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Abstract

Raytheon’s Circuit Card Assembly (CCA) factory in Andover, MA is Raytheon’s largest factory
and the largest Department of Defense (DOD) CCA manufacturer in the world. With over 500
operations, it manufactures over 7000 unique parts with a high degree of complexity and varying
levels of demand. Recently, the factory has seen an increase in demand, making the ability to
continuously analyze factory capacity and strategically plan for future operations much needed.

This study seeks to develop a sustainable strategic capacity optimization model and capacity
visualization tool that integrates demand data with historical manufacturing data. Through
automated data mining algorithms of factory data sources, capacity utilization and overall
equipment effectiveness (OEE) for factory operations are evaluated. Machine learning methods
are then assessed to gain an accurate estimate of cycle time (CT) throughout the factory. Finally,
a mixed-integer nonlinear program (MINLP) integrates the capacity utilization framework and
machine learning predictions to compute the optimal strategic capacity planning decisions.

Capacity utilization and OEE models are shown to be able to be generated through automated
data mining algorithms. Machine learning models are shown to have a mean average error
(MAE) of 1.55 on predictions for new data, which is 76.3% lower than the current CT prediction
error. Finally, the MINLP is solved to optimality within a tolerance of 1.00e-04 and generates
resource and production decisions that can be acted upon.
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CH. 1 INTRODUCTION

This thesis seeks to develop a novel optimization framework for strategic capacity planning of a
high-mix, low-volume (HMLV) factory. This chapter focuses on presenting the problem
statement and objectives of the thesis. Additionally, it introduces the statements of hypotheses
and research methodologies prior to providing an overview of the general thesis.

1.1 PROBLEM STATEMENT

Raytheon’s Circuit Card Assembly (CCA) factory in Andover, Massachusetts is Raytheon’s
largest factory and the largest Department of Defense (DOD) CCA manufacturer in the world. It
manufactures over 7000 unique parts within its Enterprise Resource Planning (ERP) system that
encompass a high degree of complexity with varying levels of demand. Recently, two major
factors have greatly increased the demand of the CCA factory in Andover:

1. A large-scale consolidation from three manufacturing factories across the United States
into a single CCA factory in Andover

2. A rapidly growing market due to new Raytheon technology resulting in a high volume of
new product introductions into the CCA factory

Together, these factors create an anticipated 416% increase in demand in the next five years as
shown in Figure 1.

Foture . .~~~ ]
Demand> 4
+41§%D
Demand
Today >

2019 2020 2021 2022 2023 2024

Figure 1: Anticipated increase in demand over the next five years
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To ensure the CCA factory has the capital equipment required to absorb the increase in demand,
a thorough and intensive capacity analysis was completed by an engineering team. To verify data
fidelity and accurate results, this effort was extremely manually intensive and took the team over
a year to complete. While this enabled a static snapshot of current capacity, it did not account for
inevitable changes in the factory or look for ways to optimize strategic capacity planning.

With Raytheon recently receiving the contract to build the Lower Tier Air and Missile Defense
Sensor (LTAMDS), which is the Patriot missile defense system’s replacement, demand has
already started to rapidly increase. Furthermore, with the potential for demand to continue to
increase after Raytheon’s recent merger with United Technologies Corporation (UTC), the
ability to continuously analyze factory capacity for new products and variable demand is much
needed. New operations, products, and other factors need to be seamlessly integrated into the
analysis to enable continuous capacity planning.

Before the first capacity analysis effort, there was not a centralized way to look at overall factory
capacity. Many operations locally estimated capacity; each one used different assumptions,
different data, and had different goals for their analysis efforts. With hundreds of operations in
the factory, this means that there are a lot of personal Excel spreadsheets that do not align. This
is one of the most challenging aspects of capacity analysis at an extremely high-mix, relatively
low-volume factory. CCA has over 500 distinctive operations and approximately 7000 unique
parts with different cycle times. This equates to 3.5M cycle times. To make the analysis more
difficult, there are more than 5000 routes that parts take through the factory due to needing a
specialized, albeit shared, subset of operations.

1.2 OBJECTIVES

This thesis will involve creating a capacity analysis and visualization tool that can be used in
strategic capacity planning. In order to be effective in this type of factory environment, the tool
will need to automatically calculate static capacity and overall equipment effectiveness (OEE) to
capture current state capacity and potential improvement areas in the factory. The complexity of
the factory further makes accurate prediction of cycle time critical to assess intermediate due
dates, schedule resources, and analyze future capacity utilization. From the capacity analysis of
future demand, an optimization model can provide data-driven recommendations based on return
on investment (ROI) for increasing the workforce vs. investing in capital equipment vs. shifting
manufacturing schedule.

In sum the three primary objectives are:
1. Automate capacity utilization and overall equipment effectiveness analysis
2. Accurately predict cycle times of future demand

3. Provide data-driven recommendations for strategic capacity planning

15



1.3 STATEMENT OF HYPOTHESIS AND RESEARCH METHODOLOGY

We test three hypotheses in this thesis based on the three objectives mentioned in 1.2
OBJECTIVES. Our first hypothesis is that there is a more effective method to calculate current
capacity than the current manual process. We aim to use current data sources at the factory to
automatically calculate and provide useful estimates of capacity utilization and overall
equipment effectiveness. Through scheduled executable Python scripts that use Structured Query
Language (SQL) to automatically pull and calculate from Raytheon’s current data warehouse, we
aim to develop a tool that aligns with the most recent manual capacity analysis effort but relieves
the company of the extensive time and resources required to calculate it.

Our second hypothesis is that cycle time can be more accurately predicted than the currently
implemented method at Raytheon. Through supervised machine learning methods, we aim to
develop a model that enables us to predict, with an acceptable accuracy, the cycle time of an item
going through the factory. We measure model performance on out-of-sample data to quantify the
predictive power of the model and compare it to Raytheon’s current predictions.

Our final hypothesis is that mathematical programming methods can provide data-driven
recommendations for strategic capacity planning. Through linear and nonlinear mixed-integer
programs, we aim to develop a model that enables us to adjust multiple capacity planning factors
to maximize ROI by minimizing cost. We measure performance by comparing model output
versus the baseline capacity plan.

1.4 THESIS OVERVIEW

The remaining chapters of this thesis are structured in this manner:

CH. 2 PROBLEM BACKGROUND presents an overview of the defense industry followed by a
deeper look at Raytheon. We then provide background knowledge on circuit card manufacturing,
manufacturing capacity, strategic capacity planning, and OEE. We end with key challenges at
Raytheon’s CCA factory.

CH. 3 LITERATURE REVIEW looks into prior work on using mathematical optimization models
for strategic capacity planning and machine learning for cycle time prediction.

CH. 4 CAPACITY UTILIZATION AND OEE ANALYSIS initially provides an overview of
available data and features that can be calculated with it for capacity analysis. Capacity
utilization and OEE are then calculated with these features. Results of the calculations are then
presented.

CH. 5 OPTIMIZATION MODELS FOR STRATEGIC CAPACITY PLANNING lays out simple
linear models for capacity planning and provides an example with generated data prior to adding
constraints to mimic the complexity of the factory. Finally, a mixed-integer nonlinear program is
developed to be used for strategic capacity planning.
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CH. 6 MACHINE LEARNING TO PREDICT CYCLE TIME begins with a machine learning
overview before features are generated and selected for modeling. Next, the ten models initially
built are discussed and the machine learning framework used is laid out. We present the data
ingestion and preparation done prior to building, training, and testing the models.

CH. 7 RESULTS AND DISCUSSION starts with an evaluation of the capacity planning model
after it has been solved to an optimal solution. The business impact of enacting the model and
model limitations follow.

CH. 8 CONCLUSION AND RECOMMENDATIONS summarizes the findings and
recommendations for Raytheon, including recommendations for implementation of the model.
Lastly, areas for future research and applications of the model are discussed.
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CH. 2 PROBLEM BACKGROUND

This scope of this thesis covers a high-mix, low-volume manufacturing factory within the
defense industry. This chapter provides an overview of the industry and one of the top companies
within it. Additionally, we provide background knowledge on circuit card manufacturing and
manufacturing principals used in this thesis before discussing some of the specific challenges in
this type of factory.

2.1 THE DEFENSE INDUSTRY

The defense industry continues to remain strong due to a robust defense budget in the United
States and is anticipated to continue to grow. As security threats have intensified and the defense
budget continues to grow, defense expenditure is expected to grow at a CAGR of ~3% and reach
$2.1 trillion by 2023. According to Deloitte, growth in defense spending and demand for military
equipment will likely create increased opportunities for the industry. To meet the increased
demand and improve yields, they recommend leveraging agile production and investing in
independent research and commercial adaptability of digital technologies. [1]

Before WWII, the defense industry has historically relied on commercial technology innovation
and adapted it for military use. Since WWII, however, the focus has shifted from commercial
adaptability to independent research and development for the military. In fact, 51% of original
equipment manufacturers (OEM) report that most innovation is done for military use and then
adapted for commercial use. Nevertheless, this trend seems to be shifting back to our pre-WWII
model with technologies such as artificial intelligence and the Internet of Things (IoT) emerging
at a pace too fast for the defense industry. This does not mean that innovation is slowing in the
defense industry. With almost $700B in the 2019 defense budget, investing in technology
innovation is growing in the industry. [2]

Even though technology innovation is being invested in, implementation of the new technology
has been challenging in the defense industry. According to a Jabil survey, 74% of respondents
say that a lack of leadership to transform processes and mindsets is the biggest roadblock. This
may be due to an older workforce in the industry and the generational gap that resulted from the
defense budget cuts in the 1990s. Due to these cuts, hiring came to a standstill and now many
defense companies have 25% of their workforce retiring within the next five years. [2] [3] To
combat this, companies such as Raytheon and UTC each plan to hire 10,000 people in the next
year.

While defense expenditure and defense companies such as Raytheon and UTC continue to grow,
especially after their merger is complete in 2020, the defense industry in terms of companies is
shrinking. According to a Government Accountability Office (GAO) analysis of DOD data,
nearly half of defense contracts are awarded to five companies. [4] The pie is getting larger, but
the number of pieces keeps shrinking. As a result to less competition, some believe this will lead
to higher costs and less innovation. Others counter that efficiencies lead to lower costs for the
Pentagon overall. [5]

As one of the top companies in the defense industry, Raytheon is a technology and innovation
leader with core manufacturing concentration in weapons and military electronics. As suggested
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by Deloitte, Raytheon is looking to meet the increased demand and improve yields by investing
in digital technologies and agile methodologies.

2.2 RAYTHEON COMPANY OVERVIEW

Raytheon Company (Raytheon) is a large multinational provider of technologically advanced
products, services, and solutions to civilian and government organizations. Established in
Cambridge, Massachusetts with strong ties to MIT and now headquartered in Waltham,
Massachusetts, it is primarily known as a major defense contractor with manufacturing
concentrations centered on military weapons and commercial electronics. With almost 100 years
of innovation history, Raytheon continues to provide state-of-the-art electronics, defense
technologies, and cybersecurity solutions for customers in over eighty countries. Its revenue of
approximately $27B annually makes it the third-largest defense company in the world. [6] [7]

The company is currently divided into four primary business units including Integrated Defense
Systems (IDS); Missile Systems (MS); Intelligence, Information, and Services (IIS); and Space
and Airborne Systems (SAS). The largest of the business units by both revenue and profit is IDS,
which specializes in air and missile defense, land-based radars, sea-based radars, and systems for
command, control, communications, cybersecurity, and intelligence. It also produces sonar
systems, torpedoes, and shipboard electronics. [8] It is headquartered in Tewksbury,
Massachusetts with office and manufacturing sites spread throughout the greater Boston area.
The Andover, Massachusetts site is home to the production of the Patriot missile defense system
and the CCA center of excellence for the entire company.

Recently, Raytheon and UTC, a leading aerospace company, entered into an agreement to
combine in an all-stock merger of equals. The combined company will be named Raytheon
Technologies Corporation and will have approximately $74B in pro-forma revenue. Due to the
merger, Raytheon plans to consolidate its four primary businesses into two businesses to be
named Raytheon Intelligence & Space and Raytheon Missiles & Defense. These new businesses
will join Collins Aerospace and Pratt & Whitney of UTC to form the four businesses of
Raytheon Technologies Corporation. Altogether, the new company will be considered the
second-largest defense company in the world. [9]

2.3 CIRCUIT CARD MANUFACTURING

Printed circuit boards (PCB) mechanically support and electrically connect components via
deliberately placed conductive features. These components are typically soldered to the board
with non-conductive materials. PCBs have been around for roughly one-hundred years and
involve a conductive material such as copper inscribed or laminated onto and/or between non-
conductive material. Until the mid-1980s, the primary method to create a PCB was with through-
hole fabrication coupled with wave soldering and dip soldering techniques. Since then, surface
mount technology (SMT) has become the fabrication technology of choice. Today, surface-
mount components are typically soldered onto printed circuit cards with the use of reflow ovens.
[10]
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A circuit card assembly is comprised of a myriad of electronic components such as resistors,
capacitors, chips, and diodes. Each component has multiple leads that are soldered onto specific
points of a printed circuit card. While the through-hole technology method consists of fitting
components with wire leads into holes in the PCB, SMT components have small leads and are
placed directly onto the surface of the PCB. This method enables the use of smaller components,
which subsequently enables smaller boards, and also enables much faster production times.
Figure 2 shows the difference between the two technologies. While most of the circuit cards
manufactured in Raytheon’s CCA factory use SMT, some still use through-hole technology due
to legacy design or large, specialized components. [11] [12]

Surface Mount Device (SMD) Through Hole Reflow (THR)

Through Hole

P " -
.

—
R27
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Figure 2: Pictures showing two components using different methods of placement [11] [12]

Circuit card manufacturing is highly complex and intricate due to the need to place hundreds of
tiny, high-value components onto a small board. When these cards are being used in life-or-death
equipment such as missile detection, the quality is of utmost importance. Raytheon’s CCA center
of excellence manufactures all of the circuit cards for Raytheon products at a high-mix, low-
volume scale with over 7000 unique parts. A circuit card generally flows through the factory on
a route such as the one shown in Figure 3. After a shop order is released, the new lot of cards is
kitted, labeled, and baked. When the previous lot is finished with the SMT line, the component
feeders and lines are set up for the new lot of cards. This setup typically takes hours to complete.
Once complete, the lot then proceeds through the SMT line, which is comprised of a screen
printer for solder paste, paste inspection, automated component placement, automated optical
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inspection, and finally a reflow oven. Next, the lot of cards goes to X-ray touch up to find and
correct hidden assembly defects before manual assembly of certain components occurs. After
assembly, the lot then goes through some form of coating to protect the board’s components.
Lastly, the lot is tested both mechanically and electrically before being marked as complete.

Shop Order | Kitting, Label, \; ; | SMT Feeder
Released “| and Baking '\/ "l Setup

Surface-mount Technology (SMT) Line

Screen

Reflow Oven |« Alg%rt?f;d € Auto » Solder [ Printer
' Inspection Placement Inspection (Solder :
Paste)

XRAY Touch \; ; | Assembly
Up '\/ g Steps

Final ; ; ‘
Inspeciton \/‘ Coating

GENERALIZED FACTORY ROUTE

; ; In-circuit /
\/‘ Function Test

Figure 3: General route an item takes through Raytheon's CCA factory in the form of a process map

A

It is very important to note that this is just one route a lot of boards can take through CCA. Some
boards do not go through SMT and some go through other soldering operations. There are also
multiple assembly operations, several different types of coating operations, and many testing
operations. Overall, there are over 500 operations in CCA and more than 5000 unique routes
through the factory. This complexity is further explained in 2.7 KEY CHALLENGES AT
RAYTHEON’S CCA FACTORY.
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2.4 MANUFACTURING CAPACITY

First, we shall define capacity utilization (CU) for each resource within the factory. Willems
describes it as a pie chart equal to the sum of two quantities: runtime and idle time. Runtime is
the time the resource is processing an item, while idle time is the time the resource is not
working on anything. Furthermore, capacity available (CA), which represents the entire pie, is all
the resource can provide in a specified time interval. Capacity required (CR), on the other hand,
is all the resource needs to provide in a specified time interval. Therefore, we can define capacity
utilization as the ratio of capacity required to the capacity available.

capacity required

capacity utilization =
g capacity avaiable

Equation 1
We will discuss capacity in this thesis in terms of time. The time intervals we will primarily
consider in this thesis are monthly hours. Therefore, if looking at a specific machine in the

factory, capacity required will be the hours of processing time required in a given month to meet
demand, and capacity available will be the hours available in the same month for processing.

We will define throughput (TP) as the average output of an item per unit time, work-in-progress
(WIP) as the inventory of the item in the production system, and cycle time (CT) as the amount
of time an item spends as WIP or, in other words, the total time to move an item through a
process. Little’s law connects these and states that on average:

— WIP
TP

Equation 2

For example, if there are on average 100 circuit cards of WIP in a lot at a specific operation and
cycle time is 50 minutes per card then throughput would be one circuit card every 2 minutes or
30 cards per hour. [13] Note that this law assumes strictly stationary processes, which limits its
ability to accurately predict in our models. [14]

We further breakdown cycle time of an operation into two components—queue time and
production time—such that: CTyperqtion = QT + PT. Since CT of an operation is very sensitive
to the item being processed, we can further breakdown cycle time by operation:

CToperationitem = QToi + PTy; Vo € {Operations},i € {Items}

Equation 3

Since lots sometimes have different sizes at this particular factory, we will look at the per unit
level of production time to compare apples to apples, which we will call processing time:

. _ Py
p ol QTYOL

Equation 4
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where QTY,; is the quantity of items i processed through operation o.

While QT is technically occurring at an operation, it does not necessarily take time away from a
machine or person. It just builds up WIP. Therefore, capacity required of an operation can then
be defined as: (# Items Needing Processed)(Item Processing Time)

I
CR, = Z d,ipt, Yo € {Operations}

=1

Equation 5

where d is the demand at operation o for item i. For example, if the monthly demand for
Operation A is only 1000 of only Item 1, which has a processing time of 15 minutes in Operation
A, the capacity required for Operation A is 15000 minutes or 250 hours.

Capacity available of an operation can then be defined as:
(#Shifts)(#Working Days in Month)(Useful Shift Length)(#Resources)

CA, = sh,wd,ls,r, Vo € {Operations}

Equation 6

where sh, wd, Is, and r are the number of shifts per day, working days, usable length of shifts,
and resources for operation o respectively. This equation assumes that shifts do not overlap. For
example, if there are 2 shifts that are 8 hours long with zero breaks in a working day and 20
working days in the month, the capacity available at an operation with a single resource is 320
hours. More simply put, capacity available is the sum of planned production time of each
resource at an operation:

CA, = ppt,r, Yo € {Operations}

Equation 7

Capacity utilization is, therefore:

I d .pt. .
cU, = Zi=1 oiPloi ;o {Operations}
ppioT,

Equation 8
_ Z§=1 doiDtsi
showd,ls,1,

_ 250 hours

"~ 320 hours
=78%

Vo € {Operations}
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With many companies considering around 85% to be an optimal utilization rate, this 78% would
be considered good. [15] The optimal rate varies from company to company, but the basic
thought process is that if it is too high then variability in demand or other factors can cause it to
exceed 100%. If it is too low, then we are wasting a useful resource. Both factors will impact a
company’s bottom line. Nevertheless, in this scenario, if demand doubled to 2000, then capacity
required would double to 500 hours, resulting in a capacity utilization of 156%. Since it is
impossible to operate at 156%, demand will not be met in this current configuration. If we want
to improve this operation’s utilization, Willems points out that there are three available options.
[16]

1. Increase resources at the operation (maintain speed but increase time available or
resources)

a. Add Shifts

b. Add Machines if Operation is Machine Driven

c. Add Workers if Operation is Labor Driven
2. Make the operation faster or reduce defects (in the same amount of time)
3. Shift demand at the operation

In this example, we now need to increase capacity available to at least 500 hours to meet demand
or (500/85%)=588 hours if we want to maintain capacity utilization at 85%. Let’s walk through
the three available options:

1. Increasing resources

a. Adding Shifts — Adding a third shift will increase CA to 480 hours, which is not
enough. We could also look into adding one weekend day per week, increasing
working days to 24. This would increase CA to 576 hours, making CU = 87%.

b. Adding Machines — Adding a second machine will double CA to 640 hours,
maintaining CU at 78%.

c. Adding Workers — No change in a machine-driven operation; however, additional
workers may be needed to operate any added machines.

2. Make the operation faster or reduce defects — If demand doubled and we wanted to
maintain 78% utilization, we would need to cut PT in half. This seems highly
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improbable. Additionally, defects were not factored into this scenario and therefore
would not change CU.

3. Shift demand — Since we are only looking at a single time period, this option is not
available. Nevertheless, if demand this month is 0 and next month it is 2000, we would
be able to process 1000 each month and maintain CU at 78%. [16]

So what option(s) should we go with?

This is the question at the heart of strategic capacity planning discussed in 2.5 STRATEGIC
CAPACITY PLANNING.

2.5 STRATEGIC CAPACITY PLANNING

Strategic capacity planning refers to the decision making of the sequence and the timing of
machine purchases and workforce adjustments. It is a multi-criteria decision-making process
involving trade-offs between finance, output, and risk. All manufacturing organizations are faced
with difficult decisions surrounding these trade-offs; however, capital-intensive industries such
as defense technologies make investment decision-making critically important. This is why
extensive research has been done on capacity planning in industries with high capital investment
costs. [17] [18] Geng and Jiang evaluated three methods for devising a strategic capacity plan:
static capacity modeling, simulation-based search modeling, and mathematical programming
modeling. [18]

The first method they evaluated was the static capacity model. Traditionally at many companies,
including Raytheon, static capacity analysis via spreadsheets drove capacity planning due to its
ease of use. While this method is easy to use and understand, its highly aggregated approach
does not accurately account for different products needing different processing times, which is
the case in the CCA factory. Therefore, different capacities are needed depending on the product
mix. Moreover, when products do not follow similar routings through the factory, which is also
the case in the CCA factory, a spreadsheet cannot sufficiently assess required capacity. [18]

The second method they evaluated was simulation-based modeling. Starting with the current
state of the factory, small changes are iterated upon until performance improves to a better state.
This method provides more accurate capacity analysis than static models; however, it requires an
abundance of detailed information across the factory, making it a difficult method in a high-mix,
low-volume factory with hundreds of operations and thousands of routings. It can also become
overly complicated for long-term strategic planning purposes. [18]

The final method they evaluated was mathematical programming. such as linear programming
(LP) models and mixed-integer linear programming (MILP) models. In this type of modeling,
required constraints such as demand are formulated along with an objective function to find the
optimal capacity planning decisions for machine purchases and workforce adjustments. With its
ability to also provide an optimal production plan, this method has become the primary method
used in capacity planning. [19] Additionally, with software such as Julia/Jump and solvers such
as Gurobi quickly finding the optimal solutions to these models makes their adoption much
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easier. [20] Due to these reasons and the ability to easily adjust the model as strategically
necessary, this is the method we implement in this thesis.

2.6 OVERALL EQUIPMENT EFFECTIVENESS (OEE)

Overall equipment effectiveness (OEE) is an effective way to measure productivity and
efficiency in a manufacturing facility. Introduced by Nakajima in the Total Productive
Maintenance (TPM) system, it is comprised of multiple metrics that focus on the capacity
utilization of a specific manufacturing operation and come together in a generalized fashion to
enable comparison between multiple manufacturing operations. [21] [22] This enables a
company to identify manufacturing potential, locate production problems, and pinpoint
improvement areas in order to increase productivity and decrease cost. Specifically, it was
originally designed to reduce six losses:

1. Equipment Breakdown

2. Set-up and Adjustment Downtime
3. Minor Stoppage Downtime

4. Reduced Speed Losses

5. Quality Defects and Rework

6. Start-up Losses

OEE does this by breaking the productivity and efficiency of a manufacturing operation into
three distinct parts—Availability, Performance, and Quality—and can be calculated my
multiplying the three parts.

OEE = Availability = Performance * Quality

Equation 9

Availability (A) is the ratio of time an operation is actively producing to the time an operation is
available to actively produce. In manufacturing, common terms that are used in this calculation
are planned production time and run time, where planned production time is the shift length
minus planned breaks and run time is planned production time minus stop time. Availability, in
this setting, takes on this equation:

Availability — Run Time
VARABEIY = blanned Production Time

Equation 10

For example, if a worker operates a machine during an eight-hour shift, but gets thirty minutes
for lunch and two fifteen-minute breaks, the planned production time for that worker and
machine is seven hours. If the machine has a problem for an hour while the worker is trying to
operate it, then the run time is six hours. Therefore, the availability is 6/7 or 86%.
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Performance (P) is the ratio of the minimum time to produce a number of outputs to the time the
operation was actively producing. In manufacturing, common terms that are used in this
calculation are ideal process time, total parts, and run time, where ideal process time is the fastest
theoretical time required to produce one part and total parts is the total output in a given run
time. It is important to note that total output includes defects in this calculation because defects
are taken into account in the quality calculation. Performance, in this setting, takes on the
equation:

Ideal Process Time * Total Parts

Performance = -
f Run Time

Equation 11

For example, in seven hours of run time it is theoretically feasible to produce 28 parts since the
ideal process time is fifteen minutes. If instead only 26 parts are made in that hour, the
performance is 26/28 or 93%.

Quality (Q) is the ratio of good outputs to total outputs. In manufacturing, common terms that are
used in this calculation are good parts and total parts, where good parts are equal to total parts
minus defective parts. Quality, in this setting, takes on the equation:

Good Parts

Quality = Total Parts

Equation 12

For example, if one of the 26 parts created in the previous example were considered defective
then only 25 of them would be considered good. Therefore, quality would be 25/26 or 96%. Note
that parts that require rework are counted as rejects the first time they run through a
manufacturing operation. This is similar to first pass yield. When a part runs through an
operation a second time, the time required for rework is not factored into planned production
time and, therefore, does not affect OEE.

When looked at individually, each of the three parts of OEE points to a potential process
improvement area within a given operation. When looked at collectively as OEE, large scale
comparison across operations can be tracked at a higher level and benchmarked. In
manufacturing, a common benchmark for OEE is 85%, but this depends heavily on the industry.

In the previous examples where Availability=86%, Performance=93%, and Quality=96%, OEE
would be 77%.

OEE =A*xPx(Q
= 86% * 94% * 96%
=77%

Even though 77% is relatively good in most industries, it can be seen that this OEE score is

primarily driven by availability. While we know that the machine had an unplanned breakdown
for an hour from the example, other factors such as a long setup time or material shortage could
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have been the cause. Either way, the metric provides an indication to company leadership that
something may be wrong and triggers further analysis to improve the productivity and efficiency
of the operation.

2.7 KEY CHALLENGES AT RAYTHEON’S CCA FACTORY

The combination of four factors makes capacity analysis challenging at Raytheon’s CCA factory.
The high-mix, low-volume manufacturing coupled with the number of operations and routes,
unique cycle times of operations and items, and factory size and operation type, make accurately
analyzing for capacity required and capacity available difficult. In order to calculate capacity
required, we must understand the demand of 7000 items in over 500 operations and the 3.5M
associated cycle times. In order to calculate capacity available, we must also understand the
schedules and resource levels of the 500+ operations. Due to the complexity of the factory,
calculating capacity utilization to be used for strategic capacity planning is challenging and,
doing so manually, is nearly impossible to sustain.

High-Mix, Low-Volume (HMLV) Manufacturing

Due to circuit cards needing to be specifically designed to their end-use, they must be highly
customized and varied. Production in CCA is therefore designed to be HMLYV in order to meet
the circuit card demand. Unlike an assembly line which is designed for single-piece flow and
highly efficient yet inflexible, a HMLV factory mimics a job shop where most items produced
require unique setups and routing through the shop. [23] This makes capacity planning
challenging in CCA.

CCA manufactures over 7000 unique parts with an average output of 1000 parts per day and
growing. The highest volume part does 45k units per year, while over one hundred other parts
are produced only once per year or even once every other year. In a single operation, setup times
can vary by hours and cycle time can vary by days between items. The extremeness of HMLV at
CCA makes manual methods of capacity analysis almost impossible to perform accurately.

