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Abstract 

Eye tracking provides insights into social processing and its deficits in disorders such as 

autism spectrum disorder (ASD), especially in conjunction with dynamic, naturalistic stimuli. 

However, reliance on manual stimuli segmentation severely limits scalability. We assessed how 

the amount of available data impacts individual reliability of fixation preference for different 

facial features, and the effect of this reliability on between-group differences. We trained an 

artificial neural network to segment 22 Hollywood movie clips (7410 frames). We then analyzed 

fixation preferences in typically developing participants and participants with ASD as we 

incrementally introduced movie data for analysis. Although fixations were initially variable, 

results stabilized as more data was added. Additionally, while those with ASD displayed 

significantly fewer face-centered fixations (p<.001), they did not differ in eye or mouth fixations. 

Our results highlight the validity of treating fixation preferences as a stable individual trait, and 

the risk of misinterpretation with insufficient data. 
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Eye movement data plays an integral role in understanding social processing deficits in 

neurodevelopmental disorders, including autism spectrum disorder (ASD). These data commonly 

indicate that individuals with ASD do not view social interactions or process facial features the 

same way as their typically developing (TD) peers. However, the specifics of eye gaze 

differences in ASD have been markedly inconsistent. For example, some studies report reduced 

eye region fixation time in ASD1,2. whereas others report no differences between TD individuals 

and those with ASD3,4. Mouth fixations findings are inconsistent as well. Some studies report 

that individuals with ASD show increased mouth-looking, and even suggest increased mouth 

fixations serve to compensate for communication deficits deriving from reduced eye region 

fixation5. However, other studies report decreased attention to or no differences in mouth 

fixation times between TD individuals and those with ASD, regardless of whether stimuli are 

dynamic or static, or whether they depict multiple or single-persons6,7,8.  

These inconsistent findings may be in part due to differences in eye tracking methods, 

particularly techniques for stimuli segmentation. Most researchers rely on manual coding to 

define regions of interest (e.g. face components, background objects), 7,9 however 

methodological challenges arise with this approach. Manual segmentations can expose stimuli to 

human error, cause replication complications, and prove to be extremely time-consuming. These 

factors impede our ability to aggregate eye tracking results and create a coherent understanding 

of social processing in ASD. Considering the hassles of dynamic stimuli manual segmentation, 

researchers in turn opt to use fewer movie clips, or reuse already-segmented clips from prior 

studies6,7. Variability in eye tracking findings may reflect generalizability issues with using few 

or rehashed movie clips. This begs the question, how much of this variability might be explained 

by insufficient data? Moreover, how much data is enough to produce reliable findings?  
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Researchers across various disciplines have addressed concerns surrounding the amount 

of data needed for reliable results. For example, some researchers have applied this question to 

driving behavior and traffic safety10 while others sought to reliably assess dyadic conflict 

behavior11. These findings then are used to provide evidence-based improvements for variable 

estimates and the planning of future studies12,13. While eye tracking researchers have called for 

reliable and reproducible methods14, we have yet to assess basic questions on how much data is 

needed to consistently estimate eye tracking fixations. 

Further, findings on the amount of data needed to reliably assess individual fixations 

would deepen our understanding of gaze as a stable individual trait. Prior studies have 

demonstrated that eye scan paths vary greatly among individuals when attending to the face15,16. 

Yet fixations are remarkably stable within an individual across tasks and even over long periods 

of time17,18,19. Despite these promising findings, it is difficult to understand the long-term 

stability of fixations in the context of static images alone. To understand fixation as a stable trait, 

it is necessary to investigate an individual's gaze using dynamic stimuli for real world 

applicability.  

