feature [Apel et al., 2013a].

Superimposition [Apel and Lengauer, 2008] is a concept employed to compose fea-
ture modules. Domain artefacts are merged along the structures of their underlying
paradigm. So, in object-oriented programming, classes and methods are merged with
methods or classes in other features that have the same name [Apel and Lengauer,
2008]. The order in which they are merged is usually assumed to be a total order and
needs to be defined beforehand. The process can also be referred to as refinement, be-
cause when two features are merged, the second one refines the classes, methods, fields
of the first one [Apel et al., 2013a].

The idea of superimposition is implemented by FeatureHouse [Apel et al., 2013b], an
open-source framework and tool chain for feature-module composition by employing
language-independent feature structure trees (FST). Using the software product line
seen in Figure 2.1, we show how the feature composition with superimposition works.
Listing 2.2 is part of the software product line shown in Figure 2.1 and is a role in
the feature Bankaccount. It represents the core implementation of the account and
serves as the introduction for class Account in the software product line. The feature
DailyLimit implements a maximum amount of money that can be transferred per day.

2.1. Software Product Lines 9

We show its implementation of role Account in extracts in Listing 2.3. The role
introduces two new fields withdraw and balance and refines the methods update
and undoUpdate (not included in listing).

1 public class Account {
2 public final int OVERDRAFT_LIMIT = 0;
3 /∗@ public invariant this.balance >= OVERDRAFT_LIMIT; ∗/
4 public int balance = 0;
5
6 /∗@ ensures balance == 0; @∗/
7 Account() {}
8
9 /∗@ requires x != 0;

10 @ ensures (!\result ==> balance == \old(balance))
11 @ && (\result ==> balance == \old(balance) + x);
12 @ assignable balance; @∗/
13 boolean update(int x) {
14 int newBalance = balance + x;
15 if (newBalance < OVERDRAFT_LIMIT)
16 return false;
17 balance = balance + x;
18 return true;
19 }
20
21 /∗@ ensures (!\result ==> balance == \old(balance))
22 @ && (\result ==> balance == \old(balance) − x);
23 @ assignable balance; @∗/
24 boolean undoUpdate(int x) {
25 int newBalance = balance − x;
26 if (newBalance < OVERDRAFT_LIMIT)
27 return false;
28 balance = newBalance;
29 return true;
30 }
31 }

Listing 2.2: Role Account of Feature BankAccount

1 class Account {
2 public final static int DAILY_LIMIT = −1000;
3 /∗@ public invariant withdraw >= DAILY_LIMIT; ∗/
4 public int withdraw = 0;
5
6 /∗@ requires \original; 17
7 @ ensures \original;
8 @ ensures (!\result ==> withdraw == \old(withdraw))
9 @ && (\result ==> withdraw <= \old(withdraw)); @∗/

10 boolean update(int x) {
11 int newWithdraw = withdraw;
12 if (x < 0) {
13 newWithdraw += x;
14 if (newWithdraw < DAILY_LIMIT)
15 return false;

10 2. Background

16 }
17 if (!original(x))
18 return false;
19 withdraw = newWithdraw;
20 return true;
21 }
22 [..]
23 }

Listing 2.3: Role Account of the Feature DailyLimit

The result of the composition of the roles shown in Listing 2.2 and Listing 2.3 can be
seen in Listing 2.4. The two implementations of the method update are separated
into two methods. The last refinement of a method keeps its name while the others
are extended to indicate their respective feature. It is possible to call the originating
implementation from within a refinement by use of the keyword original. As can
be seen in Line 17 of Listing 2.3 the method update in DailyLimit uses the keyword.
Therefore the keyword is replaced by a call of the BankAccount implementation of the
method during composition.

1
2 public class Account {
3 public final int OVERDRAFT_LIMIT = 0;
4 /∗@ public invariant this.balance >= OVERDRAFT_LIMIT; @∗/
5 public int balance = 0;
6 /∗@ ensures balance == 0; @∗/
7 Account() {}
8
9 /∗@ requires x != 0;

10 ensures (!\result ==> balance == \old(balance))
11 && (\result ==> balance == \old(balance) + x); @∗/
12 private boolean update__wrappee__BankAccount (int x) {
13 int newBalance = balance + x;
14 if (newBalance < OVERDRAFT_LIMIT) return false;
15 balance = balance + x;
16 return true;
17 }
18
19 /∗@ requires (x != 0);
20 ensures ((!\result ==> balance == \old(balance))
21 && (\result ==> balance == \old(balance) + x));
22 ensures (!\result ==> withdraw == \old(withdraw))
23 && (\result ==> withdraw <= \old(withdraw)); @∗/
24 boolean update(int x) {
25 int newWithdraw = withdraw;
26 if (x < 0) {
27 newWithdraw += x;
28 if (newWithdraw < DAILY_LIMIT) return false;
29 }
30 if (!update__wrappee__BankAccount(x)) return false;
31 withdraw = newWithdraw;
32 return true;

2.2. Feature-oriented Specification of Software Product Lines 11

33 }
34 [...]
35 }

Listing 2.4: Composition of Features BankAccount and DailyLimit

However, constructors are composed differently. There can be only one constructor with
the same set of parameters for each class. Hence, all refinements of a constructor are
merged into one constructor in the product. In the resulting constructor, the several
lines of the refinements are ordered as the features the refinements originally belonged
to.

Methods can be refined and so different features can add to a behaviour of method.
For fields, most refinements are ignored, when the fields are composed. When several
features define a field, only the last feature’s implementation is used in the derived
product.

2.2 Feature-oriented Specification of Software Prod-

uct Lines

Specification serves to define properties of a the system and therefore improves the
quality of the code [Hatcliff et al., 2012]. Languages and formalisms vary widely (e.g.,
JML [Burdy et al., 2005] for Java, SPEC#[Barnett et al., 2011] for C#) . Here, due to
its importance for this thesis, design by contract and some of its implementations are
further explained.

Design by contract uses assertions which provide predicates that a program needs to ful-
fil [Jézéquel and Meyer, 1997; Meyer, 1992]. The different kinds of assertions, namely
class invariants and method contracts, extend the respective module used in object-
oriented programming they accompany. Class invariants are required to hold at any
publicly visible state of a class [Hatcliff et al., 2012]. Method contracts work as com-
mitments between caller and callee and typically consist of pre-, postconditions and
assignable clauses [Hatcliff et al., 2012; Meyer, 1992]. Preconditions represent predi-
cates which hold before a method’s execution, while postconditions must hold after the
execution and are to be assured by the called method itself. Assignable clauses are lists
of fields that can be changed by the accompanying method.

The Hoare notation [Hoare, C. A. R., 1969] serves as formal system in which con-
tracts can be represented, but is not tied to a specific programming language. Method
contracts are realized as follows [Hoare, C. A. R., 1969]

C = {P}Q{R}

(C := contract; P := precondition; Q := program; R := postcondition)

The expression can be interpreted as that if P was true before the program Q started,
R will be true after its execution. On the other hand if P is false, the state of R is
irrelevant, as R is only guaranteed, if P holds.

12 2. Background

The Java Modeling Language (JML) [Burdy et al., 2005; Leavens et al., 2006] imple-
ments the design by contract concept for Java [Leavens and Cheon, 2006]. Assertions are
defined in Java comments with @-symbols at beginning of every line. Specific keywords
indicate what kind of assertion a JML statement is representing.

In Listing 2.2, we show an exemplary Java class with specifications in JML. The class
invariant in Line 3 states that the amount of money in the account needs to be greater
than the overdraft the account is allowed to have. Method update is accompanied
by a contract starting in Line 9. Its precondition indicated by the keyword requires
demands that the parameter x is not zero. In the following two lines starting with the
keyword ensures, the postcondition is defined. It states that if the transaction was
successful the balance of the account needs to be different after the method execution,
but if the transaction was not successful balance must not have been changed. Line 12
defines the assignable clause and states that the method is allowed to only change the
field balance.

To realize specification in software product lines it is not only necessary to be able to
specify the behaviour of features but also to transform them into the generated product.
Therefore, it is necessary to compose them as well. Several approaches emerged to
accomplish this composition including cumulative, conjunctive, consecutive and explicit
contract refinement [Thüm et al., 2012b]. We only give a short overview of explicit
contract refinement because it is the most relevant to this thesis.

In explicit contract refinement, a refining contract simply replaces any contract defined
beforehand [Thüm et al., 2012b]. It is however possible to completely or partially
include a former specification by using the keyword original. Listing 2.3 provides
an example both for explicit contract refinement and for the use of original. The
composed contract of method update then also consists of the pre- and postconditions
of the originating methods’ contracts. Thus, it works similar to method refinement in
feature-oriented programming.

2.3 Verification of Software Product Lines

Generally, verification processes can vary regarding subjective of verification and used
algorithms. Possible verification techniques include model checking, type checking,
static analysis, and theorem proving [Ehrenberger, 2002]. In this thesis, we focus on
theorem proving and, for an easier wording, use the terms verification and theorem
proving interchangeably. In the following, theorem proving is described further.

Using specifications as realized by formal languages such as JML, theorem proving
verifies the correctness of a program with respect to its contract. The verification is
performed by theorem provers such as KeY [Beckert et al., 2007] and can be achieved
automatically and/or by user interaction. One possible way theorem provers perform
a verification is to symbolically execute the program in order to transform it into first-
order propositional formulas, called proof goals, that can be verified.

2.3. Verification of Software Product Lines 13

During symbolic execution, theorem provers can work in two different ways, when it
comes to method contracts of called methods [Beckert et al., 2007]. First, the body of
the called method can be inlined. In this case, the called method’s contracts are ignored
and its actual implementation is included into the verification. This technique, however,
can produce large proofs as all called methods become part of the proof [Beckert et al.,
2007]. The second way is to use the contract of the called methods. This way, methods
only need to be verified once, because they are not potentially symbolically executed
several times when they get inlined into other proofs [Beckert et al., 2007]. Additionally,
if a called method’s source code is not available (e.g., when using external libraries) its
contract can be used instead [Beckert et al., 2007]. In contrast to the first technique
however, a method’s verification is only completed when the verification of all methods
it calls is completed, because the called method’s contract may not accurately describe
the method’s behaviour.

Three main approaches were developed to deal with theorem proving in software prod-
uct lines: product-based, family-based and feature-based [Thüm et al., 2014a]. In the
product-based approach, all products are built and verified individually [Thüm et al.,
2014a], which can cause massively redundant verification as different products can con-
sist of similar feature combinations. On the other hand the approach is easy to realize
and already existing theorem provers can be used [Thüm et al., 2014a].

In family-based verification, the implementation of the feature modules are translated
into one metaproduct. This metaprocut simulates the product line’s behaviour.[Thüm
et al., 2014a] Furthermore, the specification of the feature modules is transformed into
a metaspecification encompassing the whole software product line. This process trans-
forms the variability at compile time into variability at runtime. Thanks to this vari-
ability encoding it is possible to prove the software product line by solely proving the
metaproduct instead of all single products [Thüm et al., 2014a, 2012a]. Compared
to product-based approaches they have several advantages. So it is not necessary to
generate all products which avoids hugely redundant verifications in more complex
product lines. On the other hand it is necessary to re-verify the software product line
as the code [Thüm et al., 2014a]. Furthermore family-based strategies can require large
amounts of memory for software product lines.

Feature-based approaches rely solely on features and ignore the variability. The code
base of a single feature is verified in isolation (i.e., potential feature interactions are
ignored during the analysis process). The upsides are that analyses can be done modu-
larly and therefore do not need to consider the behaviour of other features. Hence, less
memory is consumed than in family-based approaches and as code evolves only changed
features need to be re-proven. However, as feature interactions occur frequently in soft-
ware product lines [Apel et al., 2013c], a solely feature-based approach for theorem
proving is not possible [Thüm et al., 2014a].

In order to overcome disadvantages, strategies have been combined [Thüm et al., 2014a].
Due to the goal of this thesis, we focus on feature-family-based approaches below.
Feature-family-based approaches aim to reuse proofs for features for the verification of

14 2. Background

the whole product line. Both redundant verification and restriction to product lines
without any interactions between features are so to be avoided. [Bubel et al., 2014;
Hähnle and Schaefer, 2012; Hähnle et al., 2013a]

3. Feature-Familiy-Based Theorem
Proving of Product Lines

In the previous chapter, we introduced several strategies to verify software product lines
and presented different advantages and disadvantages over each other. In this chapter,
we present a new approach combining already existing strategies to both exploit existing
benefits and overcome their weaknesses. In particular, we combine a feature-based
and a family-based approach of theorem proving and develop a feature-family-based
verification strategy. With this strategy, we aim to fully verify a software product line’s
behaviour specified by JML method contracts. Simultaneously, we want to increase the
reuse potential of partial proofs during code evolution. This increase is to be achieved
through the feature-based phase because only the features that were not proven yet or
whose proof is not up-to-date need to be proven again. The feature-based phase can
also work as a fallback when the family-based theorem proving becomes to consumptive
of resources that it cannot be performed completely.

Thüm et al. [2012a] showed, that it is possible to encode a software product line’s
variability in the source code and, by that, verify it with regular theorem provers suited
for single products. We aim to do similar in both the feature-based and the family-
based phase of the verification. Considering that, we develop a technique to create
valid Java programs from feature modules in the first phase. Valid here means that it
is compilable by the Java compiler and can be loaded into a theorem prover without
error. In the second phase, we create a metaproduct incorporating a product line’s
variability. Therefore, we adapt the mechanism developed by Thüm et al. [2012a]
and Meinicke [2013] to fit our needs. Our approach thereby is focussed on explicit
contract refinement [Thüm et al., 2012b] because of its similarities feature-oriented to
method refinement.

In Section 3.1, we describe our feature-based approach to theorem proving of software
product lines. We explain, how the results of this first phase can be used in Section 3.2,

16 3. Feature-Familiy-Based Theorem Proving of Product Lines

where we describe the family-based part of our approach. In Section 3.3, we sum up
our concept.

3.1 Feature-Based Theorem Verification

Our goal in this phase is to prove the behaviour of feature modules with regular theorem
provers. We therefore present our approach of creating regular programs from feature
modules in this section. Additionally, we describe the theorem proving process itself
and discuss aspects worth to be considered regarding this process.

The feature modules serve as input for our algorithm. As stated before, the algorithm
should result in a valid Java program. Furthermore, we only consider features in an
isolated manner in this phase. This isolation is rather difficult because features regularly
interact with each other. Feature interactions can be realized on purpose (e.g. when
a method calls a method from a different feature), but may also occur unintentionally
or even against the intent of the developer [Calder et al., 2003]. A lot of research is
performed to detect unwanted feature interactions [Apel et al., 2013d, 2010b; Calder
and Miller, 2006; Scholz et al., 2011]. To better distinguish undetected and unwanted
feature interactions from the explicit method calls, we name the latter feature module
dependencies. Our algorithm’s result should so also include the possibility to handle
these explicit dependencies. We realize that by relying on the concept of feature stubs,
as introduced by Kolesnikov et al. [2013]. A (feature) stub is:

a bundle of Java interfaces and classes, possibly with member prototypes,
that represent the types and members a feature requires from other features.

Feature stubs contain additions to feature modules so that they become valid Java
programs. Kolesnikov et al. [2013] employed them as a basis for feature-based type
checking and we extend the concept such that it is suitable for theorem proving. We
not only need to provide additions to implementation but also to specification, to keep
the behaviour definitions with contracts semantically equivalent. Section 3.1.1 and
Section 3.1.2 explain the generation of feature stubs in more detail.

3.1.1 Generation of Feature Stubs for Feature Modules

The algorithm takes feature modules as input and creates temporary folders for each
of them. To localize the access of elements that are not defined in the feature, We
then perform a type check for all roles of all feature modules in the temporary folder.
These checks include type access, method access, keyword original, field access, access
to elements only accessed in JML statements, and the usage of external libraries. Fur-
thermore, we provide some additions to make contracts more precise and simplify the
verification

We now explain these cases in more detail and use the Java-based BankAccount SPL
introduced in the last chapter for illustration. We further employ different source code

3.1. Feature-Based Theorem Verification 17

extracts from the SPL that demonstrate the respective aspect. Additionally to the
features BankAccount and DailyLimit, which were already introduced in Chapter 2, we
now examine the features CreditWorthiness and Transaction.

Feature CreditWorthiness, which is part of the BankAccount SPL, introduces a new
method credit Account of the feature. Method credit checks whether the balance
of an account gets smaller than zero, if a specific amount is subtracted.

Transaction, a feature in the software product line, transforms money transfers from
different accounts into an atomic operation. A new role Transaction is introduced,
which implements the methods transfer and lock to realize this functionality by
relying on the locking functionality of feature Lock.

We show many examples to illustrate the generation, structure and elements of the
feature stubs. Nonetheless, we can only show the parts of the feature stubs that are
relevant to the respective point we discuss in this part. If we showed feature stubs
completely, the overall readability would be impaired. As we want do fully document our
procedure and results, we show listings of the full feature stubs of features BankAccount
and TransactionLog in Appendix A and provide additional explanations.

Access to Types

With theorem proving, we can verify a program’s behaviour. However, a non-compilable
program’s behaviour is undefined. Therefore, the feature stubs serving as input for the
theorem prover need to be type-safe. We establish the type-safety of the feature stubs
with a type check of the software product line. If a software product line does not
contain any type errors, it can provide all types, methods and fields to realize a type-
safe feature stub. If, however, a product line is not type-safe, we do not need to continue
the verification, as its behaviour is undefined. A software product line is type-safe, if
all its possible variants are type-safe.

As with theorem proving, several strategies have emerged to perform type checking for
software product lines such as product-based [Apel et al., 2008; Istoan, 2013], family-
based [Apel et al., 2010a; Kästner et al., 2012; Kolesnikov et al., 2013], feature-product-
based and feature-family-based approaches. Feature-based approaches do, again, not
provide enough information for a type check of a software product line [Thüm et al.,
2014a], because they only consider features in isolation and do not recognize any inter-
actions between features. Product-based and family-based approaches can provide the
necessary information. However, product-based approaches require the generation of all
products, which leads to redundant analysis and aggregation of data over the generated
products [Thüm et al., 2014a]. Family-based type checking forces us to include infor-
mation that go beyond our respective feature, but they are necessary to even perform
the theorem proving. Furthermore, compared to theorem proving, a type check takes
only an insignificantly small amount of time and resources.

We employ the results of a sufficient type check to establish type safety for each feature
stub. If a type is not part of the feature, but part of the software product line, a class
prototype for that type is created in the respective feature stub.

18 3. Feature-Familiy-Based Theorem Proving of Product Lines

Example 3.1.
In Listing 3.1, we show the role Transaction of feature Transaction in extracts. It
contains method transfer, which has two parameters of the type Account (see Line
13). Feature Transaction does not have a role Account originally. In accordance to our
approach, an empty class prototype Account is created to provide a match for that
type access.

1 public class Transaction {
2 /∗@ requires destination != null && source != null;
3 @ requires source != destination;
4 @ ensures \result ==> (\old(destination.balance) + amount ==
5 destination.balance);
6 @ ensures \result ==> (\old(source.balance) − amount ==
7 source.balance);
8 @ ensures !\result ==> (\old(destination.balance) ==
9 destination.balance);

10 @ ensures !\result ==> (\old(source.balance) == source.balance);
11 @ assignable \everything;
12 @∗/
13 public boolean transfer(Account source, Account destination, int
14 amount) {
15 if (!lock(source, destination)) return false;
16 try {
17 if (amount <= 0) {
18 return false;
19 }
20 if (!source.update(amount ∗ −1)) {
21 return false;
22 }
23 if (!destination.update(amount)) {
24 source.undoUpdate(amount ∗ −1);
25 return false;
26 }
27 return true;
28 } finally {
29 source.unLock();
30 destination.unLock();
31 }
32 }
33 [...]
34 }

Listing 3.1: Role Transaction of Feature Transaction

Access to Methods

A contract defines a method’s behaviour. With theorem proving, we can verify if a
method behaves according to its contract. If a method is called in a feature, but not
defined within this feature, a prototype for that method is created in the role the method
would be defined in. This is the case, when a method is introduced in one feature, but

3.1. Feature-Based Theorem Verification 19

not refined in another feature, in which it is called. We also add a comment to the
method prototype to indicate that it was added for the feature stub.

There are different approaches to a method prototype’s contains. If the signature
of the prototype indicates a return type other than void, the prototype needs to
include a return statement. For primitive types, this statement is a value that is part
of the type (e.g. 0 for type int). For reference types, on the other hand, the method
prototype can either return null or a newly created object of said type. The return
statement of the method prototype may, however, be included in a proof of the method
calling the method prototype. Therefore, it may be more desirable to not include a
return statement, at all. If the theorem prover, which is used for verification, accepts
incomplete programs as input, the return statement may be omitted.

