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Abstract 

Estimating the respiratory rate (RR) from the 
electrocardiogram (ECG) is of interest as the direct 
measurement of the respiration in clinical situations is 
often cumbersome. In this study, the RR was estimated 
from the multi-lead ECG R-peak amplitude (RPA) 
waveforms, which contain the modulation of the cardiac 
activity by the respiration. An adaptive oscillator-based 
frequency tracking algorithm was used to estimate the RR 
from the RPAs of two or three ECG leads. This automatic 
and instantaneous method tracks the common respiratory 
frequency which is present in its inputs as the RR 
estimate. On a subset of the Physionet MFH/MF dataset, 
it was shown that combining information from three leads 
yielded more accurate RR estimates than using two leads 
or each lead alone. It was also shown that the frequency 
tracking algorithm outperformed Fourier-based 
frequency estimation. 

1. Introduction

There is a growing interest in estimating the 
respiratory rate (RR) from an electrocardiogram (ECG), 
as the direct measurement of the respiration involves 
uncomfortable and expensive equipment and on the 
contrary, the ECG is routinely acquired in clinical and 
non-clinical situations. Respiration influences the cardiac 
activity in several ways. In particular, the electric dipole 
of the heart and the impedance of the thorax change with 
the respiratory inhalation and exhalation movements. 
These changes generate a modulation of the ECG R-peak 
amplitudes (RPA). The RR has already been estimated 
from the RPA using temporal methods [1], spectral 
methods [2] and an adaptive method [3].  However, the 
RPA was shown not to yield accurate RR estimates, 
which is in part because the suitability of a given ECG 
lead to represent the respiratory influence is subject-
dependent [4]. This variability is caused by the variations 
in the axis of each lead with respect to the electrical axis 
of the heart. Often, in ambulatory and clinical 
applications, multi-lead ECG recordings are available. 

Using RPA waveforms derived from several leads may be 
beneficial in better capturing the respiratory modulation 
of the ECG amplitude. Multi-lead ECGs have been used 
to derive the RR by combining RR estimates from four 
leads in a scheme involving wavelet transfer coherence 
and a Kalman filter [5]. In the present study, the RR was 
estimated by using an adaptive frequency estimation 
algorithm [6] to track the common respiratory frequency 
in the RPA waveforms of several ECG leads. This 
algorithm is a weighted multi-signal oscillator-based 
frequency tracker (W-OSC) that follows a common 
frequency component in several inputs adaptively and 
instantaneously. It has been previously applied to the RR 
estimation from the ECG by using the RPA and the 
respiratory sinus arrhythmia as inputs [3]. 

2. Methods

2.1. Data 

Evaluation data was a subset of 20 records (total of 
41.73 hours of recordings from 7 female and 13 male, 
aged 49-84 years, with characteristics reported in Table 1) 
from the Physionet MGH/MF datasett[7] [8]. This dataset 
was recorded from stable and unstable patients at the 
Massachusetts General Hospital and contains various 
physiological recordings of different lengths. The ECG 
and respiratory impedance recordings are of interest in 
this study. The selected subset contains leads I, II, an 
unidentified V lead and the respiratory impedance, 
digitized at a rate of 360 Hz.  

Table 1: Patient characteristics. SR: sinus rhythm, ST: 
sinus tachycardia, SB: sinus bradycardia, VP: ventricular 
pacing, AP: atrial pacing, AF: atrial fibrillation, AFL: 
atrial flutter, JR: junctional rhythm, S: spontaneous, C: 
controlled, IMV: intermittent mandatory ventilation. The 
reported values are the RR. 

Cardiac 
condition 

Rhythm Respiration

mgh005 graft ST C 12

mgh006 endocaritis VP IMV 8/22 
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mgh007 graft SR S 16 

mgh008 endocaritis AF S 16 

mgh009 graft ST IMV 6/20 

mgh013 angioplasty AF S 20 

mgh014 graft AP S 18 

mgh016 graft VP IMV 2/18 

mgh020 graft JR C 7 

mgh024 graft AFL S 16 

mgh026 graft ST S 16 

mgh027 
carotid 
endartarectomy 

AF S 18 

mgh028 
post-infarction 
angina 

VP S 20 

mgh029 graft ST C 10 

mgh030 none AF C 18 

mgh031 none ST S 30 

mgh034 none SB S 16 

mgh035 graft SB IMV 5/8 

mgh037 graft SR S 16 

mgh038 graft SR S 16 
 

2.2. RR estimation 

For each ECG lead, the RPA waveform was estimated 
in the following manner: the R-peaks were extracted 
using maxima detection, the time series of their 

