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Abstract. In this paper, we consider the logistics capacity planning problem arising in the 
context of supply-chain management. We address, in particular, the tactical-planning 
problem of determining the quantity of capacity units, hereafter called bins, of different 
types to secure for the next period of activity, given the uncertainty on future needs in 
terms of demand for loads (items) to be moved or stored, and the availability and costs of 
capacity for these movements or storage activities. We propose a modeling framework for 
this problem introducing a new class of bin packing problems, the Stochastic Variable 
Cost and Size Bin Packing Problem (SVCSBPP). The resulting two-stage stochastic 
formulation with recourse assigns to the first stage the tactical capacity-planning decisions 
of selecting bins, while the second stage models the subsequent adjustments to the plan, 
securing extra bins, when needed, and packing the items into the selected bins each time 
the plan is applied and new information becomes known. We propose a new meta-
heuristic to address this formulation. The meta-heuristic is based on progressive hedging 
ideas and includes several advanced strategies to accelerate the search and efficiently 
address the symmetry strongly present in the problem considered due to the presence of 
several equivalent bins of each type. Extensive computational results for a large set of 
instances support the claim of validity for the model, efficiency for the solution method 
proposed, and quality and robustness for the solutions obtained. The method is also used 
to explore the impact on the capacity plan and the recourse to spot-market capacity of a 
quite wide range of variations in the uncertain parameters and the economic environment 
of the firm. 
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1 Introduction

The efficient consolidation of goods for movement and storage is essential for companies
that aim to be competitive in the market and fulfill customer demand in a cost-efficient
and flexible manner (Crainic et al., 2013b). Modern companies manufacture or acquire
goods that are then consolidated into appropriate containers, which are in turn consol-
idated for long-distance, often international, transportation into ships or trains. Before
reaching the final customer, the goods are stored for varying periods into a number of
depots, warehouses or distribution centers. All these activities require that capacity, as
containers, ship or train slots, motor carrier tractors, and warehousing space, be available
when and where needed.

The planning of such logistics capacity directly affects the distribution and operating
costs of the company, and therefore is a major challenge in supply chain management
(Monczka et al., 2008). Logistics capacity planning as a tactical planning decision ad-
dresses the needs of the company for sufficient capacity to move and store its goods to
meet demand in the next cycle of its activities. When tactical decisions are made, the
company does not have detailed knowledge of many decision parameters such as the fu-
ture demand and, thus, its real needs in terms of loads to be moved or stored, and the
availability and costs of capacity. Such information becomes available, however, at the
time for operational decisions, and it can be used to reconsider and update the capacity
planning.

Our goal is providing models and methods to support decision making in logistics
capacity planning. We focus, in particular, on the relation between a firm and its lo-
gistics capacity provider, and the tactical-planning problem of determining the quantity
of capacity to secure for the next period of activity (from four to twelve months) given
the uncertainty on future needs and availabilities. We propose a two-stage stochastic
programming formulation based on the Variable Cost and Size Bin Packing Problem
(VCSBPP) (Crainic et al., 2011b) to address this issue, together with an efficient meta-
heuristic based on Progressive Hedging principles (Rockafellar and Wets, 1991).

Bin packing models offer important decision tools for transportation and logistics
(Perboli et al., 2014a). In bin packing problems, various items must be packed into
containers or other types of boxes and spaces, generally called bins, the particular char-
acteristics of items and bins in terms of capacities and costs generating a rich set of
problem settings and formulation. The packing formulations currently proposed in the
literature deal only partially, however, with the requirements of capacity planning, as
most research has explored operational issues only. Thus, most of the literature address-
ing bin packing and uncertainty, focuses on modeling uncertainty in item arrival, leading
to the so-called on-line packing problem (Seiden, 2002). Studies focusing on stochastic
versions of bin packing problems for strategic and tactical planning applications are few
and recent. Perboli et al. (2012, 2014b) introduced stochastic costs and profits into a bin
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packing and a knapsack problems. Crainic et al. (2014a) proposed a stochastic extension
of the VCSBPP (Crainic et al., 2011b) for the capacity planning problem with demand
uncertainty in terms of the number of items and their volumes.

These problems were formulated as two-stage integer stochastic programs with re-
course (Birge and Louveaux, 1997). This approach separates the a priori planning de-
cisions, taken under uncertainty before the activity cycle starts, and the adjustments
performed at each period of operations once information becomes available. The former
makes up the first stage of the model, while the recourse actions, defining the admissible
adjustments to the plan, make up the second stage. Discretization methods are usu-
ally applied to approximate the probability distribution of the random parameters using
a finite-dimension scenario tree (Mayer, 1998). Using the scenario tree approximation,
one can reduce two-stage integer stochastic programs to deterministic linear programs
with integer decision variables of generally very large dimensions, beyond the reach of
exact methods. Indeed, Crainic et al. (2011a) and Crainic et al. (2014b) shown that
a state-of-the-art MIP solver struggles to solve even small instances of stochastic VCS-
BPP formulations. Our goal is to successfully solve much larger problems. Therefore,
heuristics are required.

Most solution approaches in the literature rely on decomposition techniques (Rosa
and Ruszczynski, 1996; Higle and Sen, 1996). The Progressive Hedging (PH ) algorithm,
initially proposed by Rockafellar and Wets (1991) for stochastic convex programs, has
emerged as an effective meta-heuristic for addressing stochastic programs with discrete
decision variables (e.g., Crainic et al., 2011a; Carpentier et al., 2013; Crainic et al.,
2014b; Veliz et al., 2014). It mitigates the computational difficulty associated with large
problem instances by using augmented Lagrangian relaxation to decompose the stochastic
program by scenario. It then iteratively solves penalized versions of the subproblems,
gradually enforcing the consensus relative to the first-stage decision variables. PH enables
the use of specialized heuristic methods for the subproblems, fast and accurate methods
being crucial to the overall efficiency of the method, because subproblems are repeatedly
solved.

The contribution of this paper is threefold.

1. A modeling framework for securing logistics capacity for a tactical-planning horizon,
while explicitly considering uncertainty in both supply, availability and cost of
various bin types, and demand as the number and dimension of items. In doing so,
we introduce a new class of stochastic bin packing problems, namely the Stochastic
Variable Cost and Size Bin Packing Problem (SVCSBPP).

2. A new and effective meta-heuristic for the two-stage formulation of the SVCS-
BPP. The proposed solution method is based on PH ideas, uses the heuristic of
Crainic et al. (2011b) to address the scenario subproblems, and includes several
enhancements to deal with the particular characteristics of the problem. One par-
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ticularly challenging characteristic is the symmetry inherent to packing problems,
and strongly present in the SVCSBPP due to the presence of several equivalent
bins of each type. The many equivalent but apparently different solutions in their
choice of bins may significantly impair the efficiency of a PH-based meta-heuristic.
Several strategies are thus proposed, including the definition of a new temporary
global solution, heuristic penalty adjustments, and bundle fixing to reduce the bin
selection at each iteration.

3. An extensive computational campaign using a large set of instances of various di-
mensions and combinations of different levels of variability in the stochastic param-
eters. The campaign includes the assessment of the efficiency of the meta-heuristic,
the evaluation of the interest to explicitly consider uncertainty, an analysis of the
impact of problem characteristics on capacity planning, the structure of solutions
and the sensitivity to changes in data in particular, as well as an evaluation of the
robustness of the decisions over a long time period under different economic and
demand-evolution scenarios.

The numerical analysis indicates that the value of uncertainty is significant and that
the proposed PH meta-heuristic finds good solutions fast. They also show that the
proposed formulation is able to represent the impact of various levels of variation in
the random parameters, and yields good-quality plans (solutions). Indeed, solutions
are conservative and minimize the need to adjust the plan. Moreover, the capacity
plan is robust (variations in the demand implying low operating costs) and relatively
insensitive to changes. One may therefore conclude that SVCSBPP is a useful tool for
logistics capacity planning under uncertainty, and that the proposed meta-heuristic is an
appropriate and efficient solver for this class of formulations.

The paper is organized as follows. Section 2 details the logistics capacity planning
problem we address in this paper. Section 3 presents the formulation of the problem. A
lower bound and the meta-heuristic solution method are introduced in Sections 4 and 5,
respectively. Section 6 presents the experimental plan and analyzes the computational
results. Section 7 provides concluding remarks.

