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Ecologists sample whenever they cannot do a complete enumeration of the population. 

Very few plant and animal populations can be completely enumerated, and so most of 

our ecological information comes from samples. Good sampling methods are critically 
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important in ecology because we want to have our samples be representative of the 

population under study. How do we sample representatively? This chapter will attempt 

to answer this question by summarizing the most common sampling designs that 

statisticians have developed over the last 80 years. Sampling is a practical business 

and there are two parts of its practicality. First, the gear used to gather the samples 

must be designed to work well under field conditions. In all areas of ecology there has 

been tremendous progress in the past 40 years to improve sampling techniques. I will 

not describe these improvements in this book - they are the subject of many more 

detailed handbooks. So if you need to know what plankton sampler is best for 

oligotrophic lakes, or what light trap is best for nocturnal moths, you should consult the 

specialist literature in your subject area. Second, the method of placement and the 

number of samples must be decided, and this is what statisticians call sampling 

design. Should samples be placed randomly or systematically? Should different 

habitats be sampled separately or all together? These are the general statistical 

questions I will address in this and the next chapter. I will develop a series of guidelines 

that will be useful in sampling plankton with nets, moths with light traps, and trees with 

distance methods. The methods discussed here are addressed in more detail by 

Cochran (1977), Jessen (1978), and Thompson (1992). 

8.1  SIMPLE RANDOM SAMPLING 
The most convenient starting point for discussing sampling designs is simple random 

sampling. Like many statistical concepts, "random sampling" is easier to explain on 

paper than it is to apply in the field. Some background is essential before we can 

discuss random sampling. First, you must specify very clearly what the statistical 

population is that you are trying to study. The statistical population may or may not be 

a biological population, and the two ideas should not be confused. In many cases the 

statistical population is clearly specified: the white-tailed deer population of the 

Savannah River Ecological Area, or the whitefish population of Brooks Lake, or the 

black oaks of Warren Dunes State Park. But in other cases the statistical population 

has poorly defined boundaries: the mice that will enter live traps, the haddock 

population of George’s Bank, the aerial aphid population over southern England, the 

seed bank of Erigeron canadensis. Part of this vagueness in ecology depends on 
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spatial scale and has no easy resolution. Part of this vagueness also flows from the 

fact that biological populations also change over time (Van Valen 1982). One strategy 

for dealing with this vagueness is to define the statistical population very sharply on a 

local scale, and then draw statistical inferences about it. But the biological population 

of interest is usually much larger than a local population, and one must then 

extrapolate to draw some general conclusions. You must think carefully about this 

problem. If you wish to draw statistical inferences about a widespread biological 

population, you should sample the widespread population. Only this way can you avoid 

extrapolations of unknown validity. The statistical population you wish to study is a 

function of the question you are asking. This problem of defining the statistical 

population and then relating it to the biological population of interest is enormous in 

field ecology, and almost no one discusses it. It is the first thing you should think about 

when designing your sampling scheme. 

Second, you must decide what the sampling unit, is in your population. The 

sampling unit could be simple, like an individual oak tree or an individual deer, or it can 

be more complex like a plankton sample, or a 4 m2 quadrat, or a branch of an apple 

tree. The sample units must potentially cover the whole of the population and they 

must not overlap. In most areas of ecology there is considerable practical experience 

available to help decide what sampling unit to use. 

The third step is to select a sample, and a variety of sampling plans can be 

adopted. The aim of the sampling plan is to maximize efficiency - to provide the best 

statistical estimates with the smallest possible confidence limits at the lowest cost. To 

achieve this aim we need some help from theoretical statistics so that we can estimate 

the precision and the cost of the particular sampling design we adopt. Statisticians 

always assume that a sample is taken according to the principles of probability 

sampling, as follows: 

1.  Define a set of distinct samples S1, S2, S3 ... in which certain specific sampling 

units are assigned to S1, some to S2, and so on. 

2.   Each possible sample is assigned a probability of selection. 
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3.   Select one of the Si samples by the appropriate probability and a random number 

table. 

If you collect a sample according to these principles of probability sampling, a 

statistician can determine the appropriate sampling theory to apply to the data you 

gather. 

Some types of probability sampling are more convenient than others, and simple 

random sampling is one. Simple random sampling is defined as follows: 

1. A statistical population is defined that consists of N sampling units; 

2. n units are selected from the possible samples in such a way that every unit 

has an equal chance of being chosen. 

The usual way of achieving simple random sampling is that each possible sample unit 

is numbered from 1 to N. A series of random numbers between 1 and N is then drawn 

either from a table of random numbers or from a set of numbers in a hat. The sample 

units which happen to have these random numbers are measured and constitute the 

sample to be analyzed. It is hard in ecology to follow these simple rules of random 

sampling if you wish the statistical population to be much larger than the local area you 

are actually studying. 

Usually, once a number is drawn in simple random sampling it is not replaced, so 

we have sampling without replacement. Thus, if you are using a table of random 

numbers and you get the same number twice, you ignore it the second time. It is 

possible to replace each unit after measuring so that you can sample with replacement 

but this is less often used in ecology. Sampling without replacement is more precise 

than sampling with replacement (Caughley 1977). 

Simple random sampling is sometimes confused with other types of sampling that 

are not based on probability sampling. Examples abound in ecology:  

1. Accessibility sampling: the sample is restricted to those units that are readily 

accessible. Samples of forest stands may be taken only along roads, or deer may be 

counted only along trails. 
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2. Haphazard sampling: the sample is selected haphazardly. A bottom sample 

may be collected whenever the investigator is ready, or ten dead fish may be picked up 

for chemical analysis from a large fish kill. 

3. Judgmental sampling: the investigator selects on the basis of his or her 

experience a series of "typical" sample units. A botanist may select 'climax' stands of 

grassland to measure. 

4. Volunteer sampling: the sample is self-selected by volunteers who will 

complete some questionnaire or be used in some physiological test. Hunters may 

complete survey forms to obtain data on kill statistics. 

The important point to remember is that all of these methods of sampling may give the 

correct results under the right conditions. Statisticians, however, reject all of these 

types of sampling because they can not be evaluated by the theorems of probability 

theory. Thus the universal recommendation: random sample! But in the real world it is 

not always possible to use random sampling, and the ecologist is often forced to use 

non-probability sampling if he or she wishes to get any information at all. In some 

cases it is possible to compare the results obtained with these methods to those 

obtained with simple random sampling (or with known parameters) so that you could 

decide empirically if the results were representative and accurate. But remember that 

you are always on shaky ground if you must use non-probability sampling, so that the 

means and standard deviations you calculate may not be close to the true values. 

Whenever possible use some conventional form of random sampling. 

8.1.1 Estimation of Parameters 

In simple random sampling, one or more characteristics are measured on each 

experimental unit. For example, in quadrat sampling you might count the number of 

individuals of Solidago spp. and the number of individuals of Aster spp. In sampling 

deer, you might record for each individual its sex, age, weight, and fat index. In 

sampling starling nests you might count the number of eggs and measure their length. 
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In all these cases and in many more, ecological interest is focused on four 

characteristics of the population1: 

1. Total = X ; for example, the total number of Solidago individuals in the entire 

100 ha study field. 

2. Mean = x  ; for example, the average number of Solidago per m2. 

3. Ratio of two totals = R = x y ; for example, the number of Solidago per Aster in 

the study area. 

4. Proportion of units in some defined class; for example, the proportion of male 

deer in the population. 

We have seen numerous examples of characteristics of these types in the previous 

seven chapters, and their estimation is covered in most introductory statistics books. 

We cover them again here briefly because we need to add to them an idea that is not 

usually considered in introductory books - the finite population correction. For any 

statistical population consisting of N units, we define the finite population correction 

(fpc) as: 

fpc    1-N n n
N N
−

= =  (8.1) 

where: 

fpc  Finite population correction
  Total population size
  Sample size

N
n

=
=
=

 

and the fraction of the population sampled (n/N) is sometimes referred to as f. In a very 

large population the finite population correction will be 1.0, and when the whole 

population is measured, the fpc will be 0.0. 

Ecologists working with abundance data such as quadrat counts of plant density 

immediately run into a statistical problem at this point. Standard statistical procedures 

                                            
1 We may also be interested in the variance of the population, and the same general 

procedures apply. 
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deal with normally distributed raw data in which the standard deviation is independent 

of the mean. But ecological abundance data typically show a positive skew (e.g. Figure 

4.6 page 000) with the standard deviation increasing with the mean. These 

complications violate the assumptions of parametric statistics, and the simplest way of 

correcting ecological abundance data is to transform all counts by a log transformation: 

( )logY X=  (8.2) 

where  Y = transformed data 

    X = original data 

All analysis is now done on these Y-values which tend to satisfy the assumptions of 

parametric statistics1. In the analyses that follow with abundance data we effectively 

replace all the observed X values with their Y transformed counterpart and use the 

conventional statistical formulas found in most textbooks that define the variable of 

interest as X.  

Cochran (1977) demonstrates that unbiased estimates of the population mean 

and total for normally distributed data are given by the following formulas. For the 

mean: 

ix
x

n
= ∑  (8.3) 

where: 

 

 = Population mean
 = Observed value of  in sample 
 = Sample size

i

x
x x i
n

 

For the variance2 of the measurements we have the usual formula: 

( )2

2

1
ix x

s
n

−
=

−
∑  (8.4) 

                                            
1 This transformation will be discussed in detail in Chapter 15, page 000.  

2 If the data are compiled in a frequency distribution, the appropriate formulas are supplied 
in Appendix 1, page 000. 
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and the standard error of the population mean x  is given by: 

( )
2

1x
ss f
n

= −  (8.5) 

where: 

2
  Standard error of the mean 
  Variance of the measurements as defined above (8.4)
  Sample size
  Sampling fraction  /

xs x
s
n
f n N

=
=
=
= =

 

These formulas are similar to those you have always used, except for the introduction 

of the finite population correction. Note that when the sampling fraction (n/N) is low, the 

finite population correction is nearly 1.0 and so the size of the population has no effect 

on the size of the standard error. For example, if you take a sample of 500 

measurements from two populations with the same variance ( 2s  = 484.0) and 

population A is small (N = 10,000) and population B is a thousand times larger (N = 

10,000,000), the standard errors of the mean differ by only 2.5% because of the finite 

population correction. For this reason, the finite population correction is usually ignored 

whenever the sampling fraction (n/N) is less than 5% (Cochran 1977). 