In the present study, we trained an artificial neural network (ANN) to segment 

naturalistic dynamic stimuli of 22 movie clips; this algorithm allows for the expeditious 

segmentation of large amounts of stimuli. Utilizing this approach to a free-viewing eye tracking 

paradigm, we investigated the stability and robustness of within-subject, within-group, and 

between-group analyses when introducing incremental amounts of movie data for study. First, 

we examine each participant’s viewing of single movie clips and assess the consistency of 

proportion of fixations to core facial features (eyes, nose and mouth). We then introduce the 

effect of varying movie data amounts to examine how much data is needed to observe within-
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group stability and reliable between-group differences. If indeed the proportion of time 

individuals fixate on the different facial features is a stable individual trait, then we hypothesize 

that results of within-group and between-group analyses will become increasingly consistent and 

robust as we introduce more data. We expect to see this effect in both TD participants and 

participants with ASD. Subsequently, we applied the previous analysis’ findings in the context of 

examining how individuals with ASD view elements of social interactions relative to TD peers, 

based on a quantity of movie data shown to be sufficient for observing reliable differences.  

 

Results 

Internal consistency of fixations 

First, we sought to analyze how consistent each participant is in his own fixations to the 

different facial features across 22 movies. To this end, we analyzed individual variation in 

fixations by calculating the fixation proportion per participant, movie clip, and facial feature, 

compared to all other participants in their group (see Methods). We then compared these 

individual fixation proportions across all possible movie pairs (e.g. Movie 1 and Movie 2, Movie 

1 and Movie 3). The scatterplots in Figure 3a - c each display an example of how well-correlated 

the participants are to themselves across two example movies; the correlation coefficient is a 

measure of within-subject internal consistency across all participants in each group for that 

particular movie pair. The correlation coefficients for all possible movie pairs are then combined 

to create the histograms featured in Figure 3a - c. These histograms showcase the individual 

variability of correlations between all single movie pairs for (TDmedian correlation = 0.63, ASDmedian 

correlation  = 0.45), mouth (TDmedian correlation = 0.59, ASDmedian correlation = 0.46), and nose (TDmedian 

correlation = 0.42, ASDmedian correlation =  0.28) fixations for ASD and TD groups separately.  
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We then carried out a permutation test to assess whether the distributions of these 

correlation coefficients significantly differ between the TD and ASD groups (see Methods). 

Compared to TD counterparts, those with ASD showed significantly reduced within-subject 

internal consistency in facial feature viewing preferences across movie clips (p < .001), as well 

as significantly increased variability (p < .001) for eye, nose, and mouth labels. This is in line 

with previous literature20,22,23, which has emphasized inter-subject variations among individuals 

with ASD. We found a similar result by analyzing the variance of overall fixation time for the 

different facial features.  

Stability of Within-group Results  

To address whether adding more data improves the reliability of fixations and justifies 

the treatment of gaze allocation to different facial features as a stable trait, we then investigated 

the consistency of within-group fixations across movies when introducing incremental amounts 

of movie data to our analyses. We examined this effect on each of the three individual face 

labels. First, from our 22 movie clips, we randomly selected two sets of three non-overlapping 

movies combinations, totaling 42 seconds of stimuli. Similar to the previous analysis, we 

calculated the correlations of the within-group internal consistency of the fixation proportions 

across these two sets of movies; this was done for TD participants and participants with ASD 

separately. This process was repeated for 10,000 permutations, with different sets of three 

movies selected for each permutation. As before, the histograms in Figure 4 display the 

correlation coefficients for all the different permutations. To assess incremental additions of data, 

we repeated this process by creating two sets of movies with random combinations of five (70 

seconds), eight (112 seconds), and 11 (154 seconds) movies. Figure 4a - c displays the 

distribution of correlations as the number of movie clips increases for eye, mouth, and nose 
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fixations, respectively. Across each face label, Figure 4 displays the increasing reliability of 

correlations as data increases.  

Next, we tested whether there is significantly increased reliability when using more data. 

Using permutation tests, we examined whether the distributions of internal consistency using 

different numbers of movies (Figure 4) were significantly different from each other (see 

Methods). Results show that within both the ASD and TD groups, the medians and the variance 

of the distributions using different numbers of movies were significantly different from each 

other for each of the face labels (pmedian < 1x10-4; pvariance < 1x10-4 for all pairwise comparisons). 

For a given amount of movie data (i.e. 3 movies, 5 movies etc.), there were also significant 

differences in the distributions across groups. Those with ASD were significantly less consistent 

(pmedian < 1x10-4) and more variable (pvariance < 1x10-4 ) than their TD peers across all data amount 

levels.  