2 Logistics Capacity Planning

The tactical capacity planning problem we address is relevant in many contexts, e.g.,
manufacturing firms desiring to secure transportation capacity to bring in their resources
or to distribute their products, wholesalers and retailers planning for transportation and
storage capacity to support their procurement and sales processes, and logistics service
providers securing capacity contracts with carriers for long-distance, regular shipments.
Manufacturing and whole/retail distribution firms may negotiate directly with carriers
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and owners/managers of storage space but, very often, they do business with a logistic
service provider. Consequently, in order to simplify the presentation, but without loss
of generality, we describe the problem within the context of the process of contract
procurement between a major retail firm and a third-party logistics (capacity) service
provider (3PL).

In the contemporary economic and business environment, firms are engaged in a con-
tinuous procurement process (Aissaoui et al., 2007; Rizk et al., 2008), and engage in
various collaborations with its supply-chain partners. Such inter-firm alliances yield sev-
eral benefits, including a reduction in inefficiencies, total cost, and financial risks. The
greatest advantages result from the outsourcing of logistics activities to a 3PL (Marasco,
2008). The overall supply-chain process may then be summarized as follows. The firm
regularly orders products from suppliers in a given geographical region, according to
current inventories, short-term forecast demand, estimated lead times, and specific pro-
curement and inventory policies (Bertazzi and Speranza, 2005; Bertazzi et al., 2007) The
suppliers are instructed to deliver their goods to a consolidation center (Crainic and
Kim, 2007; Bertazzi and Speranza, 2012). The 3PL then consolidates the goods into
containers and ensures their shipping, by consolidating these containers with those of
other customers into the slots it secured on long-haul cariers, e.g., ships and trains (Chen
et al., 2001; Crainic et al., 2013a), which generally operate according to a fixed schedule,
e.g., twice a week.

A key factor in this process is the procurement of sufficient capacity, that we express
in the following in terms of bins, at different locations in the network and for varying
periods of time, to satisfy the demand. This entails negotiations with the 3PL to book
the necessary capacity a priori, before operations start, at the best rate (Ford, 2001). The
results of these negotiations often take the form of medium-term contracts specifying both
the capacity to be used, the quantity and the type of bins, and the additional services to
be performed (storage, transportation, bin operations, etc.) for a given planning horizon,
e.g., a semester or a year. These contracts guarantee a regular volume of business to the
3PL (e.g., a fixed number of containers to ship every week for the next semester), which
ensures a cost-effective service to the firm.

We refer to the costs of bins selected in advance as fixed costs because they are fixed by
the contract and thus represent the specific rates offered by the 3PL for bins of different
sizes. The values of the fixed costs are in practice influenced by several factors, including
bin size, bin type (e.g., thermal or refrigerated containers), physical handling operations
required, the time period for which the bin is to be used, and the economic characteristics
of the departure location (e.g., access rules and costs). The result of negotiations and the
scope of the capacity planning problem then is a tactical plan defining these quantities for
the firm at each location, given the proposed bin types and costs and an estimation of the
demand over the planning horizon. The plan thus specifies the set of bins of particular
volumes and fixed costs to be made available at each location to ship the estimated items.
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Given the time lag that usually exists between the signing of the contracts and the
logistics operations, the negotiations are performed under uncertainty, without all the
necessary information concerning the demand, expressed as a number of items of variable
sizes to be shipped or stored at the particular locations. At each application of the plan,
variations in the demand may thus yield numbers and sizes of items that differ from
the estimation used at negotiation. These variations then require further negotiations
with the 3PL and an adjustment of the plan when the booked capacity is not sufficient.
Extra capacity (additional bins available at the shipping date) must then be purchased,
generally at a much higher cost (the so-called spot -market value) than the fare negotiated
initially. Moreover, while the 3PL generally ensures the planned capacity for the firm,
the extra capacity may not be available when needed. The extra capacity must therefore
be considered stochastic as well.

The Stochastic Variable Cost and Size Bin Packing Problem thus consists in deter-
mining the most cost-effective tactical plan, including the costs of the bins secured within
the negotiations and the possible cost of updating the plan and securing extra capacity
when the actual demand and the spot-market bin availability become known.

We propose a two-stage stochastic programming formulation, where the first stage
concerns the selection of bins, and the second stage concerns the acquisition of extra
capacity when the actual demand information is revealed. The next section details the
Stochastic Variable Cost and Size Bin Packing (VCSBP) formulation.

3 The VCSBPModel

Let T be the finite set of bin types, each type being defined by the volume and fixed
cost associated with its bins. Let V τ and f τ respectively be the volume and fixed cost
associated with bins of type τ ∈ T . We define J τ to be the set of available bins of type
τ and J = ∪τJ τ to be the set of available bins at the first stage.

Let set Ω be the sample space of the random event, where ω ∈ Ω defines a particular
realization. Let vector ξ contain the stochastic parameters defined in the model, and
ξ(ω) be a given realization of this random vector. Let the first-stage variables be yτj = 1
if bin j ∈ J τ is selected and 0 otherwise. The two-stage model of the SVCSBPP may
then be formulated as

min
y

∑
τ∈T

∑
j∈J τ

f τyτj + Eξ[Q(y, ξ(ω)] (3.1)

s.t. yτj ∈ {0, 1}, ∀τ ∈ T , j ∈ J τ , (3.2)

where Q(y, ξ(ω)) is the extra cost paid for the capacity that is added at the second stage,
given the tactical capacity plan y and the vector ξ(ω). The objective function (3.1) then
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minimizes the sum of the total fixed cost of the tactical capacity plan and the expected
cost associated with the extra capacity added during operation, while constraints (3.2)
impose the integrality requirements on y.

To formulate Q(y, ξ(ω)), we consider the following stochastic parameters in ξ(ω), with
Kτ (ω), the set of available bins of type τ at the second stage; K(ω) = ∪τKτ , the set of
available bins at the second stage; gτ (ω), k ∈ Kτ (ω), the associated fixed costs; I(ω), the
set of items to be packed; and vi, i ∈ I(ω), the item volumes. The second-stage variables
are defined as follows: zτk = 1 if bin k ∈ Kτ (ω) is selected, 0 otherwise; xij = 1 if item
i ∈ I(ω) is packed into bin j ∈ J (ω), 0 otherwise; and xik = 1 if item i ∈ I(ω) is packed
into bin k ∈ K(ω), 0 otherwise. We then define the function Q(y, ξ(ω)) as

Q(y, ξ(ω)) = min
y,z,x

∑
τ∈T

∑
k∈Kτ (ω)

gτ (ω)zτk (3.3)

s.t.
∑
j∈J

xij +
∑

k∈K(ω)

xik = 1, ∀i ∈ I(ω) (3.4)

∑
i∈I(ω)

vi(ω)xij ≤ V τyτj , ∀τ ∈ T , j ∈ J τ (3.5)

∑
i∈I(ω)

vi(ω)xik ≤ V τzτk , ∀τ ∈ T , k ∈ Kτ (ω) (3.6)

xij ∈ {0, 1}, ∀i ∈ I(ω), j ∈ J (3.7)

xik ∈ {0, 1}, ∀i ∈ I(ω), k ∈ Kτ (ω) (3.8)

zτk ∈ {0, 1}, ∀τ ∈ T , k ∈ Kτ (ω). (3.9)

The objective function (3.3) minimizes the cost associated with the extra bins selected
at the second stage. Constraints (3.4) ensure that each item is packed into a single bin.
Constraints (3.5) and (3.6) ensure that the total volume of items packed into each bin
does not exceed the bin volume. Finally, constraints (3.7) to (3.9) impose the integrality
requirements on all second-stage variables.

4 A Lower Bound for the SVCSBPP

We present in this section a lower bound (LB) for the VCSBP formulation (3.1)–(3.9),
which provides a way to measure the quality of the heuristic proposed in Section 5.

LB is obtained by removing the item-to-bin assignment constraints (3.4) and aggre-
gating the individual bin feasibility constraints (3.5) and (3.6). The resulting formulation
(4.1)–(4.4) is a two-stage stochastic model with fixed recourse, which yields an optimal
set of bins, including both those in the capacity plan and extra bins, with a total ca-
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pacity sufficient for the items considered (see constraints (4.2)). Thus, the LB does not
guarantee feasibility for individual bins.

min
y,z

∑
τ∈T

∑
j∈J τ

f τj y
τ
j + Eξ[

∑
τ∈T

∑
k∈Kτ (ω)

gτk(ω)zτk ] (4.1)

s.t.
∑
τ∈T

∑
j∈J τ

V τ
j y

τ
j +

∑
τ∈T

∑
k∈Kτ (ω)

V τ
k z

τ
k ≥

∑
i∈I(ω)

vi(ω), (4.2)

yτj ∈ {0, 1} ∀τ ∈ T , j ∈ J τ , (4.3)

zτk ∈ {0, 1} ∀τ ∈ T , k ∈ Kτ (ω). (4.4)

Note that the LB formulation is independent of the number of items. This reduces
the number of variables in the model and makes it possible to find optimal solutions in
reasonable computing times (e.g., using commercial MIP solvers).