Example 3.2.
Method transfer in Listing 3.1 calls method update, which belongs to role Account,
but is not defined in feature Transaction. Therefore, a method prototype update is
created in the role Account for the feature stub. In Listing 3.2, we show the resulting
class in part. In this example, we choose to exclude return statements. The listing also
shows the contract that is created for the method prototypes. We refer to the listing
again in Section 3.1.2 and explain the generation of the contract for method prototypes.

1 public class Account{
2 /∗field prototype∗/
3 public int balance;
4 [...]
5
6 /∗method prototype∗/
7 /∗@ requires_abs updateR;
8 @ ensures_abs updateE;
9 @ assignable_abs updateA;

10 @∗/
11 boolean update(int x) { }
12 [...]
13 }

Listing 3.2: Role Account of Feature Stub for Feature Transaction

Access to Method with Keyword Original

Due to superimposition in feature-oriented programming, methods and fields can also
be refined. Methods can call previous implementations of themselves during their own
execution by means of the keyword original. In that case, a method prototype
is created and the keyword is then replaced by a call of that method. The method
prototype’s name includes the original method’s name, the keyword original and the
current feature, each separated by an underscore to indicate their origin.

Example 3.3.
The Listing 2.3 on Page 9, which we used in the last chapter to explain this very mech-
anism of calling previous implementations of a method, illustrates this case. Method

20 3. Feature-Familiy-Based Theorem Proving of Product Lines

update uses the keyword original to call a previous implementation of itself. There-
fore a method prototype with the name update_original_DailyLimit is created
in the feature stub and the call of original is replaced by a call to that method. In
Listing 3.3, we show both the created method prototype (see Line 21) and the replaced
call (see Line 10).

1 class Account {
2 [...]
3 boolean update(int x) {
4 int newWithdraw = withdraw;
5 if (x < 0) {
6 newWithdraw += x;
7 if (newWithdraw < DAILY_LIMIT)
8 return false;
9 }

10 if (!update_original_DailyLimit(x))
11 return false;
12 withdraw = newWithdraw;
13 return true;
14 }
15 [...]
16
17 /∗method prototype∗/
18 /∗@ requires_abs update_original_DailyLimitR;
19 @ ensures_abs update_original_DailyLimitE;
20 @ assignable_abs update_original_DailyLimitA;@∗/
21 boolean update_original_DailyLimit(int x) { }
22 }

Listing 3.3: Role Account of Feature Stub for Feature DailyLimit

Access to Fields

Fields are treated similarly to methods. If a field is used in a feature’s role, but not
defined within the feature, a prototype is created to represent it. However, fields that do
not even belong to the software product line need to be treated differently. We postpone
the discussion of this issue to the paragraph about access to external libraries. The field
prototype is created in the role, the field would actually belong to, and is accompanied
by a comment that indicates its purpose.

1 class Account {
2 /∗@ requires amount >= 0;
3 @ ensures balance >= amount <==> \result;
4 @ assignable \nothing;
5 @∗/
6 boolean credit(int amount) {
7 return balance >= amount;
8 }
9 }

Listing 3.4: Role Account of Feature CreditWorthiness

3.1. Feature-Based Theorem Verification 21

Example 3.4.
In Listing 3.4, we provide an example for the creation of field prototypes. Method
credit uses field balance although it is not defined in feature CreditWorthiness.
For the feature stub of Creditworthiness, a field prototypebalance is generated. The
result can be seen in Listing 3.5.

1 class Account {
2 /∗@ requires_abs credit_CreditWorthinessR;
3 @ def credit_CreditWorthinessR = amount >= 0;
4 @ ensures_abs credit_CreditWorthinessE;
5 @ def credit_CreditWorthinessE = balance >= amount <==> \result &&
6 @ FM.FeatureModel.CreditWorthiness;
7 @ assignable_abs credit_CreditWorthinessA;
8 @ def credit_CreditWorthinessA = \nothing;
9 @∗/

10 boolean credit(int amount) {
11 return balance >= amount;
12 }
13 [...]
14 /∗field prototype∗/
15 public int balance;
16 }

Listing 3.5: Role Account of Feature Stub for Feature CreditWorthiness

Access to a Type, Method and Field Only from within JML Statements

The cases described above deal with types, methods and fields that are accessed in the
implementation of features, they are not defined in. It is, however, possible, that fields,
methods, and types are, while defined in one feature’s implementation, accessed in
another feature’s specification. For these elements, we also need to generate prototypes
- depending on which element is accessed a class, field, or method prototype.

Example 3.5.
For illustration, we show role Transaction of feature Transaction in Listing 3.1
as an example for a field that is accessed in a different feature’s specification. The
contract of transfer accesses field balance (see Line 5 and Line 7) that originally
belongs to role Account, but is not defined in feature Transaction. In accordance with
our approach, we create a field prototype balance in role Account. We show the
respective part of the feature stub in Listing 3.2.

Access to External Libraries

The definition of feature stubs explicitly states that the extensions a feature stub con-
tains are only from within its produt line. If a method, field, or class from an external
library is used, a feature stub is not able to provide the necessary extensions. Using ex-
ternal libraries becomes a problem, as the respective feature cannot be transformed into
a feature stub. We propose two possible approaches. Either the verification is aborted

22 3. Feature-Familiy-Based Theorem Proving of Product Lines

because it is not possible to conclusively prove the stub’s functionality, or the source
code including contracts has to be provided. In the latter case, the verification process
can be expanded to the external libraries and, thereby, completed. The expansion can,
depending on the support by the theorem prover, include the external library in the
verification or assume all used elements from the library to be verified.

Generation of FeatureModel Class

We also propose to create a class FeatureModel containing a boolean field repre-
senting the original feature of the feature stub. We use the field for a more precise
specification to simplify proofs. The class may, however, be omitted, if the precision is
not needed. We discuss the specification in more detail in Section 3.1.2.

Example 3.6.
We show the FeatureModel class for feature DailyLimit in Listing 3.6. The class
only contains the boolean field DailyLimit, that represents the feature, the feature
stub is created for.

1 package FM;
2 public class FeatureModel {
3 public static boolean DailyLimit;
4 }

Listing 3.6: Class FeatureModel For Feature Stub of Feature DailyLimit

3.1.2 Generation of Feature Stubs for Feature-oriented Con-
tracts

Above, we pointed out, that methods can access methods, fields and types, which are
not defined in the method’s feature. To realize such feature module dependencies, we
generate method prototypes. For theorem proving, we not only need other features’
methods but also their contracts. However, in the feature-based verification phase, we
cannot access the contracts of methods, which are not defined in the feature that is to
be verified. Therefore, we employ the concept of abstract contracts. This concept was
developed by Bubel et al. [2014]; Pelevina [2014]. The goal of abstract contracts is to
increase potential of reusing proof parts of regular object-oriented programs. Instead,
we use abstract method contracts to realize feature module dependencies for feature
stubs.

Abstract method contracts are defined as [Pelevina, 2014]:

@ requires_abs placeholdernameR;

@ ensures_abs placeholdernameE;

@ assignable_abs placeholdernameA;

@ def methodR = <JML expression> ;

@ def methodE = <JML expression>;

@ def methodA = <List of fields that can be changed by method>;

3.1. Feature-Based Theorem Verification 23

The first three lines are the abstract section of the abstract contract. The keywords
requires_abs, ensures_abs, and assignable_abs represent the abstract def-
initions of the requires, ensures, and assignable clauses including the names of the
placeholders. The actual content of the concrete method contract is provided by the
last three lines. They are called concrete section and contain the concrete definitions of
the placeholders. We generate the placeholders’ names by concatenating the method’s
name, an underscore, the feature’s name, and a capital R for requires, a capital E for
ensures or a capital A for assignable.

We aim to increase the reuse potential of verification results. Therefore, we transform
all contracts of methods, originally defined in the feature, into abstract contracts, so
that the proofs created are with respect to the placeholders defined in the abstract
contracts. We use the concrete section of the contracts for the original clauses of the
contracts. For contracts that consist of more than one ensures or requires clause
we compose these clauses by means of logical Ands (&&) into one clause. For method
contracts, which lack a clause, we only generate the declaration of the placeholder for
that clause.

Example 3.7.
For illustration, we give an example of the transformation of a concrete contract in the
feature module into an abstract contract for the feature stub. In Listing 3.4, we show
role Account of feature CreditWorthiness. The role contains method credit and
its contract. In Listing 3.5, we show the feature stub, generated for this role. Method
credit’s contract is transformed into an abstract contract. In Lines 2, 4, and 7 of
Listing 3.5, we show the abstract section of the abstract contract (i.e., the declaration
of the placeholders). Lines 3, 5, and 8 contain the concrete sections (i.e., the definition
of the contract.

For methods that originate in the feature of the feature stub, we also add an requires
clause. This requires clause states that the feature variable, defined in FeatureModel
Class, has to be true. We propose to add this clause, as it limits the possible frame of a
method. This limitation makes the verification of the method easier. However, as with
the FeatureModel Class, this clause is not necessary and can be omitted.

Example 3.8.
For illustration of additional requires clause, we present an example. Therefore, we
refer again to Listing 3.4 and Listing 3.5. The contract of method credit is enriched
by the additional ensures clause FM.FeatureModel.CreditWorthiness, which
states, that the feature variable CreditWorthiness must be true. The clause is
composed with method credit’s original requires clause by means of a logical And.

As explained above, when creating the feature stubs, called methods, which are not
defined in the current feature, are created in form of a method prototype. Additionally,
for each created method prototype a contract is created that only consists of the abstract
section. We only need the abstract section because it includes the declaration of the

24 3. Feature-Familiy-Based Theorem Proving of Product Lines

placeholders. During the verification, the placeholders can be integrated into the proof
and the proof can be performed with respect to them, so that at least a partial proof can
be created. When there is a definition of the placeholder, the proof can be completed.

Example 3.9.
In Listing 3.1, we show an example for the generation of abstract contracts for method
prototypes. Method transfer calls method update, which belongs to role Account.
As there is no refinement of method update in feature Transaction, a prototype of
method is created as explained in Section 3.1.1. We enrich the prototype with the
abstract section of a contract. The result can be seen in Listing 3.2 in Lines 7 to 9.

When using Explicit Contract Refinement, it is possible to indicate that a specification
of a previous implementation should be included by using the keyword original in
a method contract. The keyword can both be used in pre- and in postconditions. The
use of the keyword represents a feature module dependency as a specification of another
feature’s method is referenced. There are several ways of dealing with this issue. First,
respective methods are ignored during the feature-based verification because not all
relevant information contained by the keyword original are not provided. To make
sure, the methods are skipped during verification the contract can just be omitted for
the feature stub generation. This way, a theorem prover does not even recognize this
method as to be verified. However, if methods whose contracts contain the keyword
original are skipped, there are not even partial proofs that can potentially be reused
later. Second, the contract of the method could be transformed into an abstract contract
only including the abstract section of the contract. With this abstract section, it would
be possible to at least partially prove the method. Nonetheless, we lose information,
as the abstract section only declares the placeholder, but not defines them. A third
way of dealing with the keyword is by using the placeholders created with method
prototypes as representatives. When a method contract uses original, the keyword
is replaced by the placeholder to indicate it depends either on the other method’s pre- or
postcondition. This approach requires the theorem prover to support using placeholders
in other methods’ contracts, though.

Example 3.10.
We show an example for the use of the keyword in Listing 2.3 on Page 9. The contract
for the method update uses original both for its pre- and its postcondition. In accor-
dance with our first discussed approach, the update’s contract could just be omitted.
In our second approach, we replace the concrete contract of update by the abstract
section of an abstract contract. We show the result in Listing 3.7.

1 class Account {
2 public final static int DAILY_LIMIT = −1000;
3 public int withdraw = 0;
4
5 /∗@ requires_abs update_DailyLimitR;
6 @ ensures_abs update_DailyLimitE;
7 @ assignable_abs update_DailyLimitA;

3.1. Feature-Based Theorem Verification 25

8 @∗/
9 boolean update(int x) {

10 int newWithdraw = withdraw;
11 if (x < 0) {
12 newWithdraw += x;
13 if (newWithdraw < DAILY_LIMIT)
14 return false;
15 }
16 if (!update_original_DailyLimit(x)
17 return false;
18 withdraw = newWithdraw;
19 return true;
20 }
21 [..]
22 }

Listing 3.7: Role Account of Feature Stub For Feature DailyLimit, Part 2 - Abstract
Contract

3.1.3 Feature-Based Theorem Proving

Every automatically created feature stub is to be proven with a theorem prover. As
we only consider each of the feature stubs in isolation, we cannot cover explicit con-
figurations but only the behaviour within the feature itself. Nevertheless, it is possible
to verify base features that do not have any feature module dependencies to other fea-
ture modules completely. While methods without these dependencies may be verified
completely, the feature-based theorem proving phase does not result in a conclusive
verification all methods in features that have feature module dependencies.

With a theorem prover, methods are verified individually. A method’s contract is
deemed to be proven when a theorem prover can show that if the precondition is held,
when the method is executed. Additionally, the method needs to be correctly executed
and its postcondition must be satisfied after having finished. Only methods originating
in the feature currently to be proven actually need to be proven. That is, method
prototypes can be ignored because they do not belong to this feature.

During the verification process of each feature, the abstract sections are to be used as
a placeholder for the actual method. Thereby, method calls from other features can be
simulated with these contracts.

There are several cases, in which a proof goal cannot be closed. First, it is possible that
the contract does not actually describe the method’s behaviour (i.e., the method does
not fulfils its specification). Second, the method does fulfil its specification, but the
theorem prover is not able to prove it. In both cases the proof is not closed completely
and the saved proof parts do not provide any benefit. Third, a contract may rely on an
abstract contract that does not have a concrete section. It therefore cannot be closed
at this point because the contract lacks the concrete definition of the placeholders. In
this case, the partial proof can be saved for a potential later reuse.

26 3. Feature-Familiy-Based Theorem Proving of Product Lines

As mentioned above, we only consider features in isolation and, by that, are not able to
find an error in a specific configuration. However, we can determine that, if a method
without dependencies to other feature modules (as described in Section 3.1.1) cannot
be verified, either the method’s behaviour and its contract do not match or the theorem
prover is not powerful enough to prove the contract.

3.1.4 Re-Verification after Code Evolution

When the code changes, so may the behaviour of a program. A change in a software
product line may change the behaviour of several of its variants. It may therefore be
necessary to re-verify the product line. A re-verification is only necessary when the
feature stub of a feature module would actually be different from the feature stub the
last proof is based on. In that case the last proof is invalidated. There are, however,
changes that do not invalidate a feature stubs’s proof.

The issue of change detection in software product lines can be traced back to change
impact analysis [Passos et al., 2013a,b]. Change impact analysis is used to determine
the effects of a change in the code. For software product lines, it can help developers
to determine whether a change introduces inconsistencies and to decide whether the
change should be applied nonetheless [Passos et al., 2013a]. Several aspects, both
adopted from regular programs and originating in the field of software product lines,
need to be considered regarding this question. Subsequently, we only discuss some
examples to illustrate the issue and spotlight a few relevant aspects.

A re-verification is necessary when implementation or the contract of a method changes.
The method’s proof may get invalidated because either the behaviour of the method or
the definition of its behaviour changes. Furthermore, if a method calls a method outside
its own feature and the callee’s signature is changed, the method’s current proof may
also be invalidated. In most cases, this change results in an implementation change in
the caller’s feature as well (e.g. when a parameter is added to the method). However,
when only the return type or a parameter’s type of the callee is changed, calls do not
necessarily change (e.g. when the return type is changed to a superclass).

However, it is not always necessary to re-verify a feature. First, if only the order
of methods or fields is changed, the generated feature stub is behaviourally equivalent.
Additionally, as theorem provers do verify each method individually, the methods’ order
in the source code is not relevant for them. Second, when an method is renamed,
usually neither the method itself nor its callers do have to be re-verified because both
its behaviour and its contract stay the same. However, if a partial proof has been saved
for a later reuse, either a re-verification of the method and its callers or an update
of the partial proofs is necessary. Finally, changes regarding the feature model or the
composition order do not invalidate a feature stub’s proof. They can result in a type
error (e.g. if a feature that contains a refining method calling a previous implementation
is arranged before the introductory feature). In case of a type error, as we stated above,
a verification is useless and we do not start the creation of feature stubs. If no type error

3.2. Feature-Family-Based Theorem Proving 27

occurs, we do not need to re-verify because in feature-based verification other features
are ignored.

As mentioned above, we do not provide a full discussion on the topic of change impact
analysis, but only give a few examples to illustrate its relevance. The discussion can
easily extended to invariants and other JML constructs, or the type hierarchy in the
feature stubs.

3.2 Feature-Family-Based Theorem Proving

In this phase, our goal is to verify the product line as a whole. We aim to do this by
reusing the partial proofs that were the result of the first phase. As we build upon the
first phase, we assume the software product line to be already type checked and free of
compilation errors. Again, we employ a regular theorem prover for the verification and,
include the variability model of the software product line. We build a metaproduct
that can be handled by a regular theorem prover. We further adapt the partial proofs
obtained in the feature-based verification in that manner that they can be (re-)used on
the metaproduct.

A metaproduct realizes one possible way of family-based verification [Thüm et al.,
2014a]. It is used to simulate all products of a software product line and, to do that,
includes all domain artefacts of all features.

3.2.1 Generation of the Metaprogram

Our algorithm is based on the metaproduct generation developed by Thüm et al. [2012a]
and implemented and extended by Meinicke [2013] as their requirements are close to
ours. They used the metaproduct for a family-based verification. We adapt the gen-
eration process as needed for our feature-family-based verification approach. In the
following, we explain the parts, we adopt from Meinicke [2013]. In the second part, we
describe the differences between the approach and ours in more detail.

Adopted Aspects from Meinicke [2013]

Meinicke [2013] used a class FeatureModel introduced by Thüm et al. [2012a] that
represents the feature model, which includes a boolean field per feature, also known
as feature variables. The class is used for the realization of runtime variability as the
fields are used to save the features’ state. The feature variables are used by the theorem
prover during symbolic execution, when they are set to different values and, by that,
all possible variants are simulated.

Example 3.11.
We show an example with our software product line BankAccount, whose feature model
is shown in Figure 2.1. The class FeatureModel is shown in Listing 3.8.

28 3. Feature-Familiy-Based Theorem Proving of Product Lines

1 package FM;
2 /∗∗Variability encoding of the feature model for KeY.
3 ∗ Automatically generated class by FeatureHouse.
4 ∗/
5 public class FeatureModel {
6 public static boolean Interest;
7 public static boolean Overdraft;
8 public static boolean Logging;
9 public static boolean InterestEstimation;

10 public static boolean TransactionLog;
11 public static boolean Transaction;
12 public static boolean DailyLimit;
13 public static boolean CreditWorthiness;
14 public static boolean BankAccount;
15 public static boolean Lock;
16 }

Listing 3.8: Class FeatureModel in Metaproduct

Second, we adopt the generation of fields in the metaproduct. Fields can be defined
by multiple features. During feature composition, the last feature’s definition sets the
actual value in the generated product. However, this is not possible for the metaproduct
because the variability of the whole product line must be preserved. Hence, [Thüm
et al., 2012a] proposed to use the ternary operator to achieve the variability-aware field
definition.

Meinicke [2013] noted that a field is not necessarily defined in every configuration. This
behaviour may occur when the field is introduced in a refining feature. He proposed to
set the field’s value to a default value for primitive types (for example 0 for int) or
set to null for reference types for the respective configurations.

Example 3.12.
We show an example of field generation for metaproducts in Listing 2.2 on Page 9
and Listing 3.9. Both listings contain role Account, Listing 2.2 in feature BankAccount
and Listing 3.9 in feature Overdraft. Both roles define a field OVERDRAFT_LIMIT.
In feature BankAccount, the field’s value is set to 0, but in feature Overdraft it is set
to −5000. BankAccount is the root feature that is always activated. Therefore the
ternary operator checks whether feature Overdraft is activated and sets the value of
OVERDRAFT_LIMIT accordingly. The result is shown in Listing 3.10 in Line 4. We
refer to the listing again below and explain its other parts.