Stability of Between-group Results 

Thus far, we have demonstrated that increasing amounts of movie data serves to stabilize 

individual fixation variation within each group. With this basis, we then examined the effect of 

this increased stability on the reliability of ASD and TD between-group facial feature fixation 

differences. First, we examine the variability in between-group differences when using a single 

movie clip. We used two-sample t-tests to examine between-group differences per face label in 

each of the movies. Figure 5 shows the distribution of the p-values of the t-tests carried out on 

the individual movies. Results vary greatly across movies for all three features, but particularly 

for the eyes and mouth. Next, we analyzed the effects of additional movie data on between-group 

fixation differences. We randomly selected three movie clips from our 22 movies and performed 

a two-sample t-test on the average fixation times on each of the face labels between the ASD and 
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TD groups in this movie set. This process was repeated for 10,000 permutations. Similar to the 

previous analysis, we examined the effect of incremental additions of data by repeating this 

process with random combinations of five, eight and 11 movies. Figure 6 features the 

distribution of p-values for eye, mouth, and nose fixations as the number of movie clips 

increases. As displayed in the histograms, the distributions become increasingly narrower as 

more movies are added. For mouth labels, the percentage of results showing significant 

differences between ASD and TD fixations decreases as the number of movies increases from 

one (9%) to 11 movies (0.98%), though we see no change in eye labels between one (0%) and 11 

movies (0%). For nose labels, we observe an increase in the percentage of results showing 

significant differences between ASD and TD groups as the number of movies increases from one 

(53.9%) to 11 (100%) movies. This is further evidenced by permutation test results comparing 

differences in the effects of additional movie data on between group distributions per face label. 

Findings reveal significant differences between each of the distributions on both median and 

variance (pmedian < 1x10-4; pvariance < 1x10-4 for all). 

Fixation of social interactions 

Using 22 movie clips (308 seconds of stimuli) shown by the previous analysis to yield 

consistent and robust results, we sought to assess whether fixations of TD participants and those 

with ASD differ while viewing facial features during naturalistic dynamic interactions. Figure 7 

displays a distribution of ASD and TD time spent fixating on each individual face label. With a 

two-by-three analysis of variance, we examined if fixation time is affected by diagnosis 

(ASD/TD) and individual core facial feature (eyes/nose/mouth). Main effect analyses revealed 

significant differences among face labels (F (1, 206) = 120.26, p = 4.49x10-35) and diagnosis (F 

(1, 206) = 5.22, p = .02). There was a statistically significant interaction between effects of 
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diagnosis and face label on fixation time (F (1, 206) = 4.46, p =.01). TD participants attend more 

to the nose (t = 3.52; p = 7.73 x 10-4), however there was no difference between ASD and TD 

eye (p = .50) and mouth (p = .14) fixation times. 

 

Discussion 

Our research investigates the stability of social fixations to complex and dynamic 

interactions in both TD individuals and those with ASD, while highlighting a machine learning 

approach to eye tracking paradigms. Overall, our findings demonstrate that fixation proportion to 

different facial features can be considered a stable trait when sufficient movie data are 

considered. As hypothesized, our ability to measure ASD and TD eye movement fixations gains 

consistency and robustness as we introduce incremental amounts of movie data to the analyses 

while using few movie clips yields unstable fixations to social stimuli. Based on a sufficient 

number of movie clips shown by our analysis to yield stable results (22 movie clips), we then 

sought to examine social fixation differences between TD individuals and those with ASD. Our 

findings reveal that individuals with ASD attend less to the center of the face (the nose region), 

and do not differ from TD individuals in eye and mouth fixation times. These results provide a 

feasible approach to portraying robust fixations of social viewing in individuals with ASD. 

Eye tracking paradigms operate under the assumption that gaze fixations are a stable trait. 