Estimates of the population total are closely related to these formulas for the 

population mean. For the population total: 

X̂ N x=  (8.6) 

where: 
ˆ   Estimated population total

  Total size of population
  Mean value of population

X
N
x

=
=
=

 

The standard error of this estimate is given by: 

X xs N s=  (8.7) 

where: 

 = Standard error of the population total
 = Total size of the population
 = Standard error of the mean from equation (8.4)

X

x

s
N
s

 

Confidence limits for both the population mean and the population total are usually 

derived by the normal approximation: 
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xx t sα±  (8.8) 

where: 

( )
 = Student's  value for  - 1 degrees of freedom for the 

          1- level of confidence
t t nα

α  

This formula is used all the time in statistics books with the warning not to use it except 

with "large" sample sizes. Cochran (1977, p.41) gives a rule-of-thumb that is useful for 

data that has a strong positive skew (like the negative binomial curves in Figure 4.8, 

page 000). First, define Fisher’s measure of skewness: 

( )
1

3
3

 Fisher's measure of skewness
1

g

x x
ns

=

= −∑  (8.9) 

Cochran’s rule is that you have a large enough sample to use the normal 

approximation (equation 8.8) if – 

2
125n g>  (8.10) 

where: 

 = Sample size
 = Standard deviation

n
s

 

Sokal and Rohlf (1995, p. 116) show how to calculate g1 from sample data and many 

statistical packages provide computer programs to do these calculations. 

Box 8.1 (page 000) illustrates the use of these formulae for simple random 

sampling. 

Box 8.1  ESTIMATION OF POPULATION MEAN AND POPULATION TOTAL 
FROM SIMPLE RANDOM SAMPLING OF A FINITE POPULATION 

A biologist obtained body weights of male reindeer calves from a herd during the 
seasonal roundup. He obtained weights on 315 calves out of a total of 1262 in the 
herd, checked the assumption of a normal distribution, and summarized the data: 

 Body weight 
class (kg) 

Midpoint, x Observed 
frequency, fx 

 

 29.5-34.5 32 4  
 34.5-39.5 37 13  
 39.5-44.5 42 20  
 44.5-49.5 47 49  
 49.5-54.5 52 61  
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 54.5-59.5 57 72  
 59.5-64.5 62 57  
 64.5-69.5 67 25  
 69.5-74.5 72 12  
 74.5-79.5 77 2 

 
 

The observed mean is, from the grouped version of equation (8.3), 

(4)(32) + (13)(37) + (20)(42) + 
315

17,255  = = 54.78 kg
315

xf x
x

n
= =∑ 

 

The observed variance is, from the grouped version of equation (8.4), 

( )22
2

2

/
 - 1

969,685 - (17,255) / 315  78.008
314

x xf x f x n
s

n
−

=

= =

∑ ∑
 

The standard error of the mean weight, from equation (8.5): 
2

1

78.008 315    1-  0.4311
315 1262

x
ss f
n

= −

= =
 

From equation (8.8) we calculate g1 = ( ) ( )331/ ns x x−∑  = -0.164.  Hence, applying 
equation (8.10) 

2
1

2
25

315 25( 0.164) 0.67
n g>

>> − =
 

so that we have a “large” sample according to Cochran’s rule of thumb.  Hence we 
can compute normal confidence limits from equation (8.8): for α  = .05 the t value for 
315 d.f. is 1.97 

xx t sα±  

54.78  1.97(0.431)±  

or 95% confidence limits of 53.93 to 55.63 kg. 
To calculate the population total biomass, we have from equation (8.6): 
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ˆ 1262 (54.78) 69,129.6 kgX N x= = =  

and the standard error of this total biomass estimate for the herd is, from equation 
(8.7), 

ˆ 1262(0.4311) 544.05xX
s N s= = =  

and normal 95% confidence limits can be calculated as above to give for the 
population total: 

69,130  1072 kg±  

It is important to remember that if you have carried out a log transform on 

abundance data, all of these estimates are in the log-scale. You may wish to transform 

them back to the original scale of measurement, and this procedure is not immediately 

obvious (i.e. do not simply take anti-logs) and is explained in Chapter 15, Section 

15.1.1 (page 000).  

8.1.2 Estimation of a Ratio 

Ratios are not as commonly used in ecological work as they are in taxonomy, but 

sometimes ecologists wish to estimate from a simple random sample a ratio of two 

variables, both of which vary from sampling unit to sampling unit. For example, wildlife 

managers may wish to estimate the wolf/moose ratio for several game management 

zones, or behavioral ecologists may wish to measure the ratio of breeding females to 

breeding males in a bird population. Ratios are peculiar statistical variables with 

strange properties that few biologists appreciate (Atchley et al. 1976). Ratios of two 

variables are not just like ordinary measurements and to estimate means, standard 

errors, and confidence intervals for ecological ratios, you should use the following 

formulae from Cochran (1977): 

For the mean ratio: 

ˆ xR
y

=  (8.11) 

where: 
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ˆ   Estimated mean ratio of  to 
  Observed mean value of 
  Observed mean value of 

R x y
x x
y y

=
=
=

 

The standard error of this estimated ratio is: 

2 2 2

ˆ

ˆ ˆ21
1R

x R xy R yf
s

nn y
− +−

=
−

∑ ∑ ∑  (8.12) 

where: 

ˆ   Estimated standard error of the ratio 
     Sampling fraction  /
    Sample size
    Observed mean of  measurement (denominator of ratio)

R
s R

f n N
n
y Y

=
= =
=
=

 

and the summation terms are the usual ones defined in Appendix 1 (page 000). 

The estimation of confidence intervals for ratios from the usual normal 

approximation (eq. 8.8) is not valid unless sample size is large as defined above (page 

332) (Sukhatme and Sukhatme 1970). Ratio variables are often skewed to the right 

and not normally distributed, particularly when the coefficient of variation of the 

denominator is relatively high (Atchley et al. 1976). The message is that you should 

treat the computed confidence intervals of a ratio as only an approximation unless 

sample size is large. 

Box 8.2 illustrates the use of these formulas for calculating a ratio estimate. 

Box 8.2   ESTIMATION OF A RATIO OF TWO VARIABLES FROM SIMPLE 
RANDOM SAMPLING OF A FINITE POPULATION 

Wildlife ecologists interested in measuring the impact of wolf predation on moose 
populations in British Columbia obtained estimates by aerial counting of the 
population size of wolves and moose and 11 subregions which constituted 45% of 
the total game management zone. 

 Subregion No. of wolves No. of moose Wolves/moose  
 A 8 190 0.0421  
 B 15 370 0.0405  
 C 9 460 0.0196  
 D 27 725 0.0372  
 E 14 265 0.0528  
 F 3 87 0.0345  
 G 12 410 0.0293  
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 H 19 675 0.0281  
 I 7 290 0.0241  
 J 10 370 0.0270  
 K 16 510 0.0314  

   x  =  0.03333  
   SE =  0.00284  
   95% CL =  0.02701 to 

0.03965 
 

The mean numbers of wolves and moose are 

8 + 15 + 9 + 27 + 140     12.727 wolves
11 11

190 + 370 + 460 + 4352     395.64 moose
11 11

x
x

n
y

y
n

= = = =

= = = =

∑

∑





 

The mean ratio of wolves to moose is estimated from equation (8.11): 

12.727ˆ     0.03217 wolves/moose
395.64

xR
y

= = =  

The standard error of this estimate (equation 8.12) requires three sums of the data: 

2 2 2 2

2 2 2 2
  8  + 15  + 9  +   2214

y   190  + 370  + 460  +   2,092,844
  (8)(190) + (15)(370) + (9)(460) +   66,391

x

xy

= =
= =
= =

∑
∑
∑







 

From equation (8.12): 

2 2 2

ˆ

2

ˆ ˆ21
1

1 - 0.45 2214 - 2(0.032)(66,391) + (0.032 )(2,092,844)      
11 - 111 (395.64)

0.7416 108.31       0.00186
1312.19 10

R

x R xy R yf
s

nn y
− +−

=
−

=

= =

∑ ∑ ∑

 

the 95% confidence limits for this ratio estimate are thus ( tα  for 10 d.f. for α  = .05 is 

2.228): 

ˆ      or     0.03217  2.228(0.00186)RR t sα± ±  
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or 0.02803 to 0.03631 wolves per moose. 

8.1.3  Proportions and Percentages 

The use of proportions and percentages is common in ecological work. Estimates of 

the sex ratio in a population, the percentage of successful nests, the incidence of 

disease, and a variety of other measures are all examples of proportions. In all these 

cases we assume there are 2 classes in the population, and all individuals fall into one 

class or the other. We may be interested in either the number or the proportion of type 

X individuals from a simple random sample: 

 Population Sample 

No. of total individuals N n 

No. of individuals of type X A a 

Proportion of type X individuals 

 
AP N=  ˆ ap n=   

In statistical work the binomial distribution is usually applied to samples of this type, but 

when the population is finite the more proper distribution to use is the hypergeometric 

distribution1 (Cochran 1977). Fortunately, the binomial distribution is an adequate 

approximation for the hypergeometric except when sample size is very small. 

