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Abstract

Modern processors come close to executing as fast as true dependencies allow. The particular
dependencies that constrain execution speed constitute the critical path of execution. To optimize the
performance of the processor, we either have to reduce the critical path or execute it more efficiently.
In both cases, it can be done more effectively if we know the actual path.

This paper describes a Critical Path Profiler for efficiently finding the critical dependence path
through the complete execution of a program. It is intended to be used for profile-based compiler and
processor optimizations. Unlike other critical-path based tools which analyze dependences along a
single most-likely path (trace), this one analyzes dependences along every taken path through the
code. We present data on the SPEC benchmark suite gathered through the profiler and experiment
with potential uses for the profiler as a static critical-path predictor.

1 Introduction

Modern processors remove most artificial constraints on execution throughput. Out-of-order processors remove

artificial dependences imposed by instruction ordering, register renaming removes false dependences, and aggres-

sive branch prediction schemes greatly reduce serialization of instruction execution due to branches. Therefore,

the bottleneck for many workloads on current processors is the true dependences in the code. Chains of depen-

dent instructions constrain the overall throughput of the machine, often leaving aggressive processor technology

highly underutilized. These chains of dependent instructions constitute the critical path (CP) though the code.

The performance of the processor is thus determined by the speed at which it executes the instructions along

this critical path. In our efforts to get the maximum performance from the processor, it is no longer reasonable to

treat all instructions the same. If we can know which instructions are on the critical path, we can accelerate their

execution, possibly at the expense of instructions not on the critical path.

Value prediction, branch prediction, static instruction scheduling, dynamic instruction scheduling, as well as

fetch and issue on a multithreaded CPU can all benefit from knowledge of which instructions are on the critical

path.
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This paper focuses on static techniques to determine the dynamic critical path of execution through a program.

Other papers, which attempted to compute the inherent ILP in a group of programs [4, 11, 22, 26], did so by

measuring (using our terminology) the length of the critical path. This paper is more concerned about measuring

the actual components of the critical path — which instructions they are, and what are the characteristics of those

instructions?

In addition, we have created a critical path profiler which is fast enough to be used for feedback into the

compilation process. We will describe the profiler, provide information on the instructions found to be on the

critical path, and describe some possible applications of critical-path data. While this paper focuses on static

critical path prediction, it is also intended to demonstrate opportunities for using critical-path knowledge, paving

the way for both static and dynamic critical-path prediction techniques.

This paper is organized as follows. Section 2 discusses related studies. Section 3 describes the profiler,

including the algorithms used, it’s accuracy, and it’s execution efficiency. Section 4 presents results that measure

the length of the critical path under different architectural assumptions. Section 5 examines more specifically

the components of the critical path, and looks at specific characteristics of instructions on the critical path. We

suggest some potential uses of critical path data in Section 6. Section 7 concludes.

2 Related Work

This study has several things in common with studies that attempt to measure the inherent instruction-level

parallelism (ILP) limits in various programs. They profile or simulate code, following the dependence paths, and

measure the amount of parallelism given various architectural constraints. Among those have been Smith, et.

al., [20], Butler, et. al., [4], Wall [26], Theobald, et. al., [22], and Lam and Wilson [11].

The difference in this paper is that we are not searching just for the length of the critical path (another way of

thinking about the ILP they measured), but the composition of the critical path. We want to know exactly what

instructions constitute the critical path, and as much as we can about the characteristics of those instructions.

This information is useful in both compiler and processor optimizations, as shown in [2, 5, 25].

Traditionally, critical path-reduction optimizations have been done through a dynamic analysis of the control

flow of a program [3], followed by a static analysis of the data dependences through a single high-probability path

or trace [14, 7, 19]. The prior work concentrates on finding and optimizing the most popular control trace/path

through the program, found using either edge or path profiling. In contrast, our approach concentrates on finding

and optimizing the critical data paths through the complete execution of a program taking into account variable-

latency instructions such as loads and branches, and architectural delays (e.g., instruction window size).

3 Profiling the Critical Path

If we are to compute the critical path efficiently enough to be used in a profiling context, it would take too long to

collect the entire execution trace and post-process it, searching for the longest chain of instructions. This section
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Figure 1: A snapshot of the dynamic dependence graph that might be captured by the critical-path profiler with a
4-instruction window.

describes a profiling algorithm for computing the critical path of execution using constant storage and execution

time proportional to the number of instructions profiled.

The critical path profiler uses a very simple processor model keeping track of (1) an instruction window, (2)

memory hierarchy, (3) branch prediction, and (4) instruction execution latencies. Instruction data latencies are

from the Compaq Alpha 21164. Loads use a cache model to determine their latency. For this paper, all results

assume 64KB I and D caches and a 4 MB L2 cache, all 2-way set-associative. Both register and memory data

dependencies are identified. However, not all dependencies are data dependencies. All instructions following

a branch misprediction are dependent on the branch (misprediction penalty 7 cycles; gshare branch prediction;

2K-entry PHT; 1K, 4-way BTB).

As the program executes, the profiler keeps track of instructions in the current instruction window (IW).

Instructions enter the IW in order, and exit the IW in order. The IW defines the window of parallelism within

which instructions can issue out of order — analogous to the instruction queue or reservation stations. It also

tracks instructions recently removed from the instruction window (which are then placed in what we call the

trace window, TW). The profiler maintains dependences between instructions in the IW or TW as graph edges.

