
Position statement on Digital I&C Software Reliability 
NRC Meeting, February 1, 2011 

Dr. Gerard J. Holzmann 
Laboratory for Reliable Software 
Jet Propulsion Laboratory / California Institute of Technology 
Pasadena, CA 91109 
 
Background 
Software controls are being included in virtually every type of system build today, including those that 
are safety-critical. This includes engine-controls in cars, flight-controls in commercial airplanes, and the 
standard operation of an increasing number of medical devices. In many of these cases the size and 
complexity of the software controls is growing rapidly.  
The growing size of software is in part motivated by an increasing desire for expanded functionality, as 
well as increased flexibility in operation and maintenance. But the expanded functionality can come at a 
price. There are currently no techniques that can provide strict guarantees on the reliability of complex 
software systems. By careful design, development, testing and verification one can significantly reduce 
the probability of software failure, but at present there are no known techniques that can provably 
eliminate the possibility of failure. 
 
Systems View 
Software controls, no matter how important, generally define only some of the components in a system. 
Like any other component (e.g., a bolt or a valve), a software component is not infallible: it can and will 
occasionally fail. But, the simple fact that the individual components that we use to build larger systems 
are not perfect does not imply that systems as a whole cannot be reliable. In many engineering 
disciplines we have learned to construct reliable systems from unreliable parts: it is why our bridges and 
skyscrapers do not routinely fall over and it is why NASA is able to remotely operate spacecraft even 
decades after they are launched. How one builds redundancy into software, though, is fundamentally 
different from how it is traditionally done in hardware. Clearly, duplicating a faulty piece of software 
does not make it any more reliable. Successful methods are based on the use of self-checking code, 
strict compartmentalization (software modularity), and design diversity (defense in depth). 
 
Failure in Complex Systems 
We have studied the types of software failures that occur in spacecraft over a roughly forty-year history 
of the use of software controls on spacecraft used in deep space missions. Based on this, a number of 
key observations can be made. 
 

• Software triggered failures often follow a common pattern and have relatively few root-causes. 
This is good news, because it means that our software design and development practices can be 
adjusted to avoid the known vulnerabilities. This motivates the adoption of targeted coding 
standards focused on risk-reduction (remarkably many coding standards today do not have this 
as their primary focus). This can be combined with the use of strong state-of-the-art static 
source code analysis techniques1

                                                           
1 For a brief overview see 

 to verify compliance with the standard. It is commonly 
observed that without automated means for compliance checking, coding rules have virtually no 

http://spinroot.com/static/.  
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impact on software development. This then leads to a simple litmus test for the quality of a 
software design and development process: which coding standards are used and how is 
compliance with that standard verified? 
 

• The failure data for spacecraft largely matches observations made by Charles Perrow2 when 
writing about failure in complex systems: major failures, often defeating multiple layers of 
protection, can result from the unintended coupling of sub-systems or system components that 
were designed and assumed to be independent. The unintended coupling allows small failures 
to propagate and connect in unforeseen ways. These observations reinforce the importance of 
self-checking, decoupling, and modularity, but it also raises the bar for a defense-in-depth 
strategy that includes software components. Many of the problems that lead to major failures in 
larger system can also be caught early in the design cycle through the use of model-based 
engineering techniques that are integrated with verification methods (e.g., logic model 
checking3

 

 techniques). A second litmus test is then: which verification capabilities exist in the 
software development process to effectively support early fault detection? 

• Concurrency related defects in software are among the hardest to prevent and predict, and they 
are among the hardest to identify with conventional software test methods. A standard example 
of a concurrent software system is the real-time multi-tasking system commonly used in 
embedded systems. But concurrency problems can also strike seemingly sequentially executing 
code, as for instance, used in medical devices. Software-based systems interact with their 
environment through peripheral devices (sensors and actuators), and generally have watchdog 
timers that can generate asynchronous interrupts. The interrupt-handlers define concurrent 
threads of execution, and their interaction with the main code of an application can have 
unintended consequences, sometimes leading to significant failure. Also from this perspective, 
the conclusion is inevitable that the highest standards in software quality control and the use of 
the strongest design verification techniques are essential for the development of safety-critical 
systems. Where appropriate, strong evidence of the successful application of these techniques 
should be made available to regulators. 
 
 

What This Means 
In safety-critical software development any statement about software reliability, be it as a separate 
component or as a functional part in a larger system, must be supported by strong supporting evidence. 
Complete and convincing insight should further be provided about the set of assumptions that underpin 
safety cases. This type of evidence-based safety argument should include evidence of a well-controlled 
software development process, evidence of standards used, and of mechanisms used to secure full 
compliance with these standards. Safety-critical software development requires the use of best-in-class 
static source code analysis tools and model-based design and design-verification techniques. Critical 
parts of the software that involve concurrency should be formally verified with the best available 
technologies. 
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2 C. Perrow, Normal accidents: living with high-risk technologies, Basic Books, NY, 1984. 
3 See, for instance, http://spinroot.com/. 
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