Number of Operations and Routes

With over 500 operations in CCA shared between hundreds or even thousands of items, the high-
mixed nature of the factory becomes even more complicated. While some items go through just a
few operations within the factory, others go through more than fifty operations. We can see the
complexity of the factory by plotting the network of random item routes through the factory.
Figure 4 shows a progressing number of random items selected for network graphing from one to
two with the number of operations and edges also indicated. One random item going through the
factory is easy to follow with this particular item going through eleven operations. As this
increases to random two items, it is still easy to follow with only twelve operations.
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Figure 4: Network graph of 1 and 2 random items moving through the factory

Nevertheless, as we continue to add items to our network of routes, we quickly see how difficult
it is to understand the flow of every item through the factory. As shown in Figure 5, 100 random
items require 68 operations with 249 unique edges between them, and 1000 items require 252
operations with 1633 edges between them. Altogether, the 7000 items have over 5000 unique
routes through the factory. Again, this complexity makes manual methods of capacity analysis
almost impossible to perform accurately.

3 Items 10 Items
18 Operations 39 Operations
23 Edges 82 Edges

100 Items ( 1000 Items
68 Operations : 252 Operations
249 Edges L] 1633 Edges

o to0c o

Figure 5: Network graph of 3 to 1000 items moving through the factory
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Unique Cycle Times

With operations in the factory being drastically different from each other, it makes sense that
their cycle times are also different. Furthermore, the high-mixed nature of circuit card sizes,
component counts, and component makeups make their cycle times vary within a given
operation. Since CCA has over 500 distinctive operations and approximately 7000 unique parts
with different cycle times, it can be reasoned that there are approximately 3.5M cycle times to
account for. Since CT is one of two factors necessary to calculate capacity required, having
accurate CTs is important in capacity analysis. Accurate manual calculation of millions of cycle
times would prove difficult.

Factory Size and Operation Types

Raytheon’s CCA factory in Andover, Massachusetts is Raytheon’s largest factory and the largest
DOD CCA manufacturer in the world. With this size of factory, many workcenters and
operations operate on different schedules and have different resource needs. For example, highly
utilized operations such as SMT normally operate three shifts a day and weekends. On the other
hand, less utilized operations may only operate two shifts a day with no weekends. Additionally,
operations such as SMT are machine-driven while other operations such as assembly are labor
driven. Furthermore, they all require a varying number of workers and machines. While SMT
has seven assembly lines of machines with multiple workers on each line, some operations have
a single worker at each station.
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CH. 3 LITERATURE REVIEW

Many recent studies have shown the power of mathematical programs for capacity planning and
the ability of machine learning methods to predict production metrics such as cycle time;
however, embedding machine learning into mathematical programs for capacity planning has not
been discussed. This chapter reviews relevant papers and topics associated with the two
separately, while the remaining chapters bring the two together.

3.1 MATHEMATICAL MODELS FOR CAPACITY PLANNING

Mathematical programming such as LP models and MILP models are one of the primary
methods used in capacity planning, especially now that solving them is relatively easy with
today’s technology. [19] Leachmen, Carmon, Bermon, and numerous others have studied the use
of LPs for capacity planning. [18] Furthermore, Eickemeyer, Florensa, Zhou, and many others
have studied the use of a MILP for capacity planning. [24] [25] [26] LPs can be solved quickly
with solvers such as Clp and Gurobi, while MILPs can be solved with solvers such as Cbc and
Gurobi. All of which are available for use with Julia/Jump. [27]

Mixed-integer nonlinear programs (MINLP) have also been studied by authors such as Zhou,
Kristianto, and Chan. In order to solve these problems, various methods are implemented. Zhou
and Li reformulated and approximated the MINLP as a MILP in order to solve. [28] Kristianto
and Gunasekaran use branch and bound algorithms to solve. [29] While Chan et al. use a genetic
algorithm to solve. [30] Other methods to solve these types of problems are the Jump Nonlinear
Integer Program (Juniper) solver, which uses a nonlinear branch and bound heuristic technique,
and the Global Optimization for Mixed Integer Programs with Nonlinear Equations (Alpine)
solver, which uses an adaptive, piecewise convexification technique. [31] [32] Both packages are
available for use with Julia/Jump. [27]

As discussed in 2.5 STRATEGIC CAPACITY PLANNING, static capacity planning models are
inadequate for our strategic capacity planning problem and simulation models require a large
amount of data and computing power. Due to these reasons, we use the commonly practiced
mathematical programming models in this thesis.

3.2 MACHINE LEARNING FOR CYCLE TIME PREDICTION

Predicting cycle time for an item being produced in a factory has been long studied to improve
factory performance. In complex manufacturing processes such as semiconductor manufacturing,
hundreds of operations exist in a factory and multiple products are manufactured. This is similar
to the complexity of Raytheon’s CCA factory as described in 2.7 KEY CHALLENGES AT
RAYTHEON’S CCA FACTORY. The flow of products in these types of factories follows in
complexity as many products following different routes are utilizing the same resources. While
Little’s law works well in completely linear processes, its ability to accurately predict in these
environments is limited.

Simulations are commonly studied and used for cycle time prediction as described in Chung,
Wood, Kim, and Atherton; however, a simulation model for a highly complex factory such as
CCA requires a vast amount of data and computing resources. [33] [34] [35] [36] [37] Simpler
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approaches such as statistical analysis and regression models have also been used for cycle time
prediction as shown in Raddon and Enns; however, while these simpler methods provide great
interpretability, they do not always provide the most accurate predictions in this type of factory.
[37][38] [39] A combination of these methods has also been studied by Kaplan and Liao. [34]
[40] [41]

Backus et al. propose a machine learning approach to predict lot cycle times, stating that it
provides a middle of the road approach between simpler models and full-scale simulations. In
their paper, they show that historical data is able to be used to learn a predictive model for cycle
time. From both measured and calculated metrics, data mining algorithms in conjunction with
machine learning models such as k-nearest neighbor, regression trees, and neural networks were
shown to provide useful CT predictions. It was shown that CT prediction for lots could be
obtained from similar lots that had already completed production and that regression trees
provided the best results due to their ability to handle both categorical and numerical features
well.

Other authors have also studied the use of machine learning for prediction of production times.
Wang et al. use machine learning and big data analytics to forecast cycle time due to having
higher accuracy than linear regression techniques. [42] [43] Meidan et al. suggest data-driven
methodologies to identify key features and predict CT using neural networks, decision trees, and
other methods. [44] Tirkel also predicts CT of individual operations using decision trees and
neural networks. [45] Furthermore, Rosalina compares various machine learning algorithms such
as decisions trees, support vector machines, and neural networks in a manufacturing production
process. [46] Lastly, Lingitz et al. tests linear regression, Ridge regression, LASSO regression,
regression trees, boosted regression trees, random forests, support vector machines, k-nearest
neighbor models, and artificial neural networks to predict lead time, finding that random forests
and boosted regression trees performed the best. Lingitz ef al. continue to point out that WIP
appeared to be the most important feature followed by features such as historical lead times and
arrival weekday. [47]

Following in the footsteps of this research and with the abundance of data available in
Raytheon’s Data Warehouse, we believed that CT at Raytheon’s CCA factory could also be
predicted using machine learning methods.
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CH. 4 CAPACITY UTILIZATION AND OEE ANALYSIS

The first step in strategic capacity planning is developing capacity utilization framework to
calculate utilization. In order for the capacity tool to have the greatest benefit to the company, it
needs to be able to consistently calculate factory capacity without extensive manual effort. In
order to minimize manual effort, the tool must rely primarily on continuously updating data and
algorithms to interpret and analyze that data. This chapter first goes over the available data at
Raytheon and calculates features needed for capacity analysis. These features are then used to
calculate capacity utilization graphs and OEE for each operation. Together, they provide a high-
level strategic tool to evaluate capacity in its current state.

4.1 OVERVIEW OF AVAILABLE DATA FOR CAPACITY ANALYSIS

Compared to many manufacturing companies, Raytheon does a phenomenal job at database
maintenance and offers a data-rich environment. It utilizes a data warehouse structure to house
all of its data from manufacturing transactions to the backend of its ERP data. This data is
employed in a star schema model so that data can be accessed in an organized fashion through
fact and dimension tables. Because of this, retrieval can be done remotely with an automated
SQL pull for easy data analysis. Transactional data and industrial internet of things (IIoT) data
are both stored in this warehouse along with Systems, Applications and Products in Data
processing (SAP) ERP data. The only data used in this thesis that is not accessed through SQL
and the Data Warehouse is projected demand data, which is calculated through a supply chain
planning software called Kinaxis.

The following overview discusses further some of the data available—transactional, [1oT, known
demand, and predicted demand.

4.1.1 Transactional Data

Manufacturing companies typically maintain transactional data for each lot that goes through
production. A typical table of a company with multiple facilities, operations, and products
contains information to identify the production facility, current operation, employee on duty,
production route, and timestamps for each action taken. There are also other variables that
describe the lot, such as the specific type of product and quantity. Each lot often contains
thousands of rows of data in more than ten different categories, resulting in over 10000 variables
to describe how that lot moved through the factory. A simplified example that displays a day’s
worth of transactional data for a specific operation and site is shown in Table 1.
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SITE ACTION DATE_TIME PRODUCT_TYPE PRODUCT_REV LOT_NUMBER ROUTE OPERATION_NUMBER QUANTITY EMPLOYEE_NUMBER

1 START 2/10/2014 23:30 AAAA 4 AAAA0001 AAAA-0004 1234 30 00135
1 SIGNOFF 2/11/2014 2:00 AAAA 4 AAAA0001 AAAA-0004 1234 30 00135
1 START 2/11/2014 3:00 AAAA 4 AAAA0001 AAAA-0004 1234 30 00135
1 COMPLETE 2/11/2014 4:00 AAAA 4 AAAA0001 AAAA-0004 1234 30 00135
1 START 2/11/2014 5:00 BBBB 1 BBBB00O1 BBBB-0001 1234 50 00135
1 SIGNOFF 2/11/2014 6:00 BBBB 1 BBBB0001 BBBB-0001 1234 50 00135
1 START 2/11/2014 6:00 BBBB 1 BBBB00O1 BBBB-0001 1234 50 02888
1 COMPLETE 2/11/2014 9:00 BBBB 1 BBBB0001 BBBB-0001 1234 50 02888
1 START 2/11/2014 9:30 BBBB 1 BBBB0002 BBBB-0001 1234 100 02888
1 SIGNOFF 2/11/2014 11:00 BBBB 1 BBBB0002 BBBB-0001 1234 100 02888
1 START 2/11/2014 12:00 BBBB 1 BBBB0002 BBBB-0001 1234 100 02888
1 SIGNOFF 2/11/2014 14:30 BBBB 1 BBBB0002 BBBB-0001 1234 100 02888
1 START 2/11/2014 15:00 BBBB 1 BBBB0002 BBBB-0001 1234 100 09999
1 COMPLETE 2/11/2014 19:00 BBBB 1 BBBB0002 BBBB-0001 1234 100 09999
1 START 2/11/2014 20:00 BBBB 1 BBBB0003 BBBB-0001 1234 100 09999
1 SIGNOFF 2/11/2014 21:30 BBBB 1 BBBB0003 BBBB-0001 1234 100 09999
1 START 2/11/2014 21:30 BBBB 1 BBBB0003 BBBB-0001 1234 100 00135

Table 1: An example of typical transactional data a manufacturing factory stores

4.1.2 Industrial Internet of Things (IloT) Data

The Industrial Internet of Things (IloT) refers to the vast amount of industrial connected devices
filled with sensors collecting and sharing data. While not all machines have this type of
functionality, some of the high volume lines at Raytheon offer these types of data. The IIoT data
at Raytheon follows a similar structure to the transactional data; however, since each observation
is automatically stored by a machine instead of manually by an operator, the quality of the data is
much higher. This enables much more detailed information to be stored such as component
placement and items left on a feeder. As a result of automated storage and more data, many more
metrics can be calculated at with greater accuracy.

The following are a few of the additional pieces of information that can be pulled from these
data:

e Components Remaining on Feeder Material Shortage Indication

e Specific Components being Placed on Item e Item Recipe

e Exact Time between Items Specific Machine Start/Finish of a Process

e Machine Error Codes Timestamps for all

4.1.3 Confirmed Demand Data

Raytheon uses SAP as its ERP software. When looking at a transaction such as MD04 (Display
Stock/Requirements Situation) in the software, one can see a listing of all planned consumption
and all planned receipts of an item over time. This enables us to see when material is available
and when it must be used to meet demand or in other orders. SAP calculates production dates
(lead time scheduling) using routing and other master data inputted into the system. [48] These
routings can be pulled from the data warehouse and used in conjunction with predicted CTs,
which are discussed in CH. 6 MACHINE LEARNING TO PREDICT CYCLE TIME. To find
the dates each operation needs to be complete in order to meet demand, we combine the two
along with the demand due date. An example using the general route from Figure 3 is shown in
Table 2 for operation start and end dates to meet demand just in time (with buffer).

34



CcT Start End

Routing: Generic Lot (days) Date Date
Kitting, Label, and Baking 0 3-Aug 3-Aug
SMT Feeder Setup 0 3-Aug 3-Aug
SMT 1 3-Aug 4-Aug
XRAY Touch Up 1 4-Aug 5-Aug
Assembly 2 5-Aug 7-Aug
Test 3 7-Aug 10-Aug
Coating 1 10-Aug 11-Aug
Inspection 2 11-Aug 13-Aug
Due Date 20-Aug

Buffer Time (days) 7

Table 2: Routing paired with CT and demand due date to calculate operation start and end dates for just in time production

Like the transactional and IIoT data, this routing and demand data can be directly pulled from the
data warehouse to enable the tool to remain automated. The CT data could also be pulled from
this warehouse, but it was found to be not as accurate as the model we implement in CH. 6
MACHINE LEARNING TO PREDICT CYCLE TIME.

4.1.4 Predicted Demand Data

Predicted demand can be found in Kinaxis, a powerful supply chain planning software. Kinaxis
predicts demand by conditioning sales data, collecting demand inputs, and then generating a
statistical forecast for sales and operations planning (S&OP). [49] Due to this calculation being
done within the software, a direct SQL query was not possible at the time of research.
Nevertheless, this calculation can be automated within Kinaxis at specified intervals to output a
report of predicted demand in the form of an Excel file. With this Excel file automatically
updated and stored on the Raytheon shared server, a simple line of Python code can pull the data.
For the purpose of this thesis, this predicted demand will be assumed to be correct; however, we
acknowledge this limitation in 7.3 MODEL LIMITATIONS.

4.2 CAPACITY UTILIZATION CALCULATION

From Equation 8, we know that we need four variables to calculate capacity utilization of an
operation—demand at that operation, processing time for that demand, planned production time
of the operation, and the number of resources. In order to look at capacity utilization over time,
we need to add in a time component:

1=1 diotPliot

cu, =
ot PPlotTot

The following section will describe where each of these variables come from and how they are
calculated.
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Operation Level Demand

As discussed in 4.1 OVERVIEW OF AVAILABLE DATA FOR CAPACITY ANALYSIS,
demand is a combination of confirmed demand from SAP and predicted demand. This data can
be directly pulled from the data. For finished item demand at the last operation O, we set it equal
to confirmed demand (dc) plus predicted demand (dp) for that item i in time period t:
diOt = dcit + dpit Vl, t;o = 0
Equation 13

Demand at the operational level, however, requires CT. We can use a simple CT metric stored in
the warehouse or the one predicted in CH. 6 MACHINE LEARNING TO PREDICT CYCLE
TIME. Either way, demand at a previous operation is defined by the CT of the current operation:

dio-1,t-cT;y; = Qiot Vi,0,t
For clarification, let us assume that we need 10 units of item one complete in time period 5.
Complete means that 0=0, the last operation. That is d; 5 5 = 10. If CT of item i at operation O
in time period 5 is equal to 2 time periods, then CT;,; = 2 and d; g—; 3 = 10. This means that we

need to complete 10 units of item 1 in time period 3 at operation O-1. Note that these demand
definitions assume that all demand is met just in time.

Cycle Time, Queue Time, and Processing Time

From transactional and IloT data, numerous common manufacturing measures can be calculated
at the lot level. One commonly known law is Little’s law, which uses cycle time (CT), work-in-
progress (WIP), and throughput (TP) as described in 2.4 MANUFACTURING CAPACITY. A
lot’s cycle time for an operation is equal to the time it waited in queue (QT) plus the production
time (PT). Queue time is calculated by finding the timestamp of first starting action (FSA) of the
current operation minus the timestamp of last ending action (LEA) of the previous operation.
Production time is calculated as the last ending action of the current operation minus the first
starting action of the current operation.

We define CT;,; as the cycle time of lot I at operation o in time period t. Because lots are only
made up of a single item, item i is used instead of lot 1 when looking at the aggregate level. Lot is
broken out because of the high-mix nature of the factory where cycle time is greatly affected by
the item being processed. Operation is broken out because of the vast difference in operations
and therefore cycle times. Lastly, time period is broken out because cycle time can improve over
time as workers become more familiar with an operation and/or item. Cycle time can also change
over time depending on how much WIP is on the factory floor, which is discussed further in 6.2
FEATURE GENERATION. We define QT),; as the queue time and PT;,; as the production time
of lot 1 at operation o in time period t.
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Together we get:
CTiot = QTior + PTiot
QTyor = FSAjor — LEAl,o—l,t

PTyor = LEAjor — FSAo¢

Equation 14, Equation 15, Equation 16

where QT for the first operation in a route is equal to zero. The averages for an item/operation
pair can then be calculated at per item level since lots are made up of a single item:

T L
t=1 Zl:l CTlOt

CT;, =ZT sz'TQT Vo;l el
QT,, = t=1L TT Plvosl el
PT,, = =1 LZi:lTPTl“ Vo;l €1
Equation 17,Equation 18,Equation 19
From Equation 4, we know that pt;, = ;TT;;’O , but where QTY;, = %Vo ;LEL

Capacity Available

We know that capacity available is equal to the planned production time of each resource
multiplied by the number of resources. We, therefore, need both in order to calculate it. Planned
production time can be calculated by gathering its three components—number of shifts, number
of workdays in a month, and length of shifts. Raytheon’s master schedule offers us information
into the number of workdays in a given month, however, each operation works differently due
primarily to capacity issues. Operations with high demand usually work three shifts and
weekends, while operations with low demand may only work two shifts and no weekends.

Since all operations work on a similar three-shift schedule with starting and ending times
defined, shifts can be inferred through data analysis for each operation based on the transactional
data that happens during those time intervals. It can also more accurately be pulled from the data
warehouse or by asking each operation manager their shift schedule. Length of shifts on the other
hand is assumed to be constant and account for breaks. For example, an 8-hour shift that is
known to give 30 minutes for lunch, and two 15 minute breaks, would result in defining shift
length at a constant 7 hours.

Number of resources can also be inferred from the transactional data. While not shown in Table
1, a column of resources with unique names exists. For example, the SMT operation has seven
unique resources in this column for the seven lines in the factory. While this is accurate for some
resources, it is not accurate for all. Therefore, obtaining the information from process engineers
yields better results.
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4.3 CALCULATING OEE WITH CURRENT DATA SOURCES

OEE is a metric that includes Availability, Performance, and Quality as shown in Equation 9. In
order to calculate it, we must first calculate its three parts. In this section, we will go through
example calculations that use the transactional and I1oT data to calculate each part individually.
We will then combine the three parts at the end to calculate OEE.

Availability

Availability at the operational level can be calculated using the transactional data from Table 1
Since the planned production time of the operation is known from other sources, we can use the
transactional data to see when a lot is being worked on and when a lot is not being worked on.
Planned production of a specific operation in this case is ppt,; = ShyWdyelsSyr =3 * 1% 7 =
21 hours since we are looking at single resource operation 1234 in a single day, which we will
assume is a single time period (1).

Run time is can be found through forming pairs (P) of transactional data, each with a starting
action (START) and an ending action (SIGNOFF, COMPLETE, etc.). The summation of the
difference of all pairs for a given operation provides the time a lot was being worked on in a
given time period is the run time (rt).

P

Ttor = Z(eapot — Spet) VO, t

p=0

Equation 20

where say,, is the datetime of a starting action of a start/end pair p where operation o is being
run in time period t, and ea,,; is the datetime of an ending action of a start/end pair p where
operation o is being run in time period t.

Continuing to use the case presented in Table 1, we are looking at operation 1234 in a single day.
Through data transformation, we can make nine pairs of the starting and ending actions.

Pair
0

0N O U B WN P

Starting Action
2/11/2014 0:00
2/11/2014 3:00
2/11/2014 5:00
2/11/2014 6:00
2/11/2014 9:30
2/11/2014 12:00
2/11/2014 15:00
2/11/2014 20:00
2/11/2014 21:30

Ending Action
2/11/2014 2:00
2/11/2014 4:00
2/11/2014 6:00
2/11/2014 9:00
2/11/2014 11:00
2/11/2014 14:30
2/11/2014 19:00
2/11/2014 21:30
2/12/2014 0:00

Time Difference (hours)
2

1
1
3
1.5
2.5
4

1.5
2.5

Total

38

19

Table 3: Calculation of time difference for run time calculation



We can then calculate runtime for this operation and time period: 7t;5341 = Zg=o(ea1234'1 -
SQ12341) = 19 hours. Since we know availability is equal to the ratio of runtime to planned
production time, we can see that availability in this example is equal to 19/21 or 90.5%. This
method can be completed for each operation and time period so that availability can be known
across the company. A visual depiction of this example is shown in Figure 6.

Example 3-shift schedule
(24 hrs)

Day Shift Evening Shift

Planned Production Time
(21 hrs)

Run Time
(19 hrs)

Down Time l I I
(2 hrs)

Setup Time Delayed Material Unscheduled Meeting

Figure 6: A visual depiction of Availability calculation for OEE

Performance

With CT for each lot, operation, and time period calculated, we can then start to calculate
performance at the operational level. First, we need to differentiate runtime at a per lot level by
defining rt;,; = Z§=0(eapot — SApet) V1, 0,t so that,

L
Tty = Z Tt VO, t
1=0

Equation 21

Total parts are already at a per lot level in the raw transactional data under Quantity. Lastly, ideal
process time, which is the theoretical minimum time to process one item, can be defined as the
minimum average process time for a given item, operation, time period combination. At the lot
level, each lot ideal cycle time would be equal to the ideal cycle time for the item in the given
lot.

For example, we can calculate the following table from the transactional data:

LOT_NUMBER QUANTITY OPERATION ITEM CURR_OP_START PT (hrs) PT_avg (hrs/item)

BBBB0001 50 1234 BBBB 2/11/2014 5:00 4 0.08
BBBB0002 100 1234 BBBB 2/11/20149:30 8 0.08
BBBB0O003 100 1234 BBBB 2/11/2014 20:00 9 0.09
BBBB0004 100 1234 BBBB 2/12/2014 5:00 10 0.1

Table 4: Calculation of ideal processing time for use in Performance calculation of OEE
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Ideal Process Time = min(PTgy,, ,)
PT,

= min([PTaUg1,1234,1' aV92,1234,1'PTaV93,1234,1'PTaUg4,1234,1])
= min([0.08,0.08,0.09,0.1]) = .08 hrs/item

Assuming the above four lots were processed in our defined time period, the minimum average
process time for item BBBB in operation 1234 is .08 hrs/item. Therefore, we can assume the
ideal process time for any lot of BBBB items in this time period is .08 hrs/item and plug this
back into the above table to get:

LOT_NUMBER QUANTITY OPERATION ITEM CURR_OP_START PT (hrs) PT_avg (hrs/item) Ideal PT

BBBB0001 50 1234 BBBB 2/11/2014 5:00 4 0.08 4
BBBB0002 100 1234 BBBB 2/11/2014 9:30 8 0.08 8
BBBB0003 100 1234 BBBB 2/11/2014 20:00 9 0.09 8
BBBB0004 100 1234 BBBB 2/12/2014 5:00 9 0.09 8

30 Total 28

Table 5: Continued calculation of ideal processing time for calculation of Performance

Ideally, these four lots would be completed in 28 hours of processing time; however, it actually
took 30 hours of processing time. Therefore, performance is 28/30 or 93%. We can follow this

same process for all lots in a given operation and time period to get an overall performance for

an operation.

Quality

Quality, as described by OEE, is the same as what many companies call first pass yield (FPY).
Good parts are parts that successfully pass through an operation the first time without the need
for rework and total parts are the parts that begin an operation. Many factories, like the one in
this study, keep track of all of this information in a table such as the one in Table 6.

LOT_NUMBER QUANTITY OPERATION ITEM CURR_OP_START REWORK REJECT

BBBB0001 50 1234 BBBB 2/11/2014 5:00 1 0
BBBB0002 100 1234 BBBB 2/11/2014 9:30 0 0
BBBB0O003 100 1234 BBBB 2/11/2014 20:00 0 0
BBBB0004 100 1234 BBBB 2/12/2014 5:00 0 1

Table 6: Quality data of different lots including rework and reject items

From this table, quality can be found by calculating removing reworked and rejected parts from
the quantity to get good parts and using the original quantity as total parts.
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LOT_NUMBER QUANTITY OPERATION ITEM CURR_OP_START REWORK REJECT GOOD PARTS

BBBB0001 50 1234 BBBB 2/11/2014 5:00 1 o 49
BBBB0002 100 1234 BBBB 2/11/2014 9:30 0 0 100
BBBB0003 100 1234 BBBB 2/11/2014 20:00 0 0 100
BBBB0004 100 1234 BBBB 2/12/2014 5:00 0 1 99

350 Total 348

Table 7: Calculation of good parts to compare against total parts for Quality calculation

We, therefore, see that 348 good parts were produced out of 350 total parts. Resulting in a
quality of 348/350 or 99%

OEE

OEE is, therefore, the product of these three parts: OFE = A x P * Q = 90.5% * 93% * 99% =
83.32%. At 83.32% this operation would be considered to be operating at world-class OEE
standards for this particular day. For us, we care to see how OEE is doing on average in a given
operation and therefore look at it over multiple days. If desired, this metric could be tracked for
performance monitoring.

4.4 STATIC CAPACITY UTILIZATION AND OEE RESULTS

After combining all data sources using SQL queries embedded in executable Python scripts that
also conduct calculations, we are able to visually look at capacity utilization over time through
programs such as Tableau. This overall process is depicted in Figure 7.

Confirmed & *  Quality
Predicted Demand »  Availability
Item * Performance
Operation * Machine Run Time
Quantity *  Cycle Time
» Setup Time

°
. ®
000 /:\

o7 Calculate current capacity
Kinaxis

Visualize capacity utilization over
time

i
+
paey

Factory
Transactions

Figure 7: Visual representation of connecting data sources to calculate capacity utilization and OEE

41



Capacity utilization and OEE can then be easily viewed at the operational level as shown in
Figure 8.

Projected Capacity Utilization

140%

120%

100% et e | = = € 100%
80%

60%

40%

20%

0%

2019 2020 2021 2022 2023 2024
100%
i 50%
i % 0
OPERATION 1234 iy
Performance 80% |

Figure 8: Capacity utilization and OEE visualization of a single operation

The question then becomes, so what? What can we do with this information? This is where
strategic capacity planning comes in. As one can see from Figure 8, this operation will be over
capacity if it maintains its current schedule of production as deemed by SAP with its current
resource configuration. As discussed in 2.4 MANUFACTURING CAPACITY, we know that we
have three options to increase capacity available or reduce capacity required.