1 class Account {
2 final int OVERDRAFT_LIMIT = −5000;
3 }

Listing 3.9: Role Account of Feature Overdraft

1 public class Account {
2 public invariant $ValidConfig;

3.2. Feature-Family-Based Theorem Proving 29

3
4 public final int OVERDRAFT_LIMIT = FM.FeatureModel.Overdraft ?
5 −5000 : 0;
6 public int balance = 0;
7
8 /∗@ requires_abs AccountR;
9 @ def AccountR = true;

10 @ ensures_abs AccountE;
11 @ def AccountE = balance == 0;
12 @ assignable_abs AccountA;
13 @ def AccountA = \nothing;@∗/
14 Account() {}
15
16 /∗@ requires_abs update_BankAccountR;
17 @ def update_BankAccountR = FM.FeatureModel.BankAccount && x != 0;
18 @ ensures_abs update_BankAccountE;
19 @ def update_BankAccountE = (!\result ==> balance == \old(balance))
20 @ && (\result ==> balance == \old(balance) + x);
21 @ assignable_abs update_BankAccountA;
22 @ def update_BankAccountA = balance; @∗/
23 private boolean update_BankAccount (int x) {
24 int newBalance = balance + x;
25 if (newBalance < OVERDRAFT_LIMIT)
26 return false;
27 balance = balance + x;
28 return true;
29 }
30 {...]
31 private boolean dispatch_update_DailyLimit(int x) {
32 if (FM.FeatureModel.DailyLimit)
33 return update_DailyLimit(x);
34 return update_BankAccount(x);
35 }
36
37 /∗@ requires_abs update_DailyLimitR;
38 @ def update_DailyLimitR = FM.FeatureModel.DailyLimit && x != 0;
39 @ ensures_abs update_DailyLimitE = ((!\result ==> withdraw ==
40 @ \old(withdraw))
41 @ && (\result ==> withdraw <= \old(withdraw)))
42 @ && (!\result ==> balance == \old(balance))
43 @ && (\result ==> balance == \old(balance) + x);
44 @ assignable_abs update_DailyLimitA;
45 @ def update_DailyLimitA; = withdraw, balance; @∗/
46 private boolean update_DailyLimit(int x) {
47 int newWithdraw = withdraw;
48 if (x < 0) {
49 newWithdraw += x;
50 if (newWithdraw < DAILY_LIMIT)
51 return false;
52 }
53 if (!update_BankAccount(x))
54 return false;
55 withdraw = newWithdraw;

30 3. Feature-Familiy-Based Theorem Proving of Product Lines

56 return true;
57 }
58 [...]
59 /∗@ requires_abs updateR;
60 @ def updateR = (FM.FeatureModel.BankAccount
61 @ FM.FeatureModel.DailyLimit FM.FeatureModel.Logging)
62 @ && x != 0;
63 @ ensures_abs (FM.FeatureModel.BankAccount ==> (!\result ==>
64 @ balance == \old(balance))
65 @ && (\result ==> balance == \old(balance) + x))
66 @ && (FM.FeatureModel.DailyLimit ==> (!\result ==>
67 @ withdraw == \old(withdraw))
68 @ && (\result ==> withdraw <= \old(withdraw)))
69 @ && (FM.FeatureModel.Logging ==> \result ==>
70 @ this.updates[this.updateCounter] == x)
71 @ && (FM.FeatureModel.Logging ==> \result ==>
72 @ this.updateCounter == (\old(this.updateCounter) + 1) % 10)
73 @ && (FM.FeatureModel.Logging ==> !\result ==>
74 @ this.updateCounter == \old(this.updateCounter));
75 @ assignable_abs updateA;
76 @ def updateA = withdraw, balance, updateCounter, updates[∗];
77 @∗/
78 boolean update(int x) {
79 if (FM.FeatureModel.Logging)
80 return update_Logging(x);
81 return dispatch_update_DailyLimit(x);
82 }
83 [...]
84 }

Listing 3.10: Class Account in Metaproduct

Differences to Meinicke [2013]

Regarding method generation for the metaproduct, our approach differs slightly
from Meinicke [2013]. He proposed a generation based on Thüm et al. [2012a]. At the
beginning of each method, there is an if-statement checking if the feature this refine-
ment belongs to is selected. This approach is called dynamic branching [Thüm et al.,
2012a]. If the corresponding feature is not selected, the next previous implementation
of the method is called. This approach, however, leads to a change in our method
implementation and the partial proofs could not be reused for the metaproduct.

Therefore, we choose a different approach. This approach was introduced by Apel et al.
[2013e]. In their work, they used it for variability encoding of methods in software
product lines. In the approach, the metaproduct contains two kinds of methods. We
call them dispatcher methods and domain methods for an easier distinction. Domain
methods represent the methods as they were the feature modules. Dispatcher meth-
ods, however, dispatch between the different implementations of the domain methods
of different features [Apel et al., 2013e]. Therefore, a dispatcher method for each re-
finement is introduced. The parameters of the dispatcher method are equal to the

3.2. Feature-Family-Based Theorem Proving 31

method that it dispatches to because the parameters need to be propagated. The
dispatcher method deals with the check whether the corresponding feature is se-
lected. If it is selected, the domain method is called. However, if the feature is not
selected, either the dispatcher method for the next previous method or the introductory
implementation is called [Apel et al., 2013e]. If a method is only introduced in one fea-
ture, but never refined by another feature, we do not need a dispatcher method because
there are no refinements to dispatch between. Additionally, the metaspecification and
the contracts of domain methods guarantee the necessary variability. In Section 3.2.2,
we discuss the specification in more detail.

We adopt this mechanism because we can make sure the implementation of the domain
methods is not changed, so that we can reuse the partial proofs obtained in the feature-
based phase. We extend both the domain methods’ and the dispatcher methods’ names
to indicate the feature they belong to. Additionally, the dispatcher methods’ names
start with the keyword dispatch to indicate their purpose. The dispatcher method of
a method’s last refinement keeps the original name of the method without any changes.

Example 3.13.
We present an example of how we create methods in our metaproduct in Listing 3.10.
The listing shows the class Account of the metaproduct of our BankAccount SPL in
part and displays the result of method generation for method update. The method is
originally defined in the features BankAccount, DailyLimit and Logging. The original
implementations of the method are shown in Listing 2.2 (see Page 9) in Line 23 for the
feature BankAccount and Listing 2.3 (see Page 9) in Line 46 for the feature DailyLimit.
The implemenation of FeatureLogging is not shown for brevity. The dispatcher methods
for DailyLimit and Logging are in Line 31 and Line 78 accordingly. Logging is the last
feature that refines the method and therefore its dispatcher method is named update.

We show the calling hierarchy in Figure 3.1. When method update is called, the
dispatcher method for feature Logging checks whether the feature is selected. If it is
selected, the refinement of Logging is called, otherwise the dispatcher method for the
next previous refinement is called. In this case, the next previous refinement is delivered
in DailyLimit. If feature DailyLimit is selected, the dispatcher method of DailyLimit
calls the corresponding domain method, otherwise the implementation of the last feature
BankAccount is called.

Meinicke [2013] discussed several possibilities to generate constructors for a metaprod-
uct. He suggests two approaches (see Meinicke [2013] for a detailed discussion). Both
these approaches require that all refinements of a contructor are merged into one con-
structor. However, when all constructor refinements are merged into one constructor,
their contracts are merged into a metaspecification for the resulting constructor as well.
The metaspecification is different to each of the individual refinements’ contracts and,
hence, we cannot reuse the partial proofs from the feature-based phase. To solve this
issue, we propose a new approach.

In our approach, every constructor refinement gets its own method. Each method only
includes the implementation of its own refinement. The methods are named init,

32 3. Feature-Familiy-Based Theorem Proving of Product Lines

Figure 3.1: Method Calling Hierarchy in Metaproduct

extended by the feature name the constructor comes from (e.g. init_DailyLimit
for the constructor from feature DailyLimit). The actual constructor only contains
if-statements checking for the selected features, making the constructor work like a
dispatcher method. The if-statements are sorted according to the feature compo-
sition order. If a feature is selected, its refinement of the constructor is called, otherwise
the next check is performed.

Example 3.14.

We continue with a small example of how we generate constructors for our examples.
In Listing 3.11, we show the introductory implementation of role Money in feature A.
Listing 3.12 shows the refinement of B. Both implementations contain a constructor.
When creating our metaproduct, we need to transform these constructors in accordance
to our approach. We show the result of the generation in Listing 3.13. For both the
introductory and the refining implementation a method init is created that contain
the actual code of the constructor. In the constructor itself, both init methods are
called. All three listings also contain the contracts of the constructor. We postpone the
discussion about the metaspecification for constructors to Section 3.2.2.

1 class Money {
2 private int amount;
3
4 /∗@ ensures amount >=0;

3.2. Feature-Family-Based Theorem Proving 33

5 @ assignable amount; @∗/
6 public Money() {
7 amount = 0;
8 }
9 }

Listing 3.11: Role Money of Feature A

1 class Money {
2 private boolean inDebt;
3
4 /∗@ ensures \original;
5 @ ensures inDebt == false;
6 @ assignable inDebt;@∗/
7 public Money() {
8 inDebt = false;
9 }

10 }

Listing 3.12: Role Money of Feature B

1 class Money {
2 private int amount;
3 private boolean inDebt;
4
5 /∗@ requires_abs MoneyR;
6 @ def MoneyR = FM.FeatureModel.A &&
7 @ (! FM.FeatureModel.B FM.FeatureModel.A);
8 @ ensures_abs MoneyE
9 @ def MoneyE = (amount >= 0)

10 @ && (FM.FeatureModel.B ==> (inDebt == false));
11 @ assignabel_abs MoneyA;
12 @ def MoneyA = amount, inDebt;
13 @∗/
14 @ assignable amount, inDebt; @∗/
15 public Money() {
16 if (FM.FeatureModel.A) {
17 init_A();
18 }
19 if (FM.FeatureModel.B) {
20 init_B();
21 }
22 }
23
24 /∗@ requires_abs init_AR;
25 @ def init_AR = true;
26 @ ensures_abs init_AE
27 @ def init_AE = (amount >= 0);
28 @ assignabel_abs init_AA;
29 @ def init_AA = amount; @∗/
30 public /∗@ helper @∗/ init_A() {
31 amount = 0;
32 }

34 3. Feature-Familiy-Based Theorem Proving of Product Lines

33
34 /∗@ requires_abs init_BR;
35 @ def init_BR = true;
36 @ ensures_abs init_BE
37 @ def init_BE = inDebt == false;
38 @ assignable_abs init_BA;
39 @ def init_BA = inDebt; @∗/
40 public /∗@ helper @∗/ init_B() {
41 inDebt = false;
42 }
43 }

Listing 3.13: Class Money in Metaproduct

3.2.2 Generation of the Metaspecification

Again, we base our algorithm on the work of Thüm et al. [2012a] and Meinicke [2013].
However, because of our changes in Section 3.2.1, there also are multiple changes here,
which is why we do not differentiate between commonalities and differences.

As with the feature stubs, we transform all concrete method contracts into abstract
method contracts. We do this to be able to reapply the proofs obtained in the feature-
based verification. Again, we define the abstract sections for requires, ensures,
and assignable clauses and declare the placeholders. However, the content of the
placeholder definition depends on the kind of method.

We need to consider three kinds of methods for the contract generation for the metaprod-
uct. First, there are the contracts for the domain methods. Their concrete sections are
exactly as in the feature stubs because their implementation is not changed either and
the partial proofs from the previous phase are to be reused on them. Therefore, for
contracts with multiple clauses of the same type, we also compose them into one clause
by means of logical And. Furthermore, we also add the requires clause stating the
feature that needs to be active in order to be able to call this domain method. To be
able to reapply the partial proofs, we must either name the placeholders exactly like
in the feature-based phase or update the placeholder names in the partial proofs. For
domain methods, whose contract’s concrete section was removed in the feature-based
phase (see Section 3.1.2), we now apply the same procedure as we do for the other
methods.

Additionally, we need to deal with the keyword original in domain methods ’ con-
tracts. In Section 3.1.2, we discussed three different approaches to how to deal with
the keyword in the feature-based phase. Regardless of which approach is used, we can
replace the keyword with concrete clauses of the previous refinements. If all contract
refinements include this keyword, we can compose them along the complete calling hier-
archy. However, if the hierarchy is incomplete, we can use feature variables to indicate,
which clauses need to be fulfilled for a given feature combination.

Example 3.15.
We show an example for the contract generation of domain methods in Listing 3.10. The

3.2. Feature-Family-Based Theorem Proving 35

listing includes method update_DailyLimit. This method is originally defined in
role Account of feature DailyLimit, which can be seen in Listing 2.3 on Page 9. In accor-
dance to our proposed approach, the contracts of update is transformed into an abstract
contract for update_DailyLimit and the content of the different clauses is adopted.
Additionally, the requires clause FM.FeatureModel.DailyLimit is added to in-
dicate that the feature variable of feature DailyLimit must be true in order to call the
method. Furthermore, the placeholder names are equal to the placeholder name in the
respective feature stub, so that the corresponding partial proof from the feature-based ver-
ification can be re-used. Only the keywords original in the requires and ensures
clauses are replaced by the pre- and postcondition of update_BankAccount.

The second kind of contracts covers dispatcher methods. Their contract is equal to
the contract proposed by Meinicke [2013] for methods in his metaproduct, except that
we generate them as abstract contracts. Therefore, we only give a brief summary
of the contracts’ structure. For a more detailed discussion, see Meinicke [2013]. For
the concrete sections of dispatcher methods ’ contracts, we compose the contracts from
domain methods previous to the dispatcher method. The contract works similar
to the dispatcher method itself. In front of every individual requires or ensures
clause, obtained from one of domain methods, an implication states, which feature needs
to be selected, so that the respective clause needs to be fulfilled. Meinicke [2013] also
proposed to add a requires clause defining the minimal feature selection for the
method to be callable. We also adopt this proposal and add this requires clause to
the concrete section of each dispatcher method ’s contract. Finally, the assignable
clauses of the different contract refinements are composed as well. There is not yet an
established way of handling assignable clauses in feature-oriented programming. For
practicality reasons, we assume, that it is possible to merge the assignableclauses
of all contract refinements into one assignable clause. However, our approach to
assignable of dispatcher methods may be up for revision if our assumption is wrong.

Example 3.16.
In Listing 3.10, we present an example for illustration. We transformed the contract of
method update into an abstract contract. The contract contains all pre- and postcon-
ditions of the domain methods that may get called starting from this method. However,
for every pre- and postcondition, there is a check for the respectively selected feature.
Additionally, we add the requires clause FM.FeatureModel.BankAccount ||
FM.FeatureModel.DailyLimit || FM.FeatureModel.Logging as the method
is implemented in these three features.

Third, we need to generate contracts for constructors. As the actual constructor serves
as a dispatcher method for all constructor refinements, its contracts are only a special
case for dispatcher methods, which we discussed above. The contracts for the different
init methods, on the other hand, represent a special case of contracts for domain
methods. We also discussed them above. However, we add the keyword helper to
init methods’ contracts. This keyword is used to liberate a method from the obligation

36 3. Feature-Familiy-Based Theorem Proving of Product Lines

to fulfil the classes invariants[Leavens et al., 2008]. We use the keyword for init
methods because they are actually part of the constructor, which serves to first establish
all invariants upon its completion. Therefore, a specific init method may not be able
to fulfil all invariants.

Example 3.17.
We give a small example to illustrate the contract generation for contructors. We
refer, again, to Listing 3.11, Listing 3.12 and Listing 3.13, which we used above to
illustrate the generation of constructors in the metaproduct. In the first two listings,
we show the contracts of the two constructor implementation. They are composed in
accordance to our proposed approach and we show the result in the third listing. In
the metaproduct, we enrich both init methods with the contracts of the constructors
from the original features. Additionally, we add the keyword helper to both init
methods. For the actual constructor, a metaspecification is created according to how
contracts for dispatcher methods are created.

To ensure, that only valid configurations are used by the theorem prover, we add an
invariant to every class stating the feature model as a first order propositional formula.
If a configuration is not valid, methods do not need to fulfil their contract. We do not
include this validation into each method contract because it the tested configuration
must be valid both before and after a method execution. Therefore, if we added the
validation checks to the method contracts, they would make the contracts bigger than
necessary. Additionally, using an invariant for the configuration validation allows us to
omit dispatcher methods for methods that are only introduced in one feature, but never
refined in another feature, as domain methods cannot include variability information.

Example 3.18.
We show this invariant for the BankAccount SPL in Listing 3.10 in Line 2. We replaced
the boolean expression in the listing for readability reasons. It is semantically equal to
the expression in Listing 2.1 on Page 7.

Finally, we need to transform invariants from the feature modules for the metaproduct.
As with individual clauses of constracts of dispatcher methods, invariants only have to
hold under specific feature combinations. Meinicke [2013] proposed to use an implication
again to indicate, which features need to be selected. We adopt this mechanism.

3.2.3 Adaption of the Partial Proofs

After the creation of the metaproduct, we need to adapt the partial proofs from the
feature-based verification to be actually able to reuse them for the metaproduct. This
mainly includes the updating of names of elements from feature stubs to meta product
because the method contracts and implementation need to match. As field and class
names do not change either in the generation of the feature stubs or the generation of the
metaproduct, their names are already correct in the partial proofs. However, the names
of methods do change in both generation processes. Additionally, if the placholders’ in

3.2. Feature-Family-Based Theorem Proving 37

the partial proof do not match the placeholders’ name in the metaproduct, we need to
update these, as well. Therefore, we discuss the necessary renaming in more detail.

First, all saved partial proofs contain the name of the method whose partial proof they
represent. We call that name proved method name. In the feature stubs, the method
names are the original names. In the metaproduct, the domain methods are renamed in
accordance to what we described in Section 3.2.1. We want to reuse the partial proofs for
the domain methods, we obtained in the feature-based phase, in this phase. Therefore,
we need to change the proved method names in the partial proofs accordingly.

Example 3.19.
We show an example to further illustrate which changes need to be made in the partial
proofs obtained in the feature-based verification. Listing 2.3 shows role Account for
feature DailyLimit. We focus on method update for this example. In the corresponding
feature stub for this role, which can be seen in Listing 3.3, the method name is update.
In contrast, in the metaproduct, which can be seen in Listing 3.10, the name is changed
to update_DailyLimit. Hence, the proved method name in the according partial
proof from the feature-based phase needs to be changed to update_DailyLimit to be
reusable for the metaproduct.

Second, methods can call previous implementations by means of the keyword original.
The feature stubs represent this mechanism by a prototype that is added to the class
and called instead of the keyword original. In the metaproduct, this mechanism is
realized by replacing the keyword original with a call to the dispatcher method of
the previous refinement.

Example 3.20.

We continue with Example 3.19. Method update in role Account of feature Dai-
lyLimit uses the keyword original to call a previous implementation. In its re-
spective feature stub, the keyword was replaced by a call to the method prototype
update_original_DailyLimit (see Line 10 in Listing 3.3). In Listing 3.10,
we show the resulting metaproduct. In the metaproduct, the keyword is replaced by
a call to method update_BankAccount. This method update_BankAccount is
the introduction of the method. Thus, the call to update_original_DailyLimit
in the partial proof is replaced by a call to method update_BankAccount and the
placeholders of update_original_DailyLimit are replaced by the placeholders of
update_BankAccount.

We apply a similar procedure to calls to methods of other features. We do not need
to change the method names, as both in the feature stubs and in the metaproduct,
the actual calls are not changed. In the feature stubs, for each of these calls a method
prototype is generated to match the call and avoid type errors. However, we need to
update the placeholders’ names, if they are included into the proof and are different in
the metaproduct.

38 3. Feature-Familiy-Based Theorem Proving of Product Lines

3.2.4 Family-Based Theoreom Proving

In this second phase, we verify the created metaproduct. With a metaproduct, it is
possible to simulate all valid configurations at runtime without generating each product
on its own. Our goal is to heavily reuse partial proofs from phase one because replaying
a proof is easier than to find one [Necula, 1997].

To verify all valid configurations, the theorem prover can set all feature variables re-
spectively. By that, all methods can be proven for all valid feature combinations. In
this phase, we need to distinguish two different kinds of methods that need to be ver-
ified. For the domain methods, we can reuse the partial proofs, that were the result
of the feature-based theorem proving. If all proof goals can be closed, the proof is
accomplished. However, it is possible that by replaying a method’s partial proof not
all proof goals can be closed (see Section 3.1.3). If replaying does not close all proof
goals, the theorem prover is used to prove the rest of the goals as in this phase all
contracts are concrete and every goal should be closable. Second, we need to verify the
dispatcher methods. We do not have any information about them from earlier phases
of our theorem proving. Therefore, we employ the theorem prover to verify them.

We can verify methods either by inlining the body of all called methods or by relying
on the contract of the called method [Beckert et al., 2007]. If we inline the method
bodies, it is only necessary to verify the last dispatcher method because it includes
all variability information of the dispatcher methods that may be called within it. By
doing that, we do, however, not profit from the feature-based phase at all because we do
not need any of the partial proofs from the domain methods. Hence, for our approach,
relying on the contracts is more promising. With this approach, we need to prove all
dispatcher methods and domain methods. However, we can reuse the partial proofs from
the feature-based phase and the dispatcher methods are less complex and long.

If the theorem prover still cannot close all goals either contract or implementation do
not match or the theorem prover is not able to verify the method(see discussion in
Section 3.1.3). However, due to the structure of the metaproduct, it is not easily pos-
sible to know which feature combination causes the problem [Meinicke, 2013]. Domain
methods can be traced back to their features. Hence, we can, in that case, at least sus-
pect the feature, in which the problem occurs. For dispatcher methods, the approach is
similar. When a proof of such a method cannot be closed, we can try the next previous
dispatcher method. If that previous dispatcher method can be verified, we
can suspect the problem to be in the refinement.