These dependence edges are removed if the edge is no longer relevant to current computation (there is no path

back to an instruction within the instruction window). In addition, when the use of a dependence edge E is older

than the def end of any other dependence edge (i.e., there are no other overlapping edges), then edge E has met

the retirement criteria. At that point, edge E is retired as a permanent portion of the critical path. Specifically,

the instruction that is the source of the edge is counted on the critical path for a time equal to the length of the

dependence.

This process is described in the context of Figure 1, which shows dependences between nine instructions

around a four-instruction (small for the purpose of illustration) IW. The initial instruction window is shown on

the left between the horizontal lines. We only allow 4 instructions to be in the current window at a time. When

i5’s dependences are satisfied, it issues, allowing i9 to enter the window, and the instruction window moves from

the region shown on the left to the region shown on the right. Edges i6-i9 and i8-i9 (i9’s dependences) are added.

Now there is no longer a path from i2 to the current IW, so edges i2-i4 and i4-i5 are removed. Edge i1-i3 is
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now the oldest edge, with no overlapping edges, so it has met the retirement criteria. It is recorded as part of the

critical path and also removed.

Instructions i1, i2, i4, and i5 are all removed from the trace window because they have no edges in the graph

(and are not in the IW). i3 still has a relevant edge, and remains in the graph.

In practice, more than data dependences constrain program execution; architecture features can also cause

delays in a program. A stalled instruction can delay other instructions from entering the instruction window if

the instruction window is full. This type of delay can be on the critical path through the program, and need

to be modeled. To represent the delays (e.g., instruction cache miss and full instruction window) that prevent

instructions from entering the IW, we add window-edge dependencies between the instructions that want to enter

the IW and those that are preventing them from entering.

Occasionally, our trace window reaches its maximum size without an edge meeting the criteria for retirement

as a critical path edge. In this case, tie-breaking measures are taken that remove edges that overlap with the oldest

edge. Our results indicate that such measures are not taken often.

Calculating the critical paths by keeping track of the edges that meet the retirement criteria does not guarantee

a complete coverage of “execution time.” For example, there are periods when no critical path edges assert

themselves long enough to be counted (e.g., when several competing edges are removed at once). Therefore, the

summed length of the edges of the critical path is not the same as expected execution time (which is not the point

of the profiler, but part of the analysis of this paper). Fortunately, our mechanism for moving instructions in and

out of the instruction window maintains a strict definition of time, including the current cycle. It is this value that

is used to calculate total CP length and IPC in Section 4.

The profiler produces various outputs (including several added just for this study), including lists of the top

static instructions that constitute 80%, 90%, 95%, or 98% of the accounted-for critical path (CP). We will refer to

these lists as, for example, the 80%-CP. Even the 98%-CP is an effective filter of the total critical path, typically

being well under 1% of the size of the 100%-CP list, which includes all CP instructions (even those only on the

CP once). One of the profiler’s outputs is a human-readable record of the critical path over a disassembly of the

program. An example of a small code fragment from applu is shown in Figure 2.

The results after the colon, from left to right, are the number of times the instruction was executed, the number

of times it was on the critical path, the number of cycles it contributed to the critical path, the percentage of the

total CP instruction count, and its percentage of the total CP length. No data is printed for instructions that are

never on the CP.

Profiled executables are from the SPEC95 benchmark suite and compiled with the Digital Unix C and FOR-

TRAN compilers for the Alpha with full optimization. All profiles for this paper either run the program to

completion or stop at 10 billion instructions profiled.

3.1 Profiler Accuracy

For this tool to be useful for profile-driven program optimization, it must have two properties: profile accuracy,

even across different inputs, and reasonable profile execution time. This sections examines the former, show-
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20018018 ldt $f10, 0($4) :11491062 5744117 11488234 1.149% 0.238%
2001801c ldt $f12, 0($17) :11491062 5744119 11488238 1.149% 0.238%
20018020 ldt $f15, 0($5) :11491062 2826 5652 0.001% 0.000%
20018024 subq $7,1, $7 :
20018028 lda $4, 8($4) :
2001802c lda $5, 40($5) :
20018030 mult $15,$10, $10 :11491062 5746943 22987772 1.150% 0.476%
20018034 subt $12,$10, $10 :11491062 11491062 45964248 2.299% 0.952%
20018038 stt $f10, 0($17) :11491062 11491062 57455310 2.299% 1.190%
2001803c bgt $7, 0x20018018 :
20018040 ldt $f19, 0($1) :9575885 964 1928 0.000% 0.000%
20018048 xor $17,$31, $17 :9575885 707 707 0.000% 0.000%

Figure 2: An example of one of the outputs of the critical-path profiler.

ing that profile data is valid across data sets, and that the profiled data itself is a valid indicator of instruction

importance.

To determine the variability of the critical path across data sets, we profiled each of the benchmarks with a

training data set that was different than the reference data set being used to this point. Then we calculated the

portion of the reference data set critical path that was covered by the 98%-CP, 95%-CP, and 90%-CP instruction

lists from the training profile. For example, the 95%-CP list of the training run would ideally be close to 95%.