However, previous literature prods at this assumption, showing that eye fixations vary depending 

on type of stimuli (static versus dynamic)7. Our results further drive at this question by revealing 

poor internal consistency when too few data are used. Although previous studies show 

individuals’ gaze consistency in static images, our stimuli feature rich content from several 

movies, and may reveal complexities that arise when using dynamic stimuli15,19. As seen by the 
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relationship between single movie pairings, there is considerable individual variation from movie 

to movie (Figure 3a - c). Both diagnostic groups display this variability, though individuals with 

ASD display greater instability between individual movies as compared to TD counterparts 

across all face labels (Figure 3a - c). Nevertheless, our findings also depict the growing stability 

of fixation findings when introducing additional movie data for study. We see growing 

consistency within a participant to his own fixations as we increase the number of movies 

considered (Figure 4). Thus, we assert that with sufficient data our estimates of fixation 

proportions can be considered a stable trait in those with ASD and TD individuals. It is important 

to note that even with the addition of data, those with ASD still display greater variance in 

consistency than TD individuals (Figure a - c). This reflects that while fixations can be 

considered stable for those with ASD, more data is needed to see suitable stability in fixations 

among this group. 

It is important to note that our data utilizes different, short movie clips. While using 

heterogenous movies can support the generalizability of fixation proportion as a stable individual 

trait, there are many other elements which could affect fixation proportion which we did not test 

for in this study. These data were all collected in a single session, and may not capture individual 

variation across days, though previous studies have shown some stability in this regard19. 

Similarly, all the movies depict social interactions, and the task was a free viewing task. 

Different task context or very different movie content may also affect gaze patterns7. Future 

studies may seek to examine how much data would be necessary to robustly estimate individual 

fixation preferences when using a single, longer movie clip. 

As hypothesized, examining the effect of movie data amount on the reliability of ASD 

and TD fixations differences revealed that results gained significant stability as we incrementally 
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introduced clips for study. When using only a single short movie clip, findings widely vary in 

possible between group analyses results (Figure 5) and potentially yield both false-positive and 

false-negative significant group differences. We observe increased stability in the t-test results 

between groups as movies are added to the dataset being considered. Using 11 movie clips, the 

differences in mouth fixation times between TD and ASD participants were overwhelmingly 

non-significant (99%), whereas using only 1 movie clip yielded significant differences 9% of the 

time (Figure 6). In contrast, significant differences between ASD and TD nose fixation times 

were found for all possible movie set combinations when examining 11 movies but failed to 

reach significance when examining 46% of the single movies. As expected based on these 

results, using all 22 movies, group differences in nose fixation times were significant, but group 

differences in eye and mouth fixations were not.  

While the stability of the between-group differences increases across all facial features 

with the addition of more data, there are clear differences in the distributions across labels. 

Distributions for eye and mouth fixation differences remain quite broad throughout, spanning 

both significant and insignificant results even with 5 movie clips. Distributions for nose fixation 

differences are much narrower, with all possible combinations of 5 movie clips yielding 

significant between-group differences (Figure 6). This likely indicates an interaction between the 

internal consistency of the individual data and the effect size of between-group differences.  

As previously mentioned, there is wide and inconsistent debate on the extent to which 

individuals with ASD avoid eyes in favor of the mouth2,3,4,5,6. Our results emphasize the notable 

probability for misinterpretation of fixation data when using inadequate stimuli. The pliability of 

eye tracking findings raises a concern for the eye tracking field’s wide range of results; these 
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results may provide greater commentary on stimuli dependent findings than on social processing 

in ASD.  

By determining the amount of movie data shown to be sufficient for observing reliable 

differences, we then were able to reliably examine how individuals with ASD view elements of 

social interactions relative to TD peers. Our aberrant gaze findings demonstrate disrupted social 

viewing associated with ASD (Figure 7). Deviations in fixations are likely a reflection of ASD 

deficits in neural systems that modulate complex social behaviors, as evidenced by our previous 

research in which we link aberrant eye movements and atypical neural mechanisms in the “social 

brain”20. This is also supported by Avni and colleagues (2019), whose findings report reduced 

eye movement typicality in those with ASD, as well as a correlation between individual gaze 

idiosyncrasies and ASD severity21. Further, in this previous study, participants with ASD 

significantly vary in the overall typicality of eye movement scan paths compared to their TD 

counterparts. The present study elaborates on the typicality of ASD viewing fixations by 

featuring a specific finding in which individual behavior varies; our participants with ASD 

display significantly greater within-group variance in time spent fixating on the face, compared 

to TD individuals, as well as significantly reduced internal consistency in the viewing of the 

different facial features. Given well-established idiosyncrasies within the ASD population, this 

variance may reflect a behavioral manifestation of heterogeneous profiles within this 

disorder22,23,24. 