3.3 Summary

In this chapter, we presented our approaches to feature-based and feature-family-based
theorem proving for software product lines. Our motivation for the development of these
approaches based on the inherent limitations of feature-based and family-based analysis
approaches for software product lines. While feature-based strategies are necessarily
insufficient because they only consider features in isolation, family-based verification

3.3. Summary 39

is both consumptive of resources for large software product lines and needs to be re-
performed whenever code changes. Thus, the goal was to combine these approaches to
overcome these shortcomings and embrace existing benefits.

In order to achieve such a combination, we first had to develop a feature-based approach,
whose results could be reused later in the feature-family-based strategy. Feature-based
theorem proving focuses on the verification of features. As features are not compilable
programs and the behaviour of not compilable programs is not defined, we employ
the concept of feature stubs. Feature stubs provide extensions to feature modules to
transform them into valid Java programs. To realize these extensions, abstract contracts
are used to map contracts of methods that are called in a feature, in which they are
not defined. These feature stubs can be verified with a regular theorem prover. The
verification results, which consist of a partial proof for each method defined within the
product line that has a method contract, are then saved for potential reuse in the second
phase.

To reuse these partial proofs in the family-based verification phase, we designed a
metaproduct based on the work of Thüm et al. [2012a] and Meinicke [2013], whose
structure is compatible with the partial proof. There are two method types in the
metaproduct, dispatcher methods and domain methods. The first kind is used to deal
with the different refinements in different feature and dispatch between them. Due to
their function, they are completely verified in this phase. The domain methods repre-
sent the actual refinements. On these methods, the partial proofs can be replayed. If
all proof goals can be closed, the software product line is verified successfully.

40 3. Feature-Familiy-Based Theorem Proving of Product Lines

4. Implementation

In the last chapter, we discussed our concept of a feature-family-based verification
of software product lines. Our main contribution was the first phase as a feature-
based verification strategy whose results can later be reused. This strategy includes a
mechanism to generate feature stubs that allow for a feature-based verification and the
verification of these feature stubs. As this generation includes several extensions to the
existing feature modules, it requires expertise and is time consuming. We implemented
a tool to mostly automate this generation and present the tool in this chapter.

We separate our main tasks feature stub generation and theorem proving on the tools
FeatureHouse, FeatureIDE and KeY, respectively. We not only aim to realize both
functionalities but also to provide a cooperation of the tools for a better user experience.
We use the existing tool support provided by FeatureIDE and integrate our feature
stub generation. FeatureIDE and KeY cooperate in terms of an automated transition
between feature stub generation and verification. This automatism also required small
changes in KeY.

We give an overview of the tool support that is required to implement our concept in
refsec:req-tool-support. In Section 4.2, we give an overview about the tools we extended
for a better support of our concept. We briefly describe their functionality and what
they are used for. Section 4.3 provides information about how we integrated our feature-
stub generation algorithm in FeatureIDE and how the algorithm is implemented. Our
extensions to KeY are explained in Section 4.4. In Section 4.5, we conclude the chapter
with limitations of our implementation.

4.1 Requirements for Tool Support

Our concept is a feature-family-based approach to software product-line verification by
means of abstract contracts. The tool support must therefore support these concepts.

42 4. Implementation

We need both a development tool suitable for feature-oriented programming and a
verification tool that is able to handle abstract contracts.

In particular, the development tool needs to support the generation of feature stubs
and the metaproduct. The development tool must be suitable for feature-oriented
programming because it must recognize features and feature module dependencies for
the generation of the feature stubs. Additionally, our tool must be able to perform
all checks and changes to the original feature module discussed in Section 3.1.1 and
Section 3.1.2. These checks and changes include a type check, the collection, and
analysis of access information, as well as the generation of classes, fields, methods, and
method contracts. We require the collected access information to include both accesses
of fields, methods, and types from within the source code and from contracts. For the
metaproduct, our tool needs to handle the variability information of a software product
line and create methods, fields, and contracts according to sections 3.2.1 and 3.2.2.

The verification tool must be able to perform our feature-based and family-based veri-
fications. We design both the feature stubs and the metaproduct so that they are valid
Java programs with JML method contracts and invariants. Hence, a suitable verifica-
tion tool needs to perform theorem proving on these programs. For the feature-based
verification, we require the tool to support reasoning with abstract contract as well as
creating and saving partial proofs for a method. For the family-based verification, our
verification tool needs to support proof replay.

4.2 Existing Tool Support

In the last part, we discussed requirements for the implementation of our concept. In
this part, we present tools, which we use and extend in order to realize this implemen-
tation. Thereby, we both give a small introduction to the tool and address how they
can help us in realizing the necessary tool support.

FeatureIDE is an integrated development environment for the development of software
product lines and supports all phases of software product line engineering [Thüm et al.,
2014b]. Its focus is feature-oriented programming but is not limited to that. Fea-
tureIDE supports several composition tools such as FeatureHouse for feature-oriented
programming in Java, C# or Haskell, AHEAD for feature-oriented programming in
Java, and FeatureC++ for feature-oriented programming in C++. Different prepro-
cessor implementations such as Munge for Java and Android, Antenna for Java, and
DeltaJ for delta-oriented programming are also supported. FeatureIDE is a plug-in for
the Eclipse framework and is open source [Thüm et al., 2014b]. We use FeatureIDE
for general handling of software product lines because of its advanced support for Java-
based software product lines. It also supports the creation and management of JML
contracts [Benduhn, 2012; Proksch and Krüger, 2014]. With FeatureIDE, we can also
generate the necessary classes, methods, fields and contracts.

FeatureHouse is an open-source language-independent framework for the composition
of software artefacts [Apel et al., 2013b]. It is employed by FeatureIDE to implement

4.3. Generation of Feature Stubs 43

feature composition. Internally, FeatureHouse uses feature structure trees (FST) that
are generated from feature modules [Apel et al., 2013b]. The FSTs are used tor imple-
ment superimposition. Besides composition of source code, FeatureHouse additionally
supports JML-based contracts and several mechanisms for their composition [Benduhn,
2012]. We use FeatureHouse as a composer because, among the composers integrated
in FeatureIDE, it is the only one support JML contracts.

Fuji is a compiler for Java-based feature-oriented programming [Apel et al., 2012]. Its
syntax is based on FeatureHouse and Jak and it supports superimposition and product
generation. Fuji goes beyond regular composition tools and directly creates Java byte
code [Apel et al., 2012]. Fuji was created as an implementation of an access modifier
model proposed by [Apel et al., 2012] to tackle the issue of access control in feature-
oriented programming. Due to its extended functionalities, Fuji cannot only be used for
regular product generation but also for a family-based type checking. With its access
model, Fuji can provide information about accessed methods, fields and types inside
the Software Product Line. Furthermore, we can employ Fuji for the type check of the
software product line before creating the feature stubs.

KeY is a software analysis tool for Java [Ahrendt et al., 2014]. Its core functionality
is semi-automatic theorem proving of regular object-oriented programs by deductive
verification [Beckert et al., 2007]. It supports source code conforming to Java Card
and specification defined by JML[Ahrendt et al., 2014]. KeY transforms contracts
into first order dynamic logic and uses symbolic execution to prove a method behaves
accordingly [Ahrendt et al., 2014]. Besides theorem proving, the KeY platform provides
other analyses such as information flow analysis which are implemented by different
editions in the KeY project. KeY is available as a stand-alone and an Eclipse project.
We use KeY in version 2.1 with an extension that integrates abstract contracts. We
use KeY because it can provide theorem proving with abstract contracts. Additionally,
we can use KeY for saving partial proofs and replaying existing proofs.

4.3 Generation of Feature Stubs

The feature stub generation is accessible in FeatureIDE as an option in the context menu
of FeatureHouse projects. We show a screenshot of the context menu in Figure 4.1.
Our implementation focusses on FeatureHouse because it is the only composition tool
integrated into FeatureIDE.

First, we build the FST model because it provides us information about the structure
of the software product line, its methods, fields, and contracts. We use this information
for the feature stub generation. Then, we employ the compiler Fuji to both perform
a family-based type check. If an error occurs during the type check, the verification
is aborted because a non-compilable program’s behaviour is not defined. If the type
check is successful, we use Fuji again to obtain all access information for the software
product line to determine the fields, types and methods each method accesses. With
this information, we can perform the checks and additions for the feature stubs, we
discussed in Section 3.1.1. Below, we describe their implementation in more detail.

44 4. Implementation

Figure 4.1: Screenshot of Context Menu Entry For Activation of Feature Stub Gener-
ation

We create the feature stubs in a designated subfolder of the feature project’s root
folder. For each feature stub a folder is created inside the feature subfolder. All roles
are copied from the feature folders into the feature stub subfolder and we create the
FeatureModel class, including the respective feature variable as a boolean field. Ev-
ery time the feature stub generation is started all feature folders in the feature stub
folder are deleted.

To create all additions, we consecutively check for all cases, discussed in Section 3.1.1.
As the checks and generation take some time, we encapsulated them into their own
thread. By that, it is possible to continue using FeatureIDE while the feature stub
generation and verification are running in the background. Each feature module gets
individually transformed into a feature stub and proven afterwards. Only after the
verification of one feature is performed the feature stub generation for the next feature
begins.

For the checks, we iterate through all methods of a feature provided by the FST model
and determine the elements it accesses. Each of the check is implemented by an if-
statement, testing for the respective condition. We first check for external methods. If
a method is used that is not part of the software product line, we insert a message into
the error log and the feature stub generation is stopped. For further clarification, the
message includes method name and class.

Then, we check for calls to previous implementations by means of the keyword
original in methods. In accordance with our proposed procedure in Section 3.1.1,
we create a method prototype and replace the keyword by a call to that prototype.
Additionally, we generate the abstract section of an abstract contract for that method
prototype.

We also perform a check for the keyword original in contracts. This keyword can
be used in explicit contract refinement to include the contract of a previous refinement
of the method. In Section 3.1.1, we discussed several alternatives to deal with the
keyword, as we ignore other features and the variability model of the software product
line. We replace the concrete section of the contract by the abstract section of the

4.3. Generation of Feature Stubs 45

contract, containing only the declaration of the placeholders. This choice allows us to
at least create a partial proof for the abstract section.

Our next check is the check for missing types. We use the type information, obtained
by Fuji, to find accessed types. If an accessed type is not defined within the feature, a
class prototype is created in the respective feature folder in the feature stub folder.

We check for accessed methods and fields that are not defined within the feature, the
method accessing them belongs to. In accordance to our proposed approach in Sec-
tion 3.1.1 and Section 3.1.2, we create method and field prototypes. The prototypes are
accompanied by a comment indicating that they are prototypes to simplify the distinc-
tion between regular fields and methods from the feature module and these added for
the feature stub. Additionally, we create abstract sections of abstract method contracts
for the method prototypes, so that they are represented in the verification.

We include a check if a feature even contains a JML contract at all. This check was
motivated by our running example BankAccount SPL because it contains the feature
Overdraft which does not specify any contracts. If a feature does not contain any
contracts, it is simply skipped for the feature-based verification because there is nothing
to verify.

After all checks are performed on a method, we transform the contract of that method
into an abstract contract. We use the concrete contract as the definition of the place-
holders. Furthermore, we add the requires clause stating that the respective feature
variable in the FeatureModel class is true.

Our tool distributes the tasks described above to three classes. In the class diagram
Figure 4.2, we show the classes and how they interact with each other. The first class
GenerateFeatureStubAction represents an Action that deals with the user input
when clicking the context menu entry seen in Figure 4.1. When a user clicks the option
to create a project’s feature stubs and to prove them afterwards, the class’ method run
is called, creates an object of FeatureStubGenerator and starts the generation.
The class FeatureStubGenerator is the second class in our implementation. It
is responsible for the actual generation of the feature stubs, calls Fuji and KeY. We
create the feature stubs in an own thread in the method createFeatureStub to not
prohibit the user from further interacting with FeaturIDE. The checks discussed above
are performed in the methods isInCurrentFeature, checkForMissingTypes,
checkForOriginaInContract, and checkForOriginal. The methods
createClassForPrototype and createPrototype accomplish the generation of
the field, class and method prototypes. The third class is ExtendedFujiSignatures.
In this class, we employ Fuji to collect access information about the software product
line. In method findMethodAccesses, we examine each methods on the methods,
fields and types, it accesses. For each field, method and type, we store from which
method they are accessed in method putAccess. Metho createSignatures col-
lects all access data and returns it to the FeatureStubGenerator.

46 4. Implementation

Figure 4.2: Class Diagram of the Implementation

4.4. Feature-Based Theorem Proving With KeY 47

Figure 4.3: KeY Proof Management

4.4 Feature-Based Theorem Proving With KeY

We use KeY as an Eclipse plugin because it is the easiest way to establish a cooperation
between FeatureIDE and KeY. This way, both plugins can be installed individually to
Eclipse and interact when both are available.

After the generation of a feature stub, we automatically start KeY with the feature stub
as input. In Figure 4.3, we show the proof management of KeY for the feature stub of
DailyLimit. We did not need to change the verification process because the feature stubs
are designed to be verified with a theorem prover for regular object-oriented programs.
After verification, the partial proofs are saved with KeY and it can be closed.

We aim to automate the loading process of the next feature stub to provide a more fluent
transition between the tools. Therefore, we make some changes in KeY. KeY’s user
interface provides a GUIListener that notifies when KeY is closed. We change the
user interface’s modifier to public, so that FeatureIDE can access it and implement
the GUIListener. Additionally, we add a constructor for KeY’s Main class and
created a new init method for the class. The init method contains the initialization
of KeY. It es called either by the new constructor or the old main, depending on
whether KeY is started as an individual program or as a plugin from FeatureIDE. To
better distinguish these two cases, we added a second parameter to the init method
indicating the way, in which KeY was started.

In KeY, we use the macro ”Finish abstract proof part”to reason about abstract contracts.
We use the macro with KeY’s option ”Use Contracts” to verify the methods of our
feature stubs. When the macro has finished, we save the partial proof as proof files.
We show a proof file in Listing 4.1 in part. The proof is for method update of role
Account of feature BankAccount. The listing shows the first rules KeY applied for
proving the method. We leave out most of the strategy settings documented in the
beginning of the proof file and only show the start of the proof. We show the method
itself in Listing 2.3 on page 9. We have not implemented the partial proof adaption.

48 4. Implementation

Nonetheless, we want to demonstrate the changes that need to be made, so that we can
replay them for the metaproduct. In Line 6 and Line 7 of Listing 4.1, the proved method
names are saved. Both occurrences of the name need to be changed before reusing this
partial proof for our metaproduct of a software product line. The proof starts in Line
11. In Line 33, a previous implementation of method update is called. This call
represents a feature module dependency, as discussed in Chapter 3. In accordance with
our concept, the call needs to be changed update_BankAccount.

1 [...]
2 \javaSource "featurestub/DailyLimit";
3
4 \proofObligation "#Proof Obligation Settings
5 [...]
6 name=DailyLimit[Account\\:\\:update(int)].JML operation contract.0
7 contract=DailyLimit[Account\\:\\:update(int)].JML operation contract.0
8 class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
9 ";

10 [...]
11 \proof {
12 [...]
13 (branch "dummy ID"
14 (builtin "One Step Simplification" (formula "1"))
15 (rule "impRight" (formula "1"))
16 (rule "andLeft" (formula "1"))
17 (rule "andLeft" (formula "2"))
18 (rule "andLeft" (formula "1"))
19 (rule "andLeft" (formula "1"))
20 (rule "andLeft" (formula "1"))
21 (rule "andLeft" (formula "1"))
22 (rule "notLeft" (formula "2"))
23 (rule "eqSymm" (formula "8") (term "1,0,0,1,0,1"))
24 (rule "assignment" (formula "8") (term "1"))
25 (builtin "One Step Simplification" (formula "8"))
26 (rule "methodBodyExpand" (formula "8") (term "1") (newnames
27 "heapBefore_update,savedHeapBefore_update"))
28 [...]
29 (rule "compound_assignment_2" (formula "10") (term "1") (inst "#v=x_9"))
30 (rule "variableDeclarationAssign" (formula "10") (term "1"))
31 (rule "variableDeclaration" (formula "10") (term "1") (newnames "x_9"))
32 (builtin "Use Operation Contract" (formula "10") (newnames
33 "heapBefore_update_original_DailyLimit_0,result_2,exc_2,
34 heapAfter_update_original_DailyLimit_0,
35 anon_heap_update_original_DailyLimit_0") (contract "Account[Account::
36 update_original_DailyLimit(int)].JML normal_behavior operation contract"))
37 (branch "Post (update_original_DailyLimit)"
38 (builtin "One Step Simplification" (formula "9"))
39 (opengoal " ")
40 [...]
41))}

Listing 4.1: Partial Proof For Method update of Role Account of Feature DailyLimit

4.5. Limitations of the Implementation 49

4.5 Limitations of the Implementation

Our tool has some limitations compared to our concept presented in Chapter 3. We
focussed on implementing the feature-based phase, but did not implement second phase
as it would have gone beyond the limits of our thesis.

We use Fuji to gain information about which methods of the software product line access
which methods, fields and types. However, Fuji does not consider contracts. This means
that if an element is defined in one feature and accessed in another feature but only in
one or several of its contracts, Fuji does not notice this access. The prototypes need to
be built by hand.

Finally, in our current implementation, we delete all feature folders in the feature stub
folder at the beginning of each generation. We do not perform the re-verification check
for feature stubs as part of our implementation. The check, however, can be performed
manually because only the feature stubs are deleted and newly generated and the proofs
are preserved.

4.6 Summary

In this chapter, we presented our implementation of the feature-based verification. Our
tool supports the generation of feature stubs as proposed in Chapter 3. Furthermore, we
showed, how the development environment FeatureIDE and the verification tool KeY
cooperate with each other. To give a the reader a better overview of our implementation,
we list all requirements and the respective tool accomplishing the the task in Table 4.1.
Our tool enables users to perform a complete feature-based verification of a software
product line with a few clicks and makes it possible to obtain partial proofs that can
be reused in a later family-based verification. Finally, we explored shortcomings of our
implementation with respect to our concept.

50 4. Implementation

Table 4.1: Overview of Tool Support

Functionality Tool

1. Feature-Aware Development of SPLs FeatureIDE
2. Support for Superimposition FeatureHouse
3. Support for JML Contracts FeatureHouse
4. Feature-Based Phase

4.1 Type Check of Software Product Lines Fuji
4.2 Access Information

4.2.1 Access from Source Code Fuji
4.2.2 Access from Contracts -

4.3 Generation of Prototypes Our Extension to FeatureIDE
4.4 Theorem Proving on Valid Java Program KeY

4.4.1 Reasoning with Abstract Contracts KeY
4.4.2 Saving Partial Proofs KeY

4.5 Transition from Feature Stub Generation
to Theorem Proving

4.5.1 Automatic Start of Verification Tool Our Extension to FeatureIDE
4.5.2 Return to Feature Stub Generation

After Verification Our Extension to KeY
5. Family-Based Phase

5.1 Generation of Metaproduct -
5.2 Partial Proof Adaption -
5.3 Theorem Proving on Valid Java Program KeY

5.3.1 Proof Replay KeY

5. Evaluation

In Chapter 3, we presented our concept for a feature-family-based verification of software
product lines. We described the implementation of parts of our concept in Chapter 4. To
evaluate both our concept and the implementation, we test our approach in comparison
to already existing approaches. In this chapter, we present and discuss the results.

In Section 5.1, we present the software product line that we use for our evaluation in
more detail. We discuss both relevant aspects of the software product line as well as
the different versions, which we use for testing. Then, we describe how the evaluation
is performed and which approaches are compared to each other in Section 5.2. In
Section 5.3, we present and explain the results and discuss them in Section 5.4.

5.1 BankAccount SPL

We used parts of the BankAccount SPL throughout the thesis to illustrate aspects in our
discussions. In Figure 2.1 on Page 7, we show the feature model of the software product
line. The BankAccount SPL contains ten features and 144 possible configurations. For
this evaluation, we use and extend this product line, which we obtained from Thüm et al.
[2014c]. We provide all extended versions of the product line at the software product
line example repository of FeatureIDE. We use this software product line because it
was already used in similar previous work [Bubel et al., 2014; Meinicke, 2013; Praast,
2014; Thüm et al., 2014c, 2012a] and it is a small software product line that already
contains most aspects we discussed in Chapter 3 regarding feature stub and metaproduct
generation.