For proportions, the sample estimate of the proportion P is simply: 

ˆ ap n=  (8.13) 

where: 

ˆ   Proportion of type  individuals
  Number of type  individuals in sample
  Sample size

p X
a X
n

=
=
=

 

The standard error of the estimated proportion p̂  is from Cochran (1977), 

ˆ
ˆ ˆ

1
1P

pqs f
n

= −
−

 (8.14) 

                                            
1 Zar (1996, pg. 520) has a good brief description of the hypergeometric distribution. 
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where: 

ˆ  = Standard error of the estimated population 
     Sampling fraction  /

ˆ    Estimated proportion of  types
ˆ ˆ    1 - 

    Sample size

P
s p
f n N
p X
q p
n

= =
=
=
=

 

For example, if in a population of 3500 deer, you observe a sample of 850 of which 

400 are males: 

ˆ

ˆ   400/850  0.4706
850 (0.4706)(1 - 0.4706)  1    0.0149

3500 849P

p

s

= =

= − =
 

To obtain confidence limits for the proportion of x-types in the population several 

methods are available (as we have already seen in Chapter 2, page 000). Confidence 

limits can be read directly from graphs such as Figure 2.2 (page 000), or obtained 

more accurately from tables such as Burnstein (1971) or from Program EXTRAS 

(Appendix 2, page 000). For small sample sizes the exact confidence limits can be 

read from tables of the hypergeometric distribution in Lieberman and Owen (1961). 

If sample size is large, confidence limits can be approximated from the normal 

distribution. Table 8.1 lists sample sizes that qualify as "large". The normal 

approximation to the binomial gives confidence limits of: 

ˆ ˆ 1ˆ 1
1 2

pqp z f
n nα

 
± − +  − 

 

or 

ˆ
1ˆ

2P
p z s

nα
 ± + 
 

 (8.15) 

where: 
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ˆ

ˆ  = Estimated proportion of  types
 = Standard normal deviate (1.96 for 95% confidence intervals, 2.576

          for 99% confidence intervals)
  Standard error of the estimated proportion (equat

P

p X
z

s

α

= ion 8.13)
  Sampling fraction  /

ˆ ˆ  1 - proportion of  types in sample
  Sample size

f n N
q p Y
n

= =
= =
=

 

TABLE 8.1    SAMPLE SIZES NEEDED TO USE THE NORMAL APPROXIMATION 
(EQUATION 8.15) FOR CALCULATING CONFIDENCE INTERVALS 
FOR PROPORTIONSa   
 

Proportion, 
p 

Number of individuals in 
the smaller class, 

np 

Total sample size, 
N 

0.5 15 30 
0.4 20 50 
0.3 24 80 
0.2 40 200 
0.1 60 600 

0.05 70 1400 

a   For a given value of p do not use the normal approximation unless you have a sample 
size this large or larger. 
Source: Cochran, 1977. 

The fraction (1/2n) is a correction for continuity, which attempts to correct partly for the 

fact that individuals come in units of one, so it is possible, for example, to observe 216 

male deer or 217, but not 216.5. Without this correction the normal approximation 

usually gives a confidence belt that is too narrow. 

For the example above, the 95% confidence interval would be: 

10.4706 1.96(0.0149)
2(850)

 or 0.4706  0.0298 (0.44 to 0.50 males)

 
± + 
 
±

 

Note that the correction for continuity in this case is very small and if ignored would not 

change the confidence limits except in the fourth decimal place. 
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Not all biological attributes come as two classes like males and females of 

course, and we may wish to estimate the proportion of organisms in three or four 

classes (instar I, II, III and IV in insects for example). These data can be treated most 

simply by collapsing them into two-classes, instar II vs. all other instars for example, 

and using the methods described above. A better approach is described in Section 

13.4.1 for multinomial data. 

One practical illustration of the problem of estimating proportions comes from 

studies of disease incidence (Ossiander and Wedemeyer 1973). In many hatchery 

populations of fish, samples need to be taken periodically and analyzed for disease. 

Because of the cost and time associated with disease analysis, individual fish are not 

always the sampling unit. Instead, groups of 5, 10 or more fish may be pooled and the 

resulting pool analyzed for disease. One diseased fish in a group of 10 will cause that 

whole group to be assessed as disease-positive. Worlund and Taylor (1983) 

developed a method for estimating disease incidence in populations when samples are 

pooled. The sampling problem is acute here because disease incidence will often be 

only 1-2%, and at low incidences of disease, larger group sizes are more efficient in 

estimating the proportion diseased. Table 8.2 gives the confidence intervals expected 

for various sizes of groups and number of groups when the expected disease 

incidence varies from 1-10%. For group size = 1, these limits are the same as those 

derived above (equation 8.14). But Table 8.2 shows clearly that, at low incidence, 

larger group sizes are much more precise than smaller group sizes. Worlund and 

Taylor (1983) provide more details on optimal sampling design for such disease 

studies. One problem with disease studies is that diseased animals might be much 

easier to catch than healthy animals, and one must be particularly concerned with 

obtaining a random sample of the population. 

TABLE 8.2    WIDTH OF 90% CONFIDENCE INTERVALS FOR DISEASE 
INCIDENCEa  
 

 Percent disease incidence 

No. 1.0% 2.0% 5.0% 10% 

of Group size, k Group size, k Group size,k Group size, k 
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groups
, 

n 1 5 10 159 1 5 10 79 1 5 10 31 1 5 10 15 
12 4.7 2.1 1.5 - 6.6 3.0 2.2 - 10.3 4.9 3.7 - 14.2 7.1 - - 

20 3.6 1.6 1.2 - 5.1 2.3 1.7 - 8.0 3.8 2.8 - 11.0 5.5 4.5 - 

30 3.0 1.3 1.0 0.4 4.2 1.9 1.4 0.7 6.5 3.1 2.3 1.8 9.0 4.5 3.7 3.5 

60 2.1 1.0 0.7 0.3 3.0 1.4 1.0 0.5 4.6 2.2 1.6 1.3 6.4 3.2 2.6 2.5 

90 1.7 0.8 0.6 0.2 2.4 1.1 0.8 0.4 3.8 1.8 1.3 1.0 5.2 2.6 2.1 2.0 

120 1.5 0.7 0.5 0.2 2.1 1.0 0.7 0.4 3.3 1.5 1.2 0.8 4.5 2.2 1.8 1.8 

150 1.3 0.6 0.4 0.2 1.9 0.8 0.6 0.3 2.9 1.4 1.0 0.8 4.0 2.0 1.6 1.6 

250 1.0 0.5 0.3 0.1 1.4 0.7 0.5 0.2 2.3 1.1 0.8 0.6 3.1 1.6 1.3 1.2 

350 0.9 0.4 0.3 0.1 1.2 0.6 0.4 0.2 1.9 0.9 0.7 0.5 2.6 1.3 1.1 1.0 

450 0.8 0.3 0.2 0.1 1.1 0.5 0.4 0.2 1.7 0.8 0.6 0.5 2.3 1.2 1.0 0.9 

a  A number of groups (n) of group size k are tested for disease.  If one individual in a group has a 
disease, the whole group is diagnosed as disease positive.  The number in the table should be read as 
“ %d± ,” that is, as one-half of the width of the confidence interval. 
Source: Worlund and Taylor, 1983. 

8.2 STRATIFIED RANDOM SAMPLING 
One of the most powerful tools you can use in sampling design is to stratify your 

population. Ecologists do this all the time intuitively. Figure 8.1 gives a simple example. 

Population density is one of the most common bases of stratification in ecological 

work. When an ecologist recognizes good and poor habitats, he or she is implicitly 

stratifying the study area. 

In stratified sampling the statistical population of N units is divided into 

subpopulations which do not overlap and which together comprise the entire 

population. Thus: 

  N = N1 + N2 + N3 + ..... NL 

where  L = total number of subpopulations 
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Stratum C

Stratum B

Stratum A

 

Figure 8.1  The idea of stratification in estimating the size of a plant or animal population.  
Stratification is made on the basis of population density. Stratum A has about ten times the 
density of Stratum C.  

The subpopulations are called strata by statisticians. Clearly if there is only one 

stratum, we are back to the kind of sampling we have discussed earlier in this chapter. 

To obtain the full benefit from stratification you must know the sizes of all the strata 

(N1, N2, ...). In many ecological examples, stratification is done on the basis of 

geographical area, and the sizes of the strata are easily found in m2 or km2, for 

example. There is no need for the strata to be of the same size. 

Once you have determined what the strata are, you sample each stratum 

separately. The sample sizes for each stratum are denoted by subscripts: 

  n1 = sample size in stratum 1 
  n2 = sample size in stratum 2 
and so on. If within each stratum you sample using the principles of simple random 

sampling outlined above (page 327), the whole procedure is called stratified random 

sampling. It is not necessary to sample each stratum randomly, and you could, for 

example, sample systematically within a stratum. But the problems outlined above 

would then mean that it would be difficult to estimate how reliable such sampling is. So 

it is recommended to sample randomly within each stratum. 
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Ecologists have many different reasons for wishing to stratify their sampling. Four 

general reasons are common (Cochran 1977): 

1. Estimates of means and confidence intervals may be required separately for 
each subpopulation. 

2. Sampling problems may differ greatly in different areas. Animals may be easier 
or harder to count in some habitats than they are in others. Offshore samples 
may require larger boats and be more expensive to get than nearshore samples. 

3. Stratification may result in a gain in precision in the estimates of the parameters 
of the whole population. Confidence intervals can be narrowed appreciably 
when strata are chosen well. 