Generally, the existing eye tracking literature substantiates findings of decreased ASD 

gaze fixations to socially relevant stimuli (i.e. facial features)2. Moreover, some findings place 

particular emphasis on differences in eye and mouth fixation times, and state that atypical 

viewing patterns of these features are characteristic and even predictive of autism5. However, we 
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found no evidence to show that TD individuals and high-functioning individuals with ASD differ 

on either eye or mouth fixation time. Although individuals with ASD generally spend less time 

overall fixating on the face, it appears to be the nose which drives these facial region fixation 

differences; TD individuals fixate on this central facial feature significantly more than 

participants with ASD.  

As evidenced by previous work, TD gaze allocation towards the nose may demonstrate 

several visual tendencies that are typical in normative populations. First, findings show that TD 

individuals initially fixate on the geometric center of the face (i.e. the eye-nose region) before 

exploring other features25. Rogers and colleagues (2018) report the existence of an “eye-mouth 

gaze continuum” in which TD individuals experiencing real-world interactions distribute their 

gaze in the area between eye and mouth regions, with variation in specific feature preference26. 

TD facial perception studies commonly exhibit this scan path when participants undergo face 

perception tasks25,27. Findings also show TD individuals display preferential attention to the area 

around the center of the nose during face recognition tasks27. In our study, the presence of nose 

fixations during movie watching may reflect TD individuals’ attempt to distinguish each scene’s 

various characters. This nose fixation is shown to provide a central point where the viewer’s 

periphery can take in information from the entire face27. This optimizes face perception and 

demonstrates the holistic nature of recognizing faces in TD individuals. 

Nose-looking fixations appear typical and relevant to holistic face processing. Therefore, 

it is worth noting the diminished nose-looking behavior found in those with ASD within the 

present study. Based on what is known about the centrality of nose fixations, the lack thereof in 

those with ASD may suggest local processing with a bias towards local facial features. Prior 

ASD research not only reports evidence for local bias in visual perception, but also suggests that 
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local processing tendencies in autism may contribute to the associated overall difficulty with 

integrating features to create a global representation28,29. Reduced nose-looking may reveal a 

developmental behavior that results from atypical social brain neural systems. 

It should be noted that the constraints of manual stimuli segmentations (e.g. time- 

consuming, subject to human error) make it commonplace for studies to only include eye and 

mouth regions in facial feature coding. We expand on previous work by acknowledging the eye, 

mouth, and nose regions in our core facial feature analysis, which in turn revealed data-driven 

results that diverge from findings of exclusive eye- and mouth-directed analyses7,9.  

The current study makes methodological advances in the use of eye tracking as a tool in 

detecting ASD gaze abnormalities. Previous studies primarily use manual segmentation 

techniques which severely limit our ability to reproduce methods and compare findings across 

studies. Other investigators seeking to use eye movements as biomarkers in ASD research 

acknowledge the challenge of aggregating findings and have thus called for objective and 

quantifiable outcome measures14. Additionally, the constraints of manual stimuli segmentation 

lead researchers to reduce the amount of eye tracking stimuli or reuse already-segmented clips, 

however our results demonstrate the pitfalls of insufficient data on fixation results. The present 

study’s machine learning algorithm fulfills the need for a quantifiable and data-driven approach 

and optimizes the use of ample and diverse stimuli, while eliminating the typical restrictions of 

manual techniques. We encourage future studies to adopt similar automatic stimuli segmentation 

techniques to enable the use of the large amounts of stimuli needed to reliably test hypothesis 

about social gaze processing in populations. 