1. Increase resources at the operation (maintain speed but increase time available or
resources)

a. Add Shift:

100% -—— - ===
80%

60%

20%

0%
2019 2020 2021 2022 2023 2024

100%

OPERATION 1234 .. - 50%

Performance 80% :

Figure 9: Capacity utilization result of adding a shift to operation 1234
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b. Add Machines if Operation is Machine Driven:

Projected Capacity Utilization

100%

80%

60%

40%

20%

2019 2020 2021 2022 2023 2024
100%
T f 50%
i (]
OPERATION 1234 ity - 0
Performance s0% |

Figure 10: Capacity utilization result of adding a machine to operation 1234

c. Add Workers if Operation is Labor Driven: N/A

2. Invest in increasing OEE:
Projected Capacity Utilization
120%

100%
80%

60%

40%

20%

2019 2020 2021 2022 2023 2024

100%
v

OPERATION 1234 ity = oot

Figure 11: Capacity utilization result of increasing availability and

performance
3. Shift demand at operation:
Projected Capacity Utilization
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Figure 12: Capacity utilization result of completely flattening demand
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As one can see, adding a shift, adding a machine, or shifting demand to be flat enables this
specific operation to maintain itself below 100% capacity utilization. Adding a shift is relatively
simple, but it requires hiring more workers and it barely keeps us below 100%. Adding a
machine is extremely capital intensive, but it keeps our utilization near 80%. Investing in
improving OEE does not do much to improve utilization at this operation, but may be useful to
do in conjunction with another option. Lastly, shifting demand enables the operation to stay
slightly below 100%, but shifting its demand shifts demand for many other operations. When
your operations are as connected as they are in this factory as discussed in 2.7 KEY
CHALLENGES AT RAYTHEON’S CCA FACTORY, we have to be sure to understand the
effect we have across all operations and items. Most likely, the optimal solution requires a
combination of the above options.

Each option to improve capacity utilization comes with certain costs and risks that must be
weighed and decided upon as discussed in 2.5 STRATEGIC CAPACITY PLANNING. In order
to do this, we have implemented an optimization model that reduces the cost associated with
maintaining capacity utilization below 100% while maintaining demand in order to maximize
ROI of our strategic capacity planning decisions. The models used are discussed in CH. 5
OPTIMIZATION MODELS FOR STRATEGIC CAPACITY PLANNING.
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CH. 5 OPTIMIZATION MODELS FOR STRATEGIC CAPACITY
PLANNING

Our methodology for developing an optimization model that works well for strategic capacity
planning is to start simple and add complexity to match key decisions Raytheon needs in
capacity planning. We initially start with a simple LP and eventually work our way to a mixed-
integer program (MIP) due to not being able to produce partial items. An example problem is
shown with this MIP to ensure functionality prior to continuing to add complexity to our model.
As we continue to add variables necessary for optimizing capacity planning, our model becomes
nonlinear. Our final model is a mixed-integer nonlinear program (MINLP) with a machine
learning constraint. After our final model is formulated, we then dive into the mathematics and
programs used to solve it.

5.1 LINEAR OPTIMIZATION MODELS
5.1.1 Simple Linear Model

Let us first look at a simplified linear programming model developed by Stephen Graves for
production planning where we want to meet demand with our current capacity for the lowest
production and inventory costs possible. We assume that all items (I) have independent demand,
resources (K) are shared, time periods (T) are large such as monthly, and costs are linear. We
define aik as the amount of resource k required per unit of production of item 1; bkt as the amount
of resource k available in period t; dit as the demand for item 1 in period t; cprit as the unit cost of
production for item i in time period t; and cinit as the unit cost for holding item 1 in time period t
in inventory. [50] Our model then looks like this:

Decision Variables
priy  production of item i in time period t

in;; inventory of item 1 in time period t

T I
minz E CPTiPTie + Cinging,
t=1i=1

Objective Function

Constraints
Demand:
ini't_l + p?‘lt - lnlt 2 dlt Vl, t

Capacity:
I

Z aikPTit < by Vk,t
i=1
Non-negativity:
pPrip,ing =0 Vi, t
Equation 22 [50]
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The objective function looks to minimize the production costs and inventory holding costs. The
demand constraint balances production and inventory to meet demand. In any time period, the
supply for an item is the production in the current period plus the inventory from the previous
period. This supply is equal to the demand and the leftover inventory for the item in that period.
Since inventory also shows up in the non-negativy constraint, demand is required to be satisfied
for each item in each period. Backorders and lost sales are not allowed. The capacity constraint
limits the production of items by the availability of shared resources, where production of one
unit of item 1 requires a;; units of resource k. Typical resources that are constrained are labor or
equipment related. [50]

5.1.2 Simple Linear Model with Workforce Constraint

In the simplified model, we assume two things that are most likely not true in a company—Ilinear
production cost and fixed resource levels. While we will continue to assume a linear production
cost, we will look into adjusting resource levels to change capacity and meet demand. Initially,
let us look at a problem where work force is the only resource. We will define aj as the level of
work force required per unit of production of item i; cwft as the cost per employee in time period
t; cht as the hiring cost in time period t; and cft as the firing cost in time period t. [50] Now our
model looks like this:

Decision Variables

priy  production of item i in time period t

in;; inventory of item i in time period t

wft  work force level in time period t

ht change to work force level by hiring in time period t
fi change to work force level by firing in time period t

Objective Function

T I T
minz (epriepric + cinging) + Z(CWftht + chehe + cfefe)
t=1i=1 t=1
Constraints
Demand:
N1 +priy —ing =dy Vit
Workforce Capacity:

I

Z aipriy —wf; <0 Vt

i=1
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Workforce Balance:
wfi1t+he—fr—wfp=0 Vvt
Non-negativity:
Pfie,ini, Wfe, by, fr 20 Vit
Equation 23 [50]

As one can see, the variable, hiring, and firing costs of the workforce were added to the objective
function. Variable costs correlate to costs such as wages; hiring costs correlate to costs such as
finding workers and marketing; and firing costs correlate to costs such as outplacement and
severance. The demand constraint remains the same; however, the capacity constraint reflects
that workforce is the only resource constraint. Additionally, a workforce balance constraint was
added for continuity of workforce across time periods. [50]

5.1.3 Simple Linear Model with Workforce and Machine Constraints

While labor is one constrained resource at factories, machines are another we need to incorporate
into our model. We will define zi as the amount of machines required per unit of production of
item 1; cmy as the unit cost of a machine in time period t; and cbt as the cost to buy or build a new
machine in time period t. [50] Now our model looks like this:

Decision Variables

priy  production of item i in time period t

in;;  inventory of item 1 in time period t

wft  work force level in time period t

ht change to work force level by hiring in time period t

fi change to work force level by firing in time period t

my machine level in time period t

b; change in machine level by buying/building in time period t

Objective Function

T 1

T T
minz (cprieprie + cingring) + Z(cwftwft + chihy + cfif) + Z(cmtmt + cb;b;)
1 t=1 t=1

t=1i=
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Constraints

Demand:
ini,t_l + pTlt - lnlt 2 dlt VL, t
Workforce Capacity:
I
z apri —wfe <0 Vt
i=1
Machine Capacity:

1
Z Zipriy —my <0 Vt

i=1
Workforce Balance:
Wfi1+he—fr—wfp=0 Vvt
Machine ‘Balance’:
my_q+b—m, =0 Vt
Non-negativity:
PTie, Ny, Wi, hy, fr,me, by 20 Vit

As one can see, the variable and building costs of the machines were added to the objective
function. Variable costs correlate to costs to run the machines and building costs correlate to the
costs to buy or build, and install a new machine. The demand and workforce balance constraints
remain the same; however, the machine capacity constraint reflects that machines are an
additional constraint. Additionally, a machine ‘balance’ constraint was added for continuity of
machines across time periods where it is assumed that machines can be added but not removed.
[50]

5.2 WALKTHROUGH OF A SIMPLE CAPACITY PLANNING PROBLEM

The following section enables us to show the type of output the modeling in 5.1 LINEAR
OPTIMIZATION MODELS can provide through a walkthrough without using proprietary
company data. It is done at a small scale with all data provided to the reader for reproduction
purposes. As a result of the walkthrough, the reader should gain a better understanding of the
models involved in strategic capacity planning.
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5.2.1 Gathering Data for the Model

Let us look at a simplified example of our larger problem. The time period we will consider is
three days, which we will look at daily. First, we need to understand what items need to be made
in the timeframe we are looking at—our demand. By looking at demand, we see that only three
items need to be manufactured in the next three days—Item 1, Item 2, and Item 3. Our final
product demand matrix can then be formed to look like this:

Actual Demand
Item 1 Item2 Item3
Month 1 20 0 10
Month 2 20 0 0
Month 3 20 60 10

This shows that 20 units of Item 1 need to be completed each day and 60 units of Item 2 need to
be completed in only Day 3.

Next, we can get the path an item takes through the factory by looking at each item’s router. By
doing this, we can make a router matrix like this:

Factory Routes
Item1 Item2  Item3
Operation A 1 1 0
Operation B 1 0 1
Operation C 1 1 1
Operation D 1 0 0
Operation E 1 1 1

This shows us that there are only five operations we need to be concerned about to manufacture
these three items. It also shows that Item 1 must go through five operations to be complete, while
Item 2 only has to go through every other operation.

Next, we can look further into these operations to see how many machines are being used in
each. We make the assumption in this simple problem that all operations are machine
constrained and not workforce constrained. If we want to increase capacity, we must add an
additional machine. While adding a machine will require adding additional workforce, increasing
workforce alone will not add capacity. We also make the assumption that all operations are
operating on a single shift with seven hours of planned production and that no additional shifts or
production time can be added. This assumption enables us to maintain linearity of our model for
the time being. Our simplified machine resource matrix looks like this:
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Number of Shifts  Prod Hours #Machines Current Capacity (hrs)

Operation A 1 7 5 35
Operation B 1 7 2 14
Operation C 1 7 3 21
Operation D 1 7 1 7
Operation E 1 7 2 14

This shows that Operation A has seven hours of planned production time for each of its five
machines for a total of 35 hours of available capacity for production.

Next, we begin to look into the processing time required per item. This can be inferred from
historical data through normal and advanced analytical methods, which are discussed in 4.2
CAPACITY UTILIZATION CALCULATION. For now, we will assume that the processing
time required per item at each operation is:

Processing Time Required per Item (hrs)

Item 1 Item 2 Item 3
Operation A 0.5 0.75 0
Operation B 0.25 0 0.5
Operation C 0.5 0.75 0.5
Operation D 0.25 0 0
Operation E 0.25 0.25 0.5

This shows that one unit of Item 1 can be processed through Operation A in 0.5 hours. Not
accounting for queue time, which we will assume is zero in this simplified scenario, Item 1 can
go through the entire factory in 1.75 hours.

Next, we need to gather information on how much various things cost the company. We need to
look into what it costs to manufacture each item at each operation—the variable cost of
production; the cost to hold work-in-progress inventory of each item at each operation—
inventory holding costs; the cost of running a machine—yvariable unit cost of machine resources;
and the cost to add an additional machine at each operation. For variable cost of production, we
can look at things such as the bill of materials and spread the cost over each operation based on
processing time. If we do this, we might see a variable production cost matrix that looks like this:

Variable Cost of Production ($)

Item1 Item2 Item3
Operation A 28.57 42.86 0.00
Operation B 14.29  0.00 28.57
Operation C  28.57  42.86 28.57
OperationD 1429  0.00 0.00
Operation E 1429 1429  28.57
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Holding costs depend on the space in the factory, labor, prices of damaged goods, and other
factors, but we will simply assume that holding costs are 1% of the cumulative cost of the item.
[51] Our inventory holding cost matrix then looks like this:

Holding Costs ($)
Item1 Item2 TItem3
Operation A 0.29 0.43 0.00
Operation B 0.43 0.43 0.29
OperationC  0.71 0.86 0.57
OperationD  0.86 0.86 0.57
Operation E 1.00 1.00 0.86

The cost to run a machine depends primarily on the energy the machine uses, the labor required
to run the machine, and the maintenance required for upkeep. We will assume that each machine
requires one person to run it at a wage of $50 per hour and that it costs $25 per day, on average,
to run the machine. Since employees will be working one eight-hour shift, the cost to run a
machine is $425 per day it is in operation. Our machine resource matrix then looks like this:

Machine Costs

$)
Operation A 425.00
Operation B 425.00
Operation C 425.00
Operation D 425.00
Operation E 425.00

Lastly, the cost to buy, build, and install a machine is very expensive relative to the
aforementioned costs. One major assumption we make here, however, is that buying, building,
and installing is instantaneous. Upon researching the costs to add an additional machine at each
operation, we come up with the following additional machine cost matrix:

Cost to Add a Machine ($)
Operation A 250000.00
Operation B 200000.00
Operation C 150000.00
Operation D 100000.00
Operation E 50000.00

With this information, we can begin to formulate a linear program like the one in 5.1 LINEAR
OPTIMIZATION MODELS. Our decision variables are production, inventory, and the number
of machines broken down into the ones purchased and total.
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5.2.2 Developing the Mixed Integer Linear Model
Decision Variables
Plioe production of item 1 at operation o in time period t
in;,; 1nventory of item 1 at operation o in time period t
mot  machine level at operation o in time period t
bot increase to machine force level at operation o in time period t
cap,: capacity of operation o in time period t
Constraints
The initial number of machines is known:
myo =[52312]

The initial inventory of each item and operation is known to be zero:

Myio=1[000;000;000;000;000]
The demand that must be met is known:

d;: =[202020;0060;100 10]
Processing time for each item to go through an operation is known:
pto; =[.5.750;.250.5;.5.75.5;.25 0 0;.25 .25 .5]
Variable machine resource costs are known:
cm, = [425 425 425 425 425]
Adding machine costs are known:
cb, = [250000 200000 150000 100000 50000]
Variable costs of production are known:
cpry,; = [28.57 42.86 0; 14.29 0 28.57; 28.57 42.86 28.57; 14.29 0 0; 14.29 14.29 28.57]

Inventory costs of work-in-progress are known:

cing = [.29 .43 0;.43 .43 .29;.71 .86 .57;.86 .86 .57; 1 1 ..86]
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The set of operations, items, and time period is known:
o0 € Operations = {1,2,3,4,5}
i € Items = {1,2,3}
t € TimePeriod = {0,1,2,3}
Demand needs to be met and inventory tracked:
Mipr—1 + Pliot — Ny = diy  Vi€{1,23},0€{1,234,5},t € {1,2,3}

Machines need to be tracked and balanced to enable buying machines but not getting rid of
machines:

Mye—1 + bt — My =0 Vo €{1,2,3,4,5},t € {1,2,3}
We know that the planned production time per machine at each operation is:
ppt, =[77777]
Therefore, the capacity of each operation in a given time is:
cap,: = ppt,m,: Vo € {1,2,3,4,5},t € {1,2,3}

We know that our production must not exceed our capacity:

PliotPtoi — Capor < 0Vo € {1,2,3,4,5},t € {1,2,3}

3
=1

l

Lastly, we know that Item 1 cannot go through Operation B without going through Operation A.
The production through an operation is dependent:

pri,o—l,t + ini,O—l,t—l - pri,O,t - ini,o—l,t 2 0 VL € {112;3}' 0 € {2;3;4;5}1 t e {1'2;3}

This constraint says that we cannot produce at a later operation unless we have already produced
it at the previous operation in the current time period or have it in inventory at the previous
operation in the previous time period. We also have to choose to store it in inventory at the
previous operation in the current time period or allow it to go forward the later operation. It
cannot do both.

We also add some constraints on our decision variables to be both non-negative and integers.
Non-negativity forces our other constraints to behave properly, such as demand being met. The
integer constraint makes our optimization problem more difficult; however, it also makes it more
realistic due to the fact that we cannot add half a machine or make half an item.
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These constraints can be written like this:

priOt’ iniOt 2 0’ € Z’ VL € {1!2!3}1 0 € {1I2I3I4I5}lt € {0:1:2:3}
My b =20, €7, Yo € {12345}t € {0,123}
capy: = 0, Vo € {1,2,3,4,5},t € {0,1,2,3}

Lastly, our objective is to meet our constraints while minimizing our cost:

Objective Function:

3 5

3
Z(Cproipriot + Cinoiiniot) + Z Z(Cmomot + Cbobot)
i=1

t=1o0=1

3 5
min E
t=1o0=1

Equation 24

Altogether we have a MILP model with 186 rows, 180 columns, and 462 nonzeros. We also have
20 continuous variables and 160 integer variables we are solving for. Using software such as
Gurobi and Julia/Jump, we can quickly solve this problem in less than 0.01 seconds with 60
simplex iterations to find the optimal solution within a tolerance of 1.00e-4. [20] The best
objective is $384360.05. While this objective value is great to know for financial planning, what
is more important to know is the optimal production and inventory plan, and when to add
additional machines.

From the data in Table 8, we see that we will need to add two machines to Operation C on Day 2
and one machine to Operation E on Day 3. We also see that we need to complete eight of the ten
units needed for Item 3 on Day 3 a day in advance on Day 2. We then hold that in inventory until
we use it to meet demand on Day 3. This production shifting helps us tremendously in terms of
cost-saving due to inventory costs being so much less than the cost to add an entirely new
machine. In fact, if we do not shift production and hold work-in-progress/finished inventory and
instead opt to add enough machines to meet demand on our current schedule, our best objective
increases to $1784965.40, which is more than 4x more expensive due to requiring us to add 11
total machines.

From the walkthrough, it can be seen that capacity planning decisions can be made through
mathematical programming and that their results can save a tremendous amount of money,
resulting in an optimal or near-optimal ROI.
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Production Day 1 Inventory Day 1 Day 1

Additional

Item1 Item2 Item3 Item1 Item2 Item3 Machines
Operation A 21 21 10 1 15 0 0
Operation B 20 6 10 0 0 0 0
Operation C 20 6 10 0 6 0 0
Operation D 20 0 10 0 0 0 0
Operation E 20 0 10 0 0 0 0

Production Day 2 Inventory Day 2 Day 2

Additional

Item1 Item2 Item3 Item1 Item2 Item3 Machines
Operation A 20 33 17 1 26 0 0
Operation B 20 22 16 0 0 0 0
Operation C 20 22 16 0 28 8 2
Operation D 20 0 8 0 0 0 0
Operation E 20 0 8 0 0 8 0

Production Day 3 Inventory Day 3 Day 3

Additional

Item1 Item2 Item3 Item1 Item2 Item3 Machines
Operation A 19 34 10 0 0 0 0
Operation B 20 60 10 0 0 0 0
Operation C 20 32 2 0 0 0 0
Operation D 20 60 10 0 0 0 0
Operation E 20 60 2 0 0 0 1

Table 8: Resulting table of decision variables from walkthrough optimization problem

5.3 ADDING CONSTRAINTS TO MIMIC FACTORY

5.3.1 Operational Level Constraints

Now we will begin adding more complexity to our model to more accurately model our factory.
First, we will add the factor that different operations use different machines or no machines at
all. Some of these machines are extremely complex and expensive to add, while others are
simply a bench with tools for manual workers to use. One can see that the term machine is used
broadly here as the primary inanimate object used in an operation. We will define zio as the
number of machines required per unit of production of item 1 in operation o; m,; as the number
of machines available at operation o in time period t; cmot as the variable unit cost of operating a
machine for operation o in time period t; and cbot as the variable building cost of a machine for

operation o in time period t.
I

Z ZioPTiot — Mot < 0 Vo,t

i=1
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This modification of adding in the operation level can be added into the previous parts of the
model:

Objective Function

T O
(Cpriotpriot + Ciniotiniot) + z Z(cwfotwfot + Chothot + Cfotfot)

I
t=11i=1i=1 t=1o0=1
T

0
+ (cmoemoe + chorbor)
t=10=1
Constraints
Demand:
ini,o,t—l + DTiot — iniot = diot Vi,o,t
Workforce Capacity:
I

Z AioPTiot — Wfot <0 Vo,t

i=1
Machine Capacity:

1
Z ZioPYiot — Myt <0 VO, t

i=1
Workforce Balance:
Wfo,t—l + hot _fot - Wfot =0 Vo,t
Machine ‘Balance’:
mo't_l + bOt - mot = 0 VO, t
Non-negativity:
PTiot, iniotJ Wfot' hot' fot' My, bot,diot = 0 Vi' o,t
Equation 25

5.3.2 Introducing Capacity Utilization to our Model

While our model already involves capacity utilization, let us begin to combine the capacity
terminology and equations we defined in 2.4 MANUFACTURING CAPACITY to our model.
Starting with Equation 8, the capacity utilization equation, we can see that this constraint shows
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up in our model under workforce capacity and machine capacity. Adding a time period
dimension to this equation, for a general resource we get:

Z§=1 diotptio _ Zf:l diotptio

CU, = =
ot Shothotlsotrot pptotrot

Vo € {Operations},t € {Time Periods}

As a constraint we would never want CU,, to be >1 and we want capacity required to be in terms
of decision variables, so we can reformulate the equation into the following constraint:

1
Z PTiotPlio — PPLotTot <0

=1

Equation 26

If we desire to look at it in terms of labor capacity or machine capacity, we can replace 7, with
Wfoe of my. We could also add in another dimension making it 7;,, indicating that there are

different types of resources j.
5.3.3 Implementing Dependent Production

In our original models, we are only looking at a single operation serving demand for all items.
Nevertheless, we know that there are multiple operations working together to complete an item
by a specific date so that subsequent operations can continue to work on that item. We also know
that production at an operation is dependent on previous operations:

PTo-1,it + Mo—1it-1 = Ploit — Mo-1,it = 0 V0,1t
Equation 27

This constraint says that we cannot produce at a later operation unless we have already produced
it at the previous operation in the current time period or have it in inventory at the previous
operation in the previous time period. We also have to choose to store it in inventory at the
previous operation in the current time period or allow it to go forward to the later operation. It
cannot do both.

5.3.4 Workforce Needed to Run Machines

Since CCA is not a fully automated factory, it follows that a specific ratio of workers is required
for operation and that this number would depend on the number of machines being operated. We
define this ratio as wfr,.

MyeWf1,Shyy — Wfy <0 Vo,t
Equation 28

For example, if Operation A has two machines that operate for one shift and a workforce ratio of
3 workers per machine then Operation A needs at least six workers to operate correctly. If two
shifts, then 12 workers would be required. While there are various types of workers in the
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factory, we assume that there is only one type for simplicity and make up for this assumption by
weighting the variable worker cost.

5.3.5 Operation Demand

While finished item demand is well known, demand of an operation depends on the CT
associated with each operation:

Aijo-1,6~CTipr = Qiot V1,0,
Equation 29

For clarification, let us assume that we need 10 units of item one complete in time period 5.
Complete means that 0=0, the last operation. That is d; 5 5 = 10. If CT of item i at operation O
in time period 5 is equal to 2 time periods, then CT;,; = 2 and d; p_; 3 = 10. This means that we
need to complete 10 units of item 1 in time period 3 at operation O — 1.

For finished item demand at the last operation O, we set it equal to confirmed demand (dk) plus
predicted demand (dp) for that item i in time period t:

diot = dcit + dpit Vl, t;o = 0
Equation 30

5.3.6 Introducing OEE to our Model

While our planned production time of an operation is ppt,; = Sh,:wd,:ls,:, we rarely ever
actually produce for that amount of time. While ppt,; account for planned breaks through ls,;, it
does not account for unplanned stops such as equipment failures and material shortages or
planned stops such as setup time and change over time. Using Equation 26, if we multiply this
time by our calculated Availability factor A,;, we get the actual expected available runtime of
the operation—capacity available at the operation. Our updated general resource constraint then
becomes:

1
Z priotptio - pptotrotAot <0

=1

Equation 31

If we plan to produce for 10 hours and have two resources, we would expect to have a capacity
available of 20 hours; however, if our Availability metric was calculated to be 90% then our
capacity available is only 18 hours.
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Performance follows this same logic, but we would need to change our constraint to use ideal
process time instead of process time. The general resource constraint would then become:

Tint IPT;
ZP ot 2 — pptotrotAot <0

Equation 32

If we produce 60 units all with an ideal process time (IPT) of 10 minutes, then we expect our
capacity required to be 600 minutes or 10 hours; however, if our Performance metric was
calculated to be 80% then our capacity required is 750 minutes or 12.5 hours. Nevertheless, since
the processing time we implement in our model is the average processing time of an item at a
given operation the Performance metric is already accounted for at the item. We, therefore,

assume that i - = Plio and do not explicitly include the metric in our model.
ot

Quality, on the other hand, does not get factored into the capacity utilization constraint of the
model. Instead, it is added to the demand constraint:

let
Qot

ini.O,t—l + Prior — Nt = Vi,o,t

Equation 33

If we had a demand of 99 items and our Quality metric is 99%, then we now need to account for
the production of at least 100 items in order to ensure we meet demand.

We solve for OEE metrics in 4.3 CALCULATING OEE WITH CURRENT DATA SOURCES
and initially assume that they remain constant when solving our model.

5.3.7 Machine Learning for CT Prediction

While processing time is relatively constant for a given operation/item combination, CT is not.
Instead, it depends greatly on item, operation, time period, number of items in a lot, WIP, etc.
and is not necessarily a static number. While we could assume that is was constant for a given
item, operation combination, we purposefully do not due to many lot characteristics and WIP
levels affecting CT. CT is therefore dependent on many predictor variables:

CTior = f(i,0,6,PTi0t, Ny o_1.6 o) ior) Vi, 0,
Equation 34

where f: (i, 0,6, DTiots My o—1ts wee» diot) — CT;,: by machine learning techniques discussed in
CH. 6 MACHINE LEARNING TO PREDICT CYCLE TIME.
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Since a random forest was considered to have the best performance for CT prediction as shown
in 6.7 MODEL BUILDING, TRAINING, AND TESTING, CT becomes:

M
1
CTiot = WL g,,..0,,(X) = i z @16, (6,0, 6, PTioe, Ny o—1pr v, dior)

m=1

where a set of M randomized models {¢, 9 |m = 1,..., M} have been trained on the same data

L but each built from an independent random seed 6,,,. The combination of the predictions of
these models are averaged into a new ensemble model, denoted Yy g, g, . [52]

5.4 FINAL NONLINEAR OPTIMIZATION MODEL

Our final model incorporates the complexity of the Raytheon CCA factory into our original
simple models and is no longer a linear model due to nonlinear constraints. This section ties our
model’s pieces together and then discusses the solving method used.

5.4.1 Final Model Decision Variables

Looking back at 2.4 MANUFACTURING CAPACITY, we can see that our decision variables
align with the three available options to change capacity utilization.

1. Increasing Resources
a. Adding Shifts - sh,;, wd ¢, LSyt
b. Adding Machines - m,;, byt
c. Adding Workers - Wf,¢, hot, for
2. Make operation faster or reduce defects - A,¢, Qp¢
3. Shift Demand -pr;,¢, injor
5.4.2 Final Model Objective Function

Our objective function looks to minimize the cost to the factory while the constraints ensure that
demand is being met on time—two of the tradeoffs associated with capacity planning, which is
discussed in 2.5 STRATEGIC CAPACITY PLANNING. While it is known that constraints can
be combined to make the problem easier to solve, they were kept separate for interpretability
purposes.

T O 1 T O
minz Z Z(Cpriotpriot + Ciniotiniot) + Z Z(waotwfot + Chothot + Cfotfot)
t=1i=1i=1 t=1o0=1
T O
+ Z Z(Cmotmot + Cbotbot)
t=1o0=1
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5.4.3 Final Model Constraints

Production Demand:

1 . iot .
Ny ot—1 + Plior — MNjor —7— =0 Vi,0,t
ot

Workforce Capacity:

1
Z PtioPTiot — PPtotWfotAor < 0 Vo,t

=1

Machine Capacity:

1
Z PlioPTior — PPLotMotAor <0 Vo,t
i=1

Workforce Balance:
Wfot-1+ hot = for =Wfor =0 Vo,t
Machine ‘Balance’:
Moe—q + boy —mye =0 Vo,t
Dependent Production:
Plo—1it ¥ iMo—1i6-1 — Plo,it — Mo-1,it = 0 Vi, 0,
CT Random Forest Prediction:

M
1 . .
CTiot = YLp,,..0,,(X) = i Z @16, (1,0, 6, DTior, Ny g-10r - » dior)

m=1

Operation Demand:
dio-1,t-cT;y; = Qiot Vi,0,C

Final Operation Demand:
diot = dkit + dpit Vl, t;o = 0
PPT Equation:

PPtor = Shotwdyilsy:
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Maintain OEE Constant:

Aot, Qot = Ao t=0) Qo,t=0
Non-negativity:
PTiot, iniot' Wfot' hot' fotJ Mot bot' Shot' Wdot' lSotJ Aot' Qot =0 Vi, o,t
Integer constraints:
PTiot» iniot' Wfot' hot' fot' Mot bot' Shot' Wdot EL

5.5 MIXED-INTEGER NONLINEAR OPTIMIZATION

A mixed-integer nonlinear program (MINLP) follows similar conventions to LPs. We are
looking to minimize a f (x, y) subject to g;(x,y) < b,where j € ], Ax + By < b, x € R, and
y € Z. These types of problems are typically solved using pre-existing solvers that use
algorithms such as the branch-and-bound algorithm or outer approximation. Nevertheless,
solving this type of model requires either a vast amount of computing power or a manageable
model with respect to the number of constraints and variables.