4. Administrative convenience may require stratification if different field laboratories 
are doing different parts of the sampling. 
 

Point 3 is perhaps the most critical one on this list, and I will now discuss how 

estimates are made from stratified sampling and illustrate the gains one can achieve. 

8.2.1 Estimates of Parameters 

For each of the subpopulations (N1, N2, ...) all of the principles and procedures of 

estimation outlined above can be used. Thus, for example, the mean for stratum 1 can 

be estimated from equation (8.2) and the variance from equation (8.3). New formulas 

are however required to estimate the mean for the whole population N. It will be 

convenient, before I present these formulae, to outline one example of stratified 

sampling so that the equations can be related more easily to the ecological framework. 

Table 8.3 gives information on a stratified random sample taken on a caribou 

herd in central Alaska by Siniff and Skoog (1964). They used as their sampling unit a 

quadrat of 4 sq. miles, and they stratified the whole study zone into six strata, based on 

a pilot survey of caribou densities in different regions. Table 8.3 shows that the 699 

total sampling units were divided very unequally into the six strata, so that the largest 

stratum (A) was 22 times the size of the smallest stratum (D). 
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TABLE 8.3    STRATIFIED RANDOM SAMPLING OF THE NELCHINA CARIBOU  
 HERD IN ALASKA BY SINIFF AND SKOOG (1964)a  
 

Stratum Stratum size, Nh Stratum weight, 
Wh 

Sample size, nh Mean no. of 
caribou counted 

per sampling 
unit, hx  

Variance of 
Caribou counts, 

2
hs  

A 400 0.572 98 24.1 5575 
B 30 0.043 10 25.6 4064 
C 61 0.087 37 267.6 347,556 
D 18 0.026 6 179.0 22,798 
E 70 0.100 39 293.7 123,578 
F 120 0.172 21 33.2 9795 

Total 699 1.000 211   
a Six strata were delimited in preliminary surveys based on the relative caribou density.  Each sampling 
unit was 4 square miles.  A random sample was selected in each stratum and counts were made from 
airplanes. 
Source: Siniff and Skoog, 1964. 

We define the following notation for use with stratified sampling: 

Stratum weight =  = h
h

NW
N

 (8.16) 

where: 

Nh = Size of stratum h (number of possible sample units in stratum h) 

 N = Size of entire statistical population 

The stratum weights are proportions and must add up to 1.0 (Table 8.3). Note that the 

Nh must be expressed in "sample units". If the sample unit is 0.25 m2, the sizes of the 

strata must be expressed in units of 0.25 m2 (not as hectares, or km2). 

Simple random sampling is now applied to each stratum separately and the 

means and variances calculated for each stratum from equations (8.2) and (8.3). We 

will defer until the next section a discussion on how to decide sample size in each 

stratum. Table 8.3 gives sample data for a caribou population. 
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The overall mean per sampling unit for the entire population is estimated as 

follows (Cochran 1977): 

1
ST  = 

L

h h
h

N x
x

N
=
∑

 (8.17) 

where: 

ST  = Stratified population mean per sampling unit
 = Size of stratum 
 = Stratum number (1, 2, 3, , )
 = Observed mean for stratum 
 = Total population size = 

h

h

h

x
N h

h L
x h
N N∑

  

Note that STx  is a weighted mean in which the stratum sizes are used as weights. 

For the data in Table 8.3, we have: 

ST
(400)(24.1) + (30)(25.6) + (61)(267.6 +  = 

699
      = 77.96 caribou/sample unit

x 

 

Given the density of caribou per sampling unit, we can calculate the size of the entire 

caribou population from the equation: 

ST ST
ˆ  = X N x  (8.18) 

where: 

ST

ST

ˆ   Population total
  Number of sample units in entire population

x   Stratified mean per sampling unit (equation 8.17)

X
N

=
=
=

 

For the caribou example: 

ST
ˆ  = 699(77.96) = 54,497 caribouX  

so the entire caribou herd is estimated to be around 55 thousand animals at the time of 

the study. 

The variance of the stratified mean is given by Cochran (1977, page 92) as: 
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( ) ( )
2 2

ST
1

Variance of 1
L

h h
h

h h

w sx f
n=

 
= − 

 
∑  (8.19) 

where: 

2

/

  Stratum weight (equation 8.16)
  Observed variance of stratum  (equation 8.4)
  Sample size in stratum 
  Sampling fraction in stratum /

h

h

h

h h h

W
s h
n h
f h n N

=
=
=
= =

 

The last term in this summation is the finite population correction and it can be ignored 

if you are sampling less that 5% of the sample units in each stratum. Note that the 

variance of the stratified means depends only on the size of the variances within each 

stratum. If you could divide a highly variable population into homogeneous strata such 

that all measurements within a stratum were equal, the variance of the stratified mean 

would be zero, which means that the stratified mean would be without any error! In 

practice of course you cannot achieve this but the general principle still pertains: pick 

homogeneous strata and you gain precision. 

For the caribou data in Table 8.3 we have: 

( )

( )

2

ST

2

(0.572) (5575) 98Variance of  = 1 - 
98 400

(0.043) 4064 10             + 1 -  + 
10 30

                            = 69.803

x
   
   

  
   
   

   
  

The standard error of the stratified mean is the square root of its variance: 

( )ST STStandard error of  = Variance of  = 69.803 = 8.355x x  

Note that the variance of the stratified mean cannot be calculated unless there are at 

least 2 samples in each stratum. The variance of the population total is simply: 

( ) ( ) ( )2
ST ST

ˆVariance of  = variance of X N x  (8.20) 

For the caribou the variance of the total population estimate is: 

( ) 2
ST

ˆVariance of  = 699 (69.803)  34,105,734X =  
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and the standard error of the total is the square root of this variance, or 5840. 

The confidence limits for the stratified mean and the stratified population total are 

obtained in the usual way: 

ST ST (standard error of )x t xα±  (8.21) 

ST ST
ˆ ˆ (standard error of )X t Xα±  (8.22) 

The only problem is what value of Student's t to use. The appropriate number of 

degrees of freedom lies somewhere between the lowest of the values (nh - 1) and the 

total sample size ( 1hn −∑ ). Cochran (1977, p.95) recommends calculating an effective 

number of degrees of freedom from the approximate formula: 

( )

2
2

1
2 4

1

d.f. 

1

L

h h
h

L
h h

hh

g s

g s
n

−

−

 
 
 ≈
 
 − 

∑

∑
 (8.23) 

where: 

( )
2

d.f.  Effective number of degrees of freedom for the confidence limits
             in equations (8.21) and (8.22)

  /
  Observed variance in stratum 
  Sample size in stratum 
  S

h h h h h

h

h

h

g N N n n
s h
n h
N

=

= −
=
=
= ize of stratum h

 

For example, from the data in Table 8.3 we obtain 

Stratum gh 

A 1232.65 

B 60.00 

C 39.57 

D 36.00 

E 55.64 

F 565.71 
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and from equation (8.22): 

2

12
(34,106,392)d.f.   = 134.3
8.6614 X 10

≈  

and thus for 95% confidence intervals for this example tα = 1.98. Thus for the 

population mean from equation (8.20) the 95% confidence limits are: 

77.96 1.98(8.35)±  

or from 61.4 to 94.5 caribou per 4 sq. miles. For the population total from equation 

(8.21) the 95% confidence limits are: 

54,497 1.98(5840)±  

or from 42,933 to 66,060 caribou in the entire herd. 

8.22 Allocation of Sample Size 

In planning a stratified sampling program you need to decide how many sample units 

you should measure in each stratum. Two alternate strategies are available for 

allocating samples to strata - proportional allocation or optimal allocation. 

      8.2.2.1 Proportional Allocation 

The simplest approach to stratified sampling is to allocate samples to strata on the 

basis of a constant sampling fraction in each stratum. For example, you might decide 

to sample 10% of all the sample units in each stratum. In the terminology defined 

above: 

h hn N
n N

=  (8.24) 

For example, in the caribou population of Table 8.3, if you wished to sample 10% of 

the units, you would count 40 units in stratum A, 3 in stratum B, 6 in stratum C, 2 in 

stratum D, 7 in E and 12 in F. Note that you should always constrain this rule so that at 

least 2 units are sampled in each stratum so that variances can be estimated. 

Equation (8.23) tells us what fraction of samples to assign to each stratum but we 

still do not know how many samples we need to take in total (n). In some situations this 
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is fixed and beyond control. But if you are able to plan ahead you can determine the 

sample size you require as follows.  

• Decide on the absolute size of the confidence interval you require in the final 
estimate. For example, in the caribou case you may wish to know the density to 
±10 caribou/4 sq. miles with 95% confidence. 

• Calculate the estimated total number of samples needed for an infinite 
population from the approximate formula (Cochran 1977 p. 104): 

2

2

4 h hW s
n

d
≈ ∑  (8.25) 

where: 

2

  Total sample size required (for large population)
  Stratum weight
  Observed variance of stratum 
  Desired absolute precision of stratified mean (width of confidence

             interval 

h

h

n
W
s h
d

=
=
=
=

is  )d±

 

This formula is used when 95% confidence intervals are specified in d. If 99% 

confidence intervals are specified, replace 4 in equation (8.24) with 7.08, and for 90% 

confidence intervals, use 2.79 instead of 4. For a finite population correct this 

estimated n by equation (7.6), page 000: 

*  = 
1

nn n
N+

 

where: 

*  = Total sample size needed in finite population of size n N  

For the caribou data in Table 8.3, if an absolute precision of ± 10 caribou / 4 square 

miles is needed: 

[ ]
2

4 (0.572)(5575) + (0.043)(4064) +  1
   = 1933.6

10
n ≈



 

Note that this recommended sample size is more than the total sample units available! 