5 Progressive Hedging-based Meta-heuristic

Algorithm 1 displays the proposed meta-heuristic for the VCSBP formulation, inspired
by the PH algorithm.

The method first applies a scenario decomposition (SD) technique based on the aug-
mented Lagrangian relaxation, which separates the stochastic problem by scenario. Here,
the Lagrangian multipliers are used to penalize a lack of implementability due to differ-
ences in the first-stage variable values among scenario subproblems. Section 5.1 describes
how the SVCSBPP can be decomposed into deterministic VCSBPP subproblems with
modified fixed costs. Then, the method proceeds in two phases. Phase 1 aims to obtain
consensus among the subproblems. At each iteration, the subproblems are first solved
separately. Their solutions are then aggregated into a temporary overall solution, as de-
fined in Section 5.2.1. The search process is gradually guided toward scenario consensus
by adjusting the Lagrangian multipliers and the subproblem penalties (Section 5.2.2),
based on the deviations of the scenario solutions from the overall solution, and by a
variable bundle-fixing strategy (Section 5.2.3). The search process continues until the
consensus is achieved or one of the termination criteria is met (see Section 5.3). When
consensus is not achieved in the first phase, Phase 2 solves the restricted SVCSBPP
obtained by fixing the first-stage variables for which consensus has been reached, e.g.,
the bins used in all the scenario subproblems. Section 5.5 finally describes the paral-
lel implementation of the algorithm solving the subproblems concurrently on multiple
processors.
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Algorithm 1 PH-based meta-heuristic for the SVCSBPP

Scenario decomposition
Generate a set of scenarios S;
Decompose the resulting deterministic model (5.1)–(5.9) by scenario using augmented
Lagrangian relaxation;

Phase 1
ν ← 0; λτsνj ← 0; ρτνj ← f τ/10;
while Termination criteria not met do

For all s ∈ S, solve the corresponding Variable Cost and Size Bin Packing subprob-
lem → yτsνj ;
Compute temporary global solution

ȳτνj ←
∑
s∈S

psy
τsν
j

δ̄τν ←
∑
S∈S

psδ
τsν

Penalty adjustment
λτsνj = λτsν−1j + ρ

τ(ν−1)
j (yτsνj − yτνj )

ρτνj ← αρ
τ(ν−1)
j

if consensus is at least σ% then
Adjust the fixed costs f τsν according to (5.26);

Bundle fixing
δ̄τνm ← min

s∈S
δτsν

δ̄τνM ← max
s∈S

δτsν

Apply variable fixing;
ν ← ν + 1

Phase 2
if consensus not met for a single bin type τ ′ (δ̄τ

′
m < δ̄τ

′
M) then

Identify the consensus number of bins δ of type τ ′ by enumerating δ ∈
[
δ̄τ

′
m, δ̄

τ ′
M

]
(and

variable fixing)
else

Fix consensus variables in model (5.1)–(5.9);
Solve restricted (5.1)–(5.9) model using a MIP solver.
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5.1 Scenario decomposition of the SVCSBPP

We first reformulate the SVCSBPP stochastic model (3.1)–(3.9) using scenario decompo-
sition. Sampling is applied to obtain a set of representative scenarios, namely the set S,
and these are used to approximate the expected cost associated with the second stage.

For the first stage, let yτsj = 1 if bin j ∈ J τ of type τ ∈ T is selected under scenario
s ∈ S and 0 otherwise. For the second stage, define Ks = ∪τKτs, where Kτs is the set of
extra bins of type τ ∈ T in scenario s ∈ S, and let Is be the set of items to pack under
scenario s ∈ S. Then, variable zτsk equals 1 if and only if the extra bin k ∈ Kτs of type
τ ∈ T is selected in scenario s ∈ S, while xsij and xsik are the item-to-bin assignment
variables for scenario s ∈ S. Given the probability ps of each scenario s ∈ S, the VCSBP
formulation (3.1)–(3.9) can be approximated by the following deterministic model:

min
y,z,x

∑
s∈S

ps

[∑
τ∈T

∑
j∈J τ

f τyτsj +
∑
τ∈T

∑
k∈Kτs

gτszτsk

]
(5.1)

s.t.
∑
j∈J

xsij +
∑
k∈Ks

xsik = 1 ∀i ∈ Is, s ∈ S, (5.2)∑
i∈Is

vsix
s
ij ≤ V τyτsj ∀τ ∈ T , j ∈ J τ , s ∈ S, (5.3)∑

i∈Is
vsix

s
ik ≤ V τzτsk ∀τ ∈ T , k ∈ Kτs, s ∈ S, (5.4)

yτsj = yτtj ∀τ ∈ T , j ∈ J τ , s, t ∈ S, (5.5)

yτsj ∈ {0, 1} ∀τ ∈ T , j ∈ J τ , s ∈ S, (5.6)

zτsk ∈ {0, 1} ∀τ ∈ T , k ∈ Kτs, s ∈ S, (5.7)

xsij ∈ {0, 1} ∀i ∈ Is, j ∈ J , s ∈ S, (5.8)

xsik ∈ {0, 1} ∀i ∈ Is, k ∈ Ks, s ∈ S. (5.9)

Constraints (5.5) are referred to as the nonanticipativity constraints, forcing all sce-
narios to yield the same first-stage decisions. The nonanticipativity constraints thus
link the first- and second-stage variables, making the model not separable. To make
the model separable and apply Lagrangian relaxation one rewrites the nonanticipativity
constraints. Let ȳτj ∈ {0, 1}, ∀τ ∈ T , j ∈ J τ , be the global capacity plan (also identified
as the temporary global solution, i.e., the set of bins currently selected at the first stage).
The following constraints are equivalent to (5.5):

ȳτj = yτsj τ ∈ T , j ∈ J τ , s ∈ S, (5.10)

ȳτj ∈ {0, 1} τ ∈ T , j ∈ J τ , (5.11)

constraints (5.10) forcing the first-stage solution of each scenario to be equal to the global
capacity plan.
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Following the decomposition scheme proposed by Rockafellar and Wets (1991), we
relax constraints (5.10) using an augmented Lagrangian strategy. We obtain the following
objective function for the overall problem:

min
y,z

∑
s∈S

ps

[∑
τ∈T

∑
j∈J τ

f τyτsj +
∑
τ∈T

∑
k∈Kτs

gτszτsk +

∑
τ∈T

∑
j∈J τ

λsj
(
yτsj − ȳτj

)
+

1

2

∑
τ∈T

∑
j∈J τ

ρτj
(
yτsj − ȳτj

)2]
,

(5.12)

where λsj , ∀j ∈ J and ∀s ∈ S, define the Lagrangian multipliers for the relaxed con-
straints and ρτj is a penalty ratio associated with bin j ∈ J τ of type τ ∈ T . Given the
binary requirements on yτsj and ȳτj , the quadratic term becomes∑

τ∈T

∑
j∈J τ

ρτj
(
yτsj − ȳτj

)2
=
∑
τ∈T

∑
j∈J τ

(
ρτj (y

τs
j )2 − 2ρτj y

τs
j ȳ

τ
j + ρτj (ȳ

τ
j )2
)

=∑
τ∈T

∑
j∈J τ

(
ρτj y

τs
j − 2ρτj y

τs
j ȳ

τ
j + ρτj ȳ

τ
j

)
,

(5.13)

and the objective function can therefore be formulated as

min
y,z

∑
s∈S

ps

[∑
τ∈T

∑
j∈J τ

(
f τ + λsj − ρτj ȳτj +

ρτj
2

)
yτsj +

∑
τ∈T

∑
k∈Kτs

gτszτsk

]

−
∑
τ∈T

∑
j∈J τ

λsj ȳ
τ
j +

ρτj
2

∑
τ∈T

∑
j∈J τ

ȳτj .

(5.14)

When the value of the overall plan ȳτj , ∀τ ∈ T , ∀j ∈ J τ , is fixed, e.g., to the
expected value of the scenario solutions, the last two terms of the objective function
(5.14) become constants. The formulation then decomposes according to the scenarios
in S, each scenario subproblem becoming

miny,z,x
∑
τ∈T

∑
j∈J τ

(
f τ + λsj − ρτj ȳτj +

ρτj
2

)
yτsj +

∑
τ∈T

∑
k∈Kτs

gτszτsk (5.15)

subject to constraints (5.2) - (5.4) and (5.6) - (5.9).