amplitudes was then re-sampled uniformly at 2 Hz using 
cubic spline interpolation and band-pass filtered at 
respiratory frequencies, i.e., between 0.1 Hz and 0.5 Hz. 
The RPA waveforms were then fed to the adaptive 
oscillator-based frequency tracking algorithm 
individually, then in pairs and finally globally (i.e., all 
three), yielding ECG-based RR estimates. The respiratory 
impedance waveform was re-sampled uniformly at 2 Hz 
using cubic spline interpolation and band-pass filtered 
between 0.1 Hz and 0.5 Hz. A ground-truth RR estimate 
was computed from the pre-processed respiratory 
impedance to assess the accuracy of the estimates 
resulting from the adaptive oscillator-based frequency 
tracking algorithm. 

 
2.2.1. Adaptive frequency tracking 

An oscillator-based adaptive frequency tracking 
algorithm (OSC) [6] was used to track the instantaneous 
frequency of each RPA waveform. This algorithm tracks 
the frequency of an oscillation. It is based on a band-pass 
filter, the central frequency of which is adaptively 
updated by minimizing the error between its output and a 
perfect oscillation. At each sample, the output of the filter 
is computed, and used in an adaptive scheme to update 
the filter such that oscillation criterion is maximized. The 
multi-input extension of this algorithm, the weighted 
multi-signal oscillator-based algorithm (W-OSC) [6] was 
used to adaptively track the common frequency of two or 
three RPA waveforms. This extension combines the 
estimates from several inputs by weighting the filter 
outputs using a scheme based on their signal-to-noise 
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Figure 1: Structure of the W-OSC frequency tracking algorithm. At each sample n, the 
inputs of the algorithm are denoted as xi[n], the output of the band-pass filter is denoted as 
yi[n] and the frequency estimate of each input is denoted as wi[n] with i=1,…,M, where M is 
the number of inputs. The combination of all estimates yields the final frequency estimate,
denoted as w[n]. Figure from [9]. 
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ratios as depicted in Figure 1. The W-OSC algorithm was 
used to estimate the RR using different combinations of 
two or three RPA waveforms from different leads. [9] 

2.2.2. Classic Fourier maximum frequency 
estimation 

A classic Fourier maximum-frequency estimate from 
the RPA waveform of each lead was computed as well for 
comparison purposes. The short time Fourier transform 
was computed with a window length of 28 samples. The 
frequency corresponding to the local maximum in the 
Fourier transform was extracted as the reference Fourier 
frequency estimate.  

2.3. Ground-truth 

Estimating the ground-truth RR from the respiratory 
impedance waveform is not a straightforward task as this 
signal is neither stationary nor necessarily band-limited. 
In previous studies, the same frequency estimation 
method applied to the ECG-derived respiratory waveform 
was used to estimate the ground-truth RR such as in [2]. 
In the present study, five typical frequency estimates were 
combined to yield a robust RR ground-truth in order to 
avoid artificial correlations with the ECG-derived RR 
estimates as a result of common signal processing 
methods. The five methods used in this study are the 
Fourier maximum frequency estimate, the number of 
respiratory peaks in 20 second-long centered windows, 
the inverse of the time-lapse between two consecutive 
respiratory peaks, an estimate based on the Teager-Kaiser 
energy tracking operator [10], and an estimate based on 
autoregressive modelling [4]. At each sample, the median 
of the five estimates and the two estimates closest to it 
were averaged and low pass filtered to produce the final 
ground-truth. The accuracy of the ECG-based RR 
estimates were evaluated by computing their mean 
absolute error in terms of breaths-per-minute with respect 
to the ground-truth. 

 
3. Results 

Table 2 reports the errors in breaths-per-minute of the 
OSC estimates for each record and for each lead. Table 3 
presents the errors in bpm of the W-OSC estimates using 
all three leads and different combinations of two leads for 
each record. Table 4 contains the errors of the Fourier-
based estimates on each lead for each record. It was 
observed that in general, the errors of the W-OSC 
estimates were the smallest, followed by the OSC 
estimates. Both W-OSC and OSC estimates had smaller 
errors than the Fourier-based estimates.  

 
 

Table 2: The errors in breaths-per-minute of the OSC 
estimates. 

I II V 
mgh005 1.75 1.08 2.59 
mgh006 9.79 7.61 12.79
mgh007 2.20 2.47 2.86 
mgh008 6.10 9.55 9.49 
mgh009 6.88 7.03 7.25 
mgh013 7.98 9.77 5.31 
mgh014 2.66 2.76 3.47 
mgh016 4.20 4.14 1.53 
mgh020 5.40 1.72 3.75 
mgh024 1.05 1.22 0.97 
mgh026 4.64 5.00 4.51 
mgh027 6.98 9.05 8.27 
mgh028 4.97 5.06 5.23 
mgh029 5.81 2.73 3.20 
mgh030 2.58 1.29 3.45 
mgh031 7.06 7.46 6.21 
mgh034 4.73 3.89 4.34 
mgh035 3.13 4.55 5.93 
mgh037 3.09 1.50 2.13 
mgh038 2.82 2.78 2.20 
average 4.69 4.53 4.77
    

 
Table 3: The errors in breaths-per-minute of the W-

OSC estimates. 

 
I,II 

and V 

I 
and 
II 

II 
and 
V 

I 
and 
V 

mgh005 0.61 0.72 0.69 0.78

mgh006 6.74 5.09 6.77 7.97

mgh007 1.65 1.83 1.87 1.79

mgh008 5.60 5.45 6.81 5.69

mgh009 6.04 6.42 5.65 6.94

mgh013 5.46 7.27 4.92 4.86

mgh014 1.80 1.84 2.03 1.95

mgh016 3.01 4.74 2.80 2.08

mgh020 1.88 1.89 1.69 2.75

mgh024 0.87 0.89 0.91 0.90

mgh026 3.05 3.33 3.21 3.21

mgh027 4.75 5.58 5.21 4.92

mgh028 3.68 4.07 3.76 3.62

mgh029 1.14 1.25 1.10 1.23

mgh030 0.83 1.01 0.95 1.10

mgh031 6.09 6.25 6.39 5.72

mgh034 2.88 2.96 2.96 2.95

mgh035 1.52 1.42 1.54 1.57
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mgh037 1.36 1.73 1.16 2.21

mgh038 1.82 2.28 1.87 1.94

average 3.04 3.30 3.11 3.21
     

 
Table 4: The errors in breaths-per-minute of the 

Fourier estimates. 

I II V 

mgh005 2.65 1.28 1.38 

mgh006 7.85 5.69 11.10

mgh007 3.16 3.40 3.13 

mgh008 9.40 12.00 12.27

mgh009 11.16 6.97 8.90 

mgh013 11.05 12.70 8.11 

mgh014 3.82 2.58 4.11 

mgh016 6.73 6.52 2.39 

mgh020 3.02 2.04 3.02 

mgh024 1.11 1.45 1.03 

mgh026 6.32 5.66 5.50 

mgh027 5.59 6.84 6.57 

mgh028 4.91 5.20 5.36 

mgh029 2.64 1.29 1.36 

mgh030 4.30 2.59 3.57 

mgh031 11.01 11.74 7.46 

mgh034 4.54 3.75 4.37 

mgh035 1.66 1.75 2.91 

mgh037 4.10 2.54 2.77 

mgh038 4.81 4.84 3.47 

average 5.49 5.04 4.94 
 

 
4. Discussion and conclusions  

In our study, we have shown that the W-OSC adaptive 
frequency tracking algorithm using two or three ECG 
leads yields the most accurate RR estimates as compared 
to those of the OSC algorithm and Fourier estimates on 
one lead. The baseline drift of the ECG recordings was 
not removed, as in this particular case, patients lay still on 
beds and removing the baseline would remove the 
respiratory activity, which was of interest in this study. 
The limitations of this study lie in the small number of 
patients and the diversity of their health conditions. 
However, this diversity may also be a strength in 
demonstrating the feasibility of using the W-OSC 
algorithm when the patient suffers from a cardiac 
condition or an abnormal cardiac rhythm. It is possible 

that using several leads overcomes one of the limitations 
of the RPA to estimate the RR, which is the fact that the 
lead reflecting most the respiratory modulation of the 
ECG R-peak amplitudes varies among subjects [4]. It 
would be of interest to investigate the use of more than 
three leads. The W-OSC algorithm is instantaneous, 
meaning that it can deliver RR values in real-time. 
Furthermore, the algorithm is automatic and does not 
require special treatment to remove abnormal beats as it 
can rectify their effect within a few iterations. 
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