For a finite population of 699 sample units: 
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1933.6    513.4 sample units1933.61 + 699
n∗ ≈ =  

These 514 sample units would then be distributed to the six strata in proportion to the 

stratum weight. Thus, for example, stratum A would be given (0.572)(514) or 294 

sample units. Note again the message that if you wish to have high precision in your 

estimates, you will have to take a large sample size. 

      8.2.2.2 Optimal Allocation 

When deciding on sample sizes to be obtained in each stratum, you will find that 

proportional allocation is the simplest procedure. But it is not the most efficient, and if 

you have prior information on the sampling methods, more powerful allocation plans 

can be specified. In particular, you can minimize the cost of sampling with the following 

general approach developed by Cochran (1977). 

Assume that you can specify the cost of sampling according to a simple cost 

function: 

O h hC c c n= + ∑  (8.26) 

where: 

O

  Total cost of sampling
  Overhead cost
  Cost of taking one sample in stratum 
  Number of samples taken in stratum 

h

h

C
c
c h
n h

=
=
=
=

 

Of course the cost of taking one sample might be equal in all strata but this is not 

always true. Costs can be expressed in money or in time units. Economists have 

developed much more complex cost models but we shall stick to this simple model 

here. 

Cochran (1977 p. 95) demonstrates that, given the cost function above, the 

standard error of the stratified mean is at a minimum when: 

 is proportional to h h
h

h

N sn
c
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This means that we should apportion samples among the strata by the ratio: 

/
/

h h hh

h h h

N s cn
n N s c

=
 
 ∑

 (8.27) 

This formula leads to three useful rules-of-thumb in stratified sampling: in a given 

stratum, take a larger sample if  

 1. The stratum is larger 

 2. The stratum is more variable internally 

 3. Sampling is cheaper in the stratum 

Once we have done this we can now go in one of two ways: 

 (1) minimize the standard error of the stratified mean for a fixed total cost. If the 

cost is fixed, the total sample size is dictated by: 

( ) ( )
( )

O /h h h

h h h

C c N s c
n

N s c

−
=

∑
∑

 (8.28) 

where: 

O

  Total sample size to be used in stratified sampling for all strata combined
  Total cost (fixed in advance)
  Overhead cost
  Size of stratum 
  standard deviation of stratum 
  cost to

h

h

h

n
C

c
N h
s h
c

=
=
=
=
=
=  take one sample in stratum h

Box 8.3 illustrates the use of these equations for optimal allocation. 

Box 8.3  OPTIMAL AND PROPORTIONAL ALLOCATION IN STRATIFIED  
    RANDOM SAMPLING 

Russell (1972) sampled a clam population using stratified random sampling and 
obtained the following data: 
Stratum Size of 

stratum, Nh 
Stratum 

weight, Wh 
Sample size, 

nh 
Mean 

(bushels), xh 
Variance, 2

hs  

A 5703.9 0.4281 4 0.44 0.068 
B 1270.0 0.0953 6 1.17 0.042 
C 1286.4 0.0965 3 3.92 2.146 
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D 5063.9 0.3800 5 1.80 0.794 
N = 13,324.2 1.0000 18   

Stratum weights are calculated as in equation (8.16).  I use these data to illustrate 
hypothetically how to design proportional and optimal allocation sampling plans. 
Proportional Allocation 
If you were planning this sampling program based on proportional allocation, you 
would allocate the samples in proportion to stratum weight (equation 8.24): 
 Stratum Fraction of samples to be 

allocated to this stratum 
 

 A 0.43  
 B 0.10  
 C 0.10  
 D 0.38  

Thus, if sampling was constrained to take only 18 samples (as in the actual data), 
you would allocate these as 7, 2, 2, and 7 to the four strata.  Note that proportional 
allocation can never be exact in the real world because you must always have two 
samples in each stratum and you must round off the sample sizes. 
     If you wish to specify a level of precision to be attained by proportional allocation, 
you proceed as follows.  For example, assume you desire an absolute precision of 
the stratified mean of d = ± 0.1 bushels at 95% confidence.  From equation (8.25): 

[ ]2

2 2

4 4 (0.4281)(0.068)  (0.0953)(0.042) + 
(0.1)

    217 samples

h hW s
n

d
+

≈ =

≈

∑ 

 

(assuming the sampling fraction is negligible in all strata).  These 217 samples would 
be distributed to the four strata according to the fractions given above - 43% to 
stratum A, 10% to stratum B, etc. 
Optimal Allocation 
 
     In this example proportional allocation is very inefficient because the variances 
are very different in the four strata, as well as the means.  Optimal allocation is thus 
to be preferred. 
     To illustrate the calculations, we consider a hypothetical case in which the cost 
per sample varies in the different strata.  Assume that the overhead cost in equation 
(8.25) is $100 and the coasts per sample are 

  c1 = $10   
  c2 = $20   
  c3 = $30   
  c4 = $40   

Apply equation (8.27) to determine the fraction of samples in each stratum: 
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/
/

h h hh

h h h

N s cn
n N s c

=
∑

 

These fractions are calculated as follows: 
Stratum Nh sh 

hc  /h hN s c
 

Estimated fraction, 
nh/n 

A 5703.9 0.2608 3.162 470.35 0.2966 
B 1270.0 0.2049 4.472 58.20 0.0367 
C 1286.4 1.4649 5.477 344.06 0.2169 
D 5063.9 0.8911 6.325 713.45 0.4498 

   Total =  1586.06 1.0000 
We can now proceed to calculate the total sample size needed for optimal allocation 
under two possible assumptions: 
Minimize the Standard Error of the Stratified Mean 
In this case cost is fixed.  Assume for this example that $200 is available.  Then, 
from equation (8.28), 

( )

( )
O /

/
(2000 - 100)(1586.06)     70.9 (rounded to 71 samples)

44,729.745

h h h

h h h

C c N s c
n

N s c

 −  
 =

= =

∑

∑  

Note that only the denominator needs to be calculated, since we have already 
computed the numerator sum. 
     We allocate these 71 samples according to the fractions just established: 
 Stratum Fraction of 

samples 
Total no. samples 

allocation of 68 total 
 

 A 0.2966 21.1 (21)  
 B 0.0367 2.6 (3)  
 C 0.2169 15.4 (15)  
 D 

 
0.4498 31.9 (32)  

Minimize the Total cost for a Specified Standard Error 
In this case you must decide in advance what level of precision you require.  In this 
hypothetical calculation, use the same value as above, d = ± 0.1 bushels (95% 
confidence limit).  In this case the desired variance (V) of the stratified mean is 
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2 20.1 = = =0.0025
2

dV
t

   
   
   

 

Applying formula (8.29): 

( )( )
2

/
 = 

(1/ )( )
h h h h h h

h h

W s c W s c
n

V N W s+
∑ ∑

∑
 

We need to compute three sums: 

2

(0.4281)(0.2608)(3.162) + (0.0953)(0.2049)(4.472)+ 
                       3.3549

(0.4281)(0.068) (0.0953)(0.2049)/   +  + 
3.162 4.472

                         0.1191
(0.4281)(0.06

h h h

h h h

h h

W s c

W s c

W s

=
=

=

=
=

∑

∑

∑





8) + (0.0953)(0.042) + 
                0.5419=



 

Thus:      
(3.3549)(0.1191) =  = 157.3 (rounded to 157 samples)

0.0025 (0.5419 / 13,324.2)
n

+
 

We allocate these 157 samples according to the fractions established for optimal 
allocation 
 
 Stratum Fraction of 

samples 
Total no. of samples allocated of 

157 total 
 

 A 0.2966 46.6 (47)  
 B 0.0367 5.8 (6)  
 C 0.2169 34.1 (34)  
 D 0.4498 70.6 (71)  

Note that in this hypothetical example, many fewer samples are required under 
optimal allocation (n = 157) than under proportional allocation (n = 217) to achieve 
the same confidence level ( d = ± 0.1 bushels). 
Program SAMPLE (Appendix 2, page 000) does these calculations. 
 (2) minimize the total cost for a specified value of the standard error of the 

stratified mean. If you specify in advance the level of precision you need in the 

stratified mean, you can estimate the total sample size by the formula: 

( )( )
( )2

/

(1/ )
h hh h h h

h h

W s c W s c
n

V N W s
=

+

∑ ∑
∑

 (8.29) 
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where: 

  Total sample size to be used in stratified sampling
  Stratum weight
  Standard deviation in stratum 

 Cost to take one sample in stratum 
  Total number of sample units in entire populat

h

h

h

n
W
s h
c h
N

=
=
=
=
=

( )2
ion

  Desired variance of the stratified mean  /
  Desired absolute width of the confidence interval for 1-

V d t
d

α

α
= =
=

 

 Student's  value for 1-  confidence limits ( 2 for 95%
         confidence limits,   2.66 for 99% confidence limits, 1.67
         for 90% of confidence limits)

t t t
t t

α α= ≈
≈ ≈  

Box 8.3 illustrates the application of these formulas. 

If you do not know anything about the cost of sampling, you can estimate the 

sample sizes required for optimal allocation from the two formulae: 

1. To estimate the total sample size needed (n): 

( )
( )

2

2(1/ )
h h

h h

W s
n

V N W s
=

+
∑

∑
 (8.30) 

where :   Desired variance of the stratified meanV =  

and the other terms are defined above. 

2. To estimate the sample size in each stratum: 

h h
h

h h

N sn n
N s

 
=   

 ∑
 (8.31) 

where: 

  Total sample size estimated in equation (8.29)n =  

and the other terms are defined above. These two formulae are just variations of the 

ones given above in which sampling costs are presumed to be equal in all strata. 