Let Bτs = J τ ∪Kτs be the set of available bins of type τ in the subproblem of scenario
s ∈ S. Let f τb define the fixed cost associated with bin b ∈ Bτs, where

f τb =

{
f τ + λsj − ρτj ȳτj +

ρτj
2

τ ∈ T , b, j ∈ J τ ,

gτs τ ∈ T , b ∈ Kτs,
(5.16)

the values of the multipliers λsj and ρτj being determined, at each iteration exogenously
determined with respect to the subproblem.
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Each scenario subproblem can then be reduced to a deterministic VCSBPP with
modified fixed costs:

min
y,x

∑
τ∈T

∑
b∈Bτs

f τb y
τ
b (5.17)

s.t.
∑
τ∈T

∑
b∈Bτs

xsib = 1 ∀i ∈ Is, s ∈ S, (5.18)∑
i∈Is

vsix
s
ib ≤ V τyτb ∀τ ∈ T ,∀b ∈ Bτs, s ∈ S, (5.19)

yτb ∈ {0, 1} ∀τ ∈ T ,∀b ∈ Bτs, s ∈ S, (5.20)

xsib ∈ {0, 1} ∀τ ∈ T , ∀b ∈ Bτs,∀i ∈ Is, s ∈ S, (5.21)

where yτb = 1 if bin b ∈ Bτs of type τ ∈ T is selected, 0 otherwise.

It is time-consuming to solve a large VCSBPP to optimality, even using a state-of-
the-art commercial MIP solver (Correia et al., 2008). Moreover, VCSBPP subproblems
must be solved multiple times in the PH-based meta-heuristic. Among the effective
algorithms developed for the VCSBPP (Crainic et al., 2007; Baldi et al., 2014; Crainic
et al., 2011b), we choose the heuristic of Crainic et al. (2011b), because of its proved
efficiency on instances with up to 1000 items. The heuristic implements an adapted best-
first decreasing strategy that sorts items and bins by nonincreasing order of volume and
unit cost, respectively. The heuristic then sequentially assigns each item to the best bin,
i.e., the bin with the maximum free space once the item is assigned.

5.2 Obtaining consensus among subproblems

At each iteration of the meta-heuristic, the solutions of the scenario subproblems are
used to build a temporary global solution (the overall capacity plan). “Consensus” is
then defined as scenario solutions being similar with regard to the first-stage decisions
with the overall capacity plan and, thus, being similar among themselves. Section 5.2.1
describes how the overall plan is computed given the symmetry challenge of the bin pack-
ing formulation. Section 5.2.2 then introduces the strategies for the penalty adjustment
when nonconsensus is observed, while Section 5.2.3 describes the techniques we propose
to guide the search by bounding the number of bins that can be selected at the first
stage.

5.2.1 Defining the overall capacity plan

Let ν be the iteration counter in the PH meta-heuristic. At each iteration, the algorithm
solves subproblems (5.17)–(5.21), obtaining local solutions yτsνj , ∀s ∈ S, ∀τ ∈ T , and
∀j ∈ J τ . The subproblem solutions are then combined yielding the overall capacity plan
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ȳτνj by using the expected value operator, as shown in Equation (5.22). The weight used
for each component is the probability ps associated with the corresponding scenario.

ȳτνj =
∑
s∈S

psy
τsν
j , ∀τ ∈ T ,∀j ∈ J τ . (5.22)

This definition does not take into account, however, the presence of a large number
of equivalent solutions that is typical of packing problems (Baldi et al., 2012). In fact,
packing problems present a strong symmetry in the solution space. Two solutions are
considered symmetric (and equivalent) when they involve the same set of bins in differ-
ent orders. Equation (5.22) concerns the use of the specific bin j ∈ J τ and is therefore
dependent on the order of the bins in the solution. Thus, it provides misleading informa-
tion on the consensus, and does not constitute a good yardstick to measure the progress
toward consensus (loosely called ”convergence”) of the overall solution.

To deal with the symmetry of the solution space, we define an overall solution based
on the number of bins in the capacity plan. Let δτsν =

∑
j∈T τ y

τsν
j be the total number

of bins of type τ ∈ T in the capacity plan for scenario subproblem s ∈ S at iteration ν.
Equivalently to (5.22), using the expected value operator on δτsν , ∀s ∈ S, we can define
the overall capacity plan for each bin type τ ∈ T as

δ̄τν =
∑
s∈S

psδ
τsν =

∑
s∈S

ps
∑
j∈J τ

yτsνj =
∑
j∈J τ

∑
s∈S

psy
τsν
j =

∑
j∈J τ

ȳτνj . (5.23)

Equation (5.23) breaks the symmetry of the solutions (the order of the bins in the solution
does not change the value of δτsν) and can be used to define the stopping criterion. Thus,
we consider consensus to be achieved when the values of δτsν , ∀s ∈ S, are equal to δ̄τν .

It is important to note that (5.22) and (5.23) do not necessarily produce a feasible
capacity plan. When consensus is not achieved, the overall solution may not satisfy the
integrality constraints on the first-stage decision variables. For nonconvex problems, such
as the SVCSBPP, using the expected value as an aggregation operator does not guarantee
that the algorithm converges to the optimal solution. Moreover, it cannot ensure that
a good (feasible) solution will be obtained for the stochastic problem. Therefore, (5.22)
and (5.23) are used as reference solutions with the goal of helping the search identify
bins for which consensus is possible. Both measures are used for penalty adjustment
(Section 5.2.2), while (5.23) is also used in the bounding strategy (Section 5.2.3).

5.2.2 Penalty adjustment strategies

To induce consensus among the scenario subproblems, we adjust the penalties in the ob-
jective function at each iteration to penalize dissimilarity between local solutions and the
overall solution. We propose two different strategies for these adjustments, both working
at the local level in the sense that they affect every scenario subproblem separately.
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The first strategy was originally proposed by Rockafellar and Wets (1991). Using
information on the bin selection (e.g., variable yτsνj ), it operates on the fixed costs by
changing the Lagrangian multipliers. For a given iteration ν, let λsνj be the Lagrangian
multiplier associated with bin j ∈ J τ for scenario s ∈ S, and let ρτνj be the penalty
deriving from the quadratic term. Note that the value of ρτνj is variable-specific. This
approach outperforms scalar ρ strategies and guarantees faster convergence of the algo-
rithm (Watson and Woodruff, 2011). At each iteration, we update the values λsνj and
ρτνj , ∀j ∈ J and ∀s ∈ S, as follows:

λsνj = λ
s(ν−1)
j + ρ

τ(ν−1)
j (yτsνj − ȳτνj ) (5.24)

ρτνj ← αρ
τ(ν−1)
j , (5.25)

where α > 1 is a given constant and ρτ0j is fixed to a positive value to ensure that ρτνj →∞
as the number of iterations ν increases.

We initialize λs0j = 0 for each scenario s ∈ S. Equation (5.24) can then reduce,
increase, or maintain this contribution according to the difference between the value of
the bin-selection variables in the subproblem solutions and the overall capacity plan. The
initial choice of ρτνj is important. An inaccurate choice may cause premature convergence
to a solution that is far from optimal or cause slow convergence of the search process.
To avoid this, we set ρτ0j proportional to the fixed cost associated with the bin-selection
variable: ρτ0j = max(1, f τ/10), ∀j ∈ J τ and ∀τ ∈ T . The value of ρτνj increases according
to (5.25) as the number of iteration grows.

The second penalty adjustment is a heuristic strategy, which directly tunes the fixed
costs of bins of the same type. The goal of this strategy is to accelerate the search process
when the overall solution is close to consensus. When consensus is close, the difference
between the subproblem solution and the overall solution may be small, and adjustments
(5.24) and (5.25) lose their effectiveness, requiring several iterations to reach consensus.

Let f τsν be the fixed cost of bin j ∈ J τ of type τ ∈ T for scenario s ∈ S at iteration
ν. At the beginning of the algorithm (ν = 0), we impose f τs0 = f τ . Then, when at least
σ% of the variables have reached consensus, we perturb every subproblem by changing
f τsν as follows:

f τsν =


f τs(ν−1) ·M if δτs(ν−1) > δ̄τ(ν−1)

f τs(ν−1) · 1
M

if δτs(ν−1) < δ̄τ(ν−1)

f τs(ν−1) otherwise.