As we focus on the reuse potential of abstract contracts and feature-family-based ver-
ification, we verify the case study in several versions. The first version represents our
base version. As we wanted to include assingable clauses into our experiments,
we added them to the version one. For versions two, three, and four, we examined
the BankAccount SPL for potential improvements of code and contracts. Version five

52 5. Evaluation

Figure 5.1: Overview of Evaluated Versions

was inspired by Bubel et al. [2014]. Version six was designed to include the maximum
amount of changes in one version. In Figure 5.1, we show a schematic representation
of the versions and how they are related to each other. We describe the first one in
more detail and give a short summary for the subsequent versions. We evaluate all
other versions as direct successors of version 1, regardless how big the changes are. We
designed all versions, so that the verification is successful (i.e., all proof goals can be
closed).

Version 1

The first version is the complete BankAccount SPL with all features. To give the
reader a better understanding of the functionality, we give a brief overview about the
software product line. As we already introduced the features BankAccount, DailyLimit,
CreditWorthiness, and Transaction in the previous chapters, we focus on the remain-
ing features. In the base feature BankAccount, the possible overdraft limit is set to
0. The feature Overdraft refines this field and actually sets the value to -5000. Fea-
ture Interest introduces the calculation of interest for the account by adding method
calculateInterest. This functionality is extended by feature InterestEstimation,
which makes it possible to predict an account’s interest until the end of the year. Fea-
ture Lock contains a locking functionality for accounts, so that the account cannot be
changed by another thread. This functionality is employed by feature Transaction,
which transforms account updates into atomic transactions. With feature Logging,
account updates can be logged. Finally, feature TransactionLog extends this logging
functionality to transactions implemented by feature Transaction.

Version 2

For version two, we changed several contracts. First, we enriched method nextYear
in role Application of feature BankAccount with a method contract. Furthermore, we
removed the requires clause of method credit in role Account of feature CreditWor-
thiness. Finally, we changed the ensures clause of method calculateInterest
so that it is more precise. We show both ensures clauses in Listing 5.1.

5.1. BankAccount SPL 53

1 /∗version one:∗/
2 ensures (balance >=0 ==>\result >= 0) && (balance <=0 ==>\result <=0);
3 /∗version two:∗/
4 ensures \result <==> (balance ∗ INTEREST_RATE/36500);

Listing 5.1: Ensures Clause of Method calculateInterest in Versions One and Two

Version 3

In version three, we add a new method overdraftLimitExceeded to role Account.
The method checks whether a given value is smaller than the allowed overdraft of the
account. We show both its implementation and contract in Listing 5.2. Addition-
ally, we change the implementation of different method refinements of update and
undoUpdate in role Account without needing to change their respective contracts.
In role Account of feature BankAccount, which we show in Listing 2.2 on Page 9, we
changed the assignment of the field balance. While the value is newly calculated in
version one, we now set it to newBalance, as can be seen in Line 18 of Listing 5.2. Ad-
ditionally, we replace the original if-statement by a call to our newly introduced method
overdraftLimitExceeded (see Line 16 in Listing 5.2). In role Account of feature
DailyLimit, we remove a unnecessary if-statement from method undoupdate. Finally,
we reverse the if-statement in both update and undoUpdate method in role Account
of feature Logging. We show both versions of update in Listing 5.3.

1 /∗@ ensures \result <==> (newBalance < OVERDRAFT_LIMIT);
2 @ assignable \nothing;
3 @∗/
4 private boolean overdraftLimitExceeded(int newBalance) {
5 return newBalance < OVERDRAFT_LIMIT;
6 }
7
8 /∗@
9 @ requires x != 0;

10 @ ensures (!\result ==> balance == \old(balance))
11 @ && (\result ==> balance == \old(balance) + x);
12 @ assignable balance;
13 @∗/
14 boolean update(int x) {
15 int newBalance = balance + x;
16 if (overdraftLimitExceeded(newBalance))
17 return false;
18 balance = newBalance;
19 return true;
20 }

Listing 5.2: Role Account of Feature BankAccount in Version Two

1 /∗original version:∗/
2 boolean update(int x){
3 if (original(x)){

54 5. Evaluation

4 updateCounter = (updateCounter + 1) % 10;
5 updates[updateCounter] = x;
6 return true;
7 }
8 return false;
9 }

10 /∗version three: ∗/
11 boolean update(int x){
12 if (!original(x)){
13 return false;
14 }
15 updateCounter = (updateCounter + 1) % 10;
16 updates[updateCounter] = x;
17 return true;
18 }

Listing 5.3: Method update in Versions One and Three

Version 4

For version 4, we only remove feature CreditWorthiness from the software product line
of version one. Thereby, we not only remove the feature from the feature model, but
also its source code. This includes the introduction of method credit in role Account
as well as the refinement of constructor of role Main.

Version 5

In version five, we add the feature Fee to the BankAccount SPL. We show the new
feature model in Figure 5.2. The feature implements a fee for every transaction that is
successfully performed. The fee only needs to be paid by the source of the transaction.
To realize the fee, role Transaction is refined. We show the refined role in Listing 5.4.
Method transfer is only changed slightly. First, instead of subtracting the given
amount from the source, the fee is also subtracted. Additionally, we updated the
respective ensures clause (see Listing 5.4). Feature Fee is arranged between features
Transaction and Transactionlog because its refinement method transfer replaces
feature Transaction’s method method but can still be extended by TransactionLog ’s
functionality.

1 public class Transaction {
2 private int FEE = − 105;
3
4 /∗@ requires \original;
5 @ ensures \result ==> (\old(destination.balance) +
6 @ amount == destination.balance);
7 @ ensures \result ==> (\old(source.balance) −
8 @ (amount + amount∗FEE/100) == source.balance);
9 @ ensures !\result ==> (\old(destination.balance)

10 @ == destination.balance);
11 @ assignable source.lock, destination.lock, source.balance,
12 @ destination.balance, source.withdraw, destination.withdraw;

5.1. BankAccount SPL 55

Figure 5.2: Feature Model for BankAccount SPL with Feature Fee

13 @∗/
14 public boolean transfer(Account source, Account destination,
15 int amount) {
16 if (!lock(source, destination)) return false;
17 try {
18 if (amount <= 0) {
19 return false;
20 }
21 int sum = (amount∗FEE)/100;
22 if (!source.update(sum)) {
23 return false;
24 }
25 if (!destination.update(amount)) {
26 source.undoUpdate(sum);
27 return false;
28 }
29 return true;
30 } finally {
31 source.unLock();
32 destination.unLock();
33 }
34 }
35 }

Listing 5.4: Role Transaction of Feature Fee

Version 6

For version six, we combine three previous versions. In particular, we add feature Fee,
as we did for version 5. Additionally, we perform the contract changes from version 2
and, finally, we change the several method implementation from version 3. By that, we
combine three different kinds of changes and achieve an overall bigger software product
line.

56 5. Evaluation

5.2 Experimental Design
We evaluate five different approaches. For each of the approaches, we verify all afore-
mentioned versions to test them individually with regards to their efficiency during code
evolution. We aim to compare the family-based verification developed by Thüm et al.
[2012a] and our concept proposed in this thesis. Although it is common practice to
compare new verification approaches to unoptimized product-based approaches, we do
not include these approaches into this evaluation because it is already established that
these approaches are inferior to family-based approaches[Thüm et al., 2014a]. Hence,
we are also the first to compare family- and feature-family-based approaches with each
other. Furthermore, our approach also includes a family-based phase, so it is reasonable
to compare it with other family-based approaches. However, there are several steps in
between these two approaches and only performing a verification with both these strate-
gies does not do justice to them. We show possible differentiating parameters between
the approaches in Table 5.1.

Table 5.1: Comparison Parameters For Family-Based Verification Strategies

Parameters Values

Contracts Concrete - Partially Abstract - Abstract
Partial Proofs No - Yes
Metaproduct Thüm et al. [2012a] - Apel et al. [2013e]
Verification Inlining - Use Contracts
Proof Replay No - Reuse of Partial Proofs - Reuse of Full Proofs

Subsequently, we describe for both the family-based verification approach by Thüm
et al. [2012a] and our approach, which values for the attributes in Table 5.1 they repre-
sent. Thüm et al. [2012a] used concrete contracts and designed their own metaproduct
that can be proven by a regular theorem prover with Method Inlining. However, they
neither compose proofs, nor do they plan to reuse the obtained proofs in any way. We
use abstract contracts in both the feature-based and the family-based phase to realize
feature module dependencies. In the feature-based verification, we obtain partial proofs
that we can use to compose proofs in the family-based approach. We can also reuse the
partial proofs after code evolution. Finally, we do not inline called methods but instead
only use their contracts.

There are apparent differences between these two approaches that can lead to either
benefits or drawbacks. To make a fairer comparison and to measure the influences of
the parameters described above, we evaluate not only the two discussed approaches
but also three intermediate strategies. We are aware that these three approaches do
not cover all possible influences but a detailed analysis and evaluation of each possible
combination of attributes is beyond the scope of this thesis. In Figure 5.3, we provide
a schematic diagram to illustrate the differences.

The first approach represents the verification strategy developed by Thüm et al. [2012a]
and Meinicke [2013]. We generate the metaproduct for each version and verify them

5.2. Experimental Design 57

Figure 5.3: Overview of Evaluated Approaches

58 5. Evaluation

in isolation with Method Inlining. We chose this approach because it is the current
approach to family-based verification as the verification of evolving software product
lines has not yet been discussed in detail.

Our first intermediate approach is to not verify all metaproducts from the beginning
but only for version one and save the obtained proofs. We then replay the proofs on
the subsequent metaproducts. When a proof cannot be replayed or (as in version three,
five, and six) there are methods without any proof, we verify the method from the
beginning. We use this approach to determine benefits from reusing proofs.

For our second intermediate approach, we again generate the metaproduct of all ver-
sions. However, we then transform all method contracts by abstract method contracts.
We perform the macro ”Finish abstract proof part” in KeY for each method in the
metaproduct of version one and save the result as a partial proof. We then reuse the
partial proofs for all subsequent metaproducts. By using abstract contracts on the
metaproduct by citetThum.2012, we aim to obtain information about how abstract
contracts help with increasing reuse potential of partial proofs.

The third intermediate approach represents our family-based phase from Section 3.2.
Similarly to the approach directly above, we perform the macro ”Finish abstract proof
part” in Key for each metaproduct of version one and then reuse them for the metaprod-
uct of the following versions. However, instead of Method Inlining (see Section 2.3),
we do use the contracts of called methods. The use of contracts requires us to make
several adjustments to the BankAccount SPL to be able to prove it because callers do
not get to know the method’s implementation but only rely on the contract. Therefore,
we add several invariants and make method contracts more specific. We explain these
changes in more detail in Appendix B, as we do not consider this information necessary
to the understanding of this evaluation but nonetheless want to document our work. We
evaluate this approach to examine the differences between inlining of called methods or
using their contracts during verification.

Our last approach represents our concept from Chapter 3. We first create a feature
stub for all features and perform a feature-based verification on each of them. For
the family-based verification phase, we generate the same metaproducts as in the third
intermediate approach but then reuse the obtained partial proofs from the feature-
based verification. We include this approach in our evaluation to determine whether
our approach of combining abstract contracts and feature-based verification really is
superior to the solely family-based approaches with regards to product-line evolution.

The evaluation is performed by means of our existing tool support. We use FeatureIDE
to generate the metaproducts for versions one through three and feature stubs, and
employ KeY for verification. As pointed out in Chapter 4, we neither implemented
the check for changes in feature stubs before every feature-based verification nor the
metaproduct generation for our feature-family-based approach. We simulate the check
by re-creating all feature stubs and checking for changes manually. Afterwards, we only
re-verify changed feature stubs. We also only build the metaproduct for versions four
and five by hand.

5.3. Results 59

We compare these approaches regarding different aspects. First, we examine the overall
verification effort of all approaches. Therefore, we analyze the proof complexity in terms
of necessary proof steps for a verification and the verification time. As verification time,
we use the sum of all method verification times. To reduce measurement errors, we per-
form each verification for three times and take the mean value of the three. Second,we
present the results from the perspective of product line evolution and determine the
actual potential of proof reuse for each approach. Therefore, we take the verification
of version one as baseline and examine the savings for the verification of the following
versions. We evaluate both overall verification effort and reuse potential individually
because, even with a high rate of reusability, significantly larger and more complex
proofs diminish the effect of proof reuse. Likewise, if the proofs’ complexity is rather
small, even the reuse of fewer steps is helpful. Third, we discuss the usability of each
of the approaches. We are aware, that this metric is rather subjective. Nonetheless, we
find it important because reusing of proofs aims to help simplifying the verification of
programs. If reusing, however, is more complicated for the user while the saved com-
putational benefits are rather small, the approach might not be helpful after all. For
the evaluation, we used a notebook with Intel Core i7-3610QM CPU @ 2.30GHz with
8 GB RAM on Windows 7 and Java 1.7.

There are several other possible metrics, we do not include in our evaluation. Subse-
quently, we discuss them shortly and explain why we do not consider them. For the
generation of the feature stub, we perform a type check with Fuji. We could also mea-
sure the type check time as only the last of the above discussed approaches includes this
type check which can be seen as a time disadvantage. Similar aspects can be discussed
about the time for loading of the projects in KeY, the adaption of the partial proofs,
replaying the partial proofs, feature stub, or metaproduct generation. We do not con-
sider these times as we have not implemented all of them so they could be performed
automatically. The measured times would largely depend on how fast we performed the
manual steps and, thus, cannot be fairly compared. On the other hand, by not consid-
ering these times, we skew the measured verification time in favour of the approach we
developed over the course of this thesis.

5.3 Results

To present our results, we present them in two parts. First, we compare the proof
complexity and verification times of the different approaches. In the second part, we
show our results regarding reuse potential of all approaches.

5.3.1 Verification Effort

In Section 5.3.1, we show the results of our evaluation. Each column contains the
number of proof steps necessary to prove a version of the BankAccount SPL for an ap-
proach. As we only look the approaches themselves, we include all proof steps including
from reused partial proofs. For approaches intermediate two and three, we separate the
data in proof steps for abstract contracts and proof steps for concrete contracts. For

60 5. Evaluation

Table 5.2: Proof Steps for Verification
Family-
Based Intermediate 1 Intermediate 2 Intermediate 3

Feature-
Family-Based

Concrete Concrete Abs Concrete Abs Concrete
Feature-

based
Family-
Based

V1 200556 200556 17637 211913 16110 102380 7715 71175
V2 211795 185371 17568 192362 16110 83154 7480 66433
V3 218527 203629 17681 196235 15690 88695 6407 66526
V4 220042 180195 17539 198873 13589 100399 7438 65364
V5 338544 338544 17583 322360a 12559 95826 7480 86552
V6 341931 341931 17734 332449a 12185 108319 6401 98655

Avg 255232,5 241704,3 259989a 110836 82937.7

aA complete verification was not accomplished.

the feature-family-based approach, we separate the data into the both phases. In the
last row, we show the respective averages of needed proof steps. We also present the
results as a histogram in Figure 5.4 to simplify the comparison between the different
approaches. For versions five and six of intermediate approach two, we were not able
to close all proof goals for method transfer and stopped KeY at a little over 300.000
proof steps. As these results are not representative, we do not include them into the
histogram.

Both Section 5.3.1 and Figure 5.4 show that the first intermediate approach yields
only small advantages compared to the family-based approach by Thüm et al. [2012a].
On average intermediate approach 1 needs 241700 proofs steps, while the family-based
approach needs 255200, so that only about 6% are saved.

Our second immediate approach provides similar results. However, the comparability
is limited because of the unclosed proof goals that we mentioned above. The verifi-
cation for version one needs slightly more computational effort due to the reasoning
about abstract contracts. For version two, three and four, we find very small advan-
tages compared to the family-based approach but disadvantages compared to the first
intermediate approach. As we do not have full verification of all versions for the first
intermediate approach, we cannot fully compare this approach to the others.

Our third intermediate approach yields enormous gains regarding proof steps. On av-
erage, the approach needs 11,0800 proof steps to accomplish the verification, which is
about 57% fewer proof steps than the family-based and 54% fewer proof steps than in-
termediate approach one needed. We were, however, not able to prove all methods with
the option ”Use contracts” in KeY. We could verify method transfer by means of ”use
contracts”but needed to use Method Inlining for the other methods in its calling hierar-
chy (see Figure 3.1). For versions one to four this includes transfer_Transaction
and transfer_TransactionLog For versions five and six, we needed to prove
transfer_TransactionLog and dispatch_transfer_Fee.

5.3. Results 61

Figure 5.4: Comparative Overview of Proof Steps

Our approach is yet another improvement to the third intermediate approach. Only
82900 proof steps are necessary on average to verify each version. This means a decrease
of 68% compared to the family-based approach and 25% compared to intermediate
approach three.

In Table 5.3, we show the times needed for the respective verification. Each column
contains the time in milliseconds necessary to prove all methods. We give average times
for each approach in the last row. In Figure 5.5, we present the results as a histogram
for an easier comparison of the different approaches.

The results shown in Table 5.3 and Figure 5.5 resemble the results discussed above,
so that we only discuss them briefly. Again, the family-based approach and the first
intermediate approach provide similar results. Intermediate approach three and our
feature-family-based approach are about 50% faster compared to the family-based ap-
proach (41.5s vs. 21s). Again, we do not include the second intermediate approach into
the histogram because of incomplete proofs.

5.3.2 Product-Line Evolution

In Table 5.4, we present the savings due to proof reuse for the. For each approach, we
show the proof steps that can be provided by partial proofs both as an absolute and an
relative value. The last row of the table contains the average savings for each approach.
Again, we leave out the results for versions five and six of intermediate approach two

62 5. Evaluation

Table 5.3: Comparative Overview of Verification Times

Verification
Time in ms

Family-
Based Intermediate 1 Intermediate 2 Intermediate 3

Feature-
Family-
Based

V1 308476 307650 289851 205468 212896
V2 313699 294420 254721 186359 161767
V3 319915 312805 309607 190885 182356
V4 317346 266439 343470 226885 157701
V5 627794 640230 1009529a 260192 222586
V6 599297 614169 1012394a 256845 231327

Avg 414421.2 418834.3 556010.5a 232621.7 194396.7

aA complete verification was not accomplished.

Figure 5.5: Comparative Overview of Verification Times

5.3. Results 63

T
ab

le
5.4:

C
om

p
arative

O
verv

iew
of

R
eu

sed
P

ro
of

S
tep

s

F
am

ily
-B

ased
In

term
ed

iate
1

In
term

ed
iate

2
In

term
ed

iate
3

F
eatu

re-F
am

ily
-B

ased

V
ersion

1
200556

200556
229550

118490
78890

R
ep

layed
P

ro
of

S
tep

s
R

ep
layed

P
ro

of
S
tep

s
R

ep
layed

P
ro

of
S
tep

s
R

ep
layed

P
ro

of
S
tep

s
R

ep
layed

P
ro

of
S
tep

s
A

b
solu

te
R

elative
A

b
solu

te
R

elative
A

b
solu

te
R

elative
A

b
solu

te
R

elative
A

b
solu

te
R

elative
V

ersion
2

0
0

29137
14.5

17540
7.6

16110
13.6

7480
9.5

V
ersion

3
0

0
14897

7.4
11028

4.8
15108

12.8
5601

7.1
V

ersion
4

0
0

29255
14.6

17539
7.6

11062
9.3

7438
9.4

V
ersion

5
0

0
0

0
17583

a
7.6

10616
9

7480
9.5

V
ersion

6
0

0
0

0
11043

a
4.8

9608
8.1

5585
7.1

A
verage

0
0

14657.8
7.3

14946.6
a

6.5
12500.8

10.6
6716.8

8.5

aA
co

m
p

lete
verifi

cation
w

as
n

o
t

a
cco

m
p
lish

ed
.

64 5. Evaluation

Figure 5.6: Comparative Overview of Reused Proof Steps

because of incomplete proofs. We also provide the relative values as a histogram in
Figure 5.6.

In the following, we compare the relative values of reused proof steps because if the
original proof is significantly higher, the informative value of higher absolute values
of reused proof steps is rather limited. For the family-based approach, no proofs are
reused, because we defined that scenario, so that we generate the metaproduct each
time. However, for the first intermediate approach, we were able to reuse proofs for the
verification of versions one to three. As we save full proofs, only if both contract and a
method’s implementation stay unchanged, the saved proofs can be reused. Therefore,
we have high rates of reuse for small changes but no reuse for versions with bigger
changes.

The second intermediate approach provides a more steady reuse potential. For the
three versions, we have complete proofs, we can reuse between 5 and 7.5% of a previous
proof. In this approach, the partial proofs contain reasoning about abstract contracts-
Therefore, a proof may be even reusable if a method’s contract changes. However, as
we do not have the data for all versions, a general comparison is hard to perform.

With the third intermediate approach, we achieve the highest relative reuse values. On
average, 10.6% can be reused. Again, we see that the bigger the changes are, the less
we can actually reuse.