 Overall, we assessed the stability of ASD social processing gaze fixations using a data-

driven machine learning approach to dynamic eye tracking stimuli segmentation. Our ability to 
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estimate fixations of TD individuals and those with ASD gains robustness and consistency as we 

introduce additional amounts of movie data for study, while few movie clips yield unstable 

fixations to social stimuli. Based on a sufficient amount of movie data, we conclude that 

individuals with ASD do not attend to social interactions the same way as their typically 

developing peers. Individuals with ASD do not differ on eye or mouth fixations compared to TD 

peers, rather they exhibit less centralized fixations when viewing the face. Naturalistic stimuli, 

paired with a machine learning approach for reliable segmentations, can advance the technical 

capability of eye movement analysis. 

 

Methods 

Participants 

Fifty high-functioning males with ASD and 36 TD male participants were recruited for 

this study at the National Institute of Mental Health (ClinicalTrials.gov: NCT01031407). All 

participants with ASD met the cutoff for the category designated as “broad autism spectrum 

disorders” according to the criteria established by the National Institute of Child Health and 

Human Development/ National Institute on Deafness and Other Communication Disorders 

Collaborative Programs for Excellence in Autism30. Seventeen participants with ASD were 

omitted from this analysis due to incomplete testing data (n = 5), poor quality eye tracking data 

(n = 4), did not meet autism diagnosis (n = 3), scheduling conflicts (n = 2), did not meet IQ cut 

off (Full Scale IQ > 70; n = 1), conflicting medical conditions (n = 1), and loss to follow up (n = 

1). TD participants were selected to create an age- and IQ-equated match for each participant 

with ASD.  TD participants and participants with ASD did not differ on age, IQ, race, or 

ethnicity (Table 1). 
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Procedure 

Participants’ heads were stabilized using a forehead and chin rest, and eye gaze 

calibrations were performed on the right eye at the beginning of the experiment. Participants 

engaged in an 8-minute free-viewing paradigm. There were no explicit instructions other than to 

watch the presented movies. They viewed 24 movie clips (14 seconds in duration) depicting 

social interactions in which two or more characters engage in conversation. Movie clips 

consisted of the following Hollywood movies: The Blind Side (6 clips), The Goonies (4 clips), 

How To Lose a Guy in Ten Days (4 clips), The Italian Job (5 clips), and The NeverEnding Story 

(5 clips). Movies were viewed full screen on a digital monitor with a 1920 × 1080 resolution, 

with a screen size of 20.5 × 12 inches. Eye movements were recorded by the Eyelink 1000 Plus, 

sampled at 1000 Hz. A grey screen appeared for 6 seconds between presentations of the clips. A 

fixation cross appeared in the center of the grey screen to reset fixations to the center before 

presenting the successive clip. 

For our analyses, we excluded two movie clips from The NeverEnding Story for 

displaying a highly disproportionate ratio of face-to-background pixels or scene darkness that 

altered segmentations. Final analyses included 22 movies (7,410 frames). 

Image Segmentation 

We trained an ANN to predict segmentations of each pixel for each frame for each 

movie. We used the Pascal-Parts dataset to train a Bayesian SegNet with concrete dropout to 

make a predicted segmentation for a given movie frame (Figure 1)31,32,33. When applying the 

ANN to new movie frames, 10 concrete dropout Monte-Carlo samples were used to produce 

predicted segmentation labels and uncertainty. Figure 2 displays a comparison of segmented 

stimuli to the original frame. The code we used is publicly available at https://github.com/nih-
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fmrif/MLT_Body_Part_Segmentation, and further details about the ANN, see McClure, 

Reimann, Ramot, & Pereira (In preparation)34. 

 The ANN segmented images into 11body part labels: hair, head, ear, eye, eyebrow, leg, 

arm, mouth, neck, nose, and torso. Additionally, we created a 12th category for each pixel that 

the ANN did not place into one of these 11 labels. This label was treated as the background label 

and contained all other frame features such as objects, landscapes, and noise that were not were 

not associated with the 11 other labels. The performance of the ANN was tested on the test set 

portion of the Pascal-Parts dataset. The average Dice score across body part labels was 0.55, and 

0.95 for background31,34. 