(5.26)

Here, M is a constant greater than 1, while σ% is a constant such that 0.5 ≤ σ% ≤ 1.
The current implementation of this heuristic strategy uses σ% = 0.75 and M = 1.1. The
rationale for (5.26) is the following: if δτs(ν−1) > δ̄τ(ν−1), this means that in the previous
iteration the number of bins of a given bin type τ in scenario s was larger than the number
of bins in the reference solution δ̄τ(ν−1). Thus, the use of bins of type τ is penalized by
increasing the fixed cost by M . On the other hand, if δτs(ν−1) < δ̄τ(ν−1), we promote bins
of type τ by reducing the fixed cost by 1/M .
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5.2.3 Bundle fixing

We introduce a variable-fixing strategy to guide the search process. Because there are
multiple equivalent solutions, it might not be efficient to fix a single bin-selection variable
ȳτνj . We instead restrict the number of bins of each type that can be used, specifying
lower and upper bounds. We call this strategy bundle fixing.

Let δ̄τνm and δ̄τνM be the minimum and maximum number of bins of type τ involved in
the overall solution at iteration ν:

δ̄τνm ← min
s∈S

δτsν , (5.27)

δ̄τνM ← max
s∈S

δτsν . (5.28)

At each iteration, the bundle strategy applies two bounds to reduce the number
of decision variables in the subproblems. The lower bound δ̄τνm determines the set of
compulsory bins that must be used in each subproblem by setting the decision variables
y
τs(ν+1)
j = 1 for j = 1, ..., δ̄τνm . The upper bound δ̄τνM is an estimate of the maximum

number of bins of type τ available in the next iteration. This is performed by setting
decision variables y

τs(ν+1)
j = 0 for j = δ̄τνM + 1, ..., ‖J τ‖.

5.3 Termination criteria

There are to date no theoretical results on the convergence of the PH algorithm for
integer problems. Thus, we implement three stopping criteria for the search phase of
the proposed meta-heuristic, based on the level of consensus reached and the number of
iterations.

The level of consensus is measured through equations (5.27) and (5.28), as consensus
is reached when δ̄τνm = δ̄τνM , ∀τ ∈ T . To speed up the algorithm, we actually stop the
search, and proceed to Phase 2, as soon as consensus has been reached for all the bin
types except one, type τ ′, for which δ̄τ

′
m < δ̄τ

′
M .

When neither of the preceding conditions has been reached within a maximum number
of iterations (200 in our experiments), the search is stopped and the meta-heuristic
proceeds to the Phase 2.

5.4 Phase 2 of the meta-heuristic

Phase 2 is thus invoked either when consensus is not achieved within a given maximum
number of iterations, or the search was stopped when all but one bin type were in
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consensus.

In the first case, there is only one bin type τ ′ with δ̄τ
′
m < δ̄τ

′
M , that is, not in consensus.

Given the efficiency of the item-to-bin heuristic, Phase 2 computes the final solution by
iteratively examining the possible number of bins for τ ′ (a consensus solution is always
possible because δ̄τ

′
M is feasible in all scenarios):

For all δ ∈
[
δ̄τ

′
m, δ̄

τ ′
M

]
do

Set the number of bins of type τ ′ to δ;

Solve all the scenario subproblems with the VCSBPP heuristic;

Check the feasibility of the solutions;

Update the overall solution if a better solution has been found;

Produce the consensus solution.

When the maximum number of iterations is reached, consensus is less close. Phase
2 of the meta-heuristic then builds a restricted version of the formulation (5.1)–(5.9)
by fixing the bin-selection first-stage variables for which consensus has been achieved,
together with the associated item-to-bin assignment variables. The range of the bin
types not in consensus is reduced through bundle fixing, and the resulting MIP is solved
exactly.

5.5 Parallel implementation

Given the straightforward parallelization of the PH algorithm, we developed a syn-
chronous master–slave implementation for the proposed meta-heuristic. The subprob-
lems are assigned to a number of slaves. The master implements the meta-heuristic. It
sends the values of the global information, overall solution and multiplier values, and
collects the solutions from the slaves waiting until all the scenario subproblems have
been solved. The master then proceeds to calculate the new overall solution. If con-
sensus is not reached, the master updates the penalties of each subproblem and starts a
new iteration. The parallelization reduces the computational time for each iteration and
thus speeds up convergence. The quality of the solutions is not affected by the parallel
execution, as the search process follows the same dynamics as in the sequential case.

It should be noted that when the computational time for the subproblems is unbal-
anced, the parallel algorithm is less efficient. To mitigate this effect, the master checks
the current load of each slave (the number of subproblems remaining) and, if necessary,
it can reassign subproblems among the slaves.

The complete list of duties of the master and slaves is:

15

Logistics Capacity Planning: A Stochastic Bin Packing Formulation and a Progressive Hedging Meta-Heuristic

CIRRELT-2014-66



� Master

1. Creates the pool of scenario subproblems;

2. Assigns each slave an equal number of subproblems;

3. Checks the load of the slaves and adjusts the assignments;

4. Computes the global solutions, computes the bounds, and updates the penal-
ties.

� Slave

1. Solves the assigned subproblems;

2. Saves the solutions in a pool accessible by the master.

6 Computational Results

We performed an extensive set of experiments. The goals of the experimental campaign
were to 1) analyze the performance of the proposed PH-based meta-heuristic by compar-
ing it to a state-of-the-art commercial MIP solver; 2) measure the impact of uncertainty
and determine whether building a stochastic programming model is really useful, and 3)
explore the potential of the proposed model and algorithm by performing a number of
analyzes of the structure, sensitivity and robustness of the logistics capacity plan under
various problem settings.

We start by introducing the test instances generated for the numerical experiments
(Section 6.1). We then proceed, Section 6.2, to analyze the performance of the proposed
meta-heuristic by comparing its results (objective values and computational times), those
of the direct solution of the multi-scenario deterministic problem (called RP in the fol-
lowing) (5.1)–(5.9), and the lower bound (LB) (4.1)–(4.4). We also analyze the efficiency
of the parallel implementation by studying the scalability to 16 threads. Section 6.3
explores the benefits of using a two-stage model with recourse by computing the clas-
sical measures of the expected value of of perfect information, EVPI, and value of the
stochastic solution VSS (Birge, 1982; Maggioni and Wallace, 2012).

The potential of the proposed model and solution method is explored in three steps.
Section 6.4 studies the structure of the capacity plan with respect to the attributes of
the problem setting (bin-type usage and bin fill ratios); The sensitivity of the capacity
planning to lower and upper limits on the number bins within each type one may used is
analyzed in Section 6.5. Finally, we examine in Section 6.6 the robustness and reliability
of the capacity planning decisions, through a Monte Carlo simulation under variations in
the economic conditions (e.g., higher or lower demand).
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The RP and LB formulations were solved using CPLEX version 12.5 (ILOG Inc.,
2012) with maximum running time of 24 h. The PH-based meta-heuristic was codded in
C++. It was stopped wither on reaching consensus or reaching 200 iterations. Phase 2
solves the restricted MIP using CPLEX with a time limit of one hour. Experiments were
performed on a computer with 16 AMD Bulldozer cores at 2.3 GHz and 64 GB of RAM,
at the high-performance computing cluster of Politecnico di Torino (DAUIN, 2014) .

6.1 Instances

We generated a new set of instances, denoted T, starting from existing instances for
different bin packing problem variants (Monaci, 2002; Crainic et al., 2007, 2011b, 2014a).
The goal of the generation process was to allow exploring the structure of the capacity
planning solutions for different configurations of bin types and items, as well as mea-
suring the effect of different levels of uncertainty in the demand and the extra capacity.
Instances are characterized by the number of bin types, the availability and the cost of
the bins in the first and second stages, and the number and volume of the items. These
characteristics are:

� Number of bin types. We consider instances with 3 (T3), 5 (T5), and 10 (T10)
bin types. The bin volumes are:

– 50, 100, 150 for T3;

– 50, 80, 100, 120, 150 for T5;

– 50, 60, 70, 80, 100, 110, 120, 130, 140, 150 for T10.

� Availability of bins. The number of bins of type τ ∈ T available in the first
stage, ‖J τ‖, is the minimum number of bins of volume V τ needed to pack all items
in the worst-case scenario (the scenario with the most items). This number is

‖J τ‖ =

⌈
1

V τ
max
s∈S

∑
i∈Is

vsi

⌉
. (6.1)

To ensure a large variability at the second stage, ‖Kτs‖, the number of bins of type
τ ∈ T in scenario s ∈ S, is uniformly distributed in the range [0, ‖J τ‖]. These
rules mean that the worst-case scenario may involve a limited number of extra bins.