5.4. Discussion 65

Finally, for our feature-family-based approach, we achieve reuse rates of about 7 to 9.5%
and 8.6% on average. This means a decrease by two percentage points compared to
the third intermediate approach but is nonetheless better than intermediate approaches
one and two. We suspect the decrease compared to intermediate approach three to be
caused by the complete reverification of a feature stub. We noted during the evaluation,
that when a partial proof of one feature’s method is invalidated, the partial proofs of the
feature stub may still be valid. By reverifying the whole feature stub, we still perform
redundant verification.

5.4 Discussion

A starting point of our work was, that product line evolution is not discussed enough
in current approaches to theorem proving of software product lines. Therefore, we
designed our approach with the focus of increasing reuse potential. Our goal was to
replace proof finding processes with proof checking processes as checking an existing
proof is easier and faster than finding a proof to reduce the overall effort. Considering
the results, our approach achieves these goals. First, we could enormously reduce the
proof complexity and verification time compared to existing family-based approaches.
Second, we also accomplish reuse potential of about 8.6%.

The greatest benefits regarding necessary proof steps are achieved in the third inter-
mediate approach. The differences between this approach and the second intermediate
are the use of contract instead of Method Inling during verification and the use of
the metaproduct discussed in Section 3.2. The structure of the two metaproducts are
relatively similar. Therefore, we suspect the benefits mostly resulting from using the
contracts of called methods instead of inlining them. Therefore, a called method is not
symbolically executed every time it is called, which leads to significantly less complex
and therefore smaller proofs. Additionally, as mentioned in Section 5.2, we made several
method contracts more specific and created invariants to limit the frame that KeY has
to consider. These changes also cause the proofs to be smaller.

However, these changes are complex to perform and cause the developer high effort. We
needed to run KeY several times and analyze the failed verifications until we got the
specification to be precise enough for a successful verification. For existing projects,
these changes limit the time gain for a developer who is unexperienced in theorem
proving. However, if they develop a software product line and its specification with this
in mind, it might still be worth it.

We want to address the heavy influence of method transfer and its refinements
regarding both needed time and necessary proof steps. Although the BankAccount
consisted of up to 18 methods, depending on the used version, method transfer is
responsible for most of time and steps due to its multiple refinements and many feature
module dependencies. The better an approach could deal with this method, the better
its results were. By adding feature Fee for versions five and six, we yet increase the
influence of method transfer.

66 5. Evaluation

So far, we mostly discussed the issue of necessary proof steps and verification time.
In Section 5.2, we mentioned a third aspect, which we want to discuss now. Theorem
proving requires expertise and effort to be performed. This holds for all evaluated ap-
proaches. However, there are significant differences regarding effort for the developer.
First, we had to deal with saved partial proofs. They need to be saved at a location,
from which they can later be reused. For our evaluation, this was relatively easy, as we
performed all verifications in a row. In practice, however, the time spans between veri-
fications are probably bigger. The same holds for feature stubs. To be able to identify
changes since the last feature-based verification, the feature stubs the verification was
performed on need to be stored, too. We also needed to perform the adaptions for the
family-based by hand. Second, we had to build all the metaproduct, we proposed in
this thesis, by hand. This process was complicated due to the several versions, we had
to create and our goal to perform the verification by means of Use Contracts. Finally,
there were complications during the verification for method transfer, which caused
additional effort and re-verification. Most of these aspects can be automated by tool
support, which should lead to an easier verification. However, the storage of partial
proofs and feature stubs remain a task for the developer.

5.5 Summary

In this chapter, we performed five different verification approaches on six different
versions of the BankAccount SPL. Our developed feature-family-based approach was
successfully applied to the software product line. We found that our approach reduces
the amount of proof steps by more than 65% compared with the family-based approach
by Thüm et al. [2012a]. We were also able to reuse about 8.5% of the original proof.
These gains come with enormous overhead regarding storing and handling of feature
stubs and partial proofs, most of which can be reduced by additional tool support.
Furthermore, the third intermediate approach, which requires less overhead, provides
better outcomes regarding proof reuse (about 10.5%), but results in about 25% more
complex proofs.

6. Related Work

This thesis is mainly concerned with software product lines and their verification. We
thereby employed concepts like abstract contracts and feature stubs and touched topics
like change impact analysis in the context of software product line. In this chapter, we
present related work on these topics.

Analysis of Software Product Lines

Thüm et al. [2014a] conducted a survey about software product line analysis techniques
such as model checking, type checking and theorem proving. They classify them into
product-, family-, feature-based and combinations thereof and analyzed benefits and
weaknesses of the different strategies. Based on their work, we classify our verification
approach as feature-family-based.

A wide range of analyses have been applied to software product lines. These include
analyses genuinely originating within the paradigm software product lines including
feature-model analysis [Bubel et al., 2010; Jörges et al., 2012; Sabouri and Khosravi,
2010]. However, there also are techniques known from regular programs and only trans-
formed to software product lines such as syntax checking [Kästner et al., 2011], type-
checking [Apel et al., 2010a, 2008; Bettini et al., 2014; Kästner et al., 2012], model
checking [Apel et al., 2011; Classen et al., 2010; Fantechi and Gnesi, 2008], and theo-
rem proving. As we develop a concept for theorem proving of software product line, we
examine the research to theorem proving of software product lines in more detail in the
following part.

Theorem Proving of Software Product Lines

Harhurin and Hartmann [2008] propose a product-based approach to software product
line verification in which all possible products are generated and verified. This unopti-
mized approach, however, is problematic, because the amount of products increases up

68 6. Related Work

to exponentially with every added feature. To optimize the verification, Bruns et al.
[2011] propose a different verification approach for delta-oriented software product lines.
At first, only one base product is verified. Then, all other variants are created upon this
base product, which may lead to invalidation of parts of the proof. Only the invalidated
proofs need to be proven again.

Nonetheless, the product-based strategies become infeasible for huge software product
lines. Thüm et al. [2012a] propose a family-based approach for feature-oriented pro-
gramming, which uses variability encoding. They create a single metaproduct incorpo-
rating a software product line’s variability, so that it can simulate the whole software
product line. A metaspecification from the software product line is created. They are
able to reduce the verification time of a previous version of the BankAccount SPL com-
pared to an unoptimized product-based approach by 85%. Meinicke [2013] implements
and extends the metaproduct, proposed by Thüm et al. [2012a]. Apel et al. [2013e]
compared different strategies and proposed a slightly different approach to variability
encoding. They also find that familiy-based approaches are superior to other strategies.
For our concept, we adopt parts of both metaproducts. In our evaluation, we discuss
that the family-based approach by Thüm et al. [2012a] to software product line theo-
rem proving is simpler to realize. However, they do not consider product line evolution
in their metaproduct design. Due to the structure of our metaproduct, we can easily
replay the partial proofs, generated in the feature-based phase.

Some approaches combine feature-based with either family-based or product-based
strategies. Thüm et al. [2011] propose an approach to compose proofs from smaller
proofs. They create partial proofs for each feature and composed them to generate a
proof for each variant. Damiani et al. [2012] take a similar approach for delta-oriented
programming. They first prove each implementation unit in isolation. They generate
all products, apply the partial proofs and, finally, prove the open proof goals for each
product. Other approaches that work similar are provided by Delaware et al. [2011,
2013] and Gondal et al. [2011]. Our feature-family-based approach works similar in the
feature-based verification phase. We also obtain partial proofs from this phase that
we compose to full proofs in the family-based phase. Nonetheless, for their product-
based phase, they generate all variants and so suffer from the same problems solely
product-based approaches do.

There is also research concerned with improving effectiveness and efficiency of theorem
proving of software product lines. Thüm et al. [2014c] combine theorem proving and
model checking and evaluate their approach for potential synergies. They find that
both model checking and theorem proving are more effective and efficient when com-
bined especially for software product lines with many defects. A second approach for
improvement is increasing the potential for proof reuse with abstract contracts, even
though they had not yet been applied to software product lines until our thesis. We
give an overview about this topic’s research in the next paragraph.

69

Abstract Contracts

Hähnle and Schaefer [2012] apply the Liskov principle to delta-oriented programming.
They aim to provide an approach for proof reuse as software changes often. However,
the approach is rather restrictive. So, Hähnle et al. [2013b] proposed abstract contracts
as a mean to increase proof reuse potential. They use abstract contracts to provide
placeholders that are independent from the actual contract and can be verified regardless
whether implementation or contract change. The concept is further extended by Bubel
et al. [2014]. They also extend abstract contracts to abstract invariants and provide
tool support. Furthermore, they evaluate their implementation and find that, for code
evolution, abstract contracts reduce the number of proof steps. We adopt the concept of
abstract contracts for our concept in order to both realize feature module dependencies
in the feature stubs and increase reuse potential of proofs. Bubel et al. [2014] also
examine an intermediate concept of partially abstract contracts, whose assignable
clause is not abstract but concrete. They find partially abstract contracts achieve
higher savings regarding proof steps. However, they use abstract contracts for regular
programs, while we use them for software product lines.

Other Topics

Thüm et al. [2013] discuss the issue of determining inconsistencies between a feature’s
behaviour and its specification. To solve this issue, they propose a new feature composi-
tion mechanism that includes behavioural feature interfaces. These interfaces can then
be used to determine faulty features. In the metaproduct, when the theorem prover
cannot close all goals, it is difficult to determine the feature or feature combination
causing this problem. Behavioural feature interfaces provide a mechanism for an easier
localization of such errors.

A focus of our thesis is code evolution of software product lines. Passos et al. [2013a]
discuss relevant aspects of code evolution from a feature-oriented perspective. Among
other things, these aspects were consistency checking, change impact analysis and con-
siderations regarding the general architecture of a software product line. In our work,
we need change impact analysis for re-verification checks of feature stubs. When a
software product line evolves after performing our feature-based verification, a previous
proof of a feature might be invalidated. A change impact analysis on the respective
feature stub can help determine whether a re-verification is necessary or if the proof is
still valid.

70 6. Related Work

7. Conclusion

Software product lines represent a mechanism to develop a set of program variants with
a common code base. By that, they provide several chances to reduce the overall costs
of development. First, they make it possible to reuse existing code instead of developing
each variant from the beginning or copying the code from different projects. Software
product lines also reduce the effort to fix errors in the code, because an error only needs
to be fixed once per software product line and not for each variant individually. This
incorporated variability is implemented by features. Each feature represents a behaviour
of a software visible to the user of the software. Different features interact with each
other to realize a variant’s desired functionality. However, due to these interactions,
new errors can be introduced.

A software’s behaviour can be verified. A verification becomes especially important
when software artefacts are used in safety-critical systems. Theorem provers are tools
for the verifications of software. If the software’s behaviour is specified, they can use
this specification to prove a program’s correctness with respect to their contracts. For
regular programs, theorem proving techniques are advanced, but for software product
lines, theorem proving is more complex and difficult. Three main strategies were estab-
lished as means to verify product lines. Product-based approaches generate all variants
of a software product line and verify them individually. In family-based approaches, ei-
ther the theorem prover is extended to support software product lines or a metaproduct
is generated, that incorporates a software product line’s variability in both implemen-
tation and specification. This metaproduct is then verified. Finally, for feature-based
approaches, features are verified in isolation. As these different strategies come with
benefits and weaknesses, combinations of them were suggested.

In this work, we developed a verification strategy that combines a feature-based and a
family-based approach. Our goal was to create an approach that provides the possibility
of reusing created proofs in a previous verification. We combined these two strategies
as family-based strategies require the metaproduct to be generated completely each

72 7. Conclusion

time a verification is performed. Therefore, nothing is considered to be reused. To
increase the reuse potential, we performed a feature-based verification. Feature-based
verification had not been realized before because features interact with each other and
these interactions cannot be realized by a solely feature-based approach. To realize
at least intentional feature interactions, we created feature stubs and transformed all
concrete contracts into abstract contracts. Abstract contracts contain placeholders that
represent the different clauses of a contract and can be used to reason about a method’s
correctness without a concrete definition. However, if not all placeholders are defined,
not all proof goals can be closed. Then we performed the feature-based theorem proving
of the feature stubs and then saved the created partial proofs. In the family-based, we
created a metaproduct that incorporates the variability of the software product line
and can therefore simulate all its products. To be able to able to reapply the proofs
obtained in the feature-based verification, we also generate all method contracts as
abstract contracts. After replaying the partial proofs on the metaproduct, the proofs
can be closed by a theorem prover.

We also provide tool support with this work. Our tool supports the feature-based
phase. In particular, it creates feature stubs with the necessary abstract contracts.
After the generation, each stub is verified. We implemented our tool as an extension to
FeatureIDE and FeatureHouse as well as the theorem prover KeY.

To evaluate our concept, we verified the BankAccount SPL with five different ap-
proaches in six different versions. These approaches include a family-based approach,
our new feature-family-based approach and three intermediate approaches to make an
analysis, which of the used concepts cause which effect, easier. We used FeatureIDE
to generate the feature stubs and metaproducts and KeY to perform the verification.
We were able to reduce the overall amount of proof steps for the verification by 65%
and reduce the verification time by 50% compared to the family-based approach. Fur-
thermore, in our approach, we reused around 8.5% of the proofs. However, these gains
come with a large management overhead.

Future work should expand tool support for two reasons. First, most of the overhead
work can be automated for example the metaproduct generation or the checking process
before each feature-based verification, if a feature must be verified again or if its existing
proof is still valid. Second, we discussed the limits of our evaluation in Chapter 5 due
to the missing tool support. With a full tool support, the different approaches could be
compared more fairly regarding their computation time.

In other work, feature-based verification was used to obtain proofs that can be reused
for a subsequent product-based verification. However, they were never combined with
abstract contracts. Future work should examine whether feature-based approaches
combined with abstract contracts provide a good base for a subsequent product-based
verification. They are not able to compensate the inherent weaknesses of product-based
approaches, but may help reducing the amount of verification.

In our family-based phase, we used a metaproduct that made several compromises in
order to provide compatibility with proof reuse. Future work should examine whether

73

a metaproduct in a different structure is able to provide similarly good support for
proof reuse. Especially, the handling of constructors and the calling hierarchy should
be explored.

For our evaluation, we elaborated on parameters, in which family-based approaches
might differ from each other. This discussion should be intensified as it can be help-
ful to examine the effects of different parameter values on both verification time and
proof steps. Especially, the advantages and disadvantages of Method Inlining and Use
Contracts for software product line verification should be analyzed. A more advanced
analysis can also help with creating not yet known approaches by combining parameter
values. The last of our intermediate approaches seems to be a promising candidate for
further examination.

We only evaluated our approach with one software product line and in comparison
family-based approaches. As mentioned above, there are also feature-product-based
approaches and solely product-based approaches. These should also be compared with
our approach.

In this work, we only focussed on method contracts. However, the concept of abstract
contracts has been expanded to class invariants as well. Therefore, the effects of abstract
invariants for product line verification should also be explored. Finally, abstract method
contracts focus on the most basic constructs of JML. Other JML keywords may also be
used for abstract contracts.

For this thesis, we limited the scope to explicit contract refinement. There are other
ways of contract composition (e.g., contract overriding, conjunctive contract refinement,
or consecutive contract refinement), though. Hence, future research should extend our
metaproduct generation to these contract composition mechanisms as well.

Existing contract composition mechanisms for feature-oriented programming mainly
consider pre- and postconditions, but there is no established way of handling
assignable clauses. For practicality reasons, we merge assignable clauses over
different refinements and calls to other features’ methods for the metaproduct. Fu-
ture work should determine how to proceed with assignable clauses for product
derivation for the different mechanisms.

74 7. Conclusion

A. Appendix

In this appendix, we present the feature stubs of features BankAccount and Transaction-
Log in their entirety. We show them as code listings and provide additional information
on their structure.

Feature Stub of Feature BankAccount

The feature stub consists of four classes. As BankAccount is the base feature of
the software poduct line, it has no feature module dependencies. Therefore,
the feature stub is very similar to the feature itself. First, the feature stub includes
the FeatureModel class, which we show in Listing A.1. The class only contains the
feature variable BankAccount.

1 package FM;
2 public class FeatureModel {
3 public static boolean BankAccount;
4 }

Listing A.1: Class FeatureModel For Feature Stub of Feature DailyLimit

The second class represents the role Main from the feature. We show the class in List-
ing A.2. The class is not relevant for the feature stub generation, as none of its methods
contains any contract. Therefore, it is adopted from the feature module without any
changes.

1 public class Main {
2 public static void main(String[] args) {
3 new Main();
4 }
5
6 private Object a;
7 private Object b;

76 A. Appendix

8
9 public Main() {

10 a = new Application();
11 b = new Application();
12 getA().account.update(100);
13 getB().account.update(200);
14 getA().nextDay();
15 getB().nextYear();
16 }
17
18 private Application getA() {
19 return (Application)a;
20 }
21
22 private Application getB() {
23 return (Application)b;
24 }
25 }

Listing A.2: Class Main For Feature Stub of Feature BankAccount

The third class represents the role Account from the feature. We show the class in
Listing A.3. The class only contains methods and fields that were already part of the
respective role in the feature, but the contracts of methods update and undoUpdate
as well as the constructor are transformed into abstract contracts.

1 public class Account {
2 public final int OVERDRAFT_LIMIT = 0;
3
4 /∗@ public invariant this.balance >= OVERDRAFT_LIMIT; ∗/
5 public int balance = 0;
6
7 /∗@
8 @ requires_abs AccountR;
9 @ def AccountR = FM.FeatureModel.BankAccount;

10 @ ensures_abs AccountE;
11 @ def AccountE = balance == 0;
12 @ assignable_abs AccountA;
13 @ def AccountA = \nothing;
14 @∗/
15 Account() {
16 }
17
18 /∗@ requires_abs update_BankAccountR;
19 @ def update_BankAccountR = x != 0
20 @ && FM.FeatureModel.BankAccount;
21 @ ensures_abs update_BankAccountE;
22 @ def update_BankAccountE =
23 @ (!\result ==> balance == \old(balance))
24 @ && (\result ==> balance == \old(balance) + x);
25 @ assignable_abs update_BankAccountA;
26 @ def update_BankAccountA = balance;
27 @∗/

77

28 boolean update(int x) {
29 int newBalance = balance + x;
30 if (newBalance < OVERDRAFT_LIMIT)
31 return false;
32 balance = balance + x;
33 return true;
34 }
35
36 /∗@ requires_abs undoUpdate_BankAccountR;
37 @ def undoUpdate_BankAccountR = FM.FeatureModel.BankAccount;
38 @ ensures_abs undoUpdate_BankAccountE;
39 @ def undoUpdate_BankAccountE =
40 @ (!\result ==> balance == \old(balance))
41 @ && (\result ==> balance == \old(balance) − x);
42 @ assignable_abs undoUpdate_BankAccountA;
43 @ def undoUpdate_BankAccountA = balance;
44 @∗/
45 boolean undoUpdate(int x) {
46 int newBalance = balance − x;
47 if (newBalance < OVERDRAFT_LIMIT)
48 return false;
49 balance = newBalance;
50 return true;
51 }
52
53 }

Listing A.3: Class Account For Feature Stub of Feature BankAccount

The final class of the feature stub represents the role Application from the feature.
We show the class in Listing A.3. The class only contains methods and fields that were
already part of the respective role in the feature, but the contracts of methods update
and undoUpdate, as well as the constructor are transformed into abstract contracts.

1 public class Application {
2 /∗@ public invariant account != null ∗/
3 public Account account = new Account();
4
5 /∗@ requires_abs nextDay_BankAccountR;
6 @ def nextDay_BankAccountR = FM.FeatureModel.BankAccount;
7 @ ensures_abs nextDay_BankAccountE;
8 @ assignable_abs nextDay_BankAccountA;
9 @∗/

10 void nextDay() {
11 }
12
13 /∗@ public normal_behavior
14 @ requires_abs nextYear_BankAccountR;
15 @ def nextYear_BankAccountR = true;
16 @ ensures_abs nextYear_BankAccountE;
17 @ assignable_abs nextYear_BankAccountA;
18 @ def nextYear_BankAccountA = \nothing;
19 @∗/

78 A. Appendix

20 void nextYear() {
21 }
22
23 }

Listing A.4: Class Application For Feature Stub of Feature BankAccount

Feature Stub of Feature TransactionLog

The feature stub of feature TransactionLog consists of five classes. Feature Transac-
tionLog has feature module dependencies to at least two features. Therefore,
the feature stub contains some more method and field prototype than the feature stub
for feature BankAccount. It also includes the FeatureModel class, which we show in
Listing A.5. The class only contains the feature variable TransactionLog.