Table 1 shows that the correlation between runs is extremely high with only two exceptions. In 15 of 17 appli-

cations, the critical path is highly independent of the data inputs. However, we show in Section 6.1 that even

the other two applications still can benefit significantly (e.g., see Figure 9) from using the training-set generated

profiles.

We verify the critical path profiler by comparing the critical path found during profiling to instructions that

cause stalls during a detailed cycle-by-cycle instruction-level simulation of an Alpha processor [23]. If our profile

is accurate, we expect it to identify a high percentage of the stall-producing instructions in a program running on

a machine with similar instruction window size and cache parameters. While not all stall-producing instructions

are on the critical path, just about all critical path instructions should cause some kind of stall; therefore, we

expect a high correlation between the critical path instructions and stalling instructions.

This allows us to test the validity of the profile in a simulation environment that makes different and certainly

more complex assumptions about the architecture than the profiler. While the profiler’s assumptions were de-

signed to match up with the simulated processor, there are key differences in the nature and size of the instruction

scheduling window, layout and alignment of both heap and stack variables, instruction fetch limitations, TLB and

other latencies, number of functional units, as well as memory hierarchy bandwidth limitations. The simulated

processors fetches up to eight instructions per cycle, issues up to six integer and three floating point, and models

the processor pipeline and all sources of latency in detail. It has a 32-entry integer instruction queue and 32-entry

floating point queue. We begin simulation a billion instructions into the program and simulate another billion

(the profiles cover the first 10 billion instructions).
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Benchmark ref train Coverage of ref CP
data data 98% CP 95% CP 90% CP

applu ref train 96% 92 85
apsi ref train 92% 90 87
comp ref train 95% 89 76
fpppp ref train 98% 95 89
gcc 1cp-decl.i amptjp.i 98% 95 91
go 5stone21 2stone9 95% 90 82
hydro2d ref train 98% 96 91
ijpeg ref train 98% 95 90
li ref train 95% 91 86
m88ksim ref train 95% 91 85
mgrid ref train 62% 61 60
perl scrabbl jumble 47% 40 33
su2cor train test 98% 94 88
swim ref train 98% 95 92
tomcatv train test 90% 90 88
turb3d ref train 98% 95 91
wave ref train 95% 91 85

Table 1: Profiler accuracy across different inputs. This table shows the coverage of the reference data set critical
path using the 98% critical path, 95% critical path, and 90% critical path instructions generated by the profiler-
training data set.

In this experiment, we measure the percentage of time that the oldest instruction in either of the two (fp,

integer) instruction queues is stalled, and is dependent on an instruction on the critical path. While other in-

structions could be stalled, the oldest is most likely to be a throughput-constraining stall. The stall contribution

shown (the second number in each field of Table 2) is the percentage of cycles in which the oldest instruction in

either the floating point queue or the integer queue was stalled waiting for a critical-path instruction identified by

the profiler, as a percentage of all cycles in which one of them was stalled waiting for any instruction. The first

number is the percentage of all dynamic instructions that are marked as critical path instructions.

For these experiments, we used the 100%-CP, 98%-CP and 95%-CP lists, as well as three approximations

to the 98%-CP list. All of these lists are generated with the reference data set, and verified with simulation

using the same data set. We observe from Table 2 that the 100%-CP list is generally too large to be useful,

as nearly every important static instruction is on the critical path at least once, and thus makes that list. The

98%-CP list has much more desirable characteristics—low percentage of dynamic instructions, but still a high

percentage of stalling instructions. The critical-path approximation algorithms in some cases identified more

stalling instructions than the full profile. This was typically true when the approximate methods produced larger

lists (after the 98% filter was applied) than the original.

Investigating the lower correlation for turb3d and su2cor revealed that most of the stalled instructions in

the integer or floating point queues that were not marked as CP-dependent by our profiler were actually store or

branch instructions. Store and branch instructions typically end a dependence chain, thus the instructions causing
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% of all instructions / % of cycles a CP inst causes stall
98%-CP

benchmark 100%-CP 95%-CP full 5% samp. 20% samp.
applu 85.5 / 100 18.3 / 82.4 14.5 / 76.9 22.8 / 84.8 20.8 / 84.8
apsi 84.3 / 100 10.7 / 65.9 8.8 / 60.5 14.0 / 75.9 13.3 / 72.2
compress 78.9 / 100 24.8 / 78.7 24.4 / 78.4 24.9 / 78.7 24.8 / 78.7
fpppp 85.5 / 100 8.4 / 65.5 7.2 / 58.2 11.7 / 73.5 11.6 / 73.5
gcc 71.7 / 99.8 35.8 / 82.9 40.8 / 88.0 40.6 / 87.8 41.1 / 88.0
go 78.5 / 99.9 49.8 / 89.4 44.3 / 83.8 48.9 / 88.3 49.3 / 88.8
hydro2d 85.3 / 100 23.9 / 68.5 17.2 / 62.7 29.0 / 78.6 27.6 / 77.3
ijpeg 88.7 / 99.6 26.1 / 66.7 20.8 / 60.2 27.8 / 69.2 27.6 / 68.7
li 63.3 / 100 29.4 / 83.9 37.2 / 90.7 39.0 / 92.2 38.0 / 92.4
mgrid 96.5 / 100 27.7 / 83.1 23.4 / 78.4 30.5 / 89.6 29.8 / 85.2
perl 69.3 / 99.9 30.1 / 78.1 24.0 / 70.0 31.6 / 79.0 31.6 / 79.0
su2cor 73.8 / 100 18.1 / 63.2 17.9 / 62.9 19.3 / 66.7 18.4 / 64.8
swim 88.3 / 100 28.9 / 81.0 23.0 / 66.4 33.9 / 87.4 31.8 / 86.3
tomcatv 88.7 / 100 28.2 / 85.9 23.0 / 77.4 41.4 / 93.2 36.5 / 95.2
turb3d 81.5 / 99.9 11.5 / 42.7 8.3 / 35.2 14.5 / 55.4 14.1 / 54.6
wave 80.2 / 100 23.1 / 56.8 19.3 / 54.2 27.4 / 64.7 27.6 / 71.1