� Fixed cost of bins. For the set of bins available in the first stage the fixed cost is

f τ = V τ (1 + γ), (6.2)

where γ is uniformly distributed in the range [-0.3, 0.3]. According to Correia et al.
(2008) this range replicates realistic situations. The fixed cost for extra bins gτs
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at the second stage is the original fixed cost f τ multiplied by a factor (1 + αsτ ),
inversely proportional to the availability of extra bins of type τ in scenario s ∈ S,
where

αsτ = 1− ‖Kτs‖∑
τ∈T
‖Kτs‖

· β, (6.3)

and β ∈ U [0, 0.5]. Thus, the maximum increase in the fixed cost is 50%.

� Number of items at the second stage is uniformly distributed in the range [25, 100]
for T3 and T5, [100, 500] for T10.

� Volume of items. An item is defined as:

– Small (S): volume in the range [5, 10];

– Medium (M): volume in the range [15, 25];

– Big (B): volume in the range [20, 40].

These categories are then combined into four volume-spread classes reflecting dif-
ferent realistic settings:

– SP1: high percentage of small items (S=60%, M=20%, B=20%);

– SP2: high percentage of medium items (S=20%, M=60%, B=20%);

– SP3: high percentage of big items (S=20%, M=20%, B=60%);

– SP4: no restrictions on the maximum number of items in each category.

For each combination of the parameters defined above, we generated 10 instances,
yielding a total of 120 instances. A total of s = 1, . . . , 100 scenarios were generated. This
number of scenarios guarantees in-sample stability (Kaut et al., 2007), which means that
the value of the optimal decisions of the first-stage variables does not change when a
different set of scenarios is considered.

6.2 PH meta-heuristic performance analysis

We started by examining computational performance of the MIP solver of CPLEX. The
quality of the solutions is measured by the relative optimality gap defined as the difference
between the best known solution UBCP (i.e., the incumbent solution) and the best bound
LBCP :

∆CP =
UBCP − LBCP

LBCB
· 100. (6.4)

18

Logistics Capacity Planning: A Stochastic Bin Packing Formulation and a Progressive Hedging Meta-Heuristic

CIRRELT-2014-66



Figure 1: CPLEX average relative optimality gap (%) with respect to the number of
parallel threads

Initial experiments on the T3 and T5 instance sets showed ∆CP figures greater than
10% after 24 hours of execution. This underlined the difficulty of even very good com-
mercial MIP solvers such as CPLEX to solve even limited-size problem instances. The
high degree of symmetry inherent to the problem contributes to this difficulty.

We therefore used CPLEX in parallel mode. Figure 1 shows the trend of the average
relative optimality gap for T3 and T5 instances with respect to the number of parallel
threads. The gap decreases rapidly as the number of threads increases. With 16 parallel
threads, CPLEX has an average optimality gap below 6%. The results of parallel CPLEX
with 16 threads are therefore used in the comparisons of this section.

Table 1 details the comparison of CPLEX and the PH meta-heuristic for the T3 and
T5 instances; CPLEX was unable to solve T10 with a reasonable optimality gap. We
report, for each combination of instance set (Column 1) and item spread class (Column
2), the average optimality gaps ∆CP of CPLEX (Column 3), the average running times
tCP of CPLEX (Column 4), the average running times tPH of the meta-heuristic (Column
6), and, in Column 5, the average gaps ∆PH

UB of the meta-heuristic computed as

∆PH
UB =

UBPH − UBCP

UBCP
, (6.5)

where UBPH is the objective value of the meta-heuristic. Note that the value of ∆PH
UB

may be positive or negative. When ∆PH
UB is negative, the meta-heuristic solution is better

than that of CPLEX.
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CPLEX PH
Set Spread ∆CP tCP [s] ∆PH

UB tPH [s]

T3

SP1 5.38 86400 -1.19 1.21
SP2 5.74 86400 -1.39 2.38
SP3 6.38 86400 -1.06 0.40
SP4 5.77 86400 -0.86 0.48

T5

SP1 4.99 86400 -1.17 2.08
SP2 5.23 86400 -1.38 0.75
SP3 6.44 86400 -1.98 0.62
SP4 5.20 86400 -1.36 2.70

Table 1: Comparison of CPLEX and PH-based meta-heuristic

As stated before, CPLEX cannot solve the SVCSBPP to optimality within a reason-
able time limit for any instance considered. The average optimality gap after 24 hours
is always greater than 5%, with a maximum value of 6.44%. The PH meta-heuristic is
accurate and effective on all T3 and T5 instances. It always converges quickly to better
solutions than those obtained by CPLEX. The gap ∆PH

UB is negative for all instances
with an average improvement in the solution values between 0.86% and 1.98%. The PH
meta-heuristic always reaches a consensus solution in less than 3 s. This performance is
directly related to the efficiency of the heuristic solver for the VCSBPP, which is able to
solve deterministic subproblems in negligible computational times.

Despite the use of concurrent computation, CPLEX is not able to identify a good
feasible solution for T10 instances in 24 h of computing time. These instances can easily
involve more than 10 million variables. They require a huge amount of memory for
the branch and bound (e.g., more than 64 GB of memory already occupied after 2 h of
computation). Memory thus rapidly becomes a bottleneck, and CPLEX cannot run for
the assigned time. Thus, to validate the PH meta-heuristic on the remaining instances,
we compare its solutions with those obtained by solving the LB (4.1)–(4.4). Recall that
the LB does not consider item-to-bin assignments, which drastically reduces the number
of variables in the model. The reduced model can thus be solved to optimality by CPLEX
with a limited computational effort. The time depends on the number of bins involved,
so CPLEX requires only a few seconds to solve LB for sets T3, T5, and it needs at most
120 s for set T10.

Table 2 reports, for each instance set (Column 1) and item spread class (Column 2),
the percentage gap ∆PH

LB between the objective function value obtained by the PH meta-
heuristic and LB (Column 3), and the average and maximum percentage increase in the
objective function value (Columns 4 and 5) resulting from the use of the LB solutions as
the capacity plan. On average, the gaps are smaller than 2%, underlining the accuracy
of the PH meta-heuristic. We further qualified this accuracy by evaluating the quality of
the LB solutions by fixing the bin selections defined by LB and computing the recourse
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Set Spread ∆PH
LB CLB CLB

max

T3

SP1 0.88 0.21 1.45
SP2 0.72 0.22 1.79
SP3 0.68 0.05 0.45
SP4 1.21 0.00 0.00

T5

SP1 1.57 0.09 0.63
SP2 1.45 0.00 0.00
SP3 1.03 0.06 0.47
SP4 2.03 0.10 0.77

T10

SP1 0.81 0.04 0.31
SP2 0.79 0.03 0.18
SP3 0.76 0.02 0.19
SP4 0.86 0.01 0.06

Table 2: Comparison of LB and PH solutions

cost. For instances T3, T5, and T10, the average increase in the objective function was
smaller than 0.25%,.No increase, CLB = 0, was observed in a number of cases, signaling
that the capacity plans defined by LB and the PH meta-heuristic match exactly.

We conclude this section by analyzing the scalability of the parallel implementation
of the meta-heuristic with up to 16 threads. The computational wall-clock times tPH for
each instance set (Column 1) and item spread class (Column 2) are reported in Table 3
for 1, 2 , 4, 8 and 16 threads. The average speedups for the three instance sets, defined
as the ratio of the sequential running time to the parallel running time, are displayed in
Figure 2.

Computational times are negligible for T3 and T5 instances, while becoming more
significant for the larger instances, the computational effort increasing with the number
of items and especially with the number of bin types (e.g., instances in T10). Yet, the
maximum sequential time of the meta-heuristic, of the order of 600 wall-clock seconds,
is still several orders of magnitude smaller than the time required by CPLEX.