Proportional allocation can be applied to any ecological situation. Optimal 

allocation should always be preferred, if you have the necessary background 
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information to estimate the costs and the relative variability of the different strata. A 

pilot survey can give much of this information and help to fine tune the stratification. 

Stratified random sampling is almost always more precise than simple random 

sampling. If used intelligently, stratification can result in a large gain in precision, that 

is, in a smaller confidence interval for the same amount of work (Cochran 1977). The 

critical factor is always to chose strata that are relatively homogeneous. Cochran (1977 

p. 98) has shown that with optimal allocation, the theoretical expectation is that: 

S.E.(optimal) ≤  S.E.(proportional) ≤  S.E.(random) 

where: 

S.E.(optimal) = Standard error of the stratified mean obtained with optimal 
allocation of sample sizes 

S.E.(proportional) = Standard error of the stratified mean obtained with 
proportional allocation 

S.E.(random) = Standard error of the mean obtained for the whole population 
using simple random sampling 

Thus comes the simple recommendation: always stratify your samples! Unless you are 

perverse or very unlucky and choose strata that are very heterogeneous, you will 

always gain by using stratified sampling. 

8.2.3 Construction of Strata 

How many strata should you use, if you are going to use stratified random sampling? 

The answer to this simple question is not easy. It is clear in the real world that a point 

of diminishing returns is quickly reached, so that the number of strata should normally 

not exceed 6 (Cochran 1977, p. 134). Often even fewer strata are desirable (Iachan 

1985), but this will depend on the strength of the gradient. Note that in some cases 

estimates of means are needed for different geographical regions and a larger number 

of strata can be used. Duck populations in Canada and the USA are estimated using 

stratified sampling with 49 strata (Johnson and Grier 1988) in order to have regional 

estimates of production. But in general you should not expect to gain much in precision 

by increasing the number of strata beyond about 6. 
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Given that you wish to set up 2-6 strata, how can you best decide on the 

boundaries of the strata? Stratification may be decided a priori from your ecological 

knowledge of the sampling situation in different microhabitats. If this is the case, you 

do not need any statistical help. But sometimes you may wish to stratify on the basis of 

the variable being measured (x) or some auxiliary variable (y) that is correlated with x. 

For example, you may be measuring population density of clams (x) and you may use 

water depth (y) as a stratification variable. Several rules are available for deciding 

boundaries to strata (Iachan 1985) and only one is presented here, the cum f  rule. 

This is defined as: 

 cumulative square-root of frequency of quadratscum f =  

This rule is applied as follows: 

1. Tabulate the available data in a frequency distribution based on the stratification 
variable. Table 8.4 gives some data for illustration. 

2. Calculate the square root of the observed frequency and accumulate these 
square roots down the table. 

3. Obtain the upper stratum boundaries for L strata from the equally spaced points: 

Maximum cumulative Boundary of stratum  = f
i i

L
 
  
 

 (8.32) 

For example, in Table 8.4 if you wished to use five strata the upper boundaries of 

strata 1 and 2 would be: 

41.624Boundary of stratum 1 = (1) = 8.32
5

 
 
 

 

41.624Boundary of stratum 2  (2) 16.65
5

 = = 
 

 

These boundaries are in units of cum f . In this example, 8.32 is between depths 20 

and 21, and the boundary 20.5 meters can be used to separate samples belonging to 

stratum 1 from those in stratum 2. Similarly, the lower boundary of the second stratum 

is 16.65 cum f  units which falls between depths 25 and 26 meters in Table 8.4. 
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Using the cum f  rule, you can stratify your samples after they are collected, an 

important practical advantage in sampling. You need to have measurements on a 

stratification variable (like depth in this example) in order to use the cum f  rule. 

TABLE 8.4  DATA ON THE ABUNDANCE OF SURF CLAMS OFF THE COAST OF 
NEW JERSEY IN 1981 ARRANGED IN ORDER BY DEPTH OF 
SAMPLESa  
 

Class Depth, 
y (m) 

No,. of 
samples, f 

f  cum f  Observed no. of 
clams, x 

 

1 14 4 2.00000 2.000 34, 128, 13, 0  
2 15 1 1.00000 3.000 27  
3 18 2 1.41421 4.414 361, 4 Stratum 1 
4 19 3 1.73205 6.146 0, 5, 363  
5 20 4 2.00000 8.146 176, 32, 122, 41  

6 21 1 1.00000 9.146 21  
7 22 2 1.41421 10.560 0, 0  
8 23 5 2.23607 12.796 9, 112, 255, 3, 65 Stratum 2 
9 24 4 2.00000 14.796 122, 102, 0, 7  

10 25 2 1.41421 16.210 18, 1  

11 26 2 1.41421 17.625 14, 9  
12 27 1 1.00000 18.625 3  
13 28 2 1.41421 20.039 8, 30 Stratum 3 
14 29 3 1.73205 21.771 35, 25, 46  
15 30 1 1.00000 22.771 15  
16 32 1 1.00000 23.771 11  

17 33 4 2.00000 25.771 9, 0, 4, 19  
18 34 2 1.41421 27.185 11, 7  
19 35 3 1.73205 28.917 2, 10, 97 Stratum 4 
20 36 2 1.41421 30.332 0, 10  
21 37 3 1.73205 32.064 2, 1, 10  

22 38 2 1.41421 33.478 4, 13  
23 40 3 1.73205 35.210 0, 1, 2  
24 41 4 2.00000 37.210 0, 2, 2, 15  
25 42 1 1.00000 38.210 13 Stratum 5 
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26 45 2 1.41421 39.624 0, 0  
27 49 1 1.00000 40.624 0  
28 52 1 1.00000 41.624 0  

a Stratification is carried out on the basis of the auxiliary variable depth in order to increase the precision 
of the estimate of clam abundance for this region. 
Source: Iachan, 1985. 

8.2.4 Proportions and Percentages 

Stratified random sampling can also be applied to the estimation of a proportion like 

the sex ratio of a population. Again the rule-of-thumb is to construct strata that are 

relatively homogeneous, if you are to achieve the maximum benefit from stratification. 

Since the general procedures for proportions are similar to those outlined above for 

continuous and discrete variables, I will just present the formulae here that are specific 

for proportions. Cochran (1977 p. 106) summarizes these and gives more details. 

We estimate the proportion of x-types in each of the strata from equation (8.12) 

(page 000). Then, we have for the stratified mean proportion: 

ST

ˆ
ˆ  = h hN p
p

N
∑  (8.33) 

where: 

ST

 

ˆ  Stratified mean proportion
 Size of stratum 

ˆ  Estimated proportion for stratum  (from equation 8.13)
  Total population size (total number of sample units)

h

h

p
N h
p h
N

=
=
=
=

 

The standard error of this stratified mean proportion is: 

( ) ( )2

ST

ˆ ˆ1ˆS.E.  =  
1 1

h h h h h

n h

N N n p qp
N N n

 −
 − −  

∑  (8.34) 

where: 

( )STˆS.E.   Standard error of the stratified mean proportion
ˆ ˆ  1 - 

  Sample size in stratum 
h h

h

p
q p
n h

=
=
=

 

and all other terms are as defined above. 
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Confidence limits for the stratified mean proportion are obtained using the t-

distribution as outlined above for equation 8.20 (page 347). 

Optimal allocation can be achieved when designing a stratified sampling plan for 

proportions using all of the equations given above (8.26-8.30) and replacing the 

estimated standard deviation by: 

ˆ ˆ
  

1
h h

h
h

p qs
n

=
−

 (8.35) 

where: 

  Standard deviation of the proportion  in stratum 
ˆ   Fraction of  types in stratum 
ˆ ˆ  1-

 Sample size in stratum 

h

h

h h

h

s p h
p x h
q p
n h

=
=
=
=

 

Program SAMPLE in Appendix 2 (page 000) does all these calculations for 

stratified random sampling, and will compute proportional and optimal allocations from 

specified input to assist in planning a stratified sampling program. 

8.3 Adaptive Sampling 

Most of the methods discussed in sampling theory are limited to sampling designs in 

which the selection of the samples can be done before the survey, so that none of the 

decisions about sampling depend in any way on what is observed as one gathers the 

data. A new method of sampling that makes use of the data gathered is called 

adaptive sampling. For example, in doing a survey of a rare plant, a botanist may feel 

inclined to sample more intensively in an area where one individual is located to see if 

others occur in a clump. The primary purpose of adaptive sampling designs is to take 

advantage of spatial pattern in the population to obtain more precise measures of 

population abundance. In many situations adaptive sampling is much more efficient for 

a given amount of effort than the conventional random sampling designs discussed 

above. Thompson (1992) presents a summary of these methods. 
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8.3.1 Adaptive cluster sampling 

When organisms are rare and highly clustered in their geographical distribution, many 

randomly selected quadrats will contain no animals or plants. In these cases it may be 

useful to consider sampling clusters in a non-random way. Adaptive cluster sampling 

begins in the usual way with an initial sample of quadrats selected by simple random 

sampling with replacement, or simple random sampling without replacement. When 

one of the selected quadrats contains the organism of interest, additional quadrats in 

the vicinity of the original quadrat are added to the sample. Adaptive cluster sampling 

is ideally suited to populations which are highly clumped. Figure 8.2 illustrates a 

hypothetical example.  

 

Figure 8.2   A study area with 400 possible quadrats from which a random sample of n = 10 
quadrats (shaded) has been selected using simple random sampling without replacement.  Of 
the 10 quadrats, 7 contain no organisms and 3 are occupied by one individual.  This 
hypothetical population of 60 plants is highly clumped. 