1 package FM;
2 public class FeatureModel {
3 public static boolean TransactionLog;
4 }

Listing A.5: Class FeatureModel For Feature Stub of Feature TransactionLog

The first class of the feature stub, which we show in Listing A.6, represents the
role Transaction from the feature. The role originally only consists of method
transfer. This method is a refinement of method transfer of feature Transac-
tion. The method includes a call to a previous implementation of itself by means
of the keyword original. For the feature stub, we generate a method prototype
transfer_original_TransactionLog and the keyword is replaced by a call to
that method prototype. The contract of transfer includes the keyword original,
which is used in explicit contract refinement to include contracts from previous re-
finements. As we ignore other features for the feature stub generation, we do not
only transform the method’s concrete contract but also remove the concrete sec-
tion of the contract. Similar can be said for the contract of the method prototype
transfer_original_TransactionLog. We do not know, which method is the
most previous refinement or its contract. Therefore, we enrich the method only with
the abstract section of an abstract contract.

1 public class Transaction {
2 /∗@ public invariant transactions.length == 10; ∗/
3 /∗@ public invariant transactionCounter > 0 &&
4 @ transactionCounter < 10; ∗/
5 public LogEntry[] transactions = new LogEntry[10];
6 int transactionCounter = 0;
7
8 /∗@ requires_abs transfer_TransactionLogR;
9 @ ensures_abs transfer_TransactionLogE;

10 @ assignable_abs transfer_TransactionLogA;
11 @∗/
12 boolean transfer(Account source, Account destination, int amount) {

79

13 if (transfer_original_TransactionLog(source, destination,
14 amount)) {
15 transactionCounter = (transactionCounter + 1) % 10;
16 transactions[transactionCounter] = new LogEntry(source,
17 destination, amount);
18 return true;
19 }
20 return false;
21 }
22
23 /∗method prototype∗/
24 /∗@ requires_abs transfer_original_TransactionLogR;
25 @ ensures_abs transfer_original_TransactionLogE;
26 @ assignable_abs transfer_original_TransactionLogA;
27 @∗/
28 boolean transfer_original_TransactionLog(Account source,
29 Account destination, int amount){}
30 }

Listing A.6: Class Application For Feature Stub of Feature TransactionLog

The third class is LogEntry, which we show in Listing A.7. This class is not a role
in feature TransactionLog. We create this class, as there is a LogEntry array in
the Transaction class. Furthermore, we create the constructor prototype, because
method transfer in class Transaction creates a new LogEntry object.

1 public class LogEntry{
2
3 /∗method prototype∗/ /
4 ∗@ requires_abs LogEntryR;
5 @ ensures_abs LogEntryE;
6 @ assignable_abs LogEntryA;
7 @∗/
8 public LogEntry(Account source, Account destination, int amount){}
9

10 }

Listing A.7: Class LogEntry For Feature Stub of Feature TransactionLog

The last class of the feature stub is LogEntry. We show it in Listing A.8. This
class was not a role in feature TransactionLog. We create this class, because method
transfer of class Transaction has two parameters of the type Account and we
need to match this type access. However, as there is no access to a method or a field
from class Account, we only need an empty class.

1 public class Account{}

Listing A.8: Class LogEntry For Feature Stub of Feature TransactionLog

80 A. Appendix

B. Appendix

In this appendix, we discuss changes we made on the BankAccount SPL in order to be
able to verify its metaproduct by using the contracts instead of Method Inlining. For
that purpose, we show the listings of the roles of BankAccount SPL that we needed
to change. In the listings of the original version, we already added the assignable
clauses by hand because they are part of our concept anyway and are not just added be-
cause of our goal to use contracts instead of Method Inlining. As showing the complete
listings of the changed roles of BankAccount SPL would create many redundancies, we
only show the parts of the listings with the changes. We also do not discuss any change
made on its own but instead group them in categories.

In Section A.1, we show the listings of the original BankAccount SPL. Subsequently,
we discuss the adjustments, we need to make in Section A.2. We conclude the appendix
with showing the new roles in Section A.3.

Original Version of BankAccount SPL

1 public class Account {
2 public final int OVERDRAFT_LIMIT = 0;
3
4 /∗@ public invariant this.balance >= OVERDRAFT_LIMIT; ∗/
5 public int balance = 0;
6
7 /∗@ ensures balance == 0;
8 @ assignable \nothing; @∗/
9 Account() {

10 }
11
12 /∗@ requires x != 0;
13 @ ensures (!\result ==> balance == \old(balance))
14 @ && (\result ==> balance == \old(balance) + x);
15 @ assignable balance; @∗/

82 B. Appendix

16 boolean update(int x) {
17 int newBalance = balance + x;
18 if (newBalance < OVERDRAFT_LIMIT)
19 return false;
20 balance = balance + x;
21 return true;
22 }
23
24 /∗@ ensures (!\result ==> balance == \old(balance))
25 @ && (\result ==> balance == \old(balance) − x);
26 @ assignable balance; @∗/
27 boolean undoUpdate(int x) {
28 int newBalance = balance − x;
29 if (newBalance < OVERDRAFT_LIMIT)
30 return false;
31 balance = newBalance;
32 return true;
33 }
34
35 }

Listing B.1: Original Role Account of Feature BankAccount

1 public class Application {
2 /∗@ public invariant account != null; ∗/
3 public Account account = new Account();
4
5 /∗@ requires true;
6 @ assignable \nothing; @∗/
7 void nextDay() {
8 }
9

10 /∗@ assignable \nothing; @∗/
11 void nextYear() {
12 }
13 }

Listing B.2: Original Role Application of Feature BankAccount

1 class Account {
2 final static int INTEREST_RATE = 2;
3 int interest = 0;
4
5 /∗@ ensures (balance >= 0 ==> \result >= 0)
6 @ && (balance <= 0 ==> \result <= 0);
7 @ assignable \nothing; @∗/
8 int calculateInterest() {
9 return balance ∗ INTEREST_RATE / 36500;

10 }
11 }

Listing B.3: Original Role Account of Feature Interest

83

1 public class Account {
2 public int[] updates = new int[10];
3 public int updateCounter = 0;
4 public int[] undoUpdates = new int[10];
5 public int undoUpdateCounter = 0;
6
7 /∗@ ensures \original;
8 @ ensures \result ==> this.updates[this.updateCounter] == x;
9 @ ensures \result ==> this.updateCounter ==

10 @ (\old(this.updateCounter) + 1) % 10;
11 @ ensures !\result ==>this.updateCounter == \old(this.updateCounter);
12 @∗/
13 boolean update(int x){
14 if (original(x)){
15 updateCounter = (updateCounter + 1) % 10;
16 updates[updateCounter] = x;
17 return true;
18 }
19 return false;
20 }
21
22 /∗@ ensures \original;
23 @ ensures \result ==> this.undoUpdates[this.undoUpdateCounter] == x;
24 @ ensures \result ==> this.undoUpdateCounter ==
25 @ (\old(this.undoUpdateCounter) + 1) % 10;
26 @ ensures !\result ==> this.undoUpdateCounter ==
27 @ \old(this.undoUpdateCounter); @∗/
28 boolean undoUpdate(int x){
29 if (original(x)){
30 undoUpdateCounter = (undoUpdateCounter + 1) % 10;
31 undoUpdates[undoUpdateCounter] = x;
32 return true;
33 }
34 return false;
35 }
36 }

Listing B.4: Original Role Account of Feature Logging

1 public class LogEntry {
2 /∗@ private invariant source != null; @∗/
3 private Account source;
4 /∗@ private invariant destination != null;@∗/
5 private Account destination;
6 private int value;
7
8 /∗@ requires source != null;
9 @ requires destination != null;

10 @ requires source != destination;
11 @ assignable this.source, this.destination, this.value; @∗/
12 public LogEntry(Account source,Account destination,int amount){
13 this.source = source;

84 B. Appendix

14 this.destination = destination;
15 this.value = amount;
16 }
17
18 /∗@ ensures \result != null;
19 @ assignable \nothing; @∗/
20 public Account getSource(){
21 return source;
22 }
23
24 /∗@ ensures \result != null;
25 @ assignable \nothing; @∗/
26 public Account getDestination(){
27 return destination;
28 }
29
30 /∗@ assignable \nothing; @∗/
31 public int getAmount(){
32 return value;
33 }
34 }

Listing B.5: Original Role LogEntry of Feature Logging

1 public class Transaction {
2 /∗@ requires destination != null && source != null;
3 requires source != destination;
4 ensures \result ==> (\old(destination.balance) + amount ==
5 destination.balance);
6 ensures \result ==> (\old(source.balance) − amount ==
7 source.balance);
8 ensures !\result ==> (\old(destination.balance) ==
9 destination.balance);

10 ensures !\result ==> (\old(source.balance) ==
11 source.balance);
12 assignable source.lock, destination.lock, source.balance,
13 destination.balance, source.withdraw, destination.withdraw @∗/
14 public boolean transfer(Account source, Account destination,
15 int amount) {
16 if (!lock(source, destination)) return false;
17 try {
18 if (amount <= 0) {
19 return false;
20 }
21 if (!source.update(amount ∗ −1)) {
22 return false;
23 }
24 if (!destination.update(amount)) {
25 source.undoUpdate(amount ∗ −1);
26 return false;
27 }
28 return true;
29 } finally {

85

30 source.unLock();
31 destination.unLock();
32 }
33 }
34
35 /∗@ requires destination != null && source != null;
36 requires source != destination;
37 ensures \result ==> source.isLocked() && destination.isLocked();
38 assignable source.lock, destination.lock; @∗/
39 private static synchronized boolean lock(Account source,
40 Account destination) {
41 if (source.isLocked()) return false;
42 if (destination.isLocked()) return false;
43 source.lock();
44 destination.lock();
45 return true;
46 }
47 }

Listing B.6: Original Role Transaction of Feature Transaction

1 public class Transaction {
2 /∗@ public invariant transactions.length == 10; ∗/
3 public LogEntry[] transactions = new LogEntry[10];
4 int transactionCounter = 0;
5
6 /∗@ requires \original;
7 requires \invariant_for(source) && \invariant_for(destination)
8 && (\disjoint(source.∗, destination.∗);
9 ensures \original;

10 ensures \result ==> (transactionCounter ==
11 (\old(transactionCounter) + 1) % 10);
12 ensures !\result ==> (transactionCounter ==
13 \old(transactionCounter));
14 assignable transactionCounter, transactions[∗], source.
15 updateCounter, source.updates[∗], destination.updateCounter,
16 destination.updates[∗], source.undoUpdateCounter, source.
17 undoUpdates[∗], destination.undoUpdateCounter, destination.
18 undoUpdates[∗];@∗/
19 boolean transfer(Account source, Account destination, int amount) {
20 if (original(source, destination, amount)) {
21 transactionCounter = (transactionCounter + 1) % 10;
22 transactions[transactionCounter] = new LogEntry(source,
23 destination, amount);
24 return true;
25 }
26 return false;
27 }
28 }

Listing B.7: Original Role Transaction of Feature TransactionLog

86 B. Appendix

Adjustments

Normal Behavior

For all methods, including constructors, we add the JML keyword normal_behavior
to the contract. The keyword is used to define that a method must not throw an
exception if its preconditions are fulfilled [Leavens et al., 2006]. We show the keyword
in all of the listings below.

Class Invariants

In role Account of feature BankAccount (see Listing B.1), we remove the invariant
this.balance >= OVERDRAFT_LIMIT and add this condition as an ensures clause
to methods update and undoUpdate in the same role. We show the result in List-
ing B.8.

We extend the invariant in role Application of feature BankAccount (see Listing B.2)
with \invariant_for(account). The keyword invariant_for is used to de-
fine, that the parameter has to fulfill the invariants of the class it is an instance of [Leav-
ens et al., 2008]. In order for the theorem prover to know which invariants it has to
prove we add a second invariant to the role. The invariant \typeof(account) ==
\type(Account) states, that the field account is of type Account [Leavens et al.,
2008]. We show the resulting role in Listing B.9.

In role Account of feature Logging, which we show in Listing B.4, there are two
int array fields that store account updates and two int fields that save the cur-
rent position in the array. The arrays have a size of ten elements. To tell the
theorem prover their size, we add the invariants updates.length == 10 and
undoUpdates.length == 10. Additionally, we define the two counters’ values be-
tween 0 and 9 with the invariants updateCounter >= 0 && updateCounter
< 10 and undoUpdateCounter >=0 && undoUpdateCounter < 10. We also
add the invariant undoUpdates != updates to the role and show the result in List-
ing B.11.

In role Transaction of feature TransactionLog, there is a similar issue as in
role Account. We show role Transaction in Listing B.7. The role includes one
array field of the type LogEntry that stores the ten last transactions and an int
field that serves as a position pointer for the array. Therefore we also add the invari-
ant transactionCounter >= 0 && transactionCounter < 10, so that the
counter’s value cannot be bigger than the arrays size or smaller than zero. Furthermore,
we also add the invariant \typeof(transactions) == \type(LogEntry [] to
define that the array has the type LogEntry. We present the new role in Listing B.14.

Individual Changes in Method Contracts

For method calculateInterest, whose original role we show in Listing B.3, we add
the ensures clause (\result== calculateInterest()). The clause is needed

87

for method estimateInterest of role Account in feature InterestEstimation. This
method both calls calculateInterest in its implementation and its contract. The
additional ensures clause makes sure, that both calls lead to the same result. We
show the new contract for method calculateInterest in Listing B.10.

In role Transaction of feature Transaction(see Listing B.6), we
add two requires clauses to method transfer. First, we add
\invariant_for(source) && \invariant_for(destination) to define,
that the the two method parameters must hold the invariant of their class Account.
We also add the requires clause \disjoint(source.∗, destination.∗).
The keyword disjoint means, that its parameters do not share anything on the
heap[Albert et al., 2011]. The existing clause requires is subsumed by our new
clause, therefore we remove it. We show the result in Listing B.13. We add the perform
the same adjustments for the contract of method lock of the same role.

Finally, we change the contract of constrcutor of role LogEntry. We show the the
original role in Listing B.5. We add an ensures clause defining that the constructor
sets the three fields of the class to ensure callers that the fields are set. We show the
new version of the role in Listing B.12.

New Version of BankAccount SPL
1 public class Account {
2 [...]
3 /∗@ public normal_behavior
4 @ requires x != 0;
5 @ ensures ((\old(balance) + x < OVERDRAFT_LIMIT) <==> !\result);
6 @ ensures (!\result ==> balance == \old(balance))
7 @ ensures (\result ==> balance == \old(balance) + x);
8 @ assignable balance; @∗/
9 boolean update(int x) {

10 [...]
11 }
12
13 /∗@ public normal_behavior
14 @ ensures ((\old(balance) − x < OVERDRAFT_LIMIT) <==> !\result);
15 @ ensures (!\result ==> balance == \old(balance))
16 && (\result ==> balance == \old(balance) − x);
17 assignable balance; @∗/
18 boolean undoUpdate(int x) {
19 [...]
20 }
21 }

Listing B.8: New Role Account of Feature BankAccount

1 public class Application {
2 /∗@ public invariant (account != null) && \invariant_for(account); @∗/
3 /∗@ public invariant \typeof(account) == \type(Account);∗/
4 public Account account = new Account();

88 B. Appendix

5 [...]
6 }

Listing B.9: New Role Application of Feature BankAccount

1 class Account {
2 final static int INTEREST_RATE = 2;
3 int interest = 0;
4
5 /∗@ public normal_behavior
6 @ ensures (balance >= 0 ==> \result >= 0)
7 @ && (balance <= 0 ==> \result <= 0);
8 @ ensures \result == calculateInterest();
9 @ assignable \nothing; @∗/

10 int calculateInterest() {
11 return balance ∗ INTEREST_RATE / 36500;
12 }
13 }

Listing B.10: New Role Account of Feature Interest

1 public class Account {
2
3 /∗@ public invariant updates.length == 10; @∗/
4 /∗@ public invariant updateCounter >= 0 && updateCounter < 10; @∗/
5 /∗@ public invariant undoUpdates.length == 10; @∗/
6 /∗@ public invariant undoUpdates != updates; @∗/
7 /∗@ public invariant undoUpdateCounter >= 0 && undoUpdateCounter < 10;@∗/
8 public int[] updates = new int[10];
9 public int updateCounter = 0;

10 public int[] undoUpdates = new int[10];
11 public int undoUpdateCounter = 0;
12
13 /∗@ public normal_behavior
14 @ ensures \original;
15 @ ensures \result ==> this.updates[this.updateCounter] == x;
16 @ ensures \result ==> this.updateCounter ==
17 @ (\old(this.updateCounter) + 1) % 10;
18 @ ensures !\result ==> this.updateCounter ==
19 @ \old(this.updateCounter);
20 @ assignable updateCounter, updates[∗]; @∗/
21 boolean update(int x){
22 [...]
23 }
24
25 /∗@ public normal_behavior
26 @ ensures \original;
27 @ ensures \result ==> this.undoUpdates[this.undoUpdateCounter] == x;
28 @ ensures \result ==> this.undoUpdateCounter ==
29 @ (\old(this.undoUpdateCounter) + 1) % 10;
30 @ ensures !\result ==> this.undoUpdateCounter ==
31 @ \old(this.undoUpdateCounter);
32 @ assignable undoUpdateCounter, undoUpdates[∗]; @∗/

89

33 boolean undoUpdate(int x){
34 [...]
35 }
36 }

Listing B.11: New Role Account of Feature Logging

1 public class LogEntry {
2 /∗@ private invariant source != null;@∗/
3 private Account source;
4 /∗@ private invariant destination != null;@∗/
5 private Account destination;
6 private int value;
7
8 /∗@ public normal_behavior
9 @ requires source != null;

10 @ requires destination != null;
11 @ requires source != destination;
12 @ ensures this.source == source && this.destination
13 @ == destination && this.value == amount;
14 @ assignable this.source, this.destination, this.value; @∗/
15 public LogEntry(Account source,Account destination,int amount){
16 this.source = source;
17 this.destination = destination;
18 this.value = amount;
19 }
20 [...]
21 }

Listing B.12: New Role LogEntry of Feature Logging

1 public class Transaction {
2
3 /∗@ public normal_behavior
4 requires destination != null && source != null;
5 requires \invariant_for(source) && \invariant_for(destination)
6 && (\disjoint(source.∗, destination.∗);
7 ensures \result ==> (\old(destination.balance) + amount ==
8 destination.balance);
9 ensures \result ==> (\old(source.balance) − amount ==

10 source.balance);
11 ensures !\result ==> (\old(destination.balance) ==
12 destination.balance);
13 ensures !\result ==> (\old(source.balance) == source.balance);
14 assignable source.lock, destination.lock, source.balance,
15 destination.balance, source.withdraw, destination.withdraw @∗/
16 public boolean transfer(Account source, Account destination,
17 int amount) {
18 [...]
19 }
20
21 /∗@ public normal_behavior
22 requires destination != null && source != null;

90 B. Appendix

23 requires \invariant_for(source) && \invariant_for(destination)
24 && (\disjoint(source.∗, destination.∗);
25 ensures \result ==> source.isLocked() && destination.isLocked();
26 assignable source.lock, destination.lock; @∗/
27 private static synchronized boolean lock(Account source,
28 Account destination) {
29 [...]
30 }
31 }

Listing B.13: New Role Transaction of Feature Transaction

1 public class Transaction {
2 /∗@ public invariant transactions.length == 10; ∗/
3 /∗@ public invariant \typeof(transactions) == \type(LogEntry []);@∗/
4 public LogEntry[] transactions = new LogEntry[10];
5
6 /∗@ public invariant transactionCounter >= 0
7 && transactionCounter < 10;@∗/
8 int transactionCounter = 0;
9

10 /∗@ public normal_behavior
11 @ requires \original;
12 @ ensures \original;
13 @ ensures \result ==> (transactionCounter ==
14 @ (\old(transactionCounter) + 1) % 10);
15 @ ensures !\result ==> (transactionCounter ==
16 @ \old(transactionCounter));
17 @ assignable transactionCounter, transactions[∗], source.
18 @ updateCounter, source.updates[∗], destination.updateCounter,
19 @ source.undoUpdateCounter, source.undoUpdates[∗],
20 @ destination.updates[∗], destination.undoUpdateCounter,
21 @ destination.undoUpdates[∗];@∗/
22 boolean transfer(Account source, Account destination, int amount) {
23 [...]
24 }
25 }

Listing B.14: New Role Transaction of Feature TransactionLog

Bibliography

Ahrendt, W., Beckert, B., Bruns, D., Bubel, R., Gladisch, C., Grebing, S., Hähnle,
R., Hentschel, M., Herda, M., Klebanov, V., Mostowski, W., Scheben, C., Schmitt,
P. H., and Ulbrich, M. (2014). The KeY platform for verification and analysis of Java
programs. In Giannakopoulou, D. and Kroening, D., editors, Verified Software: The-
ories, Tools, and Experiments (VSTTE 2014), Lecture Notes in Computer Science.
Springer. To appear. (cited on Page 43)

Albert, E., Bubel, R., Genaim, S., Hähnle, R., Puebla, G., and Román-Dı́ez, G. (2011).
Verified resource guarantees using costa and key. In Proceedings of the 20th ACM
SIGPLAN workshop on Partial evaluation and program manipulation, pages 73–76.
ACM. (cited on Page 87)