The scaling of the master-slave parallel implementation is quite linear. The speedups
are of the order of 4 with 16 parallel threads for T3 and T5 instances, while they reach
almost 14 (80% of the linear speedup) for T10 instances. Recalling that the VCSBP-
Pheuristic is very fast on all instances (which results in a balanced workload for slaves),
the results indicate that for parallel computation is not really required for the small
instances (and certainly not 16 threads; 4 are giving a 50% speedup), most time being
spent on exchanging information between the master and the slaves. Parallel computing
becomes appropriate as dimensions grow, which indicates that large problem instance
can be addressed efficiently with the proposed methodology.
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Set Spread tPH1 tPH2 tPH4 tPH8 tPH16

T3

SP1 1.21 0.87 0.73 0.50 0.30
SP2 2.36 1.73 1.41 0.97 0.59
SP3 0.41 0.29 0.25 0.17 0.10
SP4 0.49 0.35 0.29 0.20 0.12

T5

SP1 2.08 1.48 1.15 0.83 0.50
SP2 0.75 0.53 0.42 0.30 0.18
SP3 0.62 0.44 0.35 0.25 0.15
SP4 2.70 1.93 1.50 1.08 0.65

T10

SP1 625.17 350.10 187.08 89.02 45.62
SP2 580.59 325.52 174.53 85.05 42.56
SP3 432.48 241.24 122.87 74.25 31.52
SP4 524.87 293.35 155.24 75.85 38.47

Table 3: Average computational times for the meta-heuristic with respect to parallel
threads
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Figure 2: Speed-up of PH algorithm for different numbers of parallel threads
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6.3 Benefit of modeling the uncertainty

The question addressed in this section is whether modeling uncertainly explicitly through
the SVCSBPP two-stage model with recourse is warranted compared to solving some
deterministic variant of the problem. We address this question by comparing the results
of the stochastic formulation RP, to those of the wait and see, WS, and expected value, EV,
problems, respectively. The well-known stochastic programming measures, the expected
value of perfect information, EVPI, and the value of the stochastic solution, VSS (Birge,
1982; Maggioni and Wallace, 2012).

The EVPI is defined as the difference between the objective values of the stochastic
solution and that of the wait-and-see problem

EV PI := RP −WS, (6.6)

the latter problem being defined by assuming the realizations of all the random parame-
ters are known at the first stage.

The VSS indicates the expected gain from solving the stochastic model rather than
its deterministic counterpart in which the random parameters are replaced with their
expected values:

V SS := EEV −RP, (6.7)

where, in our case, EEV denotes the solution value of EV, the stochastic model with the
first-stage decision variables fixed at the optimal values obtained by using the expected
values of the coefficients.

We present aggregated results in Table 4, grouped by instance set (Column 1) and
spread class (Column 2). The table reports, the average and maximum EVPI percentages
(Columns 3 and 4), computed as EV PI/RP · 100, and the average and maximum VSS
percentages (Columns 5 and 6) computed as V SS/RP · 100.

The EVPI percentage is around 10%, showing the benefit of having information about
the future in advance. It increases with the problem dimensions to a maximum value
above 15%. The average and maximum values of VSS also increase as the size of the
instance increases. The gap between the expected-value solution and the stochastic
solution is significant for all sets considered. Even for small instances, the maximum
VSS reaches 11%, emphasizing the potential loss incurred by following the capacity plan
of the deterministic solution. The most critical item spread class is SP4, representing the
case when no information is available about the category distribution of the items to be
shipped. It is therefore the most representative instance class for the shipping freight over
long distances, and it displays a maximum EVPI of 15.20%, with a maximum VSS always
greater than 7% and reaching 17.70%. We therefore conclude that using the stochastic
model is appropriate and beneficial.
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Set Spread EV PI [%] EV PImax [%] V SS [%] V SSmax [%]

T3

SP1 5.66 6.97 5.63 6.89
SP2 4.35 7.08 5.28 7.66
SP3 5.42 7.10 4.21 6.94
SP4 6.18 6.67 8.10 11.25

T5

SP1 5.72 7.01 5.98 6.92
SP2 6.28 7.29 4.18 6.07
SP3 5.51 7.38 4.47 5.76
SP4 5.35 8.10 12.34 14.17

T10

SP1 11.73 14.52 8.09 15.95
SP2 11.52 12.62 6.66 9.37
SP3 10.87 12.51 7.25 12.00
SP4 11.17 15.20 9.67 17.70

Table 4: EVPI and VSS comparison

We complete this section by examining to what extent the first-stage decisions differ
between the stochastic and the EV formulations. On average, the EV problem overesti-
mates the demand to be loaded (the total volume of the items is larger than the actual
volume) and the availability of extra bins (a larger set of bins is available for the recourse
action). This can lead to two situations. On the one hand, EV may plan to use a larger
set of bins that is not actually required, given the set of scenarios considered. The ca-
pacity plan is then more expensive (i.e., the cost increases by 17.70%), but the solution
is feasible. ON the other hand, EV may plan an insufficient capacity for a subset of
scenarios in which the actual availability of bins is very limited. The capacity plan is
infeasible for these scenarios. This case is rare, occurring for only 2% of the instances.
In both cases, the results clearly show the need to explicitly consider uncertainty in
capacity-planning applications.

6.4 Solution analysis

We focus on the structure of the capacity-planning solutions and in particular on the
use of bins in the plan. Table 5 reports, for each combination of instance set (Column
1) and item spread class (Column 2), the average number of bin types NT used in the
capacity plan (Column 3), the percentage of the objective function value achieved in the
first stage ObjFS (Column 4), and the average fill level of the bins (as a percentage of
capacity) at the two stages, fFS and fSS respectively (Columns 5 and 6).

It is noticeable that only a few bin types are used in the plan. The number is close
to 1 for T3 instances, and it is between 2 and 3 for instances in sets T5 and T10, which
have five and ten bin types, respectively. Furthermore, the number of bins is not evenly
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Set Spread NT ObjFS [%] fFS [%] fSS [%]

T3

SP1 1.4 80.59 91.94 86.28
SP2 1.2 78.10 93.25 87.27
SP3 1 81.91 94.47 79.47
SP4 1.3 86.02 95.68 85.78

T5

SP1 2 77.10 95.38 87.29
SP2 1.8 80.57 97.34 85.35
SP3 1.5 82.00 95.64 81.46
SP4 2.1 81.60 94.66 85.68

T10

SP1 2.5 80.99 94.76 83.32
SP2 2.1 79.88 94.23 84.35
SP3 2 78.90 95.58 84.62
SP4 2.3 81.63 95.17 82.49

Table 5: Structure of solutions

distributed among the types. Almost all of the bins included in the capacity plan are
of the same type; only one or two bins are of different types. Concerning the spread
classes, it is interesting to note that, when the stochastic problem considers a demand
with a high percentage of small items (classes SP1 and SP4), NT is maximum. In fact,
small items may be loaded into any bins (large items cannot be placed into bins with
limited capacities), and they are usually used to fill near-empty bins. Thus, it becomes
attractive for the model to mix bin types.

The percentage of the objective function coming from the first stage planning decisions
is of the order of 80%. This indicates interest for tactical decisions to be conservative: the
company should book sufficient capacity in advance to limit the adjustments necessary
when the actual demand becomes known. This also indicates that 10%-20% of plan
adjustment (recourse) is a good compromise between cost reduction and uncertainty
management.

Finally, the fill levels of the bins selected during the first and second stages are over
than 90% and 70%, respectively. This indicates the effectiveness of the capacity plan,
which uses the contracted bins at almost full capacity and requires only limited adjust-
ments at the second stage.

6.5 Sensitivity analysis

We now turn to the sensitivity of the problem and the proposed logistics capacity plan
to limits on the availability of bins coming, e.g., from contractual policies imposed by
the 3PL. We analyze the issue through two policies. The first policy (P1 ) imposes a
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minimum number of bins for each bin type τ included in the capacity plan. The second
policy (P2 ) reduces the number of available bins of each type, which requires the plan
to combine different types of bins in the most efficient way.

Set NT Policy m (%) N ′T ∆′Obj

T3 1.2

P1 10 1.2 0.90
P1 20 1.2 1.46
P1 30 1.2 2.35
P2 50 1.2 0.83
P2 75 1.2 0.00
P2 90 1.2 0.00

T5 1.8

P1 10 1.8 0.18
P1 20 1.8 0.21
P1 30 1.8 0.34
P2 50 2.0 0.86
P2 75 1.8 0.00
P2 90 1.8 0.00

T10 2.2

P1 10 2.0 0.14
P1 20 1.8 0.25
P1 30 1.5 0.37
P2 50 2.2 0.00
P2 75 2.2 0.00
P2 90 2.2 0.00

Table 6: Sensitivity of capacity planning to bin availability

Let uτ = ‖J τ‖ be the number of bins of type τ that can be selected for the capacity
plan. We define the minimum number of bins to be m · uτ , with m = {10%, 20%, 30%}.
Similarly, the maximum availability is reduced to m · uτ with m = {0.50, 0.75, 0.80}. To
impose these policies, we introduce into the formulation the additional constraints (6.8)
for the first policy, and (6.9) for the second policy:∑

j∈J τ
yτsj ≥ m · uτ ∀τ ∈ T , s ∈ S (6.8)

∑
j∈J τ

yτsj ≤ m · uτ ∀τ ∈ T , s ∈ S. (6.9)

We compare the results of the PH meta-heuristic for the two policies and those of the
original formulation. Table 6 reports the average results of the sensitivity analysis for
each set of instances (Column 1), the original number of bin types used in the plan NT
(Column 2), the policy type (Column 3), and the associated value of factor m (Column
4). For each policy, we show the changes in the solutions with respect to the number of
bin types used (N ′T , Column 5) and the extra cost for the policy (∆′Obj, Column 6).
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We note that the instances with a limited availability of bin types (T3) are more
sensitive to policy P1. For these sets, P1 penalizes combinations of bin types, causing an
increase in the cost of the first-stage capacity plan or in the recourse action contracting
more bins. This cost increases as the number of bin types available decreases, e.g., it is
approximately 2% for instances T3. Similarly, P1 tends to penalize the use of bin types
for T5 and T10, but the impact on the objective function is limited. The wide choice of
bins that characterizes these instances allows them to efficiently implement the policy,
reducing the cost associated with the second stage.