To use adaptive cluster sampling we must first make some definitions of the 

sampling universe: 
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condition of selection of a quadrat: a quadrat is selected if it contains at least y 
organisms (often y = 1) 

neighborhood of quadrat x: all quadrats having one side in common with quadrat x 

edge quadrats: quadrats that do not satisfy the condition of selection but are next to 
quadrats that do satisfy the condition (i.e. empty quadrats) 

network: a group of quadrats such that the random selection of any one of the 
quadrats would lead to all of them being included in the sample. 
 

These definitions are shown more clearly in Figure 8.3, which is identical to Figure 8.2 

except that the networks and their edge quadrats are all shown as shaded. 

 

Figure 8.3 The same study area shown in Figure 8.2 with 400 possible quadrats from which a 
random sample of n = 10 quadrats has been selected. All the clusters and edge quadrats are 
shaded. The observer would count plants in all of the 37 shaded quadrats. 

It is clear that we cannot simply calculate the mean of the 37 quadrats counted in 

this example to get an unbiased estimate of mean abundance. To estimate the mean 

abundance from adaptive cluster sampling without bias we proceed as follows 

(Thompson 1992): 
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(1) Calculate the average abundance of each of the networks: 

k
k

i
i

y
w

m
=
∑

 (8.36) 

where wi = Average abundance of the i-th network 
  yj = Abundance of the organism in each of the k-quadrats in the i-th 
   network 
  mi = Number of quadrats in the i-th network 

(2) From these values we obtain an estimator of the mean abundance as follows: 

i
i

w
x

n
=
∑

 (8.37) 

where x  = Unbiased estimate of mean abundance from adaptive cluster 
   sampling 
  n = Number of initial sampling units selected via random sampling 
If the initial sample is selected with replacement, the variance of this mean is given by: 

( )
( )

( )

2

1ˆvar x
1

n

i
i

w x

n n
=

−
=

−

∑
 (8.38) 

where  ( )ˆvar x  = estimated variance of mean abundance for sampling with   
   replacement 
and all other terms are defined above. 

If the initial sample is selected without replacement, the variance of the mean is given 

by: 

( )
( ) ( )

( )

2

1ˆvar x
1

n

i
i

N n w x

N n n
=

− −
=

−

∑
 (8.39) 

where N = total number of possible sample quadrats in the sampling 
    universe 

We can illustrate these calculations with the simple example shown in Figure 8.3. 

From the initial random sample of n = 10 quadrats, three quadrats intersected networks 

in the lower and right side of the study area. Two of these networks each have 2 plants 
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in them and one network has 5 plants. From these data we obtain from equation 

(8.36): 

2 2 5 0 0
7 8 15 1 1 0.08690 plants per quadrat

10

i
i

w
x

n

 + + + + + 
 = = =

∑ 

 

Since we were sampling without replacement we use equation (8.39) to estimate the 

variance of this mean: 

( )
( ) ( )

( )

( )

( )( )( )

2

1

2 2

ˆvar x
1
2 2400 10 0.0869 0.0869
7 8

400 10 10 1
0.0019470

n

i
i

N n w x

N n n
=

− −
=

−
    − − + − +    
     =

−
=

∑



 

We can obtain confidence limits from these estimates in the usual way: 

( )ˆvarx t xα±  

For this example with n = 10, for 95% confidence limits tα  = 2.262 and the confidence 

limits become: 

( )( )0.0869 2.262 0.0019470 0.0869 0.0983± = ±  

or from 0.0 to 0.185 plants per quadrat. The confidence limits extend below 0.0 but 

since this is biologically impossible, the lower limit is set to 0. The wide confidence 

limits reflect the small sample size in this hypothetical example. 

When should one consider using adaptive sampling? Much depends on the 

abundance and the spatial pattern of the animals or the plants being studied. In 

general the more clustered the population and the rarer the organism, the more 

efficient it will be to use adaptive cluster sampling. Thompson (1992) shows, for 

example, from the data in Figure 8.2 that adaptive sampling is about 12% more 

efficient than simple random sampling for n = 10 quadrats and nearly 50% more 
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efficient when n = 30 quadrats. In any particular situation it may well pay to conduct a 

pilot experiment with simple random sampling and adaptive cluster sampling to 

determine the size of the resulting variances.  

8.3.2 Stratified Adaptive Cluster Sampling 

The general principle of adaptive sampling can also be applied to situations that are 

well enough studied to utilize stratified sampling. In stratified adaptive sampling random 

samples are taken from each stratum in the usual way with the added condition that 

whenever a sample quadrat satisfies some initial conditions (e.g. an animal is present), 

additional quadrats from the neighborhood of that quadrat are added to the sample. 

This type of sampling design would allow one to take advantage of the fact that a 

population may be well stratified but clustered in each stratum in an unknown pattern. 

Large gains in efficiency are possible if the organisms are clustered within each 

stratum. Thompson (1992, Chap. 26) discusses the details of the estimation problem 

for stratified adaptive cluster sampling. The conventional stratified sampling estimators 

cannot be used for this adaptive design since the neighborhood samples are not 

selected randomly.  

8.4 SYSTEMATIC SAMPLING 
Ecologists often use systematic sampling in the field. For example, mouse traps may 

be placed on a line or a square grid at 50 m intervals. Or the point-quarter distance 

method might be applied along a compass line with 100 m between points. There are 

many reasons why systematic sampling is used in practice, but the usual reasons are 

simplicity of application in the field, and the desire to sample evenly across a whole 

habitat. 

The most common type of systematic sampling used in ecology is the centric 

systematic area-sample illustrated in Figure 8.4. The study area is subdivided into 

equal squares and a sampling unit is taken from the center of each square. The 

samples along the outer edge are thus half the distance to the boundary as they are to 

the nearest sample (Fig. 8.4). Note that once the number of samples has been 

specified, there is only one centric sample for any area - all others would be eccentric 

samples (Milne 1959). 
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Figure 8.4   Example of a study area subdivided into 20 equal-size squares with one sample 
taken at the center of each square.  This is a centric systematic area-sample. 

Statisticians have usually condemned systematic sampling in favor of random 

sampling and have cataloged all the pitfalls that may accompany systematic sampling 

(Cochran 1977). The most relevant problem for an ecologist is the possible existence 

of periodic variation in the system under analysis. Figure 8.5 illustrates a hypothetical 

example in which an environmental variable (soil water content, for example) varies in 

a sine-wave over the study plot. If you are unlucky and happen to sample at the same 

periodicity as the sine wave, you can obtain a biased estimate of the mean and the 

variance (A in Fig. 8.5). 
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Figure 8.5  Hypothetical illustration of periodic variation in an ecological variable and the 
effects of using systematic sampling on estimating the mean of this variable.  If you are 
unlucky and sample at A, you always get the same measurement and obtain a highly biased 
estimate of the mean. If you are lucky and sample at B, you get exactly the same mean and 
variance as if you had used random sampling. The important question is whether such periodic 
variation exists in the ecological world. 

But what is the likelihood that these problems like periodic variation will occur in 

actual field data? Milne (1959) attempted to answer this question by looking at 

systematic samples taken on biological populations that had been completely 

enumerated (so that the true mean and variance were known). He analyzed data from 

50 populations and found that, in practice, there was no error introduced by assuming 

that a centric systematic sample is a simple random sample, and using all the 

appropriate formulae from random sampling theory. 

Periodic variation like that in Figure 8.5 does not seem to occur in ecological 

systems. Rather, most ecological patterns are highly clumped and irregular, so that in 

practice the statistician's worry about periodic influences (Fig. 8.5) seems to be a 

misplaced concern (Milne 1959). The practical recommendation is thus: you can use 

systematic sampling but watch for possible periodic trends. 

Caughley (1977) discusses the problems of using systematic sampling in aerial 

surveys. He simulated a computer population of kangaroos, using some observed 

aerial counts, and then sampled this computer population with several sampling 

designs, as outlined in Chapter 4 (pp. 000-000). Table 8.5 summarizes the results 

based on 20,000 replicate estimates done by a computer on the hypothetical kangaroo 

population. All sampling designs provided equally good estimates of the mean 

kangaroo density and all means were unbiased. But the standard error estimated from 

systematic sampling was underestimated, compared with the true value. This bias 

would reduce the size of the confidence belt in systematic samples, so that confidence 

limits based on systematic sampling would not be valid because they would be too 

narrow. The results of Caughley (1977) should not to be generalized to all aerial 

surveys but they inject a note of warning into the planning of aerial counts if systematic 

sampling is used. 
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TABLE 8.5  SIMULATED COMPUTER SAMPLING OF AERIAL TRANSECTS OF 
EQUAL LENGTH FOR A KANGAROO POPULATION IN NEW SOUTH 
WALESa  

 Sampling system 

Method of analysis PPSb with 
replacement 

Random with 
replacement 

Random 
without 

replacement 

Systematic 

Coefficient of variation    
     2% sampling rate (n = 10 transects)    

 9 9 9 9 
     20% sampling rate (n = 100 transects)    

 3 3 2 3 

Bias in standard error (%)    
     2% sampling rate (n = 10 transects)    
     20% sampling rate (n = 100 transects)   

 0 0 0 -23 
a Data from actual transects were used to set up the computer population, which was then sampled 
20,000 times at two different levels of sampling.  The percentage coefficient of variation of the population 
estimates and the relative bias of the calculated standard errors of the population estimates were 
compared for  random and systematic sampling. 
b PPS, Probability-proportional-to-size sampling, discussed previously in Chapter 4. 
Source: Caughley, 1977b. 
 

There is probably no issue on which field ecologists and statisticians differ more 

than on the use of random vs. systematic sampling in field studies. If gradients across 

the study area are important to recognize, systematic sampling like that shown in 

Figure 8.4 will be more useful than random sampling to an ecologist. This decision will 

be strongly affected by the exact ecological questions being studied. Some 

combination of systematic and random sampling may be useful in practice and the 

most important message for a field ecologist is to avoid haphazard or judgmental 

sampling. 