Table 2: Correlation of the profiled critical path with instructions that cause the oldest instruction in the machine
to stall

those stalls were correctly being identified as not on the critical path using our profiler. A secondary effect was

that memory data was not aligned in the same way.

These results show that our critical-path profiler is effectively identifying instructions which are important

to the performance of the executing program, which ultimately is more important than completely accurately

identifying the critical path. More importantly, we prove the profile by demonstrating its validity by showing in

Section 6.1 that optimizations benefit from using the critical path profiles.

3.2 Profiler Efficiency

The tool is built on the Compaq ATOM [21] tools, and profiling 10 billion instructions can take a significant

amount of time. Therefore, we examined the viability of sampling as a technique to reduce profile runtime. Sam-

pling simply neglects profiling a fraction of executed instructions. Because we are tracking paths of dependen-

cies, we need to sample instructions in consecutive sequences rather than one at a time. For these measurements

(Table 3), we profile 5000 instructions at a time, then turn off profiling for a time (e.g., for 5% sampling, we

then skip 95000). For this data, we do keep the cache up-to-date for loads and stores that are otherwise not

profiled; however, further performance could be gained by not doing the cache updates, with some degradation

in accuracy. In this table, the 98%-CP instructions from the sampling run are used to compute the coverage of

the reference run.

The reference data set is used for both the sampling and reference runs compared in the first two data columns.

The accuracy lost in sampling is negligible.
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Benchmark Coverage of full CP Runtime (seconds, on training input)
20% sampling 5% sampling full 20% 5% # insts

applu 98 98 245 81 50 269M
apsi 99 99 1404 480 273 1.43B
comp 98 98 36 13 8 45M
fpppp 99 99 225 81 52 234M
gcc 98 98 652 236 149 768M
go 98 98 422 185 136 493M
hydro2d 98 98 3774 1242 761 4.22BB
ijpeg 98 98 1471 512 320 1.81B
li 98 97 150 56 37 189M
m88ksim 98 96 90 34 24 118M
mgrid 98 98 8629 3126 2010 8.92B
perl 98 98 2304 962 705 2.68B
su2cor 99 98 10308 3373 1913 10B
swim 98 98 366 140 94 407M
tomcatv 98 98 1085 410 283 1.28B
turb3d 99 99 6951 2525 1623 8.75B
wave 99 98 1768 702 462 1.88B

Table 3: The coverage of the full-profile critical path for the 98%-critical-path instructions using 20% sampling
and 5% sampling. Also given is the adjusted profile time for the training inputs.

We also provide in Table 3 the execution time of the profiler on a 500 MHz Alpha 21164. In the initial coding

of the profiler, we have made no effort to optimize the code for efficiency. A significant part of the overhead is

imposed by the ATOM tools. For example, when between sampling intervals, we could not turn off the instru-

mentation calls – they just return without doing any work. To at least partially account for this overhead, the times

shown for profiling the training runs are adjusted by subtracting out the time for a skeleton ATOM executable

that just counts instructions. Several opportunities exist for more efficient profiling, including instrumentation

calls per basic block rather than per instruction, more efficient data structures for statistics recording, etc. A very

significant contributor to runtime is the detailed models of the caches and branch predictors. Simpler, more crude

models could reduce runtime at a cost of accuracy.

4 The Length of the Critical Path

The profiler’s main function is to determine the critical path to enable compiler and hardware optimizations.

However, it also computes the total length of the critical path, making it a useful tool for analysis of the applica-

tions and the assumed architecture. In this section, we calculate the ILP available for the SPEC95 applications

under varying architectural assumptions using the critical path profiler. All results are given in IPC, instructions

per cycle, for easier comparison with previous ILP studies. For our purposes, IPC is defined as the ratio of the

number of instructions executed divided by the total critical path length.