P2 reduces the set of bins available at planning time. Thus, it is necessary to combine
the available bins for each type (replacing the large bins that cannot be selected with
more smaller bins). The policy becomes significant only in extreme cases in which the
original availability of the bins is halved (e.g., m = 50%). The solutions then include
more bins, resulting in a higher fixed cost. The effect of this policy is very limited,
however, with an increase in objective function of 0.86%. In the worst case, when the
plan does not meet the demand, the recourse selects extra capacity at a premium cost.

6.6 Long-term behavior of capacity plan

The goal of this analysis is to evaluate the robustness and reliability of the capacity
planning decisions when the demand moves significantly away from the distribution and
the estimation (reflected in the set of scenarios S). This situation can be observed when
economic conditions change significantly resulting in higher and lower demands.

We performed Monte Carlo simulations (on a 10% subset of the instances) for a
relatively long period (1 year) for four demand scenarios:

1. High demand (Figure 3a illustrates the range of the demand in this scenario
relative to the initial one): The average demand is higher than the demand of the
scenarios in S. This case aims to measure the cost of overusing the spot market to
obtain the extra capacity.

2. Low demand (Figure 3b): The average demand is lower than the demand of the
scenarios in S. This case focuses on the cost of not using part of the planned
capacity.

3. Economic crisis (Figure 3c): The demand decreases rapidly to a value below the
estimated demand. It then stabilizes below the average demand of the scenarios in
S.

4. Economic recovery (Figure 3d): The demand is initially below the average esti-
mated demand, but it increases rapidly to a peak above the maximum estimation.
It then stabilizes.
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Figure 3: Demand scenarios for the Monte Carlo simulation
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The overall simulation process was:

� Given an instance and the associated set of scenarios S, find the capacity-planning
solution using the PH meta-heuristic.

� Create a new set of scenarios S ′:

– Identify the maximum and minimum demand in S and compute the difference
∆ between them.

– ComputeK∆ for the current demand scenario, whereK = {10, 20, 30, 40, 50}%
is an offset factor that defines how far the demand distribution has to be from
that estimated in set S (Figure 3).

– Define 365 scenarios respecting the trends of the demand and the characteris-
tics of the instance (number of bin types and spread class of items).

� For each scenario s ∈ S ′, build a VCSBPP with the bin set formed by the bins
included in the capacity-planning solution and the bins at premium cost defined
in the scenario, and the demand in terms of the items to be loaded. The resulting
VCSBPP is then solved by the meta-heuristic.

� Given the solution, compute the expected value of the total cost and statistics
related to the use of the planned bins and of the extra capacity required to cover
higher demand, and the corresponding cost.

� Repeat 10 times and average the results.

Figure 4 shows the results of the Monte Carlo simulation for an illustrative instance
from set T10 (the other instances produced similar results). The figure reports, for each
demand scenario, the usage percentage of the logistics capacity plan, defined as the ratio
of the number of planned (selected in the first stage) bins actually used in the solution to
the total number of bins selected in the plan (Figure 4a), the percentage of extra bins in
the solution defined as the ratio of the number of extra bins to the total number of bins
in the solution (Figure 4b), and the percentage of the objective function value associated
with the capacity plan (Figure 4c), with respect to the offset factor K.

Despite the high variability of the stochastic parameters in instances T10, the capacity-
planning decisions appear valid. Increasing the offset factor K increases or decreases the
percentage of the planned capacity actually used according to the demand trend in differ-
ent demand scenarios. Thus, for the LOW and CRISIS scenarios, the use of the planned
bins decreases, to an average of 77% for T10 instances in the worst case. In contrast,
for the HIGH and GROWTH scenarios, the number of planned bins actually used in the
solution is always greater than 90%. The reduction in the planned capacity used in the
LOW and CRISIS scenarios parallels a decrease in the need for extra capacity. This is
particularly evident for T10 instances, for which no extra capacity is needed when the
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Figure 4: Monte Carlo simulation results for an illustrative T10 instance
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demand is minimum (LOW scenario and K = 50%). Conversely, when the demand is
underestimated, it may be necessary to purchase additional capacity; more than 20% for
the HIGH scenario (some 7 bins for T10 instances) and between 10% and 15% for the
GROWTH scenario (some 4 bins for T10 instances). This limited use of the spot market
further supports the claim of validity of the solutions found.

The limited use of the spot market is also indicated by the objective function value
related to the capacity plan, corresponding to the total fixed cost of the bins that are
selected in the plan (first stage). This cost increases as demand decreases in the demand
scenarios. Indeed, when the demand is overestimated (scenarios LOW and CRISIS) the
capacity plan is generally adequate, and only a few adjustments are required for a small
set of scenarios. This means that most of the cost is due to the capacity plan. For the
instances considered, the range is 75% to 100%, values that indicate the robustness of
the solution even when the estimation errors are considerable.

The fill level of the planned and extra bins is always between 99% and 80% even for
the LOW and CRISIS scenarios. This result emphasizes the robustness of the capacity-
planning decisions that need limited and targeted adjustments, through the spot market,
to meet the demand.

To conclude, the sensitivity of the methodology to the various demand scenarios
considered, we note that the GROWTH scenario has a limited impact on the results
with variations of a few percentage points, while the most significant impacts follow from
the “extreme” scenarios LOW and HIGH. Moreover, it is interesting to note that the
CRISIS and LOW scenarios exchange roles for values of K greater than 30%. For small
values of K, CRISIS is the worst-case scenario because of the decrease in the demand.
For high values of K, LOW has the most significant impact because of the error in the
estimation of the demand, which is constant over time (for each scenario in S ′).

7 Conclusions and Future Directions

We considered the logistics capacity planning problem arising in the context of supply-
chain management. We focused, in particular, on the relation between a firm and its
logistics capacity provider, and the tactical-planning problem of determining the quantity
of capacity units - the bins - of different types to secure for the next period of activity,
given the uncertainty on future needs in terms of demand for items to be moved or stored,
and the availability and costs of capacity for these movements or storage activities.

We proposed a modeling framework for this problem introducing a new class of bin
packing problems, namely the Stochastic Variable Cost and Size Bin Packing Problem (
SVCSBPP). The model takes the form of a two-stage stochastic formulation with recourse
that assigns to the first stage the tactical capacity-planning decisions of selecting capacity
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units of various types, while the second stage models the subsequent adjustments to the
plan, securing extra units of capacity, when needed, and packing the loads into the
capacity units, each time the plan is applied and new information becomes known.

We also proposed an effective and accurate meta-heuristic based on progressive hedg-
ing ideas and several advanced strategies to accelerate the search and efficiently address
the symmetry inherent to packing problems and strongly present in the SVCSBPP due
to the presence of several equivalent bins of each type. Extensive computational results
for a large set of instances support the claim of validity for the model and efficiency for
the solution method proposed. The capacity-planning solutions account efficiently for
the uncertainty in supply and demand, with high filling rates of the bins and relatively
little utilization of capacity acquired on the spot market. Solutions are high quality,
when compared to the optimum solution (when available) or a good lower bound, and
robust with respect to changes in the demand distribution. The proposed stochastic
model and PH-based meta-heuristic have thus been shown to deliver significant perfor-
mance in terms of computational efficiency, solution economic value (cost reduction), and
operations management (prediction of the capacity needed by the firm).

Future work will focus on different policies arising in contract procurement (e.g.,
accounting for future loss of planned capacity units during operations due, for example,
to delivery delays and damage) and their impact on the methodology and the capacity-
planning solutions. In the longer term, the problem will be generalized to address,
e.g., the selection of a limited set of service providers among several proposing different
contracts, and the network-wide logistics capacity planning issues.
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