
SCIENTIFIC PROGRAMMING -1

7 Conditional Statements
Read and study this section with care. It is fundamental to programming and contains new
ideas and some complex syntax.

7.1 Introduction
Up to now we have been dealing with programs that read numbers, do fixed calculations in a
pre-specified order and output results. This is not much of a PROGRAM! The main power of
computing is conditional control over which statements (parts of the program) are executed in
which order, and how many times. This is generally called Flow Control and will be considered
in two sections, the first dealing with Conditional Statements and the second dealing with
Loops, which you will deal with after the next checkpoint.

7.2 The boolean Data Type
Fundamental to flow control is the boolean data type which can take on the two possible
values:

true or false

This can be set by the “comparator” operators,

> Greater Than
< Less Than
== Equals (Note: double == sign)
>= Greater than or equal to
<= Less than or equal to
!= Not equal to

so for example we can write;

boolean ask;
int iValue = <some expression>;

ask = iValue < 5;

which will set ask to true or false depending on the value of iValue.
There comparitor operators can be used to compare any basic data types, ints or doubles in
this course.

7.3 Conditional Statements
In JAVA conditional execution is mainly accomplished by the if statement which in its simplest
form is:

if (boolean){
<-- First line of optional code -->;

SESSION 2005/2006 VERSION 3.4, 27 AUGUST 2005

SCIENTIFIC PROGRAMMING -2

<-- Second line of optional code -->;
<-- -->;
<-- nth line of optional code -->;

}

When the “boolean” is true then the piece of optional code is executed, else it is skipped
over.
Note the following points about the syntax,

1. There is no “;” after the if() statement. This is a very common source of programming
bugs!

2. The optional code is enclosed in {} brackets that must match. The EMACS editor will
help here.

3. The <-- text --> line means “replace with valid JAVA statement”.

4. Each line of optional code ends with a “;”.

so for a simple example we have:

double xValue;
<-- code to set the value of xValue -->
if (xValue > 5.0) {

System.out.println("xValue is greater than 5.0’’);
}

which will print out the message if and only if xValue > 5.
A few points to note are:

1. The “indentation” is not part of the PROGRAM, but laying the code out with “indented”
if() will make it much easier to read. The emacs editor will do most of this for you if
you insert a <TAB> before each line.

2. The “equals” (==) operator and the “not-equals” (!=) should not be used with double
types since they compare every bit so are highly dependent on how the number is stored
and ultra sensitive to rounding errors. (See more on this later!)

More on Logical Statements

To form more complex comparison statements the comparitor operators can be combined with
the three logical operators

|| OR
&& AND
! NOT

Note: The logical AND and OR operators are double1 characters.
These operators are evaluated after the comparison operators, but it is good programming prac-
tice to put in brackets to make the order of evaluation clear (to you)! For example a condition
of xValue < 5 OR xValue > 10 can be written as:

1There are single character operators | and & which are the “bitwise operators” will not be used in this course.

SESSION 2005/2006 VERSION 3.4, 27 AUGUST 2005

SCIENTIFIC PROGRAMMING -3

if((xValue < 5) || (xValue > 10)) {
<-- First conditional statement -->;
<-- Second conditional statement -->;

.....
}

These two types of operators can be combined to form very complex statements.

7.4 Double Conditionals
The extended syntax of the if() statement is the very useful if(){}else{}

if (boolean) {
<-- First line of optional true code -->;
<-- Second line of optional true code -->;
<---->;
<-- nth line of optional true code -->;

}
else {

<-- First line of optional false code -->;
<-- Second line of optional false code -->;
<-- -->;
<-- nth line of optional false code -->;

}

If the boolean value is true then the code in the first {} is executed, else the code in the second
{} is executed.
The use of the if(){}else{} gives good “block” structured code that is easy to read, and thus
is more likely to be correct!

7.5 Multiple Conditional
The full syntax of the if() includes the else if() giving the rather complex structure of:

if (boolean_1) {
<-- optional code if boolean_1 is "true" -->;

}
else if(boolean_2) {
<-- optional code if boolean_2 is "true" -->;

}
.
.

else if(boolean_n) {
<-- optional code if boolean_n is "true" -->;

}
else {
<-- optional code is all booleans are "false" -->

}

SESSION 2005/2006 VERSION 3.4, 27 AUGUST 2005

SCIENTIFIC PROGRAMMING -4

which allow a whole “chain” of logical statement to be “tried-out” with the correct code exe-
cuted. The logic of such else if “chains” is very difficult to get right and even more difficult
to DEBUG. If you do need to use this structure then you should “draw” the structure out on
paper first before you try and code it.

7.6 Reading booleans from the Display class
The Input class can also read booleans via pop-down menu whic allows yoout to choose “YES”
or “NO”. The following piece of code uses the prompt “Ask more questions” followed by a
pop-down clickable menu. The chosen value is then read using the getBoolean() method.

Display myDisplay = new Display("Reading Booleans");
Input bInput = new Input("Ask more questions , true);
myDisplay.addInput(bInput);
<....add more inputs >
waitForButtonPress(); // Wait for go

boolean bValue = bInput.getBoolean(); // Read the boolean
if (bValue) {

<..... ask more questions ...>
}

7.7 The System.exit() Method
The System.exit(); method basically “stops” execution of the program exactly as if the
program had completed. Up to now you have been using this at the end of your program but it
can also be used to conditionally exit the program. The syntax is simple being

System.exit(int status);

where status is an integer value that is returned to the operating system.
This is useful for complex programs than interact with the actual system. The typical use of
exit() is to stop your program if an error has occurred, for example:

double xValue, yValue;
<-- code to calculate value of xValue -->;
if (xValue < 0){
System.out.println("Value of xValue < 0. Fatal Error");
System.exit(1);

}
else {
yValue = Math.sqrt(xValue};

}

which will stop the program (with a sensible message!), if xValue is negative before it tries to
take the square root of it.
Note: If you are using the sciprog Display class you may want to simply re-prompt for a new
input value rather that “exit”

SESSION 2005/2006 VERSION 3.4, 27 AUGUST 2005

SCIENTIFIC PROGRAMMING -5

7.8 Additional Statement
switch Statement

switch is a complex and very useful dispatch construct that can be used to replace complex
if else() chains. You are strongly advised to learn about this, see textbooks, but after you
have mastered the if() structure.

goto Statement

JAVA does not have a goto statement! goto is a reserved keyword but it is not been imple-
mented. “Unreformed” FORTRAN and BASIC “hackers” will just have to learn to program
properly!

Examples
The following on-line source examples are available:

• Simple square root calcation trapping negative numbers SquareRoot

• Determining if a double is +/−/0.0 with a if, else if, else chain NumberSign

• More complex mark processor program with multiple conditionals PassFail

What Next?
You have now completed sufficient JAVA to attempt Checkpoint 3.

SESSION 2005/2006 VERSION 3.4, 27 AUGUST 2005

~wjh/teaching/Scientific-Programming/examples/conditional/SquareRoot.java
~wjh/teaching/Scientific-Programming/examples/conditional/NumberSign.java
~wjh/teaching/Scientific-Programming/examples/conditional/PassFail.java

	Conditional Statements
	Introduction
	The boolean Data Type
	Conditional Statements
	Double Conditionals
	Multiple Conditional
	Reading booleans from the Display class
	The System.exit() Method
	Additional Statement