Apel, S., Batory, D., Kästner, C., and Saake, G. (2013a). Feature-Oriented Software
Product Lines: Concepts and Implementation. Springer, Berlin, Heidelberg. (cited

on Page 1, 5, 6, and 8)

Apel, S. and Kästner, C. (2009). An overview of feature-oriented software development.
J. Object Technology (JOT), 8(5):49–84. (cited on Page 8)

Apel, S., Kästner, C., Größlinger, A., and Lengauer, C. (2010a). Type safety for feature-
oriented product lines. Automated Software Engineering, 17(3):251–300. (cited on

Page 17 and 67)

Apel, S., Kästner, C., and Lengauer, C. (2008). Feature featherweight Java: A calculus
for feature-oriented programming and stepwise refinement. In Proc. Int’l Conf. Gen-
erative Programming: Concepts & Experiences (GPCE), pages 101–112, New York,
NY, USA. ACM. (cited on Page 17 and 67)

Apel, S., Kästner, C., and Lengauer, C. (2013b). Language-Independent and Auto-
mated Software Composition: The FeatureHouse Experience. IEEE Trans. Software
Engineering (TSE), 39(1):63–79. (cited on Page 2, 8, 42, and 43)

Apel, S., Kolesnikov, S., Liebig, J., Kästner, C., Kuhlemann, M., and Leich, T. (2012).
Access control in feature-oriented programming. Science of Computer Programming
(SCP), 77(3):174–187. (cited on Page 43)

92 Bibliography

Apel, S., Kolesnikov, S., Siegmund, N., Kästner, C., and Garvin, B. (2013c). Exploring
feature interactions in the wild: The new feature-interaction challenge. In Proceedings
of the 5th International Workshop on Feature-Oriented Software Development, FOSD
’13, pages 1–8, New York, NY, USA. ACM. (cited on Page 13)

Apel, S. and Lengauer, C. (2008). Superimposition: A language-independent approach
to software composition. In Proc. Int’l Symposium Software Composition -SC, pages
20–35. (cited on Page 8)

Apel, S., Rhein, A. v., Thüm, T., and Kästner, C. (2013d). Feature-interaction detection
based on feature-based specifications. Computer Networks, 57(12):2399–2409. (cited

on Page 16)

Apel, S., Rhein, A. v., Wendler, P., Größlinger, A., and Beyer, D. (2013e). Strategies for
product-line verification: Case studies and experiments. In Proc. Int’l Conf. Software
Engineering (ICSE), pages 482–491, Piscataway. IEEE. (cited on Page 2, 30, 31, 56,

and 68)

Apel, S., Scholz, W., Lengauer, C., and Kästner, C. (2010b). Detecting dependences and
interactions in feature-oriented design. In Proc. Int’l Symposium Software Reliability
Engineering (ISSRE), pages 161–170, Washington, DC, USA. IEEE. (cited on Page 16)

Apel, S., Speidel, H., Wendler, P., Rhein, A. v., and Beyer, D. (2011). Feature-aware
verification. (cited on Page 67)

Barnett, M., Fähndrich, M., Leino, K. Rustan M., Müller, P., Schulte, W., and Venter,
H. (2011). Specification and verification: The spec# experience. Comm. ACM,
54(6):81–91. (cited on Page 11)

Batory, D. S. (2005). Feature models, grammars, and propositional formulas. In Proc.
Int’l Software Product Line Conf. (SPLC), volume 3714, pages 7–20, Berlin, Heidel-
berg. Springer. (cited on Page 6 and 7)

Beckert, B., Hähnle, R., and Schmitt, P. (2007). Verification of Object-Oriented Soft-
ware: The KeY Approach, volume 4334 of LNCS. Springer, Berlin, Heidelberg, New
York, London. (cited on Page 1, 2, 3, 12, 13, 38, and 43)

Benduhn, F. (2012). Contract-aware feature composition. Bachelor’s thesis, University
of Magdeburg, Germany. (cited on Page 42 and 43)

Bettini, L., Damiani, F., and Schaefer, I. (2014). Implementing type-safe software
product lines using parametric traits. Science of Computer Programming (SCP).
(cited on Page 67)

Beuche, D. (2003). Composition and Construction of Embedded Software Families. PhD
thesis, University of Magdeburg, Germany. (cited on Page 5)

Bibliography 93

Bontemps, Y., Heymans, P., Schobbens, P.-Y., and Trigaux, J.-C. (2004). Semantics
of feature diagrams. In Proc. Int’l Workshop Software Variability Management for
Product Derivation - Towards Tool Support (SVMPD). (cited on Page 7)

Bruns, D., Klebanov, V., and Schaefer, I. (2011). Verification of software product lines
with delta-oriented slicing. In Proc. Int’l Conf. Formal Verification of Object-Oriented
Software (FoVeOOS), volume 6528 of LNCS, pages 61–75, SpringerA. Springer. (cited

on Page 68)

Bubel, R., Din, C., and Hähnle, R. (2010). Verification of variable software: An expe-
rience report. In Proc. Int’l Conf. Formal Verification of Object-Oriented Software
(FoVeOOS), Karlsruhe and Germany. Technical Report 2010-13, Department of In-
formatics, Karlsruhe Institute of Technology. (cited on Page 67)

Bubel, R., Hähnle, R., and Pelevina, M. (2014). Fully abstract operation contracts.
In Proceedings 6th International Symposium On Leveraging Applications of Formal
Methods, LNCS. Springer. to appear. (cited on Page 14, 22, 51, 52, and 69)

Burdy, L., Cheon, Y., Cok, D. R., Ernst, M. D., Kiniry, J., Leavens, G. T., Leino, K.
Rustan M., and Poll, E. (2005). An overview of JML tools and applications. Int’l
J. Software Tools for Technology Transfer (STTT), 7(3):212–232. (cited on Page 11

and 12)

Calder, M., Kolberg, M., Magill, E. H., and Reiff-Marganiec, S. (2003). Feature interac-
tion: A critical review and considered forecast. Computer Networks, 41(1):115–141.
(cited on Page 16)

Calder, M. and Miller, A. (2006). Feature interaction detection by pairwise analysis
of ltl properties—a case study. Formal Methods in System Design, 28(3):213–261.
(cited on Page 16)

Classen, A., Heymans, P., Schobbens, P.-Y., Legay, A., and Raskin, J.-F. (2010). Model
checking lots of systems: Efficient verification of temporal properties in software
product lines. In Proc. Int’l Conf. Software Engineering (ICSE), pages 335–344,
New York, NY, USA. ACM. (cited on Page 67)

Clements, P. and Northrop, L. (2001). Software Product Lines: Practices and Patterns.
Addison-Wesley, Boston, MA, USA. (cited on Page 5)

Czarnecki, K. and Eisenecker, U. (2000). Generative Programming: Methods, Tools,
and Applications. ACM/Addison-Wesley, New York, NY, USA. (cited on Page 8)

Damiani, F., Dovland, J., Johnsen, E. B., Owe, O., Schäfer, I., and Chieh Yu, I. (2012).
A transformational proof system for delta-oriented programming: Proceedings of the
16th international software product line conference. In Santana de Almeida, Eduardo,
editor, Proceedings of the 16th International Software Product Line Conference, vol-
ume 2, pages 53–60, New York and NY and USA. ACM. (cited on Page 68)

94 Bibliography

Delaware, B., Cook, W., and Batory, D. (2011). Product lines of theorems. In Proc.
Conf. Object-Oriented Programming, Systems, Languages and Applications (OOP-
SLA), pages 595–608, New York, NY, USA. ACM. (cited on Page 68)

Delaware, B., d. S. Oliveira, Bruno C., and Schrijvers, T. (2013). Meta-theory à la
carte. In Proc. Conf. Principles of Programming Languages (POPL), pages 207–218,
New York, NY, USA. ACM. (cited on Page 68)

Ehrenberger, W. (2002). Software-Verifikation: Verfahren für den Zuverlässigkeitsnach-
weis von Software. Hanser, München, Wien. (cited on Page 12)

Fantechi, A. and Gnesi, S. (2008). Formal modeling for product families engineering. In
Proc. Int’l Software Product Line Conf. (SPLC), pages 193–202, Washington. IEEE
Computer. (cited on Page 67)

Gondal, A., Poppleton, M., and Butler, M. (2011). Composing event-b specifications:
Case-study experience. In Proc. Int’l Symposium Software Composition (SC), pages
100–115, Berlin, Heidelberg. Springer. (cited on Page 68)

Haber, A., Rendel, H., Rumpe, B., and Schaefer, I. (2012). Evolving delta-oriented
software product line architectures. In Monterey, volume 7539 of LNCS, pages 183–
208, Berlin, Heidelberg, New York, London. Springer. (cited on Page 8)

Hähnle, R. and Schaefer, I. (2012). A Liskov principle for delta-oriented programming.
In Margaria, T. and Steffen, B., editors, Leveraging Applications of Formal Methods,
Verification and Validation. Technologies for Mastering Change, volume 1, pages 32–
46, Berlin, Heidelberg. Springer Berlin Heidelberg. (cited on Page 14 and 69)

Hähnle, R., Schaefer, I., and Bubel, R. (2013a). Reuse in software verification by
abstract method calls. In Proc. Int’l Conf. Automated Deduction (CADE), volume
7898 of LNCS, pages 300–314, Berlin, Heidelberg. Springer. (cited on Page 14)

Hähnle, R., Schaefer, I., and Bubel, R. (2013b). Reuse in software verification by
abstract method calls: 24th international conference on automated deduction, lake
placid, ny, usa, june 9-14, 2013. proceedings. In Bonacina, M. P., editor, Automated
Deduction – CADE-24, pages 300–314, Berlin and Heidelberg. Springer Berlin Hei-
delberg. (cited on Page 69)

Harhurin, A. and Hartmann, J. (2008). Towards consistent specifications of product
families. In Proc. Int’l Symposium Formal Methods (FM), pages 390–405, Berlin,
Heidelberg. Springer. (cited on Page 67)

Hatcliff, J., Leavens, G. T., Leino, K. Rustan M., Müller, P., and Parkinson, M. (2012).
Behavioral interface specification languages. ACM Computing Surveys, 44(3):16:1–
16:58. (cited on Page 1 and 11)

Hoare, C. A. R. (1969). An axiomatic basis for computer programming. Comm. ACM,
12(10):576–580. (cited on Page 11)

Bibliography 95

Istoan, P. (2013). Methodology for the Derivation of Product Behaviour in a Software
Product Line. PhD thesis, Université Rennes 1, Luxembourg. (cited on Page 17)

Jézéquel, J.-M. and Meyer, B. (1997). Design by contract: The lessons of ariane. IEEE
Computer, 30(1):129–130. (cited on Page 1 and 11)

Jörges, S., Lamprecht, A.-L., Margaria, T., Schaefer, I., and Steffen, B. (2012). A
constraint-based variability modeling framework. Int’l J. Software Tools for Technol-
ogy Transfer (STTT), 14(5):511–530. (cited on Page 67)

Kang, K. C., Lee, J., and Donohoe, P. (2002). Feature-oriented product line engineering.
IEEE Software, 19(4):58–65. (cited on Page 5 and 6)

Kästner, C., Apel, S., Thüm, T., and Saake, G. (2012). Type checking annotation-based
product lines. Trans. Software Engineering and Methodology (TOSEM), 21(3):14:1–
14:39. (cited on Page 17 and 67)

Kästner, C., Giarrusso, P. G., Rendel, T., Erdweg, S., Ostermann, K., and Berger, T.
(2011). Variability-aware parsing in the presence of lexical macros and conditional
compilation. In Proceedings of the Conference on Object-Oriented Programming,
Systems, Languages and Applications (OOPSLA), pages 805–824, New York, NY,
USA. ACM. (cited on Page 67)

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M.,
and Irwin, J. (1997). Aspect-oriented programming. In Proc. Europ. Conf. Object-
Oriented Programming (ECOOP), volume 1241 of LNCS, pages 220–242, Berlin, Hei-
delberg, New York, London. Springer. (cited on Page 8)

Kolesnikov, S., Rhein, A. v., Hunsen, C., and Apel, S. (2013). A comparison of product-
based, feature-based, and family-based type checking. In Proc. Int’l Conf. Generative
Programming: Concepts & Experiences (GPCE), pages 115–124, New York, NY,
USA. ACM. (cited on Page 2, 16, and 17)

Leavens, G. T., Baker, A. L., and Ruby, C. (2006). Preliminary design of JML: A
behavioral interface specification language for Java. SIGSOFT Software Engineering
Notes, 31(3):1–38. (cited on Page 12 and 86)

Leavens, G. T. and Cheon, Y. (2006). Design by contract with JML. (cited on Page 12)

Leavens, G. T., Poll, E., Clifton, C., Cheon, Y., Ruby, C., Cok, D., Müller, P., Kiniry,
J., and Chalin, P. (2008). Jml reference manual. (cited on Page 36 and 86)

Meinicke, J. (2013). JML-based verification for feature-oriented programming. Bache-
lor’s thesis, University of Magdeburg, Germany. (cited on Page 15, 27, 28, 30, 31, 34, 35,

36, 38, 39, 51, 56, and 68)

96 Bibliography

Meinicke, J., Thüm, T., Schöter, R., Benduhn, F., and Saake, G. (2014). An overview
on analysis tools for software product lines. In Workshop on Software Product Line
Analysis Tools (SPLat), pages 94–101, New York, NY, USA. ACM. (cited on Page 2)

Meyer, B. (1992). Applying design by contract. IEEE Computer, 25(10):40–51. (cited

on Page 11)

Mezini, M. and Ostermann, K. (2004). Variability management with feature-oriented
programming and aspects. In Proc. Int’l Symposium Foundations of Software Engi-
neering (FSE), pages 127–136, New York, NY, USA. ACM. (cited on Page 8)

Necula, G. C. (1997). Proof-carrying code. In Proc. Symposium Principles of Program-
ming Languages (POPL), pages 106–119, New York, NY, USA. ACM. (cited on

Page 38)

Passos, L., Czarnecki, K., Apel, S., W ↪asowski, A., Kästner, C., and Guo, J. (2013a).
Feature-oriented software evolution. In Proceedings of the Seventh International
Workshop on Variability Modelling of Software-intensive Systems, VaMoS ’13, pages
17:1–17:8, New York, NY, USA. ACM. (cited on Page 26 and 69)

Passos, L., Guo, J., Teixeira, L., Czarnecki, K., Wasowski, A., and Borba, P. (2013b).
Coevolution of variability models and related artifacts: A case study from the Linux
kernel. In Proc. Int’l Software Product Line Conf. (SPLC), pages 91–100, NY, USA.
ACM. (cited on Page 26)

Pelevina, M. (2014). Realization and extension of abstract operation contracts for
program logic. Bachelor’s thesis, TU Darmstadt, Germany. (cited on Page 22)

Pohl, K., Böckle, G., and van der Linden, Frank J. (2005). Software Product Line
Engineering: Foundations, Principles and Techniques. Springer, Berlin, Heidelberg,
New York, London. (cited on Page 5)

Praast, M. (2014). Effiziente kodierung von variabilität in spezifikationen. Master’s
thesis, University of Magdeburg, Germany. In German. (cited on Page 51)

Prehofer, C. (1997). Feature-oriented programming: A fresh look at objects. In Proc.
Europ. Conf. Object-Oriented Programming (ECOOP), volume 1241 of LNCS, pages
419–443, Berlin, Heidelberg, New York, London. Springer. (cited on Page 8)

Proksch, F. and Krüger, S. (2014). Tool support for contracts in FeatureIDE. Tech-
nical Report FIN-001-2014, School of Computer Science, University of Magdeburg,
Germany. (cited on Page 42)

Sabouri, H. and Khosravi, R. (2010). An effective approach for verifying product lines
in presence of variability models. In Botterweck, G., Jarzabek, S., Kishi, T., Lee,
J., and Livengood, S., editors, Proc. Int’l Workshop Formal Methods and Analysis

Bibliography 97

in Software Product Line Engineering (FMSPLE), pages 113–120, UK. Lancaster
University. (cited on Page 67)

Schaefer, I., Bettini, L., Bono, V., Damiani, F., and Tanzarella, N. (2010). Delta-
oriented programming of software product lines. In Proc. Int’l Software Product Line
Conf. (SPLC), volume 6287 of LNCS, pages 77–91, Berlin, Heidelberg. Springer.
(cited on Page 8)

Scholz, W., Thüm, T., Apel, S., and Lengauer, C. (2011). Automatic detection of
feature interactions using the Java Modeling Language: An experience report. In
Proc. Int’l Workshop Feature-Oriented Software Development (FOSD), pages 7:1–
7:8, New York, NY, USA. ACM. (cited on Page 16)

Thüm, T., Apel, S., Kästner, C., Schaefer, I., and Saake, G. (2014a). A classification
and survey of analysis strategies for software product lines. ACM Computing Surveys,
47(1):6:1–6:45. (cited on Page 1, 2, 13, 17, 27, 56, and 67)

Thüm, T., Apel, S., Zelend, A., Schröter, R., and Möller, B. (2013). Subclack: Feature-
oriented programming with behavioral feature interfaces. In Proc. Workshop MechA-
nisms for SPEcialization, Generalization and inHerItance (MASPEGHI), pages 1–8,
New York, NY, USA. ACM. (cited on Page 69)

Thüm, T., Kästner, C., Benduhn, F., Meinicke, J., Saake, G., and Leich, T. (2014b).
FeatureIDE: An extensible framework for feature-oriented software development. Sci-
ence of Computer Programming (SCP), 79(0):70–85. (cited on Page 2 and 42)

Thüm, T., Meinicke, J., Benduhn, F., Hentschel, M., Rhein, A. v., and Saake, G.
(2014c). Potential synergies of theorem proving and model checking for software
product lines. Proc. Int’l Software Product Line Conf. (SPLC). ACM. (cited on

Page 2, 51, and 68)

Thüm, T., Schaefer, I., Apel, S., and Hentschel, M. (2012a). Family-based deductive
verification of software product lines. In International Conference on Generative
Programming and Component Engineering, pages 11–20, New York, NY, USA. ACM.
(cited on Page 13, 15, 27, 28, 30, 34, 39, 51, 56, 60, 66, and 68)

Thüm, T., Schaefer, I., Kuhlemann, M., and Apel, S. (2011). Proof composition for
deductive verification of software product lines. In Proc. Int’l Workshop Variability-
intensive Systems Testing, Validation and Verification (VAST), pages 270–277,
Washington. IEEE Computer. (cited on Page 68)

Thüm, T., Schaefer, I., Kuhlemann, M., Apel, S., and Saake, G. (2012b). Applying
design by contract to feature-oriented programming. In Proc. Int’l Conf. Fundamental
Approaches to Software Engineering (FASE), volume 7212, pages 255–269, Berlin,
Heidelberg. Springer. (cited on Page 12 and 15)

98 Bibliography

Wampfler, D. (2007). Aspect-oriented design principles: Lessons from object-oriented
design. In Proc. Int’l Conf. Aspect-Oriented Software Development (AOSD), pages
I6:1–I6:10, New York, NY, USA. ACM. (cited on Page 8)

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig verfasst und keine an-
deren als die angegebenen Quellen und Hilfsmittel verwendet habe.

Magdeburg, den 18.November 2014

	Contents
	List of Figures
	List of Tables
	List of Code Listings
	1 Introduction
	1.1 Goal of the Thesis
	1.2 Structure of the Thesis

	2 Background
	2.1 Software Product Lines
	2.1.1 Feature Modelling
	2.1.2 Product Generation
	2.1.3 Feature-oriented Programming

	2.2 Feature-oriented Specification of Software Product Lines
	2.3 Verification of Software Product Lines

	3 Feature-Familiy-Based Theorem Proving of Product Lines
	3.1 Feature-Based Theorem Verification
	3.1.1 Generation of Feature Stubs for Feature Modules
	3.1.2 Generation of Feature Stubs for Feature-oriented Contracts
	3.1.3 Feature-Based Theorem Proving
	3.1.4 Re-Verification after Code Evolution

	3.2 Feature-Family-Based Theorem Proving
	3.2.1 Generation of the Metaprogram
	3.2.2 Generation of the Metaspecification
	3.2.3 Adaption of the Partial Proofs
	3.2.4 Family-Based Theoreom Proving

	3.3 Summary

	4 Implementation
	4.1 Requirements for Tool Support
	4.2 Existing Tool Support
	4.3 Generation of Feature Stubs
	4.4 Feature-Based Theorem Proving With KeY
	4.5 Limitations of the Implementation
	4.6 Summary

	5 Evaluation
	5.1 BankAccount SPL
	5.2 Experimental Design
	5.3 Results
	5.3.1 Verification Effort
	5.3.2 Product-Line Evolution

	5.4 Discussion
	5.5 Summary

	6 Related Work
	7 Conclusion
	A Appendix
	B Appendix
	Bibliography