This section examines two factors that impact the instruction-level parallelism available under the limited

assumptions of the profiler: the size of the instruction window and the fetch bandwidth.
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Figure 3: The effect of the instruction window size on the length of the critical path (expressed as IPC) for SPEC
FP programs.
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Figure 4: The effect of the instruction window size on the length of the critical path for SPEC Integer programs.
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CP segment length in insts CP segment length in cycles
Instruction window size Instruction Window Size

16 32 64 128 16 32 64 128
applu 5.1 6.3 10.4 18.0 28.9 38.8 75.6 140.7
apsi 7.0 9.4 14.1 23.9 36.5 58.1 86.0 164.4
fpppp 6.8 17.5 23.8 33.3 23.3 65.7 90.6 132.9
hydro 4.7 5.9 6.9 9.3 31.6 47.8 61.4 75.8
mgrid 22.8 45.9 7.4 7.3 149.0 325.8 71.1 60.9
su2cor 10.3 14.8 16.9 22.1 35.9 63.1 70.3 87.6
swim 4.9 4.3 7.4 3.6 31.6 42.0 79.1 64.1
tom 7.1 9.6 15.9 51.5 45.5 75.3 125.9 489.8
turb3d 5.1 8.5 17.1 12.9 17.8 30.7 61.2 40.7
wave 8.2 12.8 20.9 27.5 31.2 48.6 73.5 101.8
fp avg 8.2 13.5 14.1 21.0 43.1 79.59 79.5 135.9
comp 15.1 24.8 41.0 96.9 34.9 66.3 106.9 270.6
gcc 13.7 27.7 83.8 328.4 34.8 73.9 228.1 885.9
go 20.7 54.2 199.6 1023.1 50.3 136.3 509.9 2614.4
ijpeg 8.9 14.9 34.3 140.2 21.9 40.9 110.5 387.5
li 6.6 11.0 20.6 54.6 16.5 29.3 57.2 148.9
m88k 14.1 44.3 112.4 191.9 27.2 87.4 223.9 384.6
perl 9.0 18.4 48.6 191.9 20.6 43.6 119.7 481.1
int avg 12.6 27.9 77.2 289.6 29.5 68.3 193.7 739.0

Table 4: The average length, in instructions and cycles, of the continuous critical path segments, as the size of
the instruction window is varied.

4.1 Window Size

The size of the instruction window determines the number of instructions that can be considered for simultane-

ous or re-ordered execution. In modern dynamically-scheduled processors, the instruction queue or reservation

stations determine the number of instructions that can be scheduled together.

Figures 3 and 4 show the effect on critical path length of changing the instruction window size from 16

instructions to 128 instructions for the SPEC floating point and integer programs, respectively. These figures

indicate that parallelism is highly dependent on the size of the instruction scheduling window. There is no

indication in these results that parallelism levels off as the number of instructions allowed in the scheduling

window increases. Increasing the effective size of the scheduling window will become a key element in the

success of future processors’ quest for increased ILP.

4.2 CP Segment Lengths

Another statistic that varies greatly with the window size is the average length of a continuous segment of the

critical path. Given infinite parallelism and infinite look-ahead, a program would have only a single critical path

(ignoring paths of equal length), and this single path would be the bounding limit on performance (assuming

no critical-path changing transformations). However, given limited execution resources and a limited window of

parallelism, the critical path is not a single path, but a collection of critical path segments. Over time, one segment
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may dominate, then be replaced by a new path segment which is independent of the first. The longer the path

segments the processor is finding, in most cases the closer we are to executing the program’s single critical path

and reaching our performance bound. Table 4 shows how the instruction window size determines the average

length (in instructions and in cycles) of the segments found by our profiler. We compute this by calculating how

often the def of the currently retiring CP edge is the same as the use of the last one (this may include non-data

dependences like branch mispredictions and window-edge dependences).

In most cases the segment lengths increase significantly (both in number of instructions and cycles) as the

window size increases. A large instruction scheduling window allows the processor not only to find more paral-

lelism, but also to follow the true critical path more closely. Small instruction windows inject more discontinuities

in the critical path by creating more non-data dependencies that interfere with the processor’s ability to follow

the true critical path.

4.3 Fetch Bandwidth

A limited fetch bandwidth constrains how effectively we can fill the instruction window to expose ILP. Other

results in this paper assume unlimited fetch bandwidth, always keeping the instruction window full in the absence

of instruction cache misses.

Figures 5 and 6 show the results of increasing the fetch bandwidth from 2 instructions per cycle to 32. These

results all use an instruction window of 64 instructions. For this study, we only limit the raw fetch bandwidth,

ignoring cache line boundaries and taken branches; therefore, these results represent an upper bound even for a

trace cache [17] or other instruction fetch optimizations [6].

The object of the critical-path profiler, however, is not the length of the critical path, but rather identifying

the instructions on the critical path. An analysis of the instructions that make up the critical path follows in the

next section.

5 The Composition of the Critical Path

This section examines the actual instructions that compose the critical path, breaking them up by opcode, instruc-

tion type, memory behavior, branch behavior, value predictability and other characteristics.

5.1 Instructions on the critical path

In Figures 7 and 8, we identify the actual instructions on the critical path by type. These are shown for several

different instruction window sizes, which alters the amount of parallelism available. In these figures, long integer

refers to integer multiply, and long fp refers to fp divide. Long-latency instructions (load miss, integer multiply,

all floating point) clearly represent a large portion of the critical path.