Eye tracking processing 

Eye movement data was extracted for each separate movie clip, removing the first and 

last 500 milliseconds of each clip. Non-fixation data (e.g. blinks, missing or offscreen fixations) 

were ignored. Data were despiked and sampled down to the frame rate at which the clips were 

presented (29.97 frames per second). Each pixel received one of the aforementioned 12 labels 

based on ANN output. To categorize each fixation as one of these labels, we examined the 

algorithm’s label predictions within the 15-pixel radius surrounding the primary fixation point. 

After which, the most frequently occurring pixel label was selected with a bias towards smaller 

features; for example, if the pixels within a 15-pixel radius from a particular fixation included 

both ‘eye’ and ‘head’ labels, that fixation would be labeled as ‘eye’. 

Data Analysis  

For the purposes of this analysis, we examined social fixations to the core facial features 

including eyes, nose, and mouth. This analysis investigated the effects of varying amounts of 

movie data on the consistency of individual fixations to these core features as well as between-
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group differences. As a basis for evaluating consistency of fixations across movie clips with 

varying content, we normalized the gaze data for each movie clip. For each participant and each 

movie clip, we calculated the proportion of time spent looking at each individual face label 

(eyes, nose, mouth) divided by total face fixation time (time spent fixating on eyes, nose and 

mouth labels together). For each participant, movie clip, and facial feature, we then calculated 

the distance from the average fixation time of all other participants in their respective groups. 

This was normalized by total time spent looking at the face, as described above. This 

normalization serves to account for differences in raw fixation time on the different facial 

features; these differences may arise from movie-specific variability (e.g. number of feature 

pixels per frames, action or speech content) and draw attention to or from the different features. 

The resulting values for each participant (henceforth referred to as fixation proportion represent 

the proportion of looking time they allocate to each of the facial features out of the time they 

spend looking at the face in general for that particular movie clip, compared to all other 

participants in their group. These values were then used to evaluate the internal consistency of 

fixation time on each of the facial features across movie clips. This was done by correlating the 

fixation proportion for participants across different movie pairs / movie sets, for all possible 

combination of single movie pairs, and for 10,000 randomly selected movie sets of three, five, 

eight, and 11 movies. 

Statistical analysis 

To evaluate differences in the distributions between proportion of time spent looking at 

core features, we performed permutation-based statistical tests using movie sets consisting of 

one, three, five, eight, and 11 different movie clips; these analyses were repeated for each face 

label (eyes, nose, and mouth). To test whether the ASD and TD correlation coefficient 
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distributions significantly differ from each other, we first calculated the TD group’s median 

fixation proportion subtracted by the ASD group’s median fixation proportion (henceforth 

known as real median differences), as well as the TD fixation proportion variance subtracted by 

ASD fixation proportion variance (henceforth known as real variance differences). We then 

generated two sets of 10,000 randomly selected fixation proportions from combined ASD and 

TD eye tracking data, by randomly permuting the TD and ASD labels. From this permuted 

dataset, we calculated the first dataset’s median fixation proportion subtracted by the second 

dataset’s median fixation proportion (henceforth known as permuted median differences), as well 

as the first dataset’s fixation proportion variance subtracted by the second dataset’s fixation 

proportion variance (henceforth known as permuted variance differences). This process was 

repeated 10,000 times. For each iteration of permuted differences, we calculated the proportion 

of permuted median differences greater than real median differences, as well as the proportion of 

permuted variance differences greater than real variance differences. This resulting number 

represents a two-tailed p-value.  

For analysis of within-group fixation stability, we randomly selected two sets of three 

non-overlapping movie combinations, totaling 42 seconds of stimuli. Similar to the 

aforementioned analysis, we calculated the correlations of the within-group internal consistency 

of the fixation proportions across these two sets of movies; this was done for TD participants and 

participants with ASD separately. This process was repeated for 10,000 permutations, with 

different sets of three movies selected for each permutation; to assess incremental additions of 

data, the process was repeated with two sets of movies with random combinations of five (70 

seconds), eight (112 seconds), and 11 (154 seconds) movies. Then, we sought to evaluate if these 

correlation coefficient distributions for each varying level of movie data (three, five, eight, and 
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11 movies) significantly differ from each other. Differences between each of the movie data 

distributions refers to the following comparisons: three versus five movies, three verses eight 

movies, three versus 11 movies, five versus eight movies, five versus 11 movies, and eight 

versus 11 movies. For each of these pairwise combinations, we calculated the real median 

differences between the first movie level and the second movie level, as well as the real variance 

differences between the first movie level and the second movie level. We then generated two sets 

of 10,000 randomly selected fixation proportions from combined movie level eye tracking data. 