5.5.1 Common Methods to Solve MINLPs

The branch and bound algorithm was first introduced by Land and Doig to solve MILPs, but it
has since then been expanded to MINLPs. Simply put, the branch and bound algorithm solves
the MINLP problem by relaxing the integer constraints and solving the continuous problem first
to get the lower bound. If all decision variables are already integer values, the MINLP is also
solved. If not, the continuous relaxation is branched into sub-problems and constrained until
integer solutions are found. While this works relatively quickly for MILPs, MINLPs are
computationally more demanding and require techniques such as those proposed by Leyffer to
solve. On the other hand, the outer approximation method is a decomposition technique first
introduced by Duran and Grossmann. It works by constructing a polyhedral outer approximation
of the nonlinear feasible region and iteratively improving. More details can be found in
Kronqvist’s 2018 paper. Typically, the outer approximation solves a continuous relaxation
problem to find the initial lower bound before solving the MINLP. [53]

5.5.2 Solving the MINLP

In order to more effectively solve our MINLP, we must first preprocess the model. First, we
remove redundant constraints. For instance, we can combine the PPT Equation and the Capacity
Constraints to lower our number of constraints. We can also remove the OEE constraint since, in
its current form, our model restricts OEE metrics to a constant. We can also look into bound
tightening and reformulations as described in Belotti et al. [53]

Next, we make conscious decisions to reduce the size of the model to make it more manageable.
As an example: In the next 60 months, there is demand for 2072 unique items across 326
operations. If we include all of these items and operations across the 60 months, our model
would have millions of variables and constraints. This is entirely too large for the limited

62



computing power we have available. In order to reduce this, we can use the expertise of process
engineers and operations managers to understand what operations are key to look at. From these
experts, we concluded that 41 key operations should be primarily focused on. This reduces both
our model variables and constraints by 90.5%.

Lastly, we can use primal heuristics to get an initial feasible solution to help our solver with our
original problem. After preprocessing, we then use a solver such as Juniper to solve our model.
Juniper is an open-source MINLP solver developed by Kroger ef al. that utilizes a branch and
bound method with primal heuristics for quicker solving. It is easy to install and use in
Julia/Jump and is the primary solver implemented in this thesis for the MINLP. [31] [53]
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CH. 6 MACHINE LEARNING TO PREDICT CYCLE TIME

Due to the inaccuracy of simply using a single number such as the average for cycle time,
capacity utilization would not be accurately modeled in the long run. Therefore, a model to
predict cycle time of current and future items is needed. Because CT varies so greatly depending
on things such as WIP, operations and item characteristics such as type, dimensions, number of
components, and component size/type, it is believed that using historical data will enable us to
better predict future cycle times with similar characteristics. This chapter dives into our use of
machine learning to predict cycle time at the operation level by building upon concepts such as
feature generation and selection before ultimately building, training, and testing the models.

6.1 MACHINE LEARNING OVERVIEW

Our hypothesis is that CT can be more accurately predicted via supervised machine learning
methods than the currently implemented method at Raytheon. In order to test our hypothesis, we
must predict a response variable based on a set of predictor variables. Our primary aim is to
make the most accurate predictions of the response variable. The ability to identify which
predictor variables have the largest impact on the response variable is secondary. Because of this,
we look into implementing ten different types of machine learning models, including linear
regression models, regression trees, nearest neighbor models, clustering algorithms, and an
artificial neural network.

In order to develop the best model, we first develop a very large data set with hundreds of
predictor variables that align to our response variable. Nevertheless, many of these variables are
redundant or irrelevant in prediction of our response variable and, due to having limited
computing power available, feature selection is necessary before training the models. Once
predictor variables are decided upon, various machine learning models can be trained and
evaluated.

6.2 FEATURE GENERATION

Feature generation involves creating potentially useful predictor variables from available data for
use in the machine learning model. While we do not discuss all of the features we generated in
this thesis, we do discuss a few that could be recreated by most manufacturing factories.

6.2.1 Date Timestamps
Date timestamps can also be derived from the transactional and IloT data by defining the
following:

Completion Date;,; = LEA;,;
Start Datey,s = FSApy¢
Queue Start Datey,y = LEA; 1+

From these timestamps, we can pull out further data such as day of the week, week in the year,

etc. in order to utilize trends for better prediction. A description of the above terms can be found
in 4.2 CAPACITY UTILIZATION CALCULATION.
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Other useful features can be generated from these timestamps for prediction of CT. For example,
cycle time, on average, tends to get better through the week and increase on the weekends with
Monday being the highest as seen in Figure 13. Certain months also look to be more productive

than others as seen in Figure 14. CT for certain items and operations may also improve over time
as seen in Figure 15.

Compl Dt

Sunday Monday ~ Tuesday Wednesday Thursday  Friday  Saturday

Avg.CT

Figure 13: Average cycle time throughout the factory depending on the day of week

Compl Dt

>
[

Janu.. Febr.. March April May June July Augu.. Sept.. Octo.. Nove.. Dece..

Figure 14: Number of finished items per month in 2018

Avg.CT

January 2018 March 2018 May 2018 July 2018 September 2018 November 2018 January 2019
Month of Compl Dt

Figure 15: Cycle time for some items improve over time
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6.2.2 Work-in-progress/Queue Length

The time a lot sits in an operation’s queue and therefore the magnitude of its CT depends highly
on the queue length, making estimates of WIP and the queue length useful for CT prediction.
The queue length of an operation at a given datetime can be estimated by summing up all lot
quantities at that operation with Queue Start Dates prior to the given time and Start Dates after
the given time. Looking at the average queue quantity and average cycle time of an operation
over time, one can see in Figure 16 that as the queues build up, average CT also increases and
lags behind.

Month of Compl Dt

Measure Names
W Avg. CT
Avg. Queue Qty
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Figure 16: On average, increasing queue length increases the cycle time of an item

6.2.3 Bill of Materials Data

Manufacturing companies also have bill of materials (BOM) data centrally stored on enterprise
software such as SAP. BOM data consists of a list of raw materials, components, and sub-
assemblies with their respective quantities needed to manufacture the end product. A typical bill
of materials has data that looks like it does in Table 9.
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Material | Circuit Card 99

Plant 2000

ltem Component Component Description Quantity Unit
0010 1234-ABC-567 axial carbon resistOr 4.7kOhm 10 EA
0020 1234-ABC-568 Resistor, Heat Sinkable, 7.5 1 EA
0030 1234-ABC-569 Resistr, .25Kilohms 10 EA
0040 1234-ABC-570 capaciter, 47uf 10 EA
0050 1234-ABC-571 1000uF 35 Vdc Aluminum Electrolytic Capacitor 1 EA
0060 1234-ABC-572 Integrated Circuit 5 EA
0070 1234-ABC-573 Inductor 1 EA
0080 1234-ABC-574 Diode 1 EA
0090 1234-ABC-575 Transistor 1 EA

Table 9: An example of what a BOM might look like for a circuit card

The problem with this data, however, is that component names are commonly not systemized to
match component types. Furthermore, component descriptions are often manually entered by
many different users over the years, resulting in different formatting, different spelling, typos,
etc. An example to demonstrate some of the problems with this is in the component description
column of Table 9. You can see that resistor is spelled incorrectly in Item 0010 and 0030, and
capacitor is spelled incorrectly in Item 0040. Additionally, the formatting is different throughout.

In order to use this type of information for predictive purposes, we need to be able to compare
component makeup across materials. Circuit Card 99, a made-up card, for example, should be
known to have 21 resistors, 11 capacitors, 5 integrated circuits, 1 inductor, 1 diode, and 1
transistor. In order to do this, we will use the Levenshtein distance. [54]

The Levenshtein distance is a metric that measures how close or different two sequences of
words are. It can be written as:

levg,,(i—1,7)+1

I _ Jmin levg,(i,j— 1)+ 1 _ (i) = 0
“rabp = levay (i — 1, — 1) + 1 gy MINES) =

max(i,j),if min(i,j) # 0
Equation 35

where a is one string and b is another string, 14,2,y = 0 when a = b and 1 otherwise, and
levgp (i, j) is the distance between the first i characters of string a and the first j characters of

string b. The Levenshtein distance between “resister” and “resistor” is equal to 2 due to needing
two actions to go from one to the other—deletion of the ‘e’ and addition of the “0”. [54]
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We can then calculate the Levenshtein similarity ratio as:

length(a) + length(b) — levgy( j
length(a) + length(b)

ratiolevgy jy = * 100%

Equation 36

The ratio for “resistor” and “resister” is then equal to 87.5%.

We can use the FuzzyWuzzy package in Python to quickly calculate these ratios to identify
commonalities across components. More specifically, it can look at partial ratios to deal with
more complex strings. If the length(a) < length(b) then the algorithm looks for the best
resulting ratio from a length(a) substring in b. [55] From Equation 35 and Equation 36, we can
calculate a matrix that looks like Table 10.

Resistor Capacitor Integrated Circuit Inductor Diode Transistor

axial carbon resistOr 4.7kOhm 88% 44% 33% 38% 40% 60%

Resistor, Heat Sinkable, 7.5 100% 44% 27% 50% 40% 70%

Resistr, .25Kilohms 88% 33% 29% 38% 40% 60%

capaciter, 47uf 13% 89% 29% 38% 40% 21%

1000uF 35 Vdc Aluminum Electrolytic Capacitor 50% 100% 33% 50% 40% 53%
Integrated Circuit 43% 44% 100% 50% 40% 40%

Inductor 62% 67% 50% 100% 40% 62%

Diode 40% 62% 40% 44% 100% 40%

Transistor 75% 56% 40% 62% 40% 100%

Table 10: A Levenshtein Ratio matrix for an example BOM

Using a proper cutoff, such as 80%, we can then classify each component and output a usable
matrix for prediction such as the one shown in Table 11.

Total
Resistor  Capacitor Integrated Circuit Inductor Diode Transistor .. Amplifier Components
Material 99 21 11 5 1 1 1 0 40

Table 11: An example of features generated from BOM analysis and the Levenshtein Ratios

6.2.4 Other Features Generated

Additional analytics can be completed on the transactional and IIoT data to gain potentially
useful information for predicting CT. For example, manufacturing averages at the operation level
can also be calculated such as:

CT,

avgor L 4 avgot - L

Yo CTior Yl PTioe Y0 QTiot YTy
sl=0-"lot. pT MR QT g, = S5 QT Yoy, = S5 Yo, t

Other manufacturing measures specific to Raytheon were also calculated from the transactional
data. While all of these data points are not necessarily useful for prediction of CT, they are
included until filtered out during feature selection in 6.3 FEATURE SELECTION.
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6.3 FEATURE SELECTION

Feature selection enables us to choose a subset of the available response variables to reduce the
dimensionality of the problem without losing significant amounts of information. Given our set
of response and predictor variable pairs, we are tasked to create a model of the predictor
variables that predicts our response variable well; however, it is often the case that only a subset
of these features are needed to achieve low errors. For example, consider a housing cost problem
in which the response variables are a long list telling us every detail of a house listed for sale all
the way down to the size of each wall, capacity of the hot water heater, and years since the roof
was replaced, and where we are tasked to predict the sale price of the house from these predictor
variables. Then it is possible that knowing only a subset of these variables, such as square
footage, number of bedrooms and bathrooms, and neighborhood, will be sufficient in predicting
the sale price of the house. If we know what subset of predictor variables is required, then our
models are much better at prediction of our response variable. While we are primarily interested
in feature selection to reduce the dimensionality of our problem and enable our computing
resources to be effective, feature selection has also been known to increase model performance.
[56]

One way to perform feature selection is through feature extraction, where new independent
predictor variables are created from the old predictor variables. The least important of the
variables are then dropped in order to achieve dimensionality reduction. Principal component
analysis (PCA) is one technique that can be utilized by using an orthogonal transformation to
convert our initial, potentially correlated variables into new independent, uncorrelated variables.
Further details can be found in Principal Component Analysis by Jolliffe. [57] [58] After
creating these new independent, uncorrelated variables, dimensionality can be reduced by
keeping only the most import features as described below. While this method is good for
reducing the number of dimensions and ensuring independence, it does make predictor variables
much less interpretable. In order to maintain interpretability, at least through feature selection,
feature elimination is implemented.

Feature elimination reduces the number of features being trained on by removing them from
consideration. One type of feature that is often removed are features that are highly correlated
with one another. These features are called collinear features and tend to lower model
performance due to high variance and less interpretability. [59] While collinearity can be picked
up with something as simple as Pearson’s pairwise correlation, multicollinearity between many
variables can be reduced by looking at the variance inflation factor (VIF). With this VIF
indicator, we can use methods such as mixed-integer optimization or mixed-integer quadratic
optimization to select an uncorrelated subset of the features. [60]

Features that are deemed irrelevant by importance measures are also typically removed. One
such measure is called the Mean Decrease Impurity importance (MDI) and refers to random
forests. [61] Breiman proposed that the importance of a predictor variable for predicting a
response variable was equal to the sum of the weighted impurity decreases for all nodes the
predictor variable is used, averaged over all the trees in the forest. [62] Louppe went on to
further prove that importance measurements of irrelevant predictor variables equal zero when
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computed by randomized trees. While the theorems described in Louppe 2013 refer to infinite
sample sizes and ensembles, Loupe points out that real-world finite problems such as ours can
still follow this logic even though importance measurements may be biased. [61] Because of this,
we primarily utilize feature elimination through feature importance measurements computed by
Random Forests and Gradient Boosted Trees.

6.4 OVERVIEW OF TESTED MODELS
6.4.1 Model Selection Introduction

Many different machine learning models exist today with numerous applications to both
regression and classification. In this thesis, we discuss seven types of models and ten total
models. The seven types are linear models, support vector machines, stochastic gradient descent,
decision trees, nearest neighbors, ensembles, and neural networks. The ten models are Ridge,
Least Absolute Shrinkage and Selection Operator (LASSO), Elastic-Net (EN), Support Vector
Machine (SVM), Stochastic Gradient Descent (SGD), Classification and Regression Tree
(CART), K-Nearest Neighbor (KNN), Random Forest (RF), Gradient Boosted Trees (GBT), and
an Artificial Neural Network (ANN). These models were selected due to prior research showing
their validity in this space as discussed in 3.2 MACHINE LEARNING FOR CYCLE TIME
PREDICTION, their known ability to have good predictive power, and, for some, their ability for
interpretation. Each model we implemented offers different advantages and disadvantages as
shown in Table 12.

Type of Model Actual Model Advantages Disadvantages
. . . . D t adaptivel t li
Linear Regression Models Ridge Good with small datasets 0€s not adaptively capture nonfinear
structures
LASSO/EN Easy to interpret

Support Vector Machine SVM Low generalization error Sensitive to tuning parameters
Effective in high dimensions Slow training on large datasets

Stochastic Gradient Descent SGD Easy to implement Good number of hyperparameters
Efficiency Sensitive to feature scaling

K-Nearest Neighbor KNN Intuitive algorithm Number of neighbors needs defines
Robust to outliers High relative computational complexity

Moderately hard to interpret

Decision Trees CART Easiest model to interpret Can lead to overfitting

Adaptively captures nonlinearity Not as powerful for prediction

Ensembles RF Handles categorical features well ~ Hard to interpret
GBT Adaptively captures nonlinearity Can be slow
Few parameters to tune

Performs well with many features

Neural Networks ANN Known to have the greatest Many parameters to tune
predictive capability with

) ) Large number of samples required for
numerical variables

good performance
Not robust to outliers

Hard to interpret

Table 12: Comparison of machine learning models [63]
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With our primary goal being predictive power, we expected the last four models to provide us
with the best results; however, we included the first six to investigate whether similar predictive
power could be achieved while maintaining interpretability. Since they are relatively simple
machine learning models, they are quick to build, train, and test. This section will provide a brief
overview of each model implemented.

6.4.2 Linear Models

Linear models are a set of regression methods in which the response value is expected to be a
linear combination of predictor variables. Mathematically, if  is the response variable then
y(w,x) = wy + wyx;g + -+ + wpxp. Basic linear regression fits the model with coefficients w =

(a)l, s Wp) to minimize the residual sum of squares between predictor variables (X) and
response variables (y): min||Xw — y||3. Since noisy data may lead to overfitting in this method,
w

regularization comes into play. [64] [65]

Plane of Best Fit Residuals

Figure 17: Graphical depiction of linear regression and minimization of the residuals [65]
Ridge

Regularization incorporates a complexity penalty directly into the minimize problem. Ridge

regression imposes a penalty on the size of coefficients by minimizing the residual sum of

squares with an added penalty: min||Xw — y||3 + a||w||%, where a@ = 0 is the constant penalty
w

term that corrects against overfitting and can be optimized through cross-validation techniques.,
and ||w||, is the £,-norm (Euclidean norm) of the coefficient vector. While Ridge regression
results in simple and interpretable models, one common problem with it is the large number of
coefficients that are extremely small yet not zero. [64] [65]
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LASSO

LASSO regression is another penalty adding regression we look into that sets more coefficients
equal to zero. It stands for Least Absolute Shrinkage and Selection Operator and is even easier to
interpret. Like Ridge Regression, it mathematically is reducing the residual sum of squares with

|| Xw — y||5 + a||w||1, where ||w]|; is the £;-norm of the

an added penalty: min
w

2nsamples
coefficient vector. Again, the hyper-parameters of LASSO regression can be tuned through
cross-validation. [64] [65]

Elastic-Net

Elastic-net is the third regression model that combines the properties of Ridge and LASSO by
the use of two penalty terms. The minimization of the residual sum of squares in this case is:

, 1 a(l-p)
min [1Xw = y|13 + apl|w]|; +
W 2NMgamples 2

between the £, -norm and £,-norm of the coefficient vector. [64] [65]

|[lw||3 , where p is a constant that sets the ratio

6.4.3 Support Vector Machines

Support vector machines are effective in both high dimensional spaces and lopsided
dimensionality. Additionally, it is effective when computing resources are limited due to using a
subset of training points. Its mathematical formulation can be found in Smola and Scholkopf’s
2003 paper, but, in summary, it is looking for a function of the predictor variables, with at most
e-deviation from the response variable. [64] [66]

6.4.4 Stochastic Gradient Descent

Stochastic Gradient Descent is another effective approach to fit linear regression models through
various loss functions and penalties. While one of the three linear models above is commonly
recommended, SGD is well suited for problems with a large number of samples. Its
mathematical formulation can be found in Zhang’s 2004 paper, but, in summary, it is solving the
linear regression problem by using an iterative algorithm that starts from a random point and
descends to find the lowest gradient or slope of that function. [64] [67]

6.4.5 Nearest Neighbors (KNN)

The K-Nearest Neighbor method looks to find a number (k) of training samples of predictor
variables most similar to them, and predict the response variable from these. In short, this
method finds the k observations in the training data which are closest to a set of predictor
variables and averages their response variables. Closeness is defined through distance metrics
such as Euclidean distance, Manhattan distance, and Minkowski distance. The average is
commonly used because it is assumed that each neighbor uniformly contributes to the prediction
of the response variable; however, weights can be added to closest neighbors and a weighted
average can be used instead. [64] KNN is considered interpretable by some due to being able to
locally interpret from neighbors; however, interpretation is not intuitive or easy to do. [68]
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6.4.6 Decision Trees (CART)

The most easily interpretable model is a Classification and Regression Tree (CART) model as it
more closely mirrors human thought. Another benefit of CART is that it can discover predictor
variable interactions without incorporating interaction terms. Additionally, it can adaptively
discover nonlinearities as seen in Figure 18.

Nonlinear Function
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Figure 18: Graphical depiction of CART overcoming a nonlinear function [65]

CART uses a smart heuristic solution for the optimization problem. Let T denote the resulting
decision tree, such that § = T (x;); Leaves(T) denote leaves on the tree (terminal nodes); N;
denote how many data points are contained in the [ leaf; Error(T) denotes the error associated
with tree T for inaccurately predicting y on the training data; and Error(Tygs,.) is the error from
a tree trained without covariates. These errors are calculated using the Gini Index. The
mathematical formulation is then:

mTin Error(T) + cp + Leaves(T) + Error(Ty,.)
s.t.N; = minbucket

where minbucket is the lower limit on the number of observations in each leaf and cp is the
complexity parameter that prunes splits of the tree that do not improve the model fit. As such, the
smaller minbucket is the more splits are possible, and the smaller cp is the more splits are likely
in the final tree. Both of which can either be set or derived optimally through cross-validation.
[64] [65]
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Xa

Figure 19: The difference between CART and multiple regression graphically [65]

6.4.7 Ensemble Methods

Ensemble methods combine predictions of several estimators in order to improve robustness and
accuracy over a single estimator. Averaging methods such as Random Forests build several
single CARTs and then averages their predictions. On average, this prediction is generally better
than any of the individual CART models due to a reduction in variance. Boosting methods such
as Gradient Boosted Trees use sequentially built estimators and attempt to reduce the bias of the
combined estimator. Together this combined estimator is generally better at prediction than
individual estimators.

Random Forest

A Random Forest model is an ensemble of a group of different CART models. Each CART tree
makes a prediction of the response variables given the values of the predictor variables. The
prediction of the random forest is the average of each tree's prediction. Each CART model in the
forest is trained using a random sample from the training set. This is commonly referred to as
bagging, and it mitigates overfitting. Each split of each bootstrapped tree is then made by
considering only a random subset of predictor variables. The power of this model comes from
each CART model finding patterns in its subset of data. When combined, the forest is able to
then identify complicated patterns. Nevertheless, Random Forests become very large and
complex and, as a result, are not interpretable. [64] [65]

Gradient Boosted Trees

A Gradient Boosted Tree model works like a Random Forest by using a combination of trees as a
weak learner. A loss function is first defined and then trees are added one at a time to the model.
Before a new tree is added, the loss function is optimized by modifying the new tree. Existing
trees remaining unchanged. This continues until a set number of trees is reached or the loss
function reaches a specified level. The mathematics behind GBTs can be found in Breiman's
2001 article. [62]
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6.4.8 Neural Networks

Artificial Neural Networks (ANN) are commonly called feed-forward neural networks or Multi-
Layer Perceptrons (MLP) and are made up of three primary layers—input, hidden, and output.
The input layer consists of all input features. Each neuron in each hidden layer transforms the
values from the previous layer with a weighted linear summation and outputs a nonlinear
activation function. The output layer transforms the values from the last hidden layer and
transforms them into a prediction.

Input Layer Hidden Layer Output Layer

Feature 1

Feature 2

Prediction

Feature 3

Feature 4

Figure 20: Graphical representation of a neural network model with four features, one hidden layer, and one response variable

Neural networks are trained by using backpropagation coupled with the previously mentioned
gradient descent algorithm. The specific mathematics can be found in the book Practical
Machine Learning. [69] The model learns a function f(-): R™ — R by training on a dataset,
where m is the number of features and o is the number of predictions. Given a set of predictor
and response variables, the network can learn a nonlinear estimator for regression. While neural
networks have been known to provide great predictive power and have the capability to learn
nonlinear models, they also require a lot of tuning since there are so many hyperparameters. [69]
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6.5 MACHINE LEARNING FRAMEWORK OVERVIEW

In order to accurately predict CT of a given lot, we require accurate models that can be computed
on with limited computing power. As a result, we developed a four-step machine learning
framework.

Data

. . "\ Model
Ingestion . Standardlzat.lon . Hyper—parameter Deployment
¢ Transformation tuning
* Feature Selection * Model Training and
Testing
* Model Selection
\. y A\ J/

Figure 21: Four-step machine learning framework used in this thesis
1. DATA INGESTION
e Data Ingestion

In order to have a chance at predicting CT of a lot, multiple pieces of numerical and
descriptive information related to each lot needs to be ingested from various sources.
This is discussed in 6.6 DATA INGESTION.

2. DATA PREPARATION
e Data Pre-Processing

The second step consisted of standardizing and transforming data into a useful format
for predictive models.

e Feature Selection

The next step consisted of eliminating variables that are not useful in predictive
modeling. Two primary criteria were used to select the predictor variables—features
with higher importance in random trees were kept and features that were highly
correlated with each other were removed.
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3. MODEL BUILDING, TRAINING, TESTING

Predictive Modeling Analysis

After selecting our set of predictor variables and reducing the dimensionality of the
problem, predictive models were built. Ten total predictive models without tuning
were used for the prediction of cycle time: Ridge, Lasso, Elastic-Net, SVM, SGD,
CART, Random Forest, GBT, KNN, and an Artificial Neural Network.

Down-Selection of Models

A total of ten models were built for each of the operations with anticipated demand in
the next five years, and the top tier of models as determined by prediction metrics
were selected for further analysis. This step, while not technically necessary, was
done to save computing time by not tuning every model.

Model Tuning and Final Selection

After the top tier models were selected, their specific hyperparameters were tuned and
the models were built again, tested, and validated. The top model as determined by
the same prediction metrics was ultimately selected.

4. MODEL DEPLOYMENT

Final Predictive Modeling Testing

This model was then used to test our hypothesis that CT can be more accurately
predicted via supervised machine learning methods than the currently implemented
method at Raytheon.

Model Deployment

After successfully verifying our hypothesis, the model was automated and deployed
to be used as an input into the strategic planning model.

6.6 DATA INGESTION AND PREPARATION

6.6.1 Data Ingestion

In order to have a chance at predicting CT of a lot, multiple pieces of numerical and descriptive
information related to each lot need to be ingested from various sources. To enable the
sustainability and scalability of the framework developed, a tool for automatic data ingestion was
required to be implemented. The tool uses Python script embedded with SQL queries to
automatically connect to the data warehouse and other network documents to ingest all available
data for CT prediction. More specifically, transactional data and IloT can be aggregated with
material and component data at a lot level. From this ingested data, useful metrics as discussed in
6.2 FEATURE GENERATION can be automatically calculated and concatenated within the
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same tool. This is sometimes referred to as feature generation and can then be compiled as an
executable file that automatically runs at specified times.

Data for CT Prediction

Figure 22: The ingestion of data from various sources

6.6.2 Data Preparation

Prior to building, training, and testing models, we had to first prepare the data we ingested
through standardizing the data, transforming the data, and eliminating irrelevant data.

Data standardization is one of the foundations of machine learning. Both dimension and value of
a predictor variable would make a great difference when evaluating the variable especially if
predictor variables have highly varying magnitudes. Standardization prevents this by eliminating
the effect of units and the variation of all numerical variables. Standardization of the data in this
thesis refers to standard deviation standardization. This method makes each numerical feature
have a mean and standard deviation of 0 and 1 respectively.

The standardization formula can be expressed as:

where x denotes the original data, X represents the mean, and o is the standard deviation. [70]

Once numerical variables are standardized, categorical variables must be transformed into useful
numeric variables. While a string representing an item is not compatible with model building,
each unique item can become its own predictor variable. If the lot is comprised of that item, then
the variable is equal to 1. Otherwise, it is equal to 0. These new variables are commonly referred
to as dummy variables and are typically created for each categorical variable. Once concatenated
onto the data, the original categorical variable is dropped.

Now that all of our predictor variables are standardized and numerical in nature, we begin
eliminating variables that are not useful in predictive modeling. This enables us to reduce
dimensionality and improve our prediction metrics. We do this by selecting statistically
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significant features, where importance is greater than zero in an ensemble of random trees.
Packages such as scikit-learn in Python enable us to use both Random Forest and Gradient
Boosting Trees to quickly calculate the importance of each feature. A graphical representation of
the relative importance of 25 feature variables is shown in Figure 23.

Feature
Feature 1 |
Feature 5 I —

Feature 661 INIIIEEGEGEGEG
Feature 595 I
Feature 445 IIII—
Feature 710 I

Feature 15 I

Feature 5 I

Feature 13 I
Feature 646 I
Feature 505 I

Feature 21 I

Feature 20 NN
Feature 318 NN
Feature 496 IR
Feature 113 NI
Feature 615 NN

Feature 6 IR

Feature 140 NN

Feature 16 NN
Feature 144 N
Feature 465 IR

Feature 12 I
Feature 178 IR
Feature 124 I

Feature Importance

Figure 23: Example graph of 25 features and their relative importance to prediction

We also calculated Pearson’s pairwise correlation coefficients and VIFs between each of the
remaining variables and removed collinear features. When deciding between features to remove,
the features with lower feature importance were chosen to be removed. A graphical
representation of the correlation matrix is shown in Figure 24.
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Figure 24: Example correlation matrix of approximately 100 of the feature variables
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6.7 MODEL BUILDING, TRAINING, AND TESTING

As a result of data preparation, we were left with a list of approximately 100 relevant predictor
variables for use in our machine learning models. Ten total predictive models without tuning
were initially used for the prediction of cycle time: Ridge, Lasso, Elastic-Net, Support Vector
Machine, Stochastic Gradient Descent, CART, KNN, Random Forest, GBT, and an Artificial
Neural Network. Performance metrics were then used to select the top tier models. After the top
tier models were selected, their specific hyperparameters were tuned and the models were built
again, tested, and validated. The top model as determined by the same performance metrics was
ultimately selected.

6.7.1 Performance Metrics and Down-Selection of Models

Performance of a model relates to its prediction capability on independent test data. We can use
our given data set to mimic predictive performance on new data by sample splitting. We take our
data set with n observations and split it into two mutually exclusive, disjoint, and exhaustive
sets—a training set of size Ny, and a testing set of size N5 A 70%/30% split is often
recommended and seen as reasonable. [71] After creating this partition, we build the ten models
using only the training set and then evaluate its performance by how well is can predict the
observations in the test set. We refer to performance metrics calculated using the training set as
in-sample and metrics calculated on the test set as out-of-sample.

70%/30% Split

Testing
Set

Figure 25: Splitting the full data set into a training set and testing set
Mean Squared Error
The primary performance metric we look at is the Mean Squared Error (MSE). Suppose that
based only on our training set, we build a model and f (x) is the resulting prediction equation.

For each n;,g; individuals, we have response variables y; and predictor variables x; and can
generate predicted values ¥y, ..., ¥, .- [65] Out-of-sample MSE can, therefore, be defined as:

Ntest

1
MSE = E i — 9)*
est i=1

ng

Equation 37
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Looking at the MSE of all models across all operations, we can begin to see what models are
performing the best out of the ten. This metric ranges from 0 to oo with 0 being the best and is
indifferent to the direction of errors. The MSE of a semi-random 15 operation subset of test sets
is shown in Table 13. The subset is semi-random to ensure that operations related to machine-
driven operations, labor driven operations, testing operations, and troubleshooting/rework
operations were included. As expected, the two troubleshooting and rework operations have the
worst error by a long shot.

MSE Ridge Lasso EN SVM SGD CART RF GBT KNN ANN

0.001 | 0.001 0.001 0.001 0.001

0.019 0.013 0.016 0.015
0.054 0.040 0.049 0.044
0.454 0375 0.383
0.088 ~ 0.058 0.099 0.071
0.034 0.034 0.034
0235 0.179 0.225 0.196
0.708 0.432 0.443 0.369
0.581 0.514 0.482
4.654  3.095 3.501 3.417
5.408 3314 2.858 2910
4994 5.853

Operation 72 (.003
Operation 123 (.053
Operation 82 (.094
Operation47  (.614
Operation 108 = 0,213
Operation 31 0.036
Operation 40  (0.483
Operation 129  (.907
Operation 247 = 0.707
Operation 119 = 5721
Operation 141 = 4912
Operation 73 | 6.976
Operation 274  [E+02 2E+02 2E+02 CEaey 2E 02
Operation 190 4E+02 4E+02 4E+02 4E+02  4E+02

4E+01 4E+01 4E+01 S5E+01 1E+08 6E+01 4E+01 4E+01 4E+01 4E+01

Table 13: Mean squared error for ten models across a subset of operations

0.040  0.040

1.079 5.175

Mean Average Error

The biggest problem with MSE is that the errors are squared before averaged, resulting in large
errors having a high factor in the metric. This means that MSE is more useful when large errors
are specifically undesirable. Mean average error (MAE) on the other hand measures the average
magnitude of errors and is not subject to large errors holding more weight. As such, MAE is
another useful metric we consider when choosing our models. Like MSE, MAE also ranges from
0 to oo with 0 being the best and is indifferent to the direction of errors. [65] Out-of-same MAE
is defined as:

Ntest

1
MAE = E lyvi — ¥l
Ntest =

Equation 38

Again, we see the same four models performing the best. The MAE values of the same 15
operation subset are shown in Table 14.
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MAE Ridge Lasso EN SVM SGD CART RF GBT KNN ANN

Operation 72 0.019 0.008
Operation 123 0.077 0.027 0.034
Operation 82 0.181 0.092 0.084
Operation 47 0.413 0.126 0.143 0.195

Operation 108 = 0.274
Operation 31 0.103
Operation 40 0.369
Operation 129  0.517
Operation 247  (0.498
Operation 119 = (0.985

0.141

0.109 0.109 0.103

0.203  0.185

0.346 0.349

Operation 141 0.500 0.482 0.477
Operation 73 1.633 1.303 1.051
Operation 274 7.619 7.444
Operation 190 8.333 1E+01 9.377 9.393

1.851 2.124 2.098 1.440 S5E+02 1.556 1.353 1.420 1.382 1.423

Table 14: Mean average error for ten models across a subset of operations

After looking at both metrics, it was clear that four models were best at predicting the response
variable—Random Forest, Gradient Boosted Trees, K-Nearest Neighbor, and the Artificial
Neural Network. All of which are not very interpretable. CART and SVM were the two best
interpretable models; however, since our primary goal is predicting CT accurately, we do not
continue to tune and analyze these models.

6.7.2 Model Tuning and Final Selection

Now that four models appear to provide us the best prediction, we need to tune their
hyperparameters and use performance metrics to choose the best model. The parameters we are
interested in tuning are found in Table 15.

We will go about tuning these variables through cross-validation. The goal of cross-validation is
to test the model’s predictive ability to predict new data that were not used in estimating it in
order to prevent overfitting. The specific cross-validation method we use is k-fold cross-
validation. Like before, we first split the set into a training set and a test set. We then divide the
training set into k folds. For fold j, we use the other k — 1 folds to construct a model and test that
model on fold j. We repeat this for each of the k folds and for each value of a hyperparameter we
are considering. We then fit the predictive model to all of the training data with the optimally
tuned parameters and evaluate performance on the test set. Most commonly 5 or 10-fold cross-
validation is used. A visual depiction of this can be found in Figure 26.
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Hyperparameters Tuned

K-Nearest Neighbor

Artificial Neural Network

Number of neighbors
Uniform or inverse distance

Number of hidden layers
Activation function used in hidden layers
Number of nodes

Momentum

Decay

Batch Size

Number of iterations and threshold
Weight optimization
Regularization penalty

Learning rate for weight updates
Initial learning rate used

Random Forest

Number of trees

Max predictor variables per split
Max tree depth

Min samples per split

Min samples per leaf

Use bootstrapping or no
Regularization penalty

Gradient Boosted Trees

Learning rate of each new tree
Similar to Random Forest

Table 15: Hyperparameters we look into tuning for each of the top four models

l

fold j

H

Tuned Parameters J

|

fold j

l 70%/30% Split

Testing
Set

K-Fold Split

Cross
Validation

Figure 26: K-Fold Cross-Validation




K-Nearest Neighbor

We consider tuning only two parameters of our KNN model—the number of neighbors and the
weighting scale of nearby trees. Because it only involves two parameters, we can see the effect
of changing each through graphs as shown in Figure 27 and Figure 28.
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— Test MSE
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Figure 27: MSE as the number of nearest neighbors increases
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Figure 28: MSE according to weighting scale as the number of neighbors increases

From these graphs, it is shown that four neighbors appear to produce the lowest MSE and using
weighting factors of the inverse distance from each sample further reduces MSE. This is verified
through cross-validation. As a result of tuning, we were able to improve our MSE by 15.63% and

MSEpase—MSEtyuned % 100% and
MSEpgse

MAE by 23.13%, where we define improvement as

MAEpgse—MAEtyned * 100%
MAEpgse

Random Forest, Gradient Boosted Tree, Artificial Neural Network

With Random Forests needing seven parameters tuned, a graphical interpretation is not as useful.
Instead, we use a random search cross-validation technique followed by a full grid search cross-
validation. To perform the random search cross-validation technique, we first define a grid of
hyperparameter ranges, randomly sample combinations from the grid, and perform k-fold cross-
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validation with each combination. The randomization enables us to save hours of computing time
by not testing every single combination and the cross-validation reduces the chance of
overfitting. [72] [73] Once the set of best parameters is defined from the random search cross-
validation, we can then concentrate our final grid search cross-validation on a smaller set of
hyperparameters. As a result of tuning, we were able to improve our MSE by 17.6% at the cost
of reducing our MAE by 15.7%. MSE improved because it was the performance metric that was
optimized.
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(a) Standard Grid Search (b} Random Search

® = |ndividual model training and assessment

Figure 29: Standard grid search vs random search [73]

A similar approach to the tuning of the Random Forest hyperparameters was used for the GBT
and ANN. As a result of tuning, we were able to improve our MSE by 13.8% and MAE by 8.6%
for the GBT and 11.1% and 20.6% for the ANN.

6.7.3 Final Selection

After tuning the hyperparameters, the Random Forest model was shown to have the best overall
performance on average across operations when measured by MSE. Final overall performance
metrics across a random subset of the 326 operations with known demand in the next five years
are shown in Table 16. This test set included 273 of the 326 operations and all 41 key operations.

Method MSE MAE
RF 62.45 1.55
GBT 65.09 1.44
KNN 70.73 1.11
ANN 63.18 1.41

Table 16: Final overall performance metrics across operations with known demand for the top four models

Using this RF, we can now test our hypothesis that CT can be more accurately predicted via
supervised machine learning methods than the currently implemented method.
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CH. 7 RESULTS AND DISCUSSION

This chapter discusses the results which demonstrate the achieved predictive and optimization
performance of the capacity planning model. We begin this chapter by evaluating the three major
components of the strategic capacity planning optimization model—static capacity utilization
and OEE calculations, the machine learning model to predict CT, and the MINLP optimization
model. This is followed by the business impact of the final model before discussing its
limitations.

7.1 EVALUATION OF THE STRATEGIC CAPACITY PLANNING MODEL

This section evaluates each component of the strategic capacity planning optimization model
individually. First, results and features from the static capacity utilization and OEE model are
demonstrated. Next, results from the machine learning model are discussed and compared
against the currently used predictions. Lastly, the output results and sensitivity from the MINLP
optimization model are evaluated.

7.1.1 Static Capacity Utilization and OEE Model

As shown in 4.4 STATIC CAPACITY UTILIZATION AND OEE RESULTS, we have
successfully been able to graphically represent capacity utilization through automated data
mining algorithms. By taking confirmed demand, projected demand, and the current production
plan to meet both, we can add manufacturing metrics from transactional and IIoT data to
calculate current capacity utilization. Two screenshots from the model are shown in Figure 30
and Figure 31. Each shows an operation’s capacity utilization and OEE as it stood when the
model was opened.
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Figure 30: Screenshot of capacity utilization
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OPERATION XYZ OEE
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Figure 31: Screenshot of capacity utilization and OEE model for Operation XYZ

Other features of the model can also be enabled to get more information or a clearer picture. For
example, Figure 32 breaks down confirmed demand and predicted demand on the same operation
as Figure 31. This can be used to assess what is primarily driving capacity utilization in a given
month.
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Figure 32: Screenshot of capacity utilization with breakdown of confirmed demand and

predicted demand
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On the other hand, Figure 33 shows an overview of OEE across selected factory operations that
can be used by factory managers to compare operations.

Overview of OEE - Factory Operations

Operation
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Figure 33: Screenshot of an overview of OEE across selected factory operations

While we were unable to verify our OEE metrics against any current company metrics, we were
able to verify our capacity utilization model. More specifically, we were able to compare our
capacity utilization model against the most recent manual capacity modeling effort. When
similar assumptions are made for the number of machines, first pass yield, availability, and the
number of shifts, both models yield similar results and we are statistically unable to differentiate
them.

7.1.2 Machine Learning Model to Predict CT

After completing our machine learning framework as described in 6.5 MACHINE LEARNING
FRAMEWORK OVERVIEW, we found that a random forest model provided us with the best
predictions, on average, when measured by MSE, which checks with previous research as
discussed in 3.2 MACHINE LEARNING FOR CYCLE TIME PREDICTION. In order to test
our hypothesis that CT can be more accurately predicted via supervised machine learning
methods than the currently implemented method, we must compare the predictive power of both.

Using the same test set data that looks across a random subset of 326 operations with demand in
the next five years, we can find how accurate our model is compared to the company’s currently
employed static predictions. As seen in Table 17, the overall average MAE is 76.3% lower for
the RF models and the overall average MSE is 80% lower for the RF models, showing the
predictive power of using the RF predictions over the current prediction. In Figure 34, we can
more easily see that the RF models have less error than the current static predictions across our
test set. The error associated with all 273 operations of the test set can be found in APPENDIX:
RANDOM FOREST MODEL PERFORMANCE AND SENSITIVITY.



Random Forest

Currently Used Predictions

MSE MAE MSE MAE
Operation 1~ 0.671434457 0.271687557 46.33640098 3.979033876
Operation 2 0.424853893 0.270926202 12.21947414 2.497983742
Operation3  13.47601789 1.68818025 89.31287805 6.011059015
Operation4  0.574243785 0.23300326 79.21263658 7.313318589
Operation 5 0.030928201 0.017076563 6.128977374 2.35767552
Operation 269  16.07593397 0.787887034 173.1794712 6.512791979
Operation 270  4.554396031 0.811519624 12.58125257 1.715680081
Operation 271  2.635523458 1.081666921 7.303275674 1.652077124
Operation 272 25.57065526 1.820699159 486.9145805 16.27615539
Operation 273 0.87211642 0.699639208 0.801467026 0.732636753

Overall Average 62.45 1.55 314.17 6.54

Table 17: Random Forest vs Current Prediction Error Metrics

Difference in MAE

Difference in MSE

Il rRF MAE [ Current MAE M rRF MSE [ Current MSE

Figure 34: A graphical depiction of the difference between the new RF and Current Prediction Errors

Since we were deliberate about eliminating some features and selecting relevant features to
include in the model in 6.3 FEATURE SELECTION, it would follow that the features that ended
up in the model were useful for prediction. Ultimately, this process should have led to better
performance on the test set by avoiding overfitting. In this section, we remove a few features we
hypothesized to be important and compare the average error of the new model without a specific
feature to the full model.

The three features we chose to remove, one at a time, were Date Info such as day of the week,
Queue Data such as length of queue, and Historical CT Info which provided the most recent
processing time, queue time, and cycle time. We chose these features due to having the highest
feature importance as described in 6.3 FEATURE SELECTION. As expected, the MAE and the
MSE increased when these features were removed as shown in Figure 35 and Figure 36. We can
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also see that the Queue Data and Historical CT Info, which had the highest feature importance,
caused the largest increase in model error when removed.
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Figure 36: Comparison of model MAE after removing specific features

90



7.1.3 MINLP Optimization Model

Following a similar approach to solving as described in 2.5 STRATEGIC CAPACITY
PLANNING but using the model defined in 5.5 MIXED-INTEGER NONLINEAR
OPTIMIZATION, we can solve for key management decisions with respect to strategic capacity
planning. While the MINLP takes many hours to solve, it can be solved to optimality within a
tolerance of 1.00e-04. The total cost of production, machines, and workforce as defined in the
objective function is minimized. From this minimization and the constraints placed on the model,
eight operations required additional machines/workstations, production had to be shifted, and
operational inventory had to be used.

Evaluating Model Output

In the final model solved, we narrowed the operations to the 41 key operations as discussed in
5.5 MIXED-INTEGER NONLINEAR OPTIMIZATION. To further reduce the size of the
model, we also decided to set OEE metrics to their original values, making the assumption that
they will remain constant over the next five years. Lastly, we assumed that the length of shifts
(Is) would remain constant. Under these assumptions, our model outputs ten pieces of valuable
information: sh,;, wd,t, Myt, bot, Wfper Rots for» PTiots iNior, and the Objective Value. In other
words, the model outputs how many shifts and workdays an operation should have, how many
machines/workstations we need to add and when, how many people we should hire or fire and
when, how much of each item we should make and when, how much of each item we should
make ahead of time and hold in inventory and when, and an estimate of how much all of these
decisions will cost us.

In Figure 37, one can see a visible depiction of the model’s output over the 60-month time period
analyzed. At the top, the original CU as it stands today is shown. Note that the CU goes over
200% on multiple occasions. Below the original CU is the optimized CU. Due to the constraints
of the model, CU never surpasses 100%. Finally, below the CU graphs, decisions required to be
made to make the optimized CU a reality are shown. From Figure 37, one can see that there are
five primary management decisions required to obtain the optimal strategic capacity plan for this
single operation.
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Figure 37: Visual depiction of optimization model results for a single operation

The five management decisions required are:

Increase number of shifts and required workforce to fill those shifts as soon as possible.
Add a second machine and increase workforce to operate the new machine by month 5.
Begin holding inventory for anticipated demand jump after month 39.

Add a third machine and increase workforce to operate the new machine by month 39.
Relatively flatten production over time by following newly optimized production plan.

M

Some other management decisions that do not come from the model, but should be thought
about:

1. Be extra cautious during months when capacity utilization is at 100%. Consider
increasing workforce or performance metrics at operation, which is currently 90.88%. If
uncomfortable with 100% utilization, consider the tradeoff to further constrain CU.

2. If another machine is needed by month 39, how long does it take to acquire, install, and
test the machine before production can begin on it? If it takes three months, then the
process should begin by month 36 at the latest.

92



3. With CU dipping for a few months before increasing again, can we better utilize our
workers or shift their operation without laying them off? Our current model has a very
high cost associated with firing so the model does not suggest it, but it remains an option.

While the model provides an optimal baseline for strategic capacity planning, there are many
more decisions that are needed to make the optimal baseline a reality. The model does not have
the functionality to make all of them and has multiple limitations. These limitations are discussed
further in 7.3 MODEL LIMITATIONS.

Evaluating Model Sensitivity

If integer constraints are relaxed, we see a ~9% decrease in the objective function and a ~4%
decrease in the number of machines/workstations needed. We also see that the time to solve it
reduced by almost 98%. If the company instead chooses to maintain its current production
schedule and increase capacity by only adding machines/workstations, then the objective
function increases by 376% as shown in Table 18. Again, this model is much faster to solve than
the base model, but it requires much more capital to meet demand.

MINLP (base) Relaxed - NLP MINLP (in=0)

Total Cost 0% -8.89% 376.38%
# Machines/Workstations 0% -4.41% 78.19%

Total Inventory Held 0% -0.70% -100.00%
Time to Solve Model 0% -97.51% -90.39%

Table 18: Percent change in cost, machines, inventory and time across various models

Table 18 displays some interesting results. The first is that shifting production has a huge cost
savings benefit. The second is that removing the integer constraints does not change the optimal
solution by much; however, it does solve in a much faster time, relatively.

Our original model constrained capacity utilization to be less than or equal to 100%; however, it
may be in the company’s best interest to restrict this to a different value to account for variability
in demand. Table 19 shows the percent changes in cost, number of machines/workstations
required, inventory level, and time to solve as CU is restricted to different levels.

Max CU Allowed
100% 95% 90% 85% 80%
Total Cost 0.00% 13.72% 24.03% 41.18% 48.08%
# Machines/Workstations 0.00% 6.50% 11.49% 19.93% 23.52%
Total Inventory Held 0.00% -4.92%  420% 4.29% 16.84%
Time to Solve Model 0.00% -11.52% 95.88% -32.38% -36.57%

Table 19: Percent change of select decision variables as capacity utilization constraint is varied

As expected, total cost and the number of machines/workstations required went up as CU was
further restricted. Total inventory also went up when CU was restricted to 90%, 85%, and 80%,
but went down when restricted to 95%. We believe this initial reduction is due to the original
added flexibility from the additional machines/workstations. Time to solve the model also
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generally went down as more resources and inventory were added; however, it went up when CU
was restricted to 90%.

While we made the decision to assume OEE metrics would maintain their original values and not
improve or deteriorate, we can look at how our model outputs would change if OEE did change.
As expected, in Table 20 we see that cost and number of machines/workstations are reduced
when OEE metrics improve and increased when OEE metrics deteriorate. For example, if we can
achieve a 5% improvement in OEE across all key operations, we would be able to lower the cost
by 13.73% and the number of machines/workstations required by 7.13%. The management
questions are then: 1) Is it worth investing capital to improve OEE by 5%? and 2) Is a 5%
improvement possible? This changes depending on where OEE originally sits. It’s much easier to
achieve a 5% improvement when OEE is at 50% than when OEE is at 85%.

Change in OEE Metrics
-10% 5% Base +5% +10%
Total Cost 44.56% 20.57% 0.00%  -13.73% -34.29%
# Machines/Workstations 21.98% 9.95% 0.00% -7.13% -17.14%
Total Inventory Held 6.04% 2.39% 0.00% -16.20% -10.90%
Time to Solve Model 5.64% -71.78%  0.00% 11.56% -51.66%

Table 20: Percent change of select decision variables as OEE metrics are changed

7.2 BUSINESS IMPACT

The benefits of automating capacity and OEE modeling, more accurately predicting CT, and
optimizing strategic capacity utilization mostly come from the enhanced visibility into the
company’s operations; however, we can financially estimate some of these benefits to
demonstrate the potential business impact of the models. The performance results of the models
with several assumptions will be used to estimate business impact.

While the actual savings of the models require proprietary knowledge of the company’s cost
structure and financial positions, we can get an estimate through public information and
assumptions. If we assume that only 1% of the total 2018 capital expenditures (CAPEX) for IDS
is used to increase capacity of the CCA factory by increasing the number of machines, we can
use the percentage change of cost to assess the savings. From Table 18, we know that it requires
376% more in capital to increase capacity utilization by increasing machines only. With 1% of
2018 CAPEX equaling $2.42M, we can expect this model to annually save the company an
estimated $1.78M. [74] We consider this the maximum expected savings since the company does
not only increase capacity by increasing the number of machines.

Since the capacity utilization model is automated, it enables us to reassign a portion of the team
of engineers working on capacity utilization to work on something different. It cannot reduce the
entire team due to monitoring and maintenance; however, we can conservatively assume that this
model can reduce the number of engineers by two. If these engineers both had $100k salaries, the
model saves the company $1.94M in perpetuity, assuming a 10.29% discount rate. [75]
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Altogether, the implementations of all three individual model components provide the
opportunity to automatically monitor capacity utilization and OEE across the factory, predict CT
of lots more accurately, and strategically optimize capacity planning. Under numerous
assumptions, the potential business impact for Raytheon is $1.98M or .0384% of the IDS
operating cost per year. [74] Nevertheless, there are additional long term and secondary benefits
of the model that are even harder to estimate. Savings from the model’s ability to provide more
accurate CTs for planning purposes, pinpoint operational inefficiencies through OEE metrics,
and other secondary uses were not included in the estimation.

7.3 MODEL LIMITATIONS

As with all models, our model comes with multiple limitations that must be known to be able to
make informed decisions relating to strategic capacity planning. In this section, we discuss some
of these limitations. We begin with limitations on the input side of the model and end with
limitations on the output side of the model.

7.3.1 Input Limitations

A commonly thrown around phrase when discussing models is “garbage in, garbage out.” Bad
data can severely limit the ability of a model. While all data is susceptible to errors, the
transactional data in our model is especially susceptible. An operator can log into a lot and forget
to sign out, artificially inflating production metrics associated with that lot, or an engineer can
put a lot on hold without properly documenting the reason, hiding the fact that the lot is expected
to behave differently. Even though our model does some outlier filtering, many of these errors
will inevitably hinder the accuracy of our model.

Our model also relies on automated data mining of currently available databases. Therefore, it is
limited by the continued availability of these data. If these data are not continuously updated and
maintained, then the model will lose its functionality. Furthermore, if the database structure or
location is changed then the model will also lose its functionality.

We also make many assumptions throughout our model. One of the biggest assumptions we
make is that predicted demand retrieved from Kinaxis is accurate. While we know this is not
true, it is the only data available for long term capacity planning. Understanding that demand is
variable and will most likely not equal this prediction must be acknowledged.

7.3.2 Output Limitations

In regards to the random forest model used to predict CT, we chose a model based on prediction
ability, deliberately putting interpretability as a secondary priority. Although this gave us a lower
predictive error, losing interpretability does limit our ability to pinpoint why a CT is higher or

lower for a given lot/item.

In regards to the optimization model, we were required to significantly reduce the operations our
model optimized for due to the limited computing power we have, the complexity of the factory,
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and the nonlinear aspect of the model. Furthermore, while the optimization model outputs
planning decisions such as when a machine needs to be added, it does not incorporate the time
required to acquire, install, and test the machine before production. Similarly, it also does not
incorporate the training time required for new employees or the ability of one employee to work
at multiple operations.
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CH. 8§ CONCLUSION AND RECOMMENDATIONS

“All models are approximations. Assumptions, whether implied or clearly stated, are never exactly
true. All models are wrong, but some models are useful. So the question you need to ask is not ‘Is the
model true?’ (it never is) but ‘Is the model good enough for this particular application?’”

—George Box et al. [76]

The optimization model developed in this thesis combines the capability of automated data
mining algorithms, the predictive power of machine learning, and the optimization ability of
mathematical programming for strategic capacity planning. This chapter provides an overview of
the principal findings, recommendations for implementation, as well as suggested areas for
future work and applications.

8.1 SUMMARY OF FINDINGS AND CONTRIBUTIONS

We developed a capacity visualization tool that mines millions of pieces of demand and
historical manufacturing data from current sources to calculate capacity utilization under the
current production plan and OEE for operations in the CCA factory. In order to calculate
capacity utilization, we first calculated capacity available and capacity required. In order to
calculate OEE, we first calculated its three parts—Availability, Performance, and Quality. Using
SQL queries embedded in scheduled, executable Python scripts, we automated the retrieval of
required data and these calculations. By enabling all of this automation to happen in the
background without the need for user action and using a commonly known interface such as
Tableau, we were able to lower the learning curve and assist in the adoption of the tool. We
demonstrate the visual output of this model in 4.4 STATIC CAPACITY UTILIZATION AND
OEE RESULTS and 7.1 EVALUATION OF THE STRATEGIC CAPACITY PLANNING
MODEL.

We also developed 326 machine learning models to predict the cycle time of items moving
through each operation in the CCA factory that has expected demand in the next five years.
Transactional and automated manufacturing data along with material and component data were
ingested to generate features to be used for prediction such as queue length and historical CT,
which we demonstrate to enable a 6.57% and 18.29% decrease in MSE, respectively. Given the
large number of features available to be incorporated into the models, we chose to use feature
selection before training our models and evaluating them against test data. The best model type,
on average, was found to be a random forest. Across the randomized 273 operations used in the
test set, it was found to have an MSE of 62.45 and MAE of 1.55, on average. Both metrics
outperform the current predicted CT when evaluated on the same test set. The overall average
MAE is 76.3% lower and the overall average MSE is 80% lower. Therefore, we conclude that
CT can be more accurately predicted via supervised machine learning methods than the currently
implemented method. More on these results can be found in 6.7 MODEL BUILDING,
TRAINING, AND TESTING and 7.1 EVALUATION OF THE STRATEGIC CAPACITY
PLANNING MODEL.

Lastly, we developed an optimization model that integrates the capacity utilization and machine
learning models in its constraints to provide us with recommended decisions for resource and
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demand planning. At first, we started with a simple LP model and added constraints to match key
decisions Raytheon needs for capacity planning. Our final model became a MINLP with
appropriate constraints and an objective function that minimized costs associated with
production, inventory, workforce, and machine/workstation planning. After solving the model to
optimality, we obtained recommended decisions for resource and demand planning to minimize
the overall cost associated with strategic capacity planning. Across the 41 key operations defined
by subject matter experts, we found that eight of them required an increase in resources when we
also enable production planning and inventory. We demonstrated that not allowing production
and inventory optimization increased cost by 376.38% and the number of resources by 78.19%.
We also demonstrated that improving OEE metrics by 5% reduced cost by 13.73% and the
number of resources by 7.13%. More on these results can be found in 7.1 EVALUATION OF
THE STRATEGIC CAPACITY PLANNING MODEL.

The results obtained confirm that models developed enable identification of capacity utilization
across operations in the factory and provide recommendations on the sequence and the timing of
machine purchases and workforce adjustments for strategic capacity planning. We can then
design systems to monitor and improve operations over time, more accurately assess demand due
dates and schedule resources, and make better capacity planning decisions involving trade-offs
between finance, output, and risk. Under several assumptions, the potential business impact is
$1.98M as estimated in 7.2 BUSINESS IMPACT.

8.2 RECOMMENDATIONS FOR IMPLEMENTATION

The models built enable Raytheon to make better decisions when planning factory capacity in the
long term and get a clearer picture of operational health in the short term; however, they are
required to be properly implemented and scaled to have a sustainable effect on the company.
Even if a model or tool is capable of greatly benefiting the company, poor implementation can
result in these benefits not being realized. This section analyzes the organization through a
strategic lens, political lens, and cultural lens to better understand how to enable a more
successful implementation effort. It then summarizes the findings.

8.2.1 Three Lens Analysis for Implementation

Strategic Lens: The structure of Raytheon is complex as the company has different aspects of
divisional and functional structuring. The overall company is divisionally structured with four
primary business units as discussed in 2.2 RAYTHEON COMPANY OVERVIEW. These
business units operate relatively independently with different presidents. Within these business
units, the structure becomes very functional and hierarchical. The main functional areas are sales,
operations, engineering, supply chain, and finance. While the modernization and innovation
group works across functional areas within IDS, the business unit is siloed overall with
communication primarily occurring through formal meetings in conference rooms.

One thing that is not siloed and aligns the business unit, however, is the financial incentive. Each
employee receives a percentage of her/his base pay as an annual bonus. This percentage is
directly tied to how well the business unit did in each measurement of bookings, net sales,
operating income, and free cash flow goals. Due to the siloing of functional areas and the
incentive structure, rolling out a new model will need to be done to each area individually with
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specifics of how this will move the needle on the most relevant measurement to that area. How
the models are described to employees in each area greatly influences its adoption rate.
Describing what is in it for them and how it will help solve their pain points will increase the
adoption rate.

Political Lens: Raytheon is very traditional with power coming primarily from formal positions.
The hierarchical organization provides a good guide to the vertical power system. Those at the
top have the power of processes such as resource allocation, information flows, employee
performance evaluation, task assignment, etc. Those in management positions also have
additional financial incentives aligned to their specific areas, tying the political and strategic lens
together. These key influencers that can greatly benefit from a capacity model and also have the
ability to influence the people that work with them are vital for successful model
implementation. By persuading them to adopt the new model, they can catalyze the promulgation
and sustainment of it. Furthermore, while employees naturally resist change, some are less
resistant than others. Identifying and giving these more innovative employees access to the
models first will enable them to learn and teach other employees.

Cultural Lens: Depending on where a person goes in Raytheon, he/she may find himself/herself
overdressed or underdressed. In the finance and sales area, slacks are generally worn. On the
other side of the site, where manufacturing occurs, jeans are often the staple outfit. These vastly
different work environments lead to various subcultures within a single site. One thing that spans
all areas, however, is the belief that each employee is helping our nation’s military and making
the world a safer place. Due to this cultural environment, the implementation of a new model
needs to be communicated slightly differently depending on the subcultural norms of the area.
For all areas, however, sharing how the model will make the world a safer place will go a long
way.

8.2.2 Implementation Summary

Based on the above three-lens-analysis, three key actions need to be completed to effectively
implement and sustain a new model. From the strategic lens analysis, one needs to roll out the
model in each area of Raytheon individually and explain how their incentives align with the
success of model implementation. From the political lens analysis, one needs to get support from
key influencers to promulgate it. Lastly, from the cultural analysis, one needs to communicate
effectively based on each subculture.

Sustainable implementation also requires action to overcome some limitations of the model in its
current state. For example, the current data sources need to continue to be updated and
maintained in their current structure. Operators also need to be trained on how important it is that
they log accurate information. Additionally, adding more automated data collection systems to
key operations would enable more accurate analyses. Finally, adopting any new model and tool
can have a significant impact on how some employees work, so their opinions matter. While the
tool was developed in Tableau, a currently used user interface, having users provide feedback
and continuously adapting the tool to their feedback and needs will make employees more
motivated and engaged with the tool.
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8.3 FUTURE RESEARCH AND APPLICATIONS

We were successful in combing data mining algorithms, machine learning methods, and
optimization models; however, there are multiple actions that can be done to better apply our
models and several assumptions and simplifications that can be challenged in order to develop
better models.

In order to better apply the developed models, the following actions are proposed. First, the
models and scripts should be moved from a local machine to a server with better computing
power. Second, generated feature data should be stored on a central database so that calculations
are not required each time the model is opened. Third, automated scheduled runs of the model to
not interfere with current work should be created. These runs should include retraining the
machine learning models with new data to maintain accuracy over time. The recommended
interval for updating the capacity visualization data is daily so that it can be used to monitor
factory health, while it is recommended that the machine learning and optimization models be
updated monthly to be used in S&OP meetings. Fourth, the optimization model currently uses
Julia/Jump, which is not commonly used at Raytheon. Adapting the code to Python could help
with maintenance and sustainability of the model. Finally, a better front end with an easy-to-use
graphical user interface (GUI) should be added to enable better use of the models.

In order to advance the developed models, the following work is proposed. First, we recommend
either linearizing the optimization model or using an advanced computer to solve for all 326
operations with known demand in the next five years. While we only optimized for 41 key
operations, there is a possibility that the factory becomes capacity limited by an operation that
was not classified as a key operation. Second, we assumed that predicted demand was correct
and did not perform simulations to test for certain demand variability. We recommend running
the models through variability testing. Third, we decided to choose only one final machine
learning method for CT prediction across all operations for simplicity purposes. Nevertheless,
some operations perform better with other machine learning methods. It is conceivable to choose
a different machine learning method for each operation so that error is minimized even further.
Fourth, we assumed that the nonlinearity was necessary to gain sufficient capacity planning
knowledge; however, if fewer decision variables are desired, the model can be converted to
linear and thus would solve much faster. We also implemented an integer constraint to make the
model more realistic; however, we demonstrated that the relaxed model solves much faster and
does not greatly affect the results. Finally, due to the model's ability to update itself when a new
operation or item is created, we believe that this same model could be deployed to areas outside
of the CCA factory.
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APPENDIX: RANDOM FOREST MODEL PERFORMANCE AND SENSITIVITY

Operation | Features Measure Error Operation | Features Measure Error
1 All MSE 0.6714 137 All MAE 0.0685
1 No Queue MSE 0.9277 137 No Queue MAE 0.0867
1 No Date MSE 0.6890 137 No Date MAE 0.0668
1 No Historical CT MSE 1.4761 137 No Historical CT MAE 0.0597
1 All MAE 0.2717 138 All MSE 0.1809
1 No Queue MAE 0.3225 138 No Queue MSE 0.2093
1 No Date MAE 0.3118 138 No Date MSE 0.1869
1 No Historical CT MAE 0.5448 138 No Historical CT MSE 0.1356
2 All MSE 0.4249 138 All MAE 0.1743
2 No Queue MSE 0.4698 138 No Queue MAE 0.1890
2 No Date MSE 0.5019 138 No Date MAE 0.1725
2 No Historical CT MSE 0.1575 138 No Historical CT MAE 0.0923
2 All MAE 0.2709 139 All MSE 2.0701
2 No Queue MAE 0.3014 139 No Queue MSE 1.9285
2 No Date MAE 0.3199 139 No Date MSE 2.1940
2 No Historical CT MAE 0.1785 139 No Historical CT MSE 1.1231
3 All MSE 13.4760 139 All MAE 0.9748
3 No Queue MSE 14.5674 139 No Queue MAE 0.9708
3 No Date MSE 15.6623 139 No Date MAE 1.0205
3 No Historical CT MSE 9.7668 139 No Historical CT MAE 0.5783
3 All MAE 1.6882 140 All MSE 4.3990
3 No Queue MAE 1.8302 140 No Queue MSE 4.5802
3 No Date MAE 1.9512 140 No Date MSE 4.7012
3 No Historical CT MAE 0.9925 140 No Historical CT MSE 1.8235
4 All MSE 0.5742 140 All MAE 1.0633
4 No Queue MSE 0.5991 140 No Queue MAE 1.0893
4 No Date MSE 0.6998 140 No Date MAE 1.2633
4 No Historical CT MSE 0.4146 140 No Historical CT MAE 0.4810
4 All MAE 0.2330 141 All MSE 3.3143
4 No Queue MAE 0.2443 141 No Queue MSE 3.9953
4 No Date MAE 0.2891 141 No Date MSE 3.1904
4 No Historical CT MAE 0.2641 141 No Historical CT MSE 4.1976
5 All MSE 0.0309 141 All MAE 0.4821
5 No Queue MSE 0.0361 141 No Queue MAE 0.5395
5 No Date MSE 0.0314 141 No Date MAE 0.5255
5 No Historical CT MSE 0.0000 141 No Historical CT MAE 0.4794
5 All MAE 0.0171 142 All MSE 2.8764
5 No Queue MAE 0.0263 142 No Queue MSE 2.9848
5 No Date MAE 0.0182 142 No Date MSE 3.4647
5 No Historical CT MAE 0.0009 142 No Historical CT MSE 4.9499
6 All MSE 26.7741 142 All MAE 0.3348
6 No Queue MSE 31.8666 142 No Queue MAE 0.3869
6 No Date MSE 27.4122 142 No Date MAE 0.3900
6 No Historical CT MSE 42.7731 142 No Historical CT MAE 0.6424
6 All MAE 1.0126 143 All MSE 0.0110
6 No Queue MAE 1.1499 143 No Queue MSE 0.0115
6 No Date MAE 1.0920 143 No Date MSE 0.0244
6 No Historical CT MAE 1.4644 143 No Historical CT MSE 0.0816
7 All MSE 1.1659 143 All MAE 0.0403
7 No Queue MSE 1.2103 143 No Queue MAE 0.0430
7 No Date MSE 1.4262 143 No Date MAE 0.0639
7 No Historical CT MSE 0.2614 143 No Historical CT MAE 0.1704
7 All MAE 0.3948 144 All MSE 3.0404
7 No Queue MAE 0.4311 144 No Queue MSE 4.1853
7 No Date MAE 0.4642 144 No Date MSE 3.0780
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7 No Historical CT MAE 0.1358 144 No Historical CT MSE 3.8520
8 All MSE 8.2116 144 All MAE 1.2367
8 No Queue MSE 9.1153 144 No Queue MAE 1.3208
8 No Date MSE 10.4395 144 No Date MAE 1.1221
8 No Historical CT MSE 3.8442 144 No Historical CT MAE 1.1299
8 All MAE 1.3402 145 All MSE 0.5127
8 No Queue MAE 1.4504 145 No Queue MSE 0.5617
8 No Date MAE 1.5667 145 No Date MSE 0.5375
8 No Historical CT MAE 0.8843 145 No Historical CT MSE 0.3260
9 All MSE 9.8336 145 All MAE 0.2869
9 No Queue MSE 10.3202 145 No Queue MAE 0.3074
9 No Date MSE 11.6741 145 No Date MAE 0.3027
9 No Historical CT MSE 6.4625 145 No Historical CT MAE 0.2319
9 All MAE 1.1317 146 All MSE 0.0035
9 No Queue MAE 1.1977 146 No Queue MSE 0.0047
9 No Date MAE 1.2973 146 No Date MSE 0.0083
9 No Historical CT MAE 0.7014 146 No Historical CT MSE 0.0030
10 All MSE 6.8617 146 All MAE 0.0303
10 No Queue MSE 7.1351 146 No Queue MAE 0.0365
10 No Date MSE 6.9810 146 No Date MAE 0.0425
10 No Historical CT MSE 3.3937 146 No Historical CT MAE 0.0255
10 All MAE 0.7801 147 All MSE 222.9491
10 No Queue MAE 0.8439 147 No Queue MSE 238.5030
10 No Date MAE 0.8274 147 No Date MSE 207.5432
10 No Historical CT MAE 0.4481 147 No Historical CT MSE 120.3129
11 All MSE 918.2197 147 All MAE 8.5960
11 No Queue MSE 900.1747 147 No Queue MAE 9.0893
11 No Date MSE 916.3198 147 No Date MAE 8.3879
11 No Historical CT MSE 925.6870 147 No Historical CT MAE 6.7459
11 All MAE 11.2260 148 All MSE 262.5254
11 No Queue MAE 11.2056 148 No Queue MSE 401.7564
11 No Date MAE 11.2448 148 No Date MSE 176.6970
11 No Historical CT MAE 11.1966 148 No Historical CT MSE 318.7019
12 All MSE 0.5874 148 All MAE 8.5594
12 No Queue MSE 0.6254 148 No Queue MAE 9.8476
12 No Date MSE 0.6791 148 No Date MAE 7.4793
12 No Historical CT MSE 0.1879 148 No Historical CT MAE 10.0666
12 All MAE 0.4287 149 All MSE 81.5103
12 No Queue MAE 0.4508 149 No Queue MSE 83.2159
12 No Date MAE 0.4728 149 No Date MSE 71.1825
12 No Historical CT MAE 0.1975 149 No Historical CT MSE 117.2469
13 All MSE 1.0937 149 All MAE 4.3778
13 No Queue MSE 1.2029 149 No Queue MAE 4.6551
13 No Date MSE 1.4653 149 No Date MAE 4.2466
13 No Historical CT MSE 0.5328 149 No Historical CT MAE 6.1519
13 All MAE 0.2293 150 All MSE 30.0709
13 No Queue MAE 0.2517 150 No Queue MSE 33.2637
13 No Date MAE 0.2917 150 No Date MSE 27.1213
13 No Historical CT MAE 0.2039 150 No Historical CT MSE 23.4896
14 All MSE 0.9942 150 All MAE 1.9774
14 No Queue MSE 1.1671 150 No Queue MAE 2.1448
14 No Date MSE 1.1687 150 No Date MAE 1.7598
14 No Historical CT MSE 1.1480 150 No Historical CT MAE 1.9636
14 All MAE 0.2598 151 All MSE 1.8537
14 No Queue MAE 0.2878 151 No Queue MSE 2.1653
14 No Date MAE 0.3127 151 No Date MSE 3.9571
14 No Historical CT MAE 0.2749 151 No Historical CT MSE 0.4105
15 All MSE 15.6080 151 All MAE 0.5514
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15 No Queue MSE 17.2733 151 No Queue MAE 0.5920
15 No Date MSE 16.1871 151 No Date MAE 0.9033
15 No Historical CT MSE 15.3777 151 No Historical CT MAE 0.2244
15 All MAE 0.9926 152 All MSE 2.5980
15 No Queue MAE 1.1245 152 No Queue MSE 1.4918
15 No Date MAE 1.0568 152 No Date MSE 6.0036
15 No Historical CT MAE 1.0793 152 No Historical CT MSE 0.8520
16 All MSE 1.1979 152 All MAE 0.9966
16 No Queue MSE 1.2114 152 No Queue MAE 0.7925
16 No Date MSE 1.1817 152 No Date MAE 1.6829
16 No Historical CT MSE 1.0569 152 No Historical CT MAE 0.5114
16 All MAE 0.1298 153 All MSE 11.9988
16 No Queue MAE 0.1321 153 No Queue MSE 10.9650
16 No Date MAE 0.1295 153 No Date MSE 15.0204
16 No Historical CT MAE 0.1409 153 No Historical CT MSE 11.9468
17 All MSE 14.9939 153 All MAE 2.5650
17 No Queue MSE 16.9171 153 No Queue MAE 2.3715
17 No Date MSE 15.0085 153 No Date MAE 2.8026
17 No Historical CT MSE 9.2439 153 No Historical CT MAE 2.4645
17 All MAE 1.0803 154 All MSE 0.0240
17 No Queue MAE 1.1895 154 No Queue MSE 6.2928
17 No Date MAE 1.1848 154 No Date MSE 0.0001
17 No Historical CT MAE 1.0093 154 No Historical CT MSE 0.0001
18 All MSE 5.5072 154 All MAE 0.1314
18 No Queue MSE 6.0310 154 No Queue MAE 2.2040
18 No Date MSE 5.8019 154 No Date MAE 0.0045
18 No Historical CT MSE 6.5295 154 No Historical CT MAE 0.0044
18 All MAE 0.6635 155 All MSE 51.9418
18 No Queue MAE 0.7302 155 No Queue MSE 101.5463
18 No Date MAE 0.6962 155 No Date MSE 115.4980
18 No Historical CT MAE 0.7312 155 No Historical CT MSE 13.1945
19 All MSE 0.0000 155 All MAE 6.9315
19 No Queue MSE 0.0000 155 No Queue MAE 9.2197
19 No Date MSE 0.0000 155 No Date MAE 9.2563
19 No Historical CT MSE 0.0000 155 No Historical CT MAE 3.5538
19 All MAE 0.0013 156 All MSE 1.8679
19 No Queue MAE 0.0013 156 No Queue MSE 2.1031
19 No Date MAE 0.0014 156 No Date MSE 2.3660
19 No Historical CT MAE 0.0006 156 No Historical CT MSE 1.0696
20 All MSE 0.8240 156 All MAE 0.2365
20 No Queue MSE 0.9296 156 No Queue MAE 0.3007
20 No Date MSE 0.8144 156 No Date MAE 0.3097
20 No Historical CT MSE 0.8469 156 No Historical CT MAE 0.1349
20 All MAE 0.2607 157 All MSE 91.9342
20 No Queue MAE 0.2805 157 No Queue MSE 100.3348
20 No Date MAE 0.2751 157 No Date MSE 97.2003
20 No Historical CT MAE 0.2455 157 No Historical CT MSE 117.4143
21 All MSE 0.0009 157 All MAE 3.4345
21 No Queue MSE 0.0009 157 No Queue MAE 3.8605
21 No Date MSE 0.0010 157 No Date MAE 3.7432
21 No Historical CT MSE 0.0006 157 No Historical CT MAE 4.0879
21 All MAE 0.0052 158 All MSE 49.5430
21 No Queue MAE 0.0055 158 No Queue MSE 61.0658
21 No Date MAE 0.0053 158 No Date MSE 53.3498
21 No Historical CT MAE 0.0079 158 No Historical CT MSE 79.4780
22 All MSE 0.3846 158 All MAE 1.6996
22 No Queue MSE 0.3868 158 No Queue MAE 1.9763
22 No Date MSE 0.4474 158 No Date MAE 1.8690
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22 No Historical CT MSE 0.0829 158 No Historical CT MAE 2.2727
22 All MAE 0.1639 159 All MSE 663.2981
22 No Queue MAE 0.1786 159 No Queue MSE 665.0149
22 No Date MAE 0.1877 159 No Date MSE 660.4867
22 No Historical CT MAE 0.1253 159 No Historical CT MSE 2667.1240
23 All MSE 0.1730 159 All MAE 5.8300
23 No Queue MSE 0.1838 159 No Queue MAE 6.0257
23 No Date MSE 0.2131 159 No Date MAE 5.4867
23 No Historical CT MSE 0.0204 159 No Historical CT MAE 37.5798
23 All MAE 0.2082 160 All MSE 0.3017
23 No Queue MAE 0.2175 160 No Queue MSE 0.3234
23 No Date MAE 0.2890 160 No Date MSE 0.3401
23 No Historical CT MAE 0.0875 160 No Historical CT MSE 0.2250
24 All MSE 0.7490 160 All MAE 0.2032
24 No Queue MSE 0.8291 160 No Queue MAE 0.2265
24 No Date MSE 0.8888 160 No Date MAE 0.2302
24 No Historical CT MSE 0.8463 160 No Historical CT MAE 0.1024
24 All MAE 0.2136 161 All MSE 134.2060
24 No Queue MAE 0.2410 161 No Queue MSE 146.5893
24 No Date MAE 0.2462 161 No Date MSE 137.6488
24 No Historical CT MAE 0.2617 161 No Historical CT MSE 223.7528
25 All MSE 0.2817 161 All MAE 3.7006
25 No Queue MSE 0.3266 161 No Queue MAE 4.1926
25 No Date MSE 0.2956 161 No Date MAE 3.9119
25 No Historical CT MSE 0.2583 161 No Historical CT MAE 5.5885
25 All MAE 0.0987 162 All MSE 47.0846
25 No Queue MAE 0.1131 162 No Queue MSE 54.5123
25 No Date MAE 0.1117 162 No Date MSE 54.1597
25 No Historical CT MAE 0.1448 162 No Historical CT MSE 50.1103
26 All MSE 0.7107 162 All MAE 2.1711
26 No Queue MSE 0.8405 162 No Queue MAE 2.5538
26 No Date MSE 0.7252 162 No Date MAE 2.4362
26 No Historical CT MSE 0.7980 162 No Historical CT MAE 2.2489
26 All MAE 0.1771 163 All MSE 112.2401
26 No Queue MAE 0.2008 163 No Queue MSE 125.9914
26 No Date MAE 0.1815 163 No Date MSE 120.3702
26 No Historical CT MAE 0.1992 163 No Historical CT MSE 90.1404
27 All MSE 1.1734 163 All MAE 6.2428
27 No Queue MSE 1.2375 163 No Queue MAE 6.5229
27 No Date MSE 1.5526 163 No Date MAE 6.6323
27 No Historical CT MSE 0.6009 163 No Historical CT MAE 4.5501
27 All MAE 0.5960 164 All MSE 0.0035
27 No Queue MAE 0.6063 164 No Queue MSE 0.0044
27 No Date MAE 0.7021 164 No Date MSE 0.0059
27 No Historical CT MAE 0.3634 164 No Historical CT MSE 0.0006
28 All MSE 0.1222 164 All MAE 0.0137
28 No Queue MSE 0.1305 164 No Queue MAE 0.0160
28 No Date MSE 0.1379 164 No Date MAE 0.0209
28 No Historical CT MSE 0.5184 164 No Historical CT MAE 0.0089
28 All MAE 0.0865 165 All MSE 0.0137
28 No Queue MAE 0.0876 165 No Queue MSE 0.0152
28 No Date MAE 0.0962 165 No Date MSE 0.0124
28 No Historical CT MAE 0.2617 165 No Historical CT MSE 0.0065
29 All MSE 2.0457 165 All MAE 0.0631
29 No Queue MSE 2.0964 165 No Queue MAE 0.0696
29 No Date MSE 2.4323 165 No Date MAE 0.0639
29 No Historical CT MSE 0.6352 165 No Historical CT MAE 0.0497
29 All MAE 0.8253 166 All MSE 3.8065
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29 No Queue MAE 0.8834 166 No Queue MSE 4.6394
29 No Date MAE 0.9155 166 No Date MSE 3.9901
29 No Historical CT MAE 0.3750 166 No Historical CT MSE 1.6185
30 All MSE 0.0886 166 All MAE 0.8099
30 No Queue MSE 0.1417 166 No Queue MAE 0.9286
30 No Date MSE 0.1882 166 No Date MAE 0.8815
30 No Historical CT MSE 0.0352 166 No Historical CT MAE 0.3724
30 All MAE 0.1020 167 All MSE 8.9533
30 No Queue MAE 0.1116 167 No Queue MSE 8.9965
30 No Date MAE 0.1483 167 No Date MSE 9.3891
30 No Historical CT MAE 0.0783 167 No Historical CT MSE 6.0654
31 All MSE 0.0321 167 All MAE 0.5904
31 No Queue MSE 0.0340 167 No Queue MAE 0.6474
31 No Date MSE 0.0330 167 No Date MAE 0.6330
31 No Historical CT MSE 0.0304 167 No Historical CT MAE 0.5352
31 All MAE 0.0960 168 All MSE 7.6592
31 No Queue MAE 0.0993 168 No Queue MSE 7.9687
31 No Date MAE 0.0979 168 No Date MSE 8.3928
31 No Historical CT MAE 0.0940 168 No Historical CT MSE 12.5797
32 All MSE 1.2780 168 All MAE 0.6141
32 No Queue MSE 1.3466 168 No Queue MAE 0.7062
32 No Date MSE 2.9429 168 No Date MAE 0.6315
32 No Historical CT MSE 0.2934 168 No Historical CT MAE 1.1162
32 All MAE 0.2531 169 All MSE 3.7525
32 No Queue MAE 0.3066 169 No Queue MSE 2.8034
32 No Date MAE 0.9066 169 No Date MSE 4.2352
32 No Historical CT MAE 0.1671 169 No Historical CT MSE 5.5280
33 All MSE 0.2910 169 All MAE 0.7848
33 No Queue MSE 0.3385 169 No Queue MAE 0.7771
33 No Date MSE 0.6948 169 No Date MAE 0.8191
33 No Historical CT MSE 0.0707 169 No Historical CT MAE 0.9020
33 All MAE 0.1152 170 All MSE 0.1801
33 No Queue MAE 0.1270 170 No Queue MSE 0.2203
33 No Date MAE 0.2730 170 No Date MSE 0.1575
33 No Historical CT MAE 0.0477 170 No Historical CT MSE 0.0062
34 All MSE 11.9565 170 All MAE 0.2318
34 No Queue MSE 112.3294 170 No Queue MAE 0.2443
34 No Date MSE 47.7642 170 No Date MAE 0.2647
34 No Historical CT MSE 13.1112 170 No Historical CT MAE 0.0566
34 All MAE 2.1427 171 All MSE 4.9959
34 No Queue MAE 6.0835 171 No Queue MSE 5.7115
34 No Date MAE 4.0136 171 No Date MSE 5.0193
34 No Historical CT MAE 1.1847 171 No Historical CT MSE 1.9574
35 All MSE 1.9190 171 All MAE 1.2849
35 No Queue MSE 3.0525 171 No Queue MAE 1.4761
35 No Date MSE 2.7814 171 No Date MAE 1.2825
35 No Historical CT MSE 14.9029 171 No Historical CT MAE 1.0711
35 All MAE 0.1425 172 All MSE 2.8501
35 No Queue MAE 0.2240 172 No Queue MSE 3.2211
35 No Date MAE 0.2028 172 No Date MSE 2.9128
35 No Historical CT MAE 1.1583 172 No Historical CT MSE 2.2464
36 All MSE 4.9759 172 All MAE 0.4560
36 No Queue MSE 6.0488 172 No Queue MAE 0.5419
36 No Date MSE 4.6140 172 No Date MAE 0.4745
36 No Historical CT MSE 28.0314 172 No Historical CT MAE 0.2885
36 All MAE 0.4165 173 All MSE 6.7000
36 No Queue MAE 0.4512 173 No Queue MSE 5.9931
36 No Date MAE 0.4003 173 No Date MSE 6.9618
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36 No Historical CT MAE 1.3717 173 No Historical CT MSE 5.4870
37 All MSE 5.9228 173 All MAE 0.7896
37 No Queue MSE 6.6486 173 No Queue MAE 0.8067
37 No Date MSE 6.3620 173 No Date MAE 0.8259
37 No Historical CT MSE 9.1387 173 No Historical CT MAE 0.9991
37 All MAE 0.4995 174 All MSE 5265.4696
37 No Queue MAE 0.5521 174 No Queue MSE 4903.4158
37 No Date MAE 0.5532 174 No Date MSE 6140.5701
37 No Historical CT MAE 0.7083 174 No Historical CT MSE 4358.9539
38 All MSE 0.2921 174 All MAE 42.1918
38 No Queue MSE 0.8527 174 No Queue MAE 40.9215
38 No Date MSE 0.2161 174 No Date MAE 45.0551
38 No Historical CT MSE 0.1699 174 No Historical CT MAE 40.5622
38 All MAE 0.1606 175 All MSE 3.4799
38 No Queue MAE 0.2445 175 No Queue MSE 5.5626
38 No Date MAE 0.1305 175 No Date MSE 3.3816
38 No Historical CT MAE 0.0816 175 No Historical CT MSE 2.4077
39 All MSE 0.2903 175 All MAE 0.4451
39 No Queue MSE 1.6556 175 No Queue MAE 0.7900
39 No Date MSE 2.6297 175 No Date MAE 0.4486
39 No Historical CT MSE 0.0452 175 No Historical CT MAE 0.3588
39 All MAE 0.1719 176 All MSE 0.7719
39 No Queue MAE 0.2807 176 No Queue MSE 0.7879
39 No Date MAE 0.4358 176 No Date MSE 0.8424
39 No Historical CT MAE 0.0663 176 No Historical CT MSE 0.5825
40 All MSE 0.1789 176 All MAE 0.4051
40 No Queue MSE 0.2351 176 No Queue MAE 0.4407
40 No Date MSE 0.2315 176 No Date MAE 0.4500
40 No Historical CT MSE 0.2908 176 No Historical CT MAE 0.2957
40 All MAE 0.1417 177 All MSE 2.6366
40 No Queue MAE 0.1654 177 No Queue MSE 2.8598
40 No Date MAE 0.1706 177 No Date MSE 2.8634
40 No Historical CT MAE 0.2370 177 No Historical CT MSE 1.7500
41 All MSE 2.9358 177 All MAE 0.8726
41 No Queue MSE 3.1537 177 No Queue MAE 0.9529
41 No Date MSE 3.5906 177 No Date MAE 0.9357
41 No Historical CT MSE 3.0938 177 No Historical CT MAE 0.6287
41 All MAE 0.5277 178 All MSE 41.8901
41 No Queue MAE 0.5960 178 No Queue MSE 44.6267
41 No Date MAE 0.5714 178 No Date MSE 43.4900
41 No Historical CT MAE 0.5275 178 No Historical CT MSE 60.7250
42 All MSE 52.6903 178 All MAE 2.7593
42 No Queue MSE 85.1460 178 No Queue MAE 3.1246
42 No Date MSE 51.8846 178 No Date MAE 2.8080
42 No Historical CT MSE 86.3845 178 No Historical CT MAE 3.2418
42 All MAE 4.2633 179 All MSE 82.3842
42 No Queue MAE 5.1694 179 No Queue MSE 85.0651
42 No Date MAE 4.3160 179 No Date MSE 81.4083
42 No Historical CT MAE 4.1490 179 No Historical CT MSE 106.8293
43 All MSE 2.1031 179 All MAE 2.4806
43 No Queue MSE 3.3127 179 No Queue MAE 2.7039
43 No Date MSE 5.5332 179 No Date MAE 2.5709
43 No Historical CT MSE 8.8194 179 No Historical CT MAE 3.2482
43 All MAE 0.3084 180 All MSE 0.3180
43 No Queue MAE 0.3628 180 No Queue MSE 0.3588
43 No Date MAE 0.5898 180 No Date MSE 0.5358
43 No Historical CT MAE 0.5365 180 No Historical CT MSE 0.0330
a4 All MSE 40.4395 180 All MAE 0.2650
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44 No Queue MSE 43.7170 180 No Queue MAE 0.2815
44 No Date MSE 45.5735 180 No Date MAE 0.3600
44 No Historical CT MSE 46.3447 180 No Historical CT MAE 0.0849
44 All MAE 3.3674 181 All MSE 2.4361
44 No Queue MAE 3.5539 181 No Queue MSE 2.4608
44 No Date MAE 3.9216 181 No Date MSE 2.3025
44 No Historical CT MAE 2.8789 181 No Historical CT MSE 0.1560
45 All MSE 9.2510 181 All MAE 0.6291
45 No Queue MSE 10.4194 181 No Queue MAE 0.6925
45 No Date MSE 8.9372 181 No Date MAE 0.7008
45 No Historical CT MSE 3.3215 181 No Historical CT MAE 0.1414
45 All MAE 1.2112 182 All MSE 2.7148
45 No Queue MAE 1.3787 182 No Queue MSE 2.9806
45 No Date MAE 1.2126 182 No Date MSE 3.3752
45 No Historical CT MAE 0.8271 182 No Historical CT MSE 2.3742
46 All MSE 35.0376 182 All MAE 0.7295
46 No Queue MSE 47.1766 182 No Queue MAE 0.8278
46 No Date MSE 44,1538 182 No Date MAE 1.0609
46 No Historical CT MSE 27.7796 182 No Historical CT MAE 0.5026
46 All MAE 3.7369 183 All MSE 24.6166
46 No Queue MAE 4.6382 183 No Queue MSE 55.0763
46 No Date MAE 4.0418 183 No Date MSE 36.1214
46 No Historical CT MAE 2.6937 183 No Historical CT MSE 17.2989
47 All MSE 0.3753 183 All MAE 1.9863
47 No Queue MSE 0.3750 183 No Queue MAE 2.8743
47 No Date MSE 0.3747 183 No Date MAE 2.4785
47 No Historical CT MSE 0.6550 183 No Historical CT MAE 1.4593
47 All MAE 0.0864 184 All MSE 0.0123
47 No Queue MAE 0.0926 184 No Queue MSE 0.0073
47 No Date MAE 0.0878 184 No Date MSE 0.0089
47 No Historical CT MAE 0.2823 184 No Historical CT MSE 0.0284
48 All MSE 0.1821 184 All MAE 0.0699
48 No Queue MSE 0.1331 184 No Queue MAE 0.0642
48 No Date MSE 0.3226 184 No Date MAE 0.0687
48 No Historical CT MSE 0.1255 184 No Historical CT MAE 0.1258
48 All MAE 0.1265 185 All MSE 0.5222
48 No Queue MAE 0.1065 185 No Queue MSE 2.6773
48 No Date MAE 0.1637 185 No Date MSE 0.4899
48 No Historical CT MAE 0.1135 185 No Historical CT MSE 0.0001
49 All MSE 35.5184 185 All MAE 0.1571
49 No Queue MSE 34.0331 185 No Queue MAE 0.5795
49 No Date MSE 39.3909 185 No Date MAE 0.2575
49 No Historical CT MSE 35.7464 185 No Historical CT MAE 0.0049
49 All MAE 2.6519 186 All MSE 0.0000
49 No Queue MAE 2.7125 186 No Queue MSE 0.0002
49 No Date MAE 3.1838 186 No Date MSE 0.0000
49 No Historical CT MAE 2.4372 186 No Historical CT MSE 0.0000
50 All MSE 0.0253 186 All MAE 0.0001
50 No Queue MSE 0.0250 186 No Queue MAE 0.0045
50 No Date MSE 0.0270 186 No Date MAE 0.0002
50 No Historical CT MSE 0.0272 186 No Historical CT MAE 0.0002
50 All MAE 0.0559 187 All MSE 247.8226
50 No Queue MAE 0.0607 187 No Queue MSE 272.2499
50 No Date MAE 0.0588 187 No Date MSE 241.3805
50 No Historical CT MAE 0.0480 187 No Historical CT MSE 119.5563
51 All MSE 0.1098 187 All MAE 8.2367
51 No Queue MSE 0.1194 187 No Queue MAE 8.7657
51 No Date MSE 0.1119 187 No Date MAE 7.2349
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51 No Historical CT MSE 0.1116 187 No Historical CT MAE 3.6854
51 All MAE 0.0592 188 All MSE 1.3114
51 No Queue MAE 0.0952 188 No Queue MSE 1.3997
51 No Date MAE 0.0527 188 No Date MSE 1.4617
51 No Historical CT MAE 0.0508 188 No Historical CT MSE 1.8260
52 All MSE 5.1986 188 All MAE 0.3652
52 No Queue MSE 5.3071 188 No Queue MAE 0.3892
52 No Date MSE 5.9275 188 No Date MAE 0.3982
52 No Historical CT MSE 7.4308 188 No Historical CT MAE 0.4103
52 All MAE 1.0274 189 All MSE 10.6911
52 No Queue MAE 0.9939 189 No Queue MSE 11.8009
52 No Date MAE 1.0966 189 No Date MSE 13.5132
52 No Historical CT MAE 1.1779 189 No Historical CT MSE 13.1957
53 All MSE 1.5088 189 All MAE 0.8686
53 No Queue MSE 1.4911 189 No Queue MAE 0.9831
53 No Date MSE 2.1480 189 No Date MAE 1.0275
53 No Historical CT MSE 1.4951 189 No Historical CT MAE 0.9385
53 All MAE 0.3525 190 All MSE 371.0312
53 No Queue MAE 0.3633 190 No Queue MSE 449.2621
53 No Date MAE 0.6406 190 No Date MSE 374.3181
53 No Historical CT MAE 0.3526 190 No Historical CT MSE 353.8077
54 All MSE 6.8077 190 All MAE 8.9325
54 No Queue MSE 8.6095 190 No Queue MAE 9.7680
54 No Date MSE 8.2933 190 No Date MAE 7.9274
54 No Historical CT MSE 6.4331 190 No Historical CT MAE 7.3109
54 All MAE 0.8093 191 All MSE 1.9675
54 No Queue MAE 0.9498 191 No Queue MSE 2.0763
54 No Date MAE 1.0274 191 No Date MSE 1.6331
54 No Historical CT MAE 1.5242 191 No Historical CT MSE 1.0328
55 All MSE 3.8539 191 All MAE 0.7796
55 No Queue MSE 4.9044 191 No Queue MAE 0.8008
55 No Date MSE 7.0592 191 No Date MAE 0.6961
55 No Historical CT MSE 0.0269 191 No Historical CT MAE 0.4873
55 All MAE 0.4596 192 All MSE 5.3080
55 No Queue MAE 0.5647 192 No Queue MSE 5.2939
55 No Date MAE 1.3414 192 No Date MSE 5.5256
55 No Historical CT MAE 0.1077 192 No Historical CT MSE 6.0133
56 All MSE 0.0007 192 All MAE 0.7137
56 No Queue MSE 0.0638 192 No Queue MAE 0.7208
56 No Date MSE 0.0149 192 No Date MAE 0.7487
56 No Historical CT MSE 0.0028 192 No Historical CT MAE 0.9062
56 All MAE 0.0087 193 All MSE 8.8397
56 No Queue MAE 0.0289 193 No Queue MSE 10.0052
56 No Date MAE 0.0331 193 No Date MSE 7.6283
56 No Historical CT MAE 0.0277 193 No Historical CT MSE 6.0632
57 All MSE 1.1906 193 All MAE 2.3620
57 No Queue MSE 1.0033 193 No Queue MAE 2.3647
57 No Date MSE 1.3532 193 No Date MAE 2.3189
57 No Historical CT MSE 0.0558 193 No Historical CT MAE 2.0291
57 All MAE 0.2498 194 All MSE 1217.4814
57 No Queue MAE 0.2522 194 No Queue MSE 1605.2643
57 No Date MAE 0.2591 194 No Date MSE 1215.3589
57 No Historical CT MAE 0.1043 194 No Historical CT MSE 1004.2776
58 All MSE 0.1388 194 All MAE 20.1646
58 No Queue MSE 0.2202 194 No Queue MAE 21.4322
58 No Date MSE 0.1318 194 No Date MAE 22.3162
58 No Historical CT MSE 0.0904 194 No Historical CT MAE 19.1506
58 All MAE 0.0890 195 All MSE 2.5083
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58 No Queue MAE 0.1094 195 No Queue MSE 2.2642
58 No Date MAE 0.0865 195 No Date MSE 2.6176
58 No Historical CT MAE 0.0535 195 No Historical CT MSE 2.5474
59 All MSE 1.5798 195 All MAE 1.1449
59 No Queue MSE 1.9748 195 No Queue MAE 1.2082
59 No Date MSE 1.3427 195 No Date MAE 1.1085
59 No Historical CT MSE 0.0134 195 No Historical CT MAE 1.0441
59 All MAE 0.3777 196 All MSE 0.4627
59 No Queue MAE 0.5745 196 No Queue MSE 0.2978
59 No Date MAE 0.3431 196 No Date MSE 0.5383
59 No Historical CT MAE 0.0843 196 No Historical CT MSE 1.1128
60 All MSE 175.6584 196 All MAE 0.1523
60 No Queue MSE 224.8423 196 No Queue MAE 0.1386
60 No Date MSE 181.5098 196 No Date MAE 0.1814
60 No Historical CT MSE 230.3942 196 No Historical CT MAE 0.2943
60 All MAE 4.6107 197 All MSE 212.9816
60 No Queue MAE 5.1034 197 No Queue MSE 308.5900
60 No Date MAE 4.6524 197 No Date MSE 244.9870
60 No Historical CT MAE 6.7784 197 No Historical CT MSE 45.9857
61 All MSE 0.3425 197 All MAE 6.7754
61 No Queue MSE 0.4014 197 No Queue MAE 8.3562
61 No Date MSE 0.3929 197 No Date MAE 7.9757
61 No Historical CT MSE 0.0854 197 No Historical CT MAE 2.7129
61 All MAE 0.2215 198 All MSE 0.0118
61 No Queue MAE 0.2500 198 No Queue MSE 0.0084
61 No Date MAE 0.2603 198 No Date MSE 0.0102
61 No Historical CT MAE 0.0971 198 No Historical CT MSE 0.0136
62 All MSE 2.6896 198 All MAE 0.0669
62 No Queue MSE 2.5772 198 No Queue MAE 0.0531
62 No Date MSE 2.6634 198 No Date MAE 0.0553
62 No Historical CT MSE 7.0044 198 No Historical CT MAE 0.0678
62 All MAE 0.5402 199 All MSE 1.2621
62 No Queue MAE 0.5166 199 No Queue MSE 2.0790
62 No Date MAE 0.5446 199 No Date MSE 1.3736
62 No Historical CT MAE 1.7443 199 No Historical CT MSE 1.6569
63 All MSE 0.4982 199 All MAE 0.6192
63 No Queue MSE 0.5355 199 No Queue MAE 0.7832
63 No Date MSE 0.5762 199 No Date MAE 0.6184
63 No Historical CT MSE 0.6137 199 No Historical CT MAE 0.7360
63 All MAE 0.3752 200 All MSE 0.3374
63 No Queue MAE 0.3862 200 No Queue MSE 0.6130
63 No Date MAE 0.4055 200 No Date MSE 0.6995
63 No Historical CT MAE 0.3695 200 No Historical CT MSE 0.0135
64 All MSE 0.2126 200 All MAE 0.2174
64 No Queue MSE 0.2088 200 No Queue MAE 0.2540
64 No Date MSE 0.2190 200 No Date MAE 0.3939
64 No Historical CT MSE 0.2188 200 No Historical CT MAE 0.0760
64 All MAE 0.0909 201 All MSE 2.3398
64 No Queue MAE 0.0931 201 No Queue MSE 2.4377
64 No Date MAE 0.0939 201 No Date MSE 2.0182
64 No Historical CT MAE 0.1084 201 No Historical CT MSE 0.2681
65 All MSE 23.9499 201 All MAE 1.4957
65 No Queue MSE 23.4525 201 No Queue MAE 1.5206
65 No Date MSE 7.0818 201 No Date MAE 1.3256
65 No Historical CT MSE 155.3645 201 No Historical CT MAE 0.4266
65 All MAE 3.2737 202 All MSE 24.8732
65 No Queue MAE 3.3605 202 No Queue MSE 30.8111
65 No Date MAE 1.6643 202 No Date MSE 51.1632
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65 No Historical CT MAE 6.4226 202 No Historical CT MSE 23.5244
66 All MSE 0.0000 202 All MAE 1.5685
66 No Queue MSE 0.0000 202 No Queue MAE 2.2505
66 No Date MSE 0.0010 202 No Date MAE 1.9935
66 No Historical CT MSE 0.0000 202 No Historical CT MAE 1.3377
66 All MAE 0.0001 203 All MSE 0.1285
66 No Queue MAE 0.0002 203 No Queue MSE 0.1277
66 No Date MAE 0.0065 203 No Date MSE 0.1647
66 No Historical CT MAE 0.0000 203 No Historical CT MSE 0.1506
67 All MSE 146.6731 203 All MAE 0.3137
67 No Queue MSE 139.0913 203 No Queue MAE 0.2881
67 No Date MSE 132.0232 203 No Date MAE 0.3638
67 No Historical CT MSE 140.1944 203 No Historical CT MAE 0.3526
67 All MAE 7.8860 204 All MSE 1.4412
67 No Queue MAE 8.0052 204 No Queue MSE 1.5485
67 No Date MAE 7.2261 204 No Date MSE 1.9043
67 No Historical CT MAE 7.1342 204 No Historical CT MSE 0.7375
68 All MSE 0.3507 204 All MAE 0.4050
68 No Queue MSE 0.5864 204 No Queue MAE 0.4388
68 No Date MSE 0.3286 204 No Date MAE 0.5476
68 No Historical CT MSE 0.1825 204 No Historical CT MAE 0.2221
68 All MAE 0.2596 205 All MSE 1.9395
68 No Queue MAE 0.3128 205 No Queue MSE 1.7503
68 No Date MAE 0.2602 205 No Date MSE 2.6250
68 No Historical CT MAE 0.2887 205 No Historical CT MSE 0.0781
69 All MSE 0.5538 205 All MAE 0.9029
69 No Queue MSE 1.0727 205 No Queue MAE 0.9075
69 No Date MSE 0.5248 205 No Date MAE 1.1020
69 No Historical CT MSE 1.1745 205 No Historical CT MAE 0.1476
69 All MAE 0.1231 206 All MSE 0.0000
69 No Queue MAE 0.1642 206 No Queue MSE 0.0000
69 No Date MAE 0.1129 206 No Date MSE 0.0000
69 No Historical CT MAE 0.5604 206 No Historical CT MSE 0.0000
70 All MSE 1.7649 206 All MAE 0.0010
70 No Queue MSE 2.3860 206 No Queue MAE 0.0013
70 No Date MSE 1.9079 206 No Date MAE 0.0010
70 No Historical CT MSE 1.5330 206 No Historical CT MAE 0.0003
70 All MAE 0.9027 207 All MSE 2.1410
70 No Queue MAE 1.0207 207 No Queue MSE 2.5966
70 No Date MAE 0.8938 207 No Date MSE 7.3447
70 No Historical CT MAE 0.4591 207 No Historical CT MSE 1.5430
71 All MSE 15.6789 207 All MAE 0.8458
71 No Queue MSE 20.8133 207 No Queue MAE 0.9780
71 No Date MSE 19.2687 207 No Date MAE 1.7766
71 No Historical CT MSE 6.7899 207 No Historical CT MAE 0.5958
71 All MAE 0.7745 208 All MSE 11.0642
71 No Queue MAE 0.9079 208 No Queue MSE 17.4171
71 No Date MAE 0.9316 208 No Date MSE 10.1752
71 No Historical CT MAE 0.3402 208 No Historical CT MSE 10.1155
72 All MSE 0.0010 208 All MAE 2.6158
72 No Queue MSE 0.0009 208 No Queue MAE 3.5218
72 No Date MSE 0.0012 208 No Date MAE 2.5557
72 No Historical CT MSE 0.0013 208 No Historical CT MAE 2.4886
72 All MAE 0.0036 209 All MSE 0.8029
72 No Queue MAE 0.0035 209 No Queue MSE 1.4240
72 No Date MAE 0.0036 209 No Date MSE 1.3029
72 No Historical CT MAE 0.0069 209 No Historical CT MSE 3.7920
73 All MSE 5.0458 209 All MAE 0.2473
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73 No Queue MSE 5.4471 209 No Queue MAE 0.3675
73 No Date MSE 5.7835 209 No Date MAE 0.4321
73 No Historical CT MSE 3.0417 209 No Historical CT MAE 0.8542
73 All MAE 0.9688 210 All MSE 1.9807
73 No Queue MAE 1.0912 210 No Queue MSE 9.5604
73 No Date MAE 1.0979 210 No Date MSE 1.5390
73 No Historical CT MAE 0.8292 210 No Historical CT MSE 1.2714
74 All MSE 0.0012 210 All MAE 0.6976
74 No Queue MSE 0.0017 210 No Queue MAE 1.0765
74 No Date MSE 0.0015 210 No Date MAE 0.6105
74 No Historical CT MSE 0.0011 210 No Historical CT MAE 0.6308
74 All MAE 0.0237 211 All MSE 0.0489
74 No Queue MAE 0.0289 211 No Queue MSE 0.1077
74 No Date MAE 0.0278 211 No Date MSE 0.1190
74 No Historical CT MAE 0.0206 211 No Historical CT MSE 0.0152
75 All MSE 0.0016 211 All MAE 0.0947
75 No Queue MSE 0.0018 211 No Queue MAE 0.1239
75 No Date MSE 0.0015 211 No Date MAE 0.1166
75 No Historical CT MSE 0.0016 211 No Historical CT MAE 0.0502
75 All MAE 0.0250 212 All MSE 144.1951
75 No Queue MAE 0.0285 212 No Queue MSE 146.9571
75 No Date MAE 0.0242 212 No Date MSE 125.7453
75 No Historical CT MAE 0.0210 212 No Historical CT MSE 274.5878
76 All MSE 0.1972 212 All MAE 5.2825
76 No Queue MSE 0.2215 212 No Queue MAE 5.8740
76 No Date MSE 0.2598 212 No Date MAE 4.8198
76 No Historical CT MSE 0.0994 212 No Historical CT MAE 7.5823
76 All MAE 0.1649 213 All MSE 0.0003
76 No Queue MAE 0.1837 213 No Queue MSE 0.0015
76 No Date MAE 0.2019 213 No Date MSE 0.0014
76 No Historical CT MAE 0.1466 213 No Historical CT MSE 0.0001
77 All MSE 0.0751 213 All MAE 0.0126
77 No Queue MSE 0.0954 213 No Queue MAE 0.0324
77 No Date MSE 0.1929 213 No Date MAE 0.0327
77 No Historical CT MSE 0.0753 213 No Historical CT MAE 0.0102
77 All MAE 0.1282 214 All MSE 2.3856
77 No Queue MAE 0.1820 214 No Queue MSE 2.1269
77 No Date MAE 0.2475 214 No Date MSE 5.7175
77 No Historical CT MAE 0.0978 214 No Historical CT MSE 15.0275
78 All MSE 11.8156 214 All MAE 1.2804
78 No Queue MSE 11.2166 214 No Queue MAE 1.1388
78 No Date MSE 12.1532 214 No Date MAE 2.1025
78 No Historical CT MSE 10.3564 214 No Historical CT MAE 2.3953
78 All MAE 2.0858 215 All MSE 2.9757
78 No Queue MAE 2.1964 215 No Queue MSE 16.4116
78 No Date MAE 2.0835 215 No Date MSE 3.6935
78 No Historical CT MAE 1.6110 215 No Historical CT MSE 3.6586
79 All MSE 0.2649 215 All MAE 0.8226
79 No Queue MSE 0.2723 215 No Queue MAE 1.7606
79 No Date MSE 0.3863 215 No Date MAE 1.1261
79 No Historical CT MSE 0.0721 215 No Historical CT MAE 0.7550
79 All MAE 0.1489 216 All MSE 13.2011
79 No Queue MAE 0.1555 216 No Queue MSE 13.0116
79 No Date MAE 0.1874 216 No Date MSE 13.9465
79 No Historical CT MAE 0.1011 216 No Historical CT MSE 2.8757
80 All MSE 0.5587 216 All MAE 1.7018
80 No Queue MSE 0.5950 216 No Queue MAE 1.6534
80 No Date MSE 0.6490 216 No Date MAE 1.8464
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80 No Historical CT MSE 0.1929 216 No Historical CT MAE 0.8696
80 All MAE 0.2902 217 All MSE 14.5546
80 No Queue MAE 0.3223 217 No Queue MSE 28.4479
80 No Date MAE 0.3181 217 No Date MSE 12.4961
80 No Historical CT MAE 0.1543 217 No Historical CT MSE 20.9589
81 All MSE 232.9886 217 All MAE 2.0145
81 No Queue MSE 239.9817 217 No Queue MAE 2.9772
81 No Date MSE 229.4022 217 No Date MAE 1.8570
81 No Historical CT MSE 636.8554 217 No Historical CT MAE 1.4295
81 All MAE 3.5128 218 All MSE 3.4086
81 No Queue MAE 3.8704 218 No Queue MSE 3.5566
81 No Date MAE 3.3610 218 No Date MSE 8.2367
81 No Historical CT MAE 11.6005 218 No Historical CT MSE 0.0345
82 All MSE 0.0399 218 All MAE 0.9139
82 No Queue MSE 0.0428 218 No Queue MAE 1.1324
82 No Date MSE 0.0645 218 No Date MAE 1.6070
82 No Historical CT MSE 0.0158 218 No Historical CT MAE 0.1184
82 All MAE 0.0746 219 All MSE 6.0104
82 No Queue MAE 0.0778 219 No Queue MSE 12.2509
82 No Date MAE 0.0976 219 No Date MSE 7.6888
82 No Historical CT MAE 0.0619 219 No Historical CT MSE 2.4974
83 All MSE 50.3198 219 All MAE 1.3589
83 No Queue MSE 51.5547 219 No Queue MAE 1.9440
83 No Date MSE 50.2625 219 No Date MAE 1.6844
83 No Historical CT MSE 55.2611 219 No Historical CT MAE 0.8267
83 All MAE 2.3859 220 All MSE 19.0311
83 No Queue MAE 2.8300 220 No Queue MSE 18.7957
83 No Date MAE 2.4068 220 No Date MSE 18.4915
83 No Historical CT MAE 2.6086 220 No Historical CT MSE 21.7163
84 All MSE 0.0041 220 All MAE 1.6756
84 No Queue MSE 0.0038 220 No Queue MAE 1.7072
84 No Date MSE 0.0010 220 No Date MAE 1.7438
84 No Historical CT MSE 0.0006 220 No Historical CT MAE 2.1541
84 All MAE 0.0332 221 All MSE 0.0554
84 No Queue MAE 0.0330 221 No Queue MSE 0.0614
84 No Date MAE 0.0187 221 No Date MSE 0.0670
84 No Historical CT MAE 0.0148 221 No Historical CT MSE 0.0367
85 All MSE 0.0701 221 All MAE 0.1066
85 No Queue MSE 0.0774 221 No Queue MAE 0.1204
85 No Date MSE 0.0713 221 No Date MAE 0.1151
85 No Historical CT MSE 0.0612 221 No Historical CT MAE 0.0889
85 All MAE 0.1726 222 All MSE 0.2578
85 No Queue MAE 0.1816 222 No Queue MSE 4.7820
85 No Date MAE 0.1739 222 No Date MSE 0.1623
85 No Historical CT MAE 0.1391 222 No Historical CT MSE 0.6643
86 All MSE 0.2573 222 All MAE 0.3759
86 No Queue MSE 0.2680 222 No Queue MAE 1.7161
86 No Date MSE 0.3880 222 No Date MAE 0.3842
86 No Historical CT MSE 0.1647 222 No Historical CT MAE 0.6036
86 All MAE 0.1530 223 All MSE 8.2086
86 No Queue MAE 0.1652 223 No Queue MSE 7.9117
86 No Date MAE 0.2028 223 No Date MSE 6.2273
86 No Historical CT MAE 0.1470 223 No Historical CT MSE 9.0146
87 All MSE 95.0271 223 All MAE 1.5858
87 No Queue MSE 98.8684 223 No Queue MAE 1.6309
87 No Date MSE 95.9077 223 No Date MAE 1.5313
87 No Historical CT MSE 123.3475 223 No Historical CT MAE 1.9636
87 All MAE 3.6711 224 All MSE 7.0147
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87 No Queue MAE 3.8229 224 No Queue MSE 6.1412
87 No Date MAE 3.7542 224 No Date MSE 9.4225
87 No Historical CT MAE 7.1821 224 No Historical CT MSE 7.5076
88 All MSE 0.0966 224 All MAE 1.9695
88 No Queue MSE 0.0950 224 No Queue MAE 1.7432
88 No Date MSE 0.0928 224 No Date MAE 2.6584
88 No Historical CT MSE 0.0426 224 No Historical CT MAE 1.5161
88 All MAE 0.0869 225 All MSE 3.2838
88 No Queue MAE 0.0884 225 No Queue MSE 3.7428
88 No Date MAE 0.0936 225 No Date MSE 3.9627
88 No Historical CT MAE 0.0618 225 No Historical CT MSE 0.5563
89 All MSE 77.7464 225 All MAE 0.9029
89 No Queue MSE 82.0798 225 No Queue MAE 0.9835
89 No Date MSE 75.3812 225 No Date MAE 1.0341
89 No Historical CT MSE 59.8758 225 No Historical CT MAE 0.3822
89 All MAE 3.7191 226 All MSE 0.0211
89 No Queue MAE 4.2175 226 No Queue MSE 0.0239
89 No Date MAE 3.7117 226 No Date MSE 0.0283
89 No Historical CT MAE 4.4532 226 No Historical CT MSE 0.0526
90 All MSE 1.1034 226 All MAE 0.0813
90 No Queue MSE 1.1647 226 No Queue MAE 0.0844
90 No Date MSE 1.4307 226 No Date MAE 0.0886
90 No Historical CT MSE 0.5772 226 No Historical CT MAE 0.0872
90 All MAE 0.3165 227 All MSE 0.0259
90 No Queue MAE 0.3208 227 No Queue MSE 0.4269
90 No Date MAE 0.5177 227 No Date MSE 0.0373
90 No Historical CT MAE 0.1492 227 No Historical CT MSE 0.0191
91 All MSE 10.4627 227 All MAE 0.0523
91 No Queue MSE 12.2336 227 No Queue MAE 0.1964
91 No Date MSE 11.2947 227 No Date MAE 0.0638
91 No Historical CT MSE 9.1272 227 No Historical CT MAE 0.0255
91 All MAE 1.2577 228 All MSE 2.7121
91 No Queue MAE 1.4157 228 No Queue MSE 3.2538
91 No Date MAE 1.3601 228 No Date MSE 3.4131
91 No Historical CT MAE 1.5373 228 No Historical CT MSE 1.0635
92 All MSE 0.5669 228 All MAE 0.6303
92 No Queue MSE 0.6323 228 No Queue MAE 0.7384
92 No Date MSE 0.6809 228 No Date MAE 0.8176
92 No Historical CT MSE 0.7637 228 No Historical CT MAE 0.3533
92 All MAE 0.1799 229 All MSE 1.6299
92 No Queue MAE 0.2044 229 No Queue MSE 4.3323
92 No Date MAE 0.2112 229 No Date MSE 2.1285
92 No Historical CT MAE 0.3039 229 No Historical CT MSE 0.9182
93 All MSE 1.6638 229 All MAE 0.8552
93 No Queue MSE 2.0622 229 No Queue MAE 1.0460
93 No Date MSE 2.1608 229 No Date MAE 0.9589
93 No Historical CT MSE 1.8766 229 No Historical CT MAE 0.5246
93 All MAE 0.3083 230 All MSE 1383.4350
93 No Queue MAE 0.3528 230 No Queue MSE 1461.0930
93 No Date MAE 0.4724 230 No Date MSE 1393.0517
93 No Historical CT MAE 0.3694 230 No Historical CT MSE 3660.8625
94 All MSE 6.4389 230 All MAE 14.0064
94 No Queue MSE 7.8694 230 No Queue MAE 13.7986
94 No Date MSE 7.1885 230 No Date MAE 13.6465
94 No Historical CT MSE 2.4074 230 No Historical CT MAE 31.6665
94 All MAE 0.5902 231 All MSE 7.6654
94 No Queue MAE 0.6406 231 No Queue MSE 8.0985
94 No Date MAE 0.6361 231 No Date MSE 8.6062
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94 No Historical CT MAE 0.4586 231 No Historical CT MSE 10.1001
95 All MSE 0.3115 231 All MAE 0.7976
95 No Queue MSE 0.6500 231 No Queue MAE 0.8836
95 No Date MSE 0.3524 231 No Date MAE 0.9410
95 No Historical CT MSE 0.2154 231 No Historical CT MAE 0.9142
95 All MAE 0.2524 232 All MSE 18.4332
95 No Queue MAE 0.4338 232 No Queue MSE 19.9756
95 No Date MAE 0.2683 232 No Date MSE 19.6872
95 No Historical CT MAE 0.1880 232 No Historical CT MSE 26.3961
96 All MSE 0.1965 232 All MAE 1.1222
96 No Queue MSE 0.1725 232 No Queue MAE 1.2417
96 No Date MSE 0.2139 232 No Date MAE 1.1864
96 No Historical CT MSE 0.0664 232 No Historical CT MAE 1.7564
96 All MAE 0.0828 233 All MSE 0.1385
96 No Queue MAE 0.0835 233 No Queue MSE 0.1522
96 No Date MAE 0.0844 233 No Date MSE 0.1833
96 No Historical CT MAE 0.1035 233 No Historical CT MSE 0.0532
97 All MSE 51.3912 233 All MAE 0.1474
97 No Queue MSE 175.7317 233 No Queue MAE 0.1540
97 No Date MSE 43.7695 233 No Date MAE 0.1762
97 No Historical CT MSE 88.6479 233 No Historical CT MAE 0.1153
97 All MAE 4.1135 234 All MSE 1.1916
97 No Queue MAE 8.2148 234 No Queue MSE 1.2531
97 No Date MAE 3.1240 234 No Date MSE 1.3419
97 No Historical CT MAE 6.7134 234 No Historical CT MSE 0.7533
98 All MSE 11.6870 234 All MAE 0.3785
98 No Queue MSE 16.1043 234 No Queue MAE 0.3981
98 No Date MSE 9.2667 234 No Date MAE 0.4215
98 No Historical CT MSE 15.4952 234 No Historical CT MAE 0.2492
98 All MAE 2.6235 235 All MSE 479.3272
98 No Queue MAE 2.7749 235 No Queue MSE 538.3945
98 No Date MAE 2.2335 235 No Date MSE 425.6994
98 No Historical CT MAE 3.0101 235 No Historical CT MSE 436.1916
99 All MSE 12.8278 235 All MAE 8.0107
99 No Queue MSE 12.6621 235 No Queue MAE 8.1800
99 No Date MSE 15.6801 235 No Date MAE 8.0429
99 No Historical CT MSE 19.1629 235 No Historical CT MAE 7.7471
99 All MAE 1.1033 236 All MSE 4.0348
99 No Queue MAE 1.1112 236 No Queue MSE 3.9889
99 No Date MAE 1.4389 236 No Date MSE 4.3450
99 No Historical CT MAE 1.9206 236 No Historical CT MSE 9.9434
100 All MSE 3.9905 236 All MAE 0.9939
100 No Queue MSE 4.0551 236 No Queue MAE 1.0047
100 No Date MSE 4.1477 236 No Date MAE 0.9772
100 No Historical CT MSE 2.4683 236 No Historical CT MAE 1.5014
100 All MAE 0.7266 237 All MSE 0.2658
100 No Queue MAE 0.7843 237 No Queue MSE 0.2832
100 No Date MAE 0.7457 237 No Date MSE 0.2884
100 No Historical CT MAE 0.4260 237 No Historical CT MSE 0.1206
101 All MSE 33.5174 237 All MAE 0.2808
101 No Queue MSE 45.4335 237 No Queue MAE 0.3041
101 No Date MSE 30.3593 237 No Date MAE 0.2952
101 No Historical CT MSE 158.1376 237 No Historical CT MAE 0.1548
101 All MAE 3.1877 238 All MSE 16.9071
101 No Queue MAE 3.7730 238 No Queue MSE 16.2340
101 No Date MAE 3.0017 238 No Date MSE 18.0697
101 No Historical CT MAE 8.0846 238 No Historical CT MSE 21.7422
102 All MSE 8.3660 238 All MAE 0.8916
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102 No Queue MSE 8.1053 238 No Queue MAE 0.9063
102 No Date MSE 7.6165 238 No Date MAE 0.9593
102 No Historical CT MSE 0.9888 238 No Historical CT MAE 1.1901
102 All MAE 1.4859 239 All MSE 0.0405
102 No Queue MAE 1.5431 239 No Queue MSE 0.0542
102 No Date MAE 1.6028 239 No Date MSE 0.0458
102 No Historical CT MAE 0.6998 239 No Historical CT MSE 0.0036
103 All MSE 0.0005 239 All MAE 0.0751
103 No Queue MSE 0.0006 239 No Queue MAE 0.0886
103 No Date MSE 0.0007 239 No Date MAE 0.0808
103 No Historical CT MSE 0.0006 239 No Historical CT MAE 0.0297
103 All MAE 0.0183 240 All MSE 1.4932
103 No Queue MAE 0.0183 240 No Queue MSE 1.8124
103 No Date MAE 0.0182 240 No Date MSE 1.6336
103 No Historical CT MAE 0.0197 240 No Historical CT MSE 2.4087
104 All MSE 8.7816 240 All MAE 0.2956
104 No Queue MSE 10.4742 240 No Queue MAE 0.3816
104 No Date MSE 10.1351 240 No Date MAE 0.3451
104 No Historical CT MSE 4.5870 240 No Historical CT MAE 0.6300
104 All MAE 0.9098 241 All MSE 0.0885
104 No Queue MAE 1.0494 241 No Queue MSE 0.1079
104 No Date MAE 1.0428 241 No Date MSE 0.0844
104 No Historical CT MAE 0.8389 241 No Historical CT MSE 0.0106
105 All MSE 0.0589 241 All MAE 0.1325
105 No Queue MSE 0.0617 241 No Queue MAE 0.1463
105 No Date MSE 0.0592 241 No Date MAE 0.1271
105 No Historical CT MSE 0.0086 241 No Historical CT MAE 0.0899
105 All MAE 0.1091 242 All MSE 0.3791
105 No Queue MAE 0.1160 242 No Queue MSE 0.4479
105 No Date MAE 0.1048 242 No Date MSE 0.4113
105 No Historical CT MAE 0.0493 242 No Historical CT MSE 0.2390
106 All MSE 5.8356 242 All MAE 0.3296
106 No Queue MSE 6.2485 242 No Queue MAE 0.3451
106 No Date MSE 6.2509 242 No Date MAE 0.3488
106 No Historical CT MSE 4.0961 242 No Historical CT MAE 0.2157
106 All MAE 0.8150 243 All MSE 0.0093
106 No Queue MAE 0.8801 243 No Queue MSE 0.0177
106 No Date MAE 0.9049 243 No Date MSE 0.0086
106 No Historical CT MAE 0.6455 243 No Historical CT MSE 0.0003
107 All MSE 0.5762 243 All MAE 0.0340
107 No Queue MSE 0.8248 243 No Queue MAE 0.0439
107 No Date MSE 0.6854 243 No Date MAE 0.0342
107 No Historical CT MSE 0.7954 243 No Historical CT MAE 0.0110
107 All MAE 0.3458 244 All MSE 19.3405
107 No Queue MAE 0.4309 244 No Queue MSE 22.5655
107 No Date MAE 0.3924 244 No Date MSE 20.1393
107 No Historical CT MAE 0.3267 244 No Historical CT MSE 76.6502
108 All MSE 0.0583 244 All MAE 1.6430
108 No Queue MSE 0.0683 244 No Queue MAE 1.7484
108 No Date MSE 0.0881 244 No Date MAE 1.7881
108 No Historical CT MSE 0.0259 244 No Historical CT MAE 7.4748
108 All MAE 0.0919 245 All MSE 14.8820
108 No Queue MAE 0.1000 245 No Queue MSE 23.3659
108 No Date MAE 0.1223 245 No Date MSE 12.6019
108 No Historical CT MAE 0.0651 245 No Historical CT MSE 12.3506
109 All MSE 0.1114 245 All MAE 1.6239
109 No Queue MSE 0.4898 245 No Queue MAE 1.8855
109 No Date MSE 0.1461 245 No Date MAE 1.5389
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109 No Historical CT MSE 0.0727 245 No Historical CT MAE 1.4939
109 All MAE 0.0731 246 All MSE 264.0304
109 No Queue MAE 0.1144 246 No Queue MSE 280.1531
109 No Date MAE 0.0859 246 No Date MSE 274.4967
109 No Historical CT MAE 0.1362 246 No Historical CT MSE 218.2599
110 All MSE 0.2935 246 All MAE 9.3309
110 No Queue MSE 0.3467 246 No Queue MAE 9.7569
110 No Date MSE 0.4518 246 No Date MAE 9.2249
110 No Historical CT MSE 0.2281 246 No Historical CT MAE 7.0148
110 All MAE 0.1779 247 All MSE 0.4270
110 No Queue MAE 0.2085 247 No Queue MSE 0.4610
110 No Date MAE 0.2335 247 No Date MSE 0.4778
110 No Historical CT MAE 0.1324 247 No Historical CT MSE 0.2620
111 All MSE 0.0927 247 All MAE 0.3159
111 No Queue MSE 0.1116 247 No Queue MAE 0.3338
111 No Date MSE 0.1222 247 No Date MAE 0.3433
111 No Historical CT MSE 0.0161 247 No Historical CT MAE 0.2467
111 All MAE 0.1120 248 All MSE 0.0453
111 No Queue MAE 0.1220 248 No Queue MSE 0.0451
111 No Date MAE 0.1343 248 No Date MSE 0.0579
111 No Historical CT MAE 0.0473 248 No Historical CT MSE 0.0249
112 All MSE 0.1147 248 All MAE 0.1057
112 No Queue MSE 0.1297 248 No Queue MAE 0.1075
112 No Date MSE 0.2442 248 No Date MAE 0.1151
112 No Historical CT MSE 0.0156 248 No Historical CT MAE 0.0757
112 All MAE 0.0484 249 All MSE 18.8291
112 No Queue MAE 0.0507 249 No Queue MSE 13.3684
112 No Date MAE 0.0938 249 No Date MSE 32.7791
112 No Historical CT MAE 0.0176 249 No Historical CT MSE 39.8064
113 All MSE 0.0023 249 All MAE 2.8093
113 No Queue MSE 0.0026 249 No Queue MAE 2.3917
113 No Date MSE 0.0023 249 No Date MAE 3.6474
113 No Historical CT MSE 0.0004 249 No Historical CT MAE 3.7348
113 All MAE 0.0199 250 All MSE 18.4910
113 No Queue MAE 0.0226 250 No Queue MSE 26.4232
113 No Date MAE 0.0201 250 No Date MSE 23.5443
113 No Historical CT MAE 0.0143 250 No Historical CT MSE 0.0002
114 All MSE 0.3291 250 All MAE 1.0371
114 No Queue MSE 0.3519 250 No Queue MAE 1.3581
114 No Date MSE 0.4028 250 No Date MAE 1.1591
114 No Historical CT MSE 0.1675 250 No Historical CT MAE 0.0067
114 All MAE 0.1865 251 All MSE 0.0001
114 No Queue MAE 0.1994 251 No Queue MSE 0.0000
114 No Date MAE 0.2249 251 No Date MSE 0.0000
114 No Historical CT MAE 0.1455 251 No Historical CT MSE 0.0000
115 All MSE 0.0028 251 All MAE 0.0052
115 No Queue MSE 0.0025 251 No Queue MAE 0.0044
115 No Date MSE 0.0039 251 No Date MAE 0.0052
115 No Historical CT MSE 0.0070 251 No Historical CT MAE 0.0043
115 All MAE 0.0078 252 All MSE 0.0061
115 No Queue MAE 0.0081 252 No Queue MSE 0.0579
115 No Date MAE 0.0099 252 No Date MSE 0.0098
115 No Historical CT MAE 0.0136 252 No Historical CT MSE 0.0000
116 All MSE 0.0074 252 All MAE 0.0318
116 No Queue MSE 0.0126 252 No Queue MAE 0.0983
116 No Date MSE 0.0069 252 No Date MAE 0.0596
116 No Historical CT MSE 0.0039 252 No Historical CT MAE 0.0007
116 All MAE 0.0139 253 All MSE 1.0216
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116 No Queue MAE 0.0178 253 No Queue MSE 0.9879
116 No Date MAE 0.0121 253 No Date MSE 1.0127
116 No Historical CT MAE 0.0068 253 No Historical CT MSE 1.1254
117 All MSE 0.9174 253 All MAE 0.6861
117 No Queue MSE 1.0530 253 No Queue MAE 0.6797
117 No Date MSE 1.2066 253 No Date MAE 0.6268
117 No Historical CT MSE 0.4846 253 No Historical CT MAE 0.6660
117 All MAE 0.5550 254 All MSE 86.5914
117 No Queue MAE 0.6131 254 No Queue MSE 121.5961
117 No Date MAE 0.6680 254 No Date MSE 84.9149
117 No Historical CT MAE 0.3161 254 No Historical CT MSE 40.3383
118 All MSE 13.6055 254 All MAE 5.1473
118 No Queue MSE 13.9741 254 No Queue MAE 6.1693
118 No Date MSE 21.1542 254 No Date MAE 5.6097
118 No Historical CT MSE 4.0176 254 No Historical CT MAE 3.3669
118 All MAE 2.4669 255 All MSE 0.9653
118 No Queue MAE 2.4038 255 No Queue MSE 1.0826
118 No Date MAE 3.3089 255 No Date MSE 1.0911
118 No Historical CT MAE 1.5945 255 No Historical CT MSE 0.4833
119 All MSE 3.0954 255 All MAE 0.4117
119 No Queue MSE 3.6010 255 No Queue MAE 0.4416
119 No Date MSE 4.9335 255 No Date MAE 0.3946
119 No Historical CT MSE 1.9559 255 No Historical CT MAE 0.3040
119 All MAE 0.4013 256 All MSE 32.3778
119 No Queue MAE 0.4808 256 No Queue MSE 30.6092
119 No Date MAE 0.7696 256 No Date MSE 31.7650
119 No Historical CT MAE 0.1519 256 No Historical CT MSE 48.8153
120 All MSE 1.0421 256 All MAE 1.4731
120 No Queue MSE 1.0837 256 No Queue MAE 1.5054
120 No Date MSE 1.1213 256 No Date MAE 1.5380
120 No Historical CT MSE 0.7462 256 No Historical CT MAE 2.4869
120 All MAE 0.2584 257 All MSE 62.4045
120 No Queue MAE 0.2757 257 No Queue MSE 78.5111
120 No Date MAE 0.2866 257 No Date MSE 59.2497
120 No Historical CT MAE 0.2133 257 No Historical CT MSE 17.4186
121 All MSE 0.8601 257 All MAE 5.9182
121 No Queue MSE 1.1448 257 No Queue MAE 6.9197
121 No Date MSE 1.8906 257 No Date MAE 5.8494
121 No Historical CT MSE 0.1033 257 No Historical CT MAE 3.3135
121 All MAE 0.5209 258 All MSE 28.6660
121 No Queue MAE 0.5944 258 No Queue MSE 24,5511
121 No Date MAE 0.8434 258 No Date MSE 28.7517
121 No Historical CT MAE 0.1814 258 No Historical CT MSE 34.9892
122 All MSE 0.2522 258 All MAE 2.8205
122 No Queue MSE 0.3063 258 No Queue MAE 2.5586
122 No Date MSE 0.4800 258 No Date MAE 2.9204
122 No Historical CT MSE 0.1146 258 No Historical CT MAE 2.9681
122 All MAE 0.2571 259 All MSE 3.3611
122 No Queue MAE 0.2845 259 No Queue MSE 6.4399
122 No Date MAE 0.4148 259 No Date MSE 3.4294
122 No Historical CT MAE 0.1478 259 No Historical CT MSE 1.4681
123 All MSE 0.0129 259 All MAE 1.1259
123 No Queue MSE 0.0179 259 No Queue MAE 1.8049
123 No Date MSE 0.0340 259 No Date MAE 1.1808
123 No Historical CT MSE 0.0053 259 No Historical CT MAE 0.5437
123 All MAE 0.0160 260 All MSE 117.3521
123 No Queue MAE 0.0211 260 No Queue MSE 121.7190
123 No Date MAE 0.0293 260 No Date MSE 118.6950
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123 No Historical CT MAE 0.0060 260 No Historical CT MSE 130.7416
124 All MSE 0.2824 260 All MAE 4.4900
124 No Queue MSE 0.2923 260 No Queue MAE 4.8252
124 No Date MSE 0.3648 260 No Date MAE 45571
124 No Historical CT MSE 0.0892 260 No Historical CT MAE 4.7827
124 All MAE 0.1743 261 All MSE 1.6171
124 No Queue MAE 0.1857 261 No Queue MSE 1.7060
124 No Date MAE 0.2096 261 No Date MSE 1.7111
124 No Historical CT MAE 0.1168 261 No Historical CT MSE 0.8314
125 All MSE 18.0047 261 All MAE 0.5695
125 No Queue MSE 17.9321 261 No Queue MAE 0.6056
125 No Date MSE 20.2656 261 No Date MAE 0.5977
125 No Historical CT MSE 23.7585 261 No Historical CT MAE 0.3803
125 All MAE 1.0746 262 All MSE 26.5197
125 No Queue MAE 1.1251 262 No Queue MSE 28.0117
125 No Date MAE 1.2083 262 No Date MSE 32.5681
125 No Historical CT MAE 1.3462 262 No Historical CT MSE 23.6398
126 All MSE 62.5000 262 All MAE 1.6983
126 No Queue MSE 70.7959 262 No Queue MAE 1.9136
126 No Date MSE 69.5158 262 No Date MAE 2.0939
126 No Historical CT MSE 125.2783 262 No Historical CT MAE 1.2290
126 All MAE 2.5265 263 All MSE 12.0650
126 No Queue MAE 2.8318 263 No Queue MSE 15.4598
126 No Date MAE 2.7663 263 No Date MSE 15.2854
126 No Historical CT MAE 4.1465 263 No Historical CT MSE 5.1777
127 All MSE 1.0953 263 All MAE 0.8592
127 No Queue MSE 1.1555 263 No Queue MAE 1.0333
127 No Date MSE 1.4065 263 No Date MAE 1.2413
127 No Historical CT MSE 0.6024 263 No Historical CT MAE 0.3386
127 All MAE 0.3168 264 All MSE 4.7182
127 No Queue MAE 0.3442 264 No Queue MSE 5.5147
127 No Date MAE 0.4539 264 No Date MSE 10.3639
127 No Historical CT MAE 0.1841 264 No Historical CT MSE 2.1599
128 All MSE 0.6447 264 All MAE 0.4849
128 No Queue MSE 0.7193 264 No Queue MAE 0.5782
128 No Date MSE 0.8763 264 No Date MAE 1.0189
128 No Historical CT MSE 0.1309 264 No Historical CT MAE 0.2226
128 All MAE 0.2746 265 All MSE 3.1148
128 No Queue MAE 0.2988 265 No Queue MSE 3.2856
128 No Date MAE 0.3611 265 No Date MSE 3.1678
128 No Historical CT MAE 0.1000 265 No Historical CT MSE 3.4351
129 All MSE 0.4317 265 All MAE 0.9814
129 No Queue MSE 0.4543 265 No Queue MAE 1.0308
129 No Date MSE 0.5282 265 No Date MAE 1.0335
129 No Historical CT MSE 0.3216 265 No Historical CT MAE 0.8293
129 All MAE 0.1854 266 All MSE 0.3176
129 No Queue MAE 0.1957 266 No Queue MSE 0.3164
129 No Date MAE 0.2183 266 No Date MSE 0.3444
129 No Historical CT MAE 0.2618 266 No Historical CT MSE 0.0504
130 All MSE 384.5342 266 All MAE 0.1752
130 No Queue MSE 379.7439 266 No Queue MAE 0.1800
130 No Date MSE 423.9955 266 No Date MAE 0.1997
130 No Historical CT MSE 275.2573 266 No Historical CT MAE 0.1194
130 All MAE 10.0054 267 All MSE 6.2079
130 No Queue MAE 10.2933 267 No Queue MSE 6.7959
130 No Date MAE 11.0561 267 No Date MSE 6.8166
130 No Historical CT MAE 6.9185 267 No Historical CT MSE 5.5299
131 All MSE 0.7435 267 All MAE 0.7529
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131 No Queue MSE 0.8701 267 No Queue MAE 0.8207
131 No Date MSE 0.8564 267 No Date MAE 0.8773
131 No Historical CT MSE 0.2216 267 No Historical CT MAE 1.0425
131 All MAE 0.4056 268 All MSE 36.8799
131 No Queue MAE 0.4566 268 No Queue MSE 20.3439
131 No Date MAE 0.3582 268 No Date MSE 40.0959
131 No Historical CT MAE 0.2654 268 No Historical CT MSE 92.9418
132 All MSE 1959.5211 268 All MAE 0.8541
132 No Queue MSE 1960.5576 268 No Queue MAE 0.7969
132 No Date MSE 1984.3373 268 No Date MAE 1.0493
132 No Historical CT MSE 1973.4292 268 No Historical CT MAE 4.0842
132 All MAE 15.6054 269 All MSE 16.0759
132 No Queue MAE 16.4584 269 No Queue MSE 15.0228
132 No Date MAE 16.0977 269 No Date MSE 19.5621
132 No Historical CT MAE 14.7347 269 No Historical CT MSE 26.5556
133 All MSE 7.6882 269 All MAE 0.7879
133 No Queue MSE 6.2042 269 No Queue MAE 0.7521
133 No Date MSE 8.2480 269 No Date MAE 0.9558
133 No Historical CT MSE 5.3903 269 No Historical CT MAE 1.2543
133 All MAE 1.2866 270 All MSE 4.5544
133 No Queue MAE 1.0174 270 No Queue MSE 7.1612
133 No Date MAE 1.3271 270 No Date MSE 4.6391
133 No Historical CT MAE 0.8391 270 No Historical CT MSE 0.4027
134 All MSE 2.1070 270 All MAE 0.8115
134 No Queue MSE 4.2612 270 No Queue MAE 0.9635
134 No Date MSE 3.0737 270 No Date MAE 0.7521
134 No Historical CT MSE 0.7660 270 No Historical CT MAE 0.3084
134 All MAE 0.4800 271 All MSE 2.6355
134 No Queue MAE 0.7613 271 No Queue MSE 7.8212
134 No Date MAE 0.7652 271 No Date MSE 1.5516
134 No Historical CT MAE 0.4039 271 No Historical CT MSE 6.1738
135 All MSE 1.1041 271 All MAE 1.0817
135 No Queue MSE 1.4509 271 No Queue MAE 1.6469
135 No Date MSE 1.1568 271 No Date MAE 0.8302
135 No Historical CT MSE 0.4768 271 No Historical CT MAE 1.0841
135 All MAE 0.6809 272 All MSE 25.5707
135 No Queue MAE 0.8204 272 No Queue MSE 30.7128
135 No Date MAE 0.6953 272 No Date MSE 62.6289
135 No Historical CT MAE 0.4029 272 No Historical CT MSE 23.9419
136 All MSE 0.0750 272 All MAE 1.8207
136 No Queue MSE 0.4881 272 No Queue MAE 2.0558
136 No Date MSE 0.5357 272 No Date MAE 3.0756
136 No Historical CT MSE 0.0304 272 No Historical CT MAE 1.2359
136 All MAE 0.1589 273 All MSE 0.8721
136 No Queue MAE 0.3170 273 No Queue MSE 0.9684
136 No Date MAE 0.3718 273 No Date MSE 0.7934
136 No Historical CT MAE 0.1006 273 No Historical CT MSE 0.4153
137 All MSE 0.0243 273 All MAE 0.6996
137 No Queue MSE 0.0498 273 No Queue MAE 0.7488
137 No Date MSE 0.0240 273 No Date MAE 0.6877
137 No Historical CT MSE 0.0279 273 No Historical CT MAE 0.4991
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