Both the makeup of the critical path and how it changes with the IW size varies widely in these applica-

tions; however, a few trends emerge. Factors that do not improve with increased window size (branch and jump

mispredictions, primarily) become increasingly important as the total critical path length decreases with a large
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Figure 5: The effect of the fetch bandwidth on the length of the critical path (expressed as IPC) for the SPEC FP
programs.
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Figure 6: The effect of the fetch bandwidth on the length of the critical path for SPEC Integer programs.
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Figure 7: The effect of the instruction window size on the makeup of the critical path for SPEC FP programs.
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Figure 8: The effect of the instruction window size on the makeup of the critical path for SPEC Integer programs.
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FP SPEC Integer SPEC
expected expected

% IC %CP CP cycles %IC %CP CP cycles
load hit 25 3.4 .05 22.9 18.9 0.3
load miss 1 38.5 13.6 0.4 11 13.7
store 10.4 4.6 .1 11.4 13.2 0.4
int 21.4 4 .05 49.8 19.7 0.2
long int 0.2 6.6 14.9 0.2 6.4 18.1
fp 37.9 33.1 0.3 0.4 0.8 1.5
long fp 0.4 8.1 5.9 0 0 -
pred branch 3.3 0 0 9 0 0
mispred branch 0.1 1.4 4.1 1.8 25.9 6.3
pred jump 0.4 0 0 3.9 0.1 0
mispred jump 0 0.4 5.6 0.2 4 6.0

Table 5: The expected CP contribution of an individual instruction to the critical path, in cycles.

IW. Also, when a single factor is a dominant part of the critical path (e.g., more than 50%), it consistently be-

comes more dominant as more parallelism is exposed, as other factors become more effectively hidden behind

the dominant one. The FP applications seem to fall into three categories, memory-constrained (hydro2d, mgrid,

swim, tomcatv), floating-point limited (apsi, fpppp), and balanced (applu, su2cor, turb3d, and wave). The integer

applications are all relatively balanced compared to the FP.

This figure presents aggregate data for all instructions of a given type. However, if the processor or compiler

is making a decision about a particular instruction, the expected importance of the instruction itself is more

important than the aggregate contribution of that type of instruction. Table 5 gives the expected CP contribution

of an instruction of each class. The table shows (1) the percent of executed instructions of that type on the

critical path, (2) the percent of CP cycles the instruction type takes up, and (3) the average CP cycles for each

instruction type. The average CP cycles for a given instruction type is calculated by taking the number of cycles

those instructions account for on the CP, and dividing this by the number of executed instructions of that type.

For example, while load misses and regular floating point instructions contribute almost equally to the FP SPEC

critical path, a single load miss carries over 40 times the CP weight of a single floating point instruction.

The expected CP-importance of an instruction varies widely by type. In situations where our profiling tech-

niques are impractical, instruction type can be used to make a good first-order prediction of an instruction’s

critical-path contribution, using this data. In [5], we exploit this in certain experiments by value-predicting only

long-latency instructions like loads, which we have shown here to have high CP probability.

We can potentially make even finer distinctions between the expected importance of instructions of the same

type based on opcode. We examine whether different instructions, with the same type and latency, vary enough

in average CP contribution that we may be able to treat them differently.

Table 6 shows the expected critical-path impact of various branch instructions. The “expected CP cycles”

shows the average number of cycles each instruction will contribute to the critical path. For example, each

executed load quad for Int SPEC programs will contribute on average .67 cycles to the CP. From this we
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FP SPEC Int SPEC
exp. CP exp. CP

beq, bne .10 1.05
blt, bgt, ble, bge .19 1.32
blbc, blbs .12 1.32
fp branches .01 -
load long .38 .50
load quad .20 .67
load float .46 .30
integer add .24
all other short int .15

Table 6: Branch, load, and short integer importance by opcode.

see a real variance between FORTRAN and C. For the FORTRAN code, a branch on inequality instruction has

almost twice the CP importance of branch on equality (beq, bne); for the C code, the per-instruction importance

is about equal for the two. The branch-on-bit does not show particularly different behavior than the other integer

branches. For the floating point branches, the importance to the critical path is very low. Section 6 discusses

further branch and critical path interactions.

Also in Table 6 are the relative importance of loads separated by data type. Again, the results vary signifi-

cantly by language. For the FORTRAN programs a quadword load is only half as important as another type of

load; however, for C programs the quadword load is significantly more important than longword loads.

We also broke down the integer instructions (for the integer applications) more finely and found that add

instructions carry a large part of the load, as their importance ratio is 60% higher on average than other integer

instructions (besides multiply).

5.2 Value Prediction and the Critical Path

Value prediction [13, 8] is a hardware optimization specifically aimed at exceeding the performance bounds of the

critical path. Therefore, the value-predictability of the critical path is of particular interest, since this technique

is only beneficial to the extent that it does attack the critical path.

Table 7 shows the value predictability of instructions on the critical path given last-value prediction [13, 8,

12], stride-based value prediction [8], and two-level context-based value prediction [18, 28]. Because we are

most interested in the inherent predictability of individual instructions on the critical path, we assume unlimited

table sizes for last-value prediction (LVP) and stride-based prediction (Stride). For the two-level context predictor

(Context), we assume a scheme based on [28] with four values stored per instruction (unlimited total storage)

and a very large 64K-entry shared pattern table. Results for Stride and Context include only those instructions

that did not exhibit LVP predictability.

Table 7 shows the contribution to the total CP length of all instructions that exhibit more than 80% value

predictability during the execution of the program. This table indicates that there is likely to be very little

correlation between overall predictability and performance. We see several programs with high predictability,
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Benchmark CP influence of insts with value predictability
Last Value Stride Context

%IC %CP %IC %CP %IC %CP
applu 10.3 4.2 3.8 0.7 9.6 10.6
apsi 11.9 7.7 11.1 8.5 4.9 5.3
fpppp 17.5 2.6 0 0 3.9 7.1
hydro2d 56.6 78.8 17.1 1.5 1.6 0.4
mgrid 2.8 24.1 16.3 2.1 0 0
su2cor 7.4 4.9 1.7 2.1 2.6 4.2
swim 0.9 0 15.8 2.4 0 0
tomcatv 7.0 10.1 8.3 0.7 0.9 0.6
turb3d 23.3 5.7 7.1 6.6 13.8 15.0
wave 27.4 24.7 8.0 5.3 1.1 0
fp avg 16.5 16.3 8.9 3.0 3.8 3.6
comp 2.5 0.2 0.4 0 1.0 0
gcc 29.9 10.9 4.1 1.7 5.0 2.3
go 24.2 6.4 .6 .6 3.8 2.2
ijpeg 10.4 3.1 10.9 2.6 0.7 0.5
li 23.0 9.3 3.2 10.8 10.8 10.2
m88ksim 4.5 4.5 0.3 0 0.7 0.1
perl 28.6 14.3 0.7 0.4 13.5 14.2
int avg 17.6 7.0 2.9 2.3 5.1 4.2

Table 7: The (aggregate) contribution of value-predictable instructions to the critical path.

but little impact on the critical path, and a few instances of programs with relatively low predictability, yet high

CP importance of those predictable instructions. We see that in general the predictability of instructions is lower

on the critical path than off of it (particularly if you ignore hydro2d’s effect); however, there is still enough

value-predictability on the critical path for value prediction to be very beneficial. Stride prediction and context

prediction provide lower (but not insignificant) returns for the additional hardware, particularly when the impact

on the critical path is considered.

The next section shows the effect of using critical-path information to guide value prediction and other hard-

ware optimizations.

6 Using Critical Path Information

6.1 Applying Critical Path Knowledge

The previous sections focused on what we discovered when we applied critical-path profiling to the SPEC bench-

marks. This section examines what we can do with that information once we have it.

There are a variety of ways in which we can exploit critical-path information. This section provides a few ex-

amples of hardware optimizations that might exploit CP information. Profile-generated critical path information

could be used to drive compiler transformations such as height reduction and if-conversion [19], but that is not

the focus of this paper. Critical-path information can be communicated to the hardware either through dynamic
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critical path analysis (the subject of future work) or through the instruction set architecture (e.g., through new

opcodes or marker instructions).

Value Prediction The previous section showed that it is unwise to assume that all value-predictable instructions

are on the critical path. A decision to predict an instruction should be made not just on its predictability, but also

on its CP importance. Predicting instructions not on the critical path can put the instruction on the critical path if

it is mispredicted, or put more pressure on critical resources (e.g., predict bandwidth, reservation stations, value

history tables) even if correctly predicted. In both cases, performance can be lost if the instruction is not on the

critical path. These issues and others are explored much further in [5], which shows that even very simple critical-

path information can be used to improve value prediction performance by being more selective. In particular, that

study showed that (1) being selective about which instructions consumed a prediction in some cases eliminated

recovery action for mispredicted values, and that (2) being selective about which instructions could produce a

predicted value significantly eliminated conflicts in the value history table, thus increasing prediction accuracy.

This section explores yet another application of critical-path information to aid value prediction: the effective

use of limited prediction bandwidth. Figure 9 shows the effect of several algorithms to choose which instruction

to predict when only one instruction per cycle can be value predicted. Specifically, we make a choice from

each block of instructions fetched in the same cycle. The algorithms measured are first (choose the oldest/first

instruction fetched), random (choose one randomly), latency (choose the instruction with the longest latency–all

loads are assumed to be 3 cycles), CP-first (choose the first CP instruction, if there is one, otherwise just the

first), CP-latency (choose the CP instruction with the longest latency), and CP-length (choose the instruction

which statically has the largest total contribution to the critical path). The last scheme requires more information

to be recorded per instruction than whether it is on the critical path, but the extra information proves useful. These

measurements, and all others in this section, use the processor simulation environment described in Section 3.1.

For these experiments, however, we assumed a more aggressive processor design–a 16-wide processor with the

ability to fetch up to three basic blocks per cycle (e.g., using a trace cache [17] or similar structure). All results

in this section use the training profiles to guide execution of the reference runs.

These results show that the critical-path information, despite being generated under very different assump-

tions, is quite useful in directing the use of limited resources. In some cases, favoring long-latency instructions

provided a useful approximation for the critical path, but the actual critical-path information provided even bet-

ter performance. Knowing the actual contribution to the critical path allowed even better decisions (with one

significant exception, compress).

An alternate type of value prediction, register-based value prediction, is described in [25]. This is a technique

that allows the compiler to have a strong influence on the value predictability of individual instructions through

changes to the register allocation. Register value prediction can take advantage of the critical path profiles

prepared for this study to determine which opportunities to create reuse should be exploited.

Instruction Issue Priority In Table 8, we show the effect of incorporating critical path information into the

hardware instruction scheduling mechanism. These simulations are run on the same processor simulator used
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Figure 9: The performance of limited prediction bandwidth using alternative models to select one instruction per
fetch block to be predicted. These results make the ideal assumption of perfect confidence.

Benchmark Speedup
applu 1.008
apsi 1.000
comp 1.024
fpppp 1.001
gcc 1.038
go 1.005
hydro2d 1.004
ijpeg 1.035
li 1.046
m88ksim 1.004
mgrid 1.035
su2cor 1.025
swim 1.034
tomcatv 1.011
turb3d 1.012
wave 1.005

Table 8: Speedups obtained on a 5-issue processor using critical-path information rather than instruction order as
the primary factor in instruction-queue scheduling.
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previously, but modeling a smaller configuration. The processor is capable of issuing 3 integer (2 load/store) and

2 floating point instructions per cycle. The fetch bandwidth is still eight instructions per cycle.

In these simulations the processor gives first priority to instructions that are known (statically) to be on our

98%-CP critical path. In several cases large speedups are achieved with this simple hardware change.

Branch Prediction Perhaps the most intriguing branch-related results from our profiles is not the number of

mispredicted branches on the critical path, but rather the number that are not. In fact, on average for the SPEC

benchmarks we are running, 29% of mispredicted branches are not on the critical path. That means the branch

was mispredicted, the following instructions squashed, and the (important) correct-path instructions are still

brought into the machine before their operands were ready. Even more significant, we found that many individual

branches have the property that they are often (relative to current branch prediction standards) mispredicted, yet

rarely on the critical path. It may make sense, then, to handle those branches differently than other branches. We

could statically predict them, to reduce dynamic predictor contention, or it would be beneficial to use Pipeline

Gating [15] for those mispredicted branches not on the critical path, in order to save power. This would result in

the processor deciding not to predict these branches and instead stall the fetch engine until the branch is resolved.

Other applications Critical path knowledge can allow efficient use of various critical resources inside the

processor. In the absence of resources to do an unlimited number of memory disambiguations per cycle, or

even branch predictions per cycle, we may still be able to get close to optimal performance with single-ported

mechanisms if we guide the use of those resources through critical-path prediction.

Multiple-path execution [27, 9, 10] follows both targets of conditional branches that have low prediction

confidence. Better use of prediction resources could be obtained by not forking non-critical-path branches, or

perhaps not forking branch directions that are not immediately on the critical path.

Multithreaded processors [1, 24] place higher pressure on issue bandwidth and branch prediction resources,

and thus would see higher benefit from both the instruction issue priority and branch prediction optimizations

discussed previously in this section.

A clustered processor dedicates specific functional units to each of multiple instruction-scheduling win-

dows [16]. Instructions assigned to different clusters experience longer bypass delays than those assigned to

the same one. In that case it is critical that both the def and use end of each critical path edge go through the same

cluster. This can be done simply by sending all critical path instructions through the same cluster. Depending

on whether cluster assignment is done dynamically or statically (e.g., assignment is based on destination register

value), either dynamic or static critical-path prediction can be used.

Other power optimizations would also be possible, besides the branch opportunity mentioned. Non-critical

path instructions (e.g., loads, in particular) could be prevented from executing speculatively. The processor might

choose to stall the processor for some cycles during execution of a long-latency operation known to be on the

critical path.

In this section we have discussed many potential applications of critical-path computing, and have simulated

three examples. These simple applications validate our thesis that knowing the critical path can allow us to make
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useful tradeoffs between CP and non-CP instructions. Both static and dynamic critical-path prediction techniques

could be used to exploit these types of opportunities.

These examples also validate the accuracy of our profiler, as we are selecting the right critical-path instruc-

tions, even though the simulator has a much more complex model of hardware constraints, the memory subsys-

tem, TLBs, branch prediction mechanisms, etc., as well as running on different input.

7 Conclusions

This paper introduces the concept of critical-path computing, which exploits knowledge of the critical depen-

dences in a program’s execution to optimize its performance. To support critical-path computing, we have devel-

oped a tool to create a static profile of the dynamic critical path through the program. Unlike traditional critical

path tools used in compiler analysis which calculate a single most-likely path (trace) through basic blocks, this

tool computes the critical-path dependences for every path through the code that is taken during execution.

Several results are shown from the output of the profiler. We examine the total length of the critical path

under different architectural assumptions. We also look at the actual instructions that constitute the critical path,

grouped in several ways. We examine characteristics of these workloads that could be useful even in the absence

of specific profiles; for example, an integer multiply instruction’s expected contribution to the critical path is

about 100 times that of other integer ALU operations.

We present several applications for critical path computing. We simulate three, value-prediction under

prediction-bandwidth limitations, instruction issue priority, selective application of static branch prediction, with

a much more sophisticated instruction-level simulator. We show that we can bias the processor in favor of critical

path instructions and against all other instructions and consistently get performance gains. We also show that

the simplicity of the profiler still allows a complex processor to make correct decisions regarding instruction

importance.

As processors increase their ability to exploit ILP in the instruction stream, application performance becomes

more tied to the execution of the critical dependence path. Optimizations that accelerate critical-path execu-

tion will have a large advantage. One tool that will help make that happen is a static predictor of critical-path

importance such as the one described here.
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