From this permuted dataset, we calculated the permuted median differences between the first 

dataset and the second dataset, as well as the permuted variance differences between the first 

dataset and the second dataset. As before, this process was repeated 10,000 times as we 

calculated the proportion of permuted median differences greater than real median differences, as 

well as the proportion of permuted variance differences greater than real variance differences. 

This resulting number represents a two-tailed p-value.  

For analysis of between-group fixation stability, we randomly selected two sets of non-

overlapping movie combinations; this was done on sets of three, five, eight, and 11 movies as 

described above. For 10,000 permutations of these randomly selected sets, we calculated the 

correlations of the within-group internal consistency of the fixation proportions across these two 

sets of movies; this was done for TD participants and participants with ASD separately. Then, 

we sought to evaluate if these ASD and TD correlation coefficient distributions significantly 

differ from each other across akin levels of movie data. First, we calculated the real median 

differences between TD and ASD data, as well as the real variance differences between TD and 

ASD data. As before, we generated two sets of 10,000 randomly selected fixation proportions 

from combined movie level eye tracking data. From this permuted dataset, we calculated the 
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permuted median differences between TD and ASD data, as well as the permuted variance 

differences between TD and ASD data. As before, this process was repeated 10,000 times as we 

calculated the proportion of permuted median differences greater than real median differences, as 

well as the proportion of permuted variance differences greater than real variance differences. 

This resulting number represents a two-tailed p-value.  
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Table 1. Demographics chart. There are no statistically significant differences between 

participants with ASD and TD participants across age, IQ, race, or ethnicity. 
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Figure 1. An illustration of a Bayesian SegNet artificial neural network (ANN) and the sampling 

process used to generate a predicted segmentation and uncertainty (from Kendall et al. (2015). 
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Figure 2. Artificial Neural Network (ANN) identified and segmented each frame of the dynamic 

stimuli. Examples comparing two original movie frames to the segmented image in black and 

white. Different shades of white/grey represent our varying labels generated by the ANN. Black 

segments represent no labels given by the ANN, which in our analysis was then labeled as 

background.  
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Figure 3a, b, c. Individual consistency of fixations of TD and ASD participants to the different 

facial features across 22 movies. The scatterplots display an example of how well-correlated 

participants are to themselves across two example movies for each of the face labels (Movie 1 

versus Movie 16); the correlation coefficient is a measure of within-subject internal consistency 

across all participants in each group for that particular movie pair. The histograms display the 

individual variability of correlations between all single movie pairs for eye (Figure 3a.; TDmedian 

= 0.63, ASDmedian = 0.45), mouth (Figure 3b., TDmedian = 0.59, ASDmedian = 0.46), and nose 

(Figure 3c., TDmedian = 0.42, ASDmedian = 0.28) fixations for ASD and TD groups separately. 
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Figure 4a, b, c. Change in the consistency of within-group fixations across movies when 

introducing additional movie data for TD (left panel) and ASD (right panel) participants. 

Histograms reflect the distribution of correlation coefficients of all permutations as the number 

of movie clips increases for eye (Figure 4a.), mouth (Figure 4b.), and nose (Figure 4c.) fixations, 

respectively (see methods for details). 
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Figure 5. Distribution of the variability (t-test p-values) between TD individuals and individuals 

with ASD based on separate evaluation of each of the 22 movie clips. Results vary greatly across 

movies for all three features, but particularly for the eyes and mouth. 
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Figure 6. Consistency of fixations for TD individuals and those with ASD across movies when 

introducing additional movie data. Histograms reflect the distribution of t-test p-values of all 

permutations as the number of movie clips increases for eye, mouth, and nose fixations, 

respectively (see methods for details). 
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Figure 7. Distribution of proportion of time spent fixating on eye, mouth, and nose label (out of 

total face fixation time) for TD individuals and those with ASD using all 22 movie clips. 
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