The general conclusion with regard to ecological variables is that systematic 

sampling can often be applied, and the resulting data treated as random sampling 

data, without bias. But there will always be a worry that periodic effects may influence 

the estimates, so that if you have a choice of taking a random sample or a systematic 
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one, always choose random sampling. But if the cost and inconvenience of 

randomization is too great, you may lose little by sampling in a systematic way. 

8.5 MULTISTAGE SAMPLING 
Ecologists often subsample. For example, a plankton sample may be collected by 

passing 100 liters of water through a net. This sample may contain thousands of 

individual copepods or cladocerans and to avoid counting the whole sample, a 

limnologist will count 1/100 or 1/1000 of the sample. 

Statisticians describe subsampling in two ways. We can view the sampling unit in 

this case to be the 100 liter sample of plankton and recognize that this sample unit can 

be divided into many smaller samples, called subsamples or elements. 

Figure 8.6 shows schematically how subsampling can be viewed. The technique 

of subsampling has also been called two-stage sampling because the sample is taken 

in two steps: 

1. Select a sample of units (called the primary units) 
2. Select a sample of elements within each unit. 

 

Figure 8.6  Schematic illustration of two-stage sampling. In this example seven primary 
sampling units occur in the study area, and they contain different number of elements (from 4 
to 49). For example, the 7 primary units could be 7 lakes of varying size and the elements 
could be benthic areas of 10 cm2. Alternatively they could be 7 woodlands varying in size from 
4 to 49 ha.  (• ) Sample elements selected for counting. 
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Many examples can be cited: 

Type of data Primary sample unit Subsamples or Elements 

Aphid infestation Sycamore tree Leaves within a tree 

DDT contamination Clutch of eggs Individual eggs 

Plankton 100-liter sample 1 ml subsample 

Pollen profiles in peat 1 cm3 peat at given depth Microscope slides of pollen grains 

Fish population in streams Entire stream 

 

Habitat section of stream 

If every primary sampling unit contains the same number of elements, subsampling is 

relatively easy and straightforward (Cochran, 1977, Chapter 10). But in most ecological 

situations, the primary sample units are of unequal size, and sampling is more 

complex. For example, different sycamore trees will have different numbers of leaves. 

It is important in ecological multistage sampling that the elements are of equal size–

only the primary sampling units can vary in size. For example, if you are surveying 

different size woodlands, you should use a constant quadrat size in all of the 

woodlands.   

Clearly subsampling could be done at several levels and thus two-stage sampling 

can be generalized to 3-stage sampling, and the general term multistage sampling is 

used to describe any design in which there are two or more levels of sample selection 

(Hankin 1984). 

8.5.1 Sampling Units of Equal Size 

Consider first the simplest case of multistage sampling in which n primary sample units 

are picked and m subsamples are taken in each unit. For example, you might take 20 

plankton samples (each of 100 liters of lake water) and from each of these 20 samples 

count four subsamples (elements) of 1 ml each. We adopt this notation: 

 xij = measured value for the j element in primary unit i  

 xi = mean value per element in primary unit I = 
1

m
ij

j

x
m=

 
 
 

∑  

The mean of the total sample is given by: 
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1
 = 

n
i

i

xx
n=

=  
 
 

∑  (8.40) 

The standard error of this mean is (from Cochran 1977 p. 277): 

( )1 22 21
1 2

11S.E.  = 
f ffx s s

n mn

=  −−   +          
 (8.41) 

where: 

1

2

 = Sampling fraction in first stage
  = Number of primary units sampled/Total number of primary units
 = Sampling fraction in second stage

   = Number of elements sampled/Number of elements per unit

f

f

n = Number of primary units sampled
 = Number of elements sampled per unitm

( )
2n

2
1  = / 1

     = Variance among primary unit means
is x x n

= − − 
 

∑  (8.42) 

( )22
2  = / ( 1)

     = Variance among elements within primary units 

n m

ij is x x n m − −  ∑∑  (8.43) 

If the sampling fractions are small, the finite population corrections (f1, f2) can be 

omitted. Note that the standard error can be easily decomposed into 2 pieces, the first 

piece due to variation among primary sampling units, and the second piece due to 

variation within the units (among the subsamples). 

Box 8.4 illustrates the use of these formulae in subsampling. Program SAMPLE 

(Appendix 6, page 000) will do these calculations. 

Box 8.4  MULTISTAGE SAMPLING: SUBSAMPLING WITH PRIMARY UNITS OF  
    EQUAL SIZE 

A limnologist estimated the abundance of the cladoceran Daphnia magna by filtering 
1000 liters of lake water (= sampling unit) and subdividing it into 100 subsamples (= 
elements), of which 3 were randomly chosen for counting.  One day when he 
sampled he got these results (number of Daphnia counted): 

Subsample Sample 9.1 Sample 9.2 Sample 9.3 Sample 9.4 
1 46 33 27 39 
2 30 21 14 31 
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3 42 56 65 45 

Mean 39.33 36.67 35.33 38.33 
In this example, n = 4 primary units sampled and N is very large (> 105) so the 
sampling fraction in the first stage (f1 ) is effectively 0.0.  In the second stage m = 3 of 
a total of M = 100 possible elements, so the sampling fraction f2 is 0.03. 

     The mean number of Daphnia per 10 liters is given by equation (8.40): 

1
39.33 36.67 35.33 38.33    +  +  +   37.42 

4 4 4 4

n
i

i

xx
n

Daphnia
=

=  =  
 

= =

∑
 

Note that this is the same as the mean that would be estimated if the entire data set 
were treated as a simple random sample.  This would not be the case if the number 
of subsamples varied from primary sample unit to unit. 
     The standard error of the estimated mean is from equation (8.41): 

( ) ( )1 22 21
1 2

= 11S.E.
f ffx s s

n mn
−−

= +  

First, calculate 2 2
1 2 and s s : 

( ) ( )

2

2 2
2
1

2 2 2
2
2

(39.33 - 37.42) (36.67 - 37.42)  +  + 
1 3 3

     3.1368 (variance among primary unit means)
46 39.33 (30 39.33)

( 1) 4(2) 4(2)
    284.333 (variance among s

i

ij i

x x
s

n

x x
s

n m
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−
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
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It is clear from the original data that there is much more variation among the 
subsamples than there is among the primary samples.  Since f1 is nearly zero, the 
second term disappears and  

( )
= 1S.E.  =  (3.1368) = 0.8856

4
x  

The 95% confidence interval would be ( tα  = 2.20 for 11 d.f.): 

( )
=

S.E.
37.42  2.20(0.8856)
x t xα

=
±

±
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or from 35.5 to 39.4 Daphnia per 10 liters of lake water.  If you wish to express these 
values in terms of the original sampling unit of 1000 liters, multiply them by 100 
     Program SAMPLE (Appendix 6) will do these calculations. 

8.5.2 Sampling Units of Unequal Size 

If the sampling units are of varying size, calculations of the estimated means and 

variances are more complex. I will not attempt to summarize the specific details in this 

book because they are too complex to be condensed simply (cf. Cochran 1977, 

Chapter 11). 

There are two basic choices that you must make in selecting a multistage 

sampling design model - whether to chose the primary sampling units with equal 

probability or with probability proportional to size (PPS). For example, in Figure 8.6 we 

could choose two of the 7 primary sampling units at random, assigning probability of 1 

in 7 to each. Alternatively, we could note that there are 123 elements in the study area 

in Figure 8.6, and that the largest unit has 49 elements, so its probability of selection 

should be 49/123 or 0.40, while the smallest unit has only 4 elements, so its probability 

of selection should be 0.03. 

It is usually more efficient to sample a population with some type of PPS sampling 

design (Cochran 1977). But the problem is that, before you can use PPS sampling, you 

must know (or have a good estimate of) all the numbers of elements in each of the 

primary units in the population (the equivalent to the information in Figure 8.6). If you 

do not know this, (as is often the case in ecology), you must revert to simple random 

sampling or stratified sampling, or do a pilot study to get the required information. 

Cochran (1977) shows that often there is little loss in precision by making a rough 

estimate of the size of each primary unit, and using probability-proportional-to-

estimated-size (PPES) sampling. 

Cochran (1977, Chapter 11) has a clear discussion of the various methods of 

estimation that are applied to multistage sampling designs. Hankin (1984) discusses 

the application of multistage sampling designs to fisheries research, and notes the 

need for a computer to calculate estimates from the more complex models (Chao 

1982). We have already applied a relatively simple form of PPS sampling to aerial 
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census (pp. 000-000). Ecologists with more complex multistage sampling designs 

should consult a statistician. Program SAMPLE (Appendix 6, page 000) will do the 

calculations in Cochran (1977, Chapter 11) for unequal size sampling units for equal 

probability, PPS, or PPES sampling. 

With multistage sampling you must choose the sample sizes to be taken at each 

stage of sampling. How many sycamore trees should you choose as primary sampling 

units? How many leaves should you sample from each tree? The usual 

recommendation is to sample the same fraction of elements in each sampling unit, 

since this will normally achieve a near-optimal estimate of the mean (Cochran 1977 p. 

323). To choose the number of primary units to sample in comparison to the number of 

elements to sample within units, you need to know the relative variances of the two 

levels. For example, the total aphid population per sycamore tree may not be very 

variable from tree to tree, but there may be great variability from leaf to leaf in aphid 

numbers. If this is the case, you should sample relatively few trees and sample more 

leaves per tree. Cochran (1977) should be consulted for the detailed formulae, which 

depend somewhat on the relative costs of sampling more units compared with 

sampