
Position statement on Digital I&C Software Reliability
NRC Meeting, February 1, 2011

Dr. Gerard J. Holzmann
Laboratory for Reliable Software
Jet Propulsion Laboratory / California Institute of Technology
Pasadena, CA 91109

Background
Software controls are being included in virtually every type of system build today, including those that
are safety-critical. This includes engine-controls in cars, flight-controls in commercial airplanes, and the
standard operation of an increasing number of medical devices. In many of these cases the size and
complexity of the software controls is growing rapidly.
The growing size of software is in part motivated by an increasing desire for expanded functionality, as
well as increased flexibility in operation and maintenance. But the expanded functionality can come at a
price. There are currently no techniques that can provide strict guarantees on the reliability of complex
software systems. By careful design, development, testing and verification one can significantly reduce
the probability of software failure, but at present there are no known techniques that can provably
eliminate the possibility of failure.

Systems View
Software controls, no matter how important, generally define only some of the components in a system.
Like any other component (e.g., a bolt or a valve), a software component is not infallible: it can and will
occasionally fail. But, the simple fact that the individual components that we use to build larger systems
are not perfect does not imply that systems as a whole cannot be reliable. In many engineering
disciplines we have learned to construct reliable systems from unreliable parts: it is why our bridges and
skyscrapers do not routinely fall over and it is why NASA is able to remotely operate spacecraft even
decades after they are launched. How one builds redundancy into software, though, is fundamentally
different from how it is traditionally done in hardware. Clearly, duplicating a faulty piece of software
does not make it any more reliable. Successful methods are based on the use of self-checking code,
strict compartmentalization (software modularity), and design diversity (defense in depth).

Failure in Complex Systems
We have studied the types of software failures that occur in spacecraft over a roughly forty-year history
of the use of software controls on spacecraft used in deep space missions. Based on this, a number of
key observations can be made.

• Software triggered failures often follow a common pattern and have relatively few root-causes.
This is good news, because it means that our software design and development practices can be
adjusted to avoid the known vulnerabilities. This motivates the adoption of targeted coding
standards focused on risk-reduction (remarkably many coding standards today do not have this
as their primary focus). This can be combined with the use of strong state-of-the-art static
source code analysis techniques1

1 For a brief overview see

 to verify compliance with the standard. It is commonly
observed that without automated means for compliance checking, coding rules have virtually no

http://spinroot.com/static/.

http://spinroot.com/static/�

impact on software development. This then leads to a simple litmus test for the quality of a
software design and development process: which coding standards are used and how is
compliance with that standard verified?

• The failure data for spacecraft largely matches observations made by Charles Perrow2 when
writing about failure in complex systems: major failures, often defeating multiple layers of
protection, can result from the unintended coupling of sub-systems or system components that
were designed and assumed to be independent. The unintended coupling allows small failures
to propagate and connect in unforeseen ways. These observations reinforce the importance of
self-checking, decoupling, and modularity, but it also raises the bar for a defense-in-depth
strategy that includes software components. Many of the problems that lead to major failures in
larger system can also be caught early in the design cycle through the use of model-based
engineering techniques that are integrated with verification methods (e.g., logic model
checking3

 techniques). A second litmus test is then: which verification capabilities exist in the
software development process to effectively support early fault detection?

• Concurrency related defects in software are among the hardest to prevent and predict, and they
are among the hardest to identify with conventional software test methods. A standard example
of a concurrent software system is the real-time multi-tasking system commonly used in
embedded systems. But concurrency problems can also strike seemingly sequentially executing
code, as for instance, used in medical devices. Software-based systems interact with their
environment through peripheral devices (sensors and actuators), and generally have watchdog
timers that can generate asynchronous interrupts. The interrupt-handlers define concurrent
threads of execution, and their interaction with the main code of an application can have
unintended consequences, sometimes leading to significant failure. Also from this perspective,
the conclusion is inevitable that the highest standards in software quality control and the use of
the strongest design verification techniques are essential for the development of safety-critical
systems. Where appropriate, strong evidence of the successful application of these techniques
should be made available to regulators.

What This Means
In safety-critical software development any statement about software reliability, be it as a separate
component or as a functional part in a larger system, must be supported by strong supporting evidence.
Complete and convincing insight should further be provided about the set of assumptions that underpin
safety cases. This type of evidence-based safety argument should include evidence of a well-controlled
software development process, evidence of standards used, and of mechanisms used to secure full
compliance with these standards. Safety-critical software development requires the use of best-in-class
static source code analysis tools and model-based design and design-verification techniques. Critical
parts of the software that involve concurrency should be formally verified with the best available
technologies.

Pasadena, 24 January 2011

2 C. Perrow, Normal accidents: living with high-risk technologies, Basic Books, NY, 1984.
3 See, for instance, http://spinroot.com/.

http://spinroot.com/�

	Position statement on Digital I&C Software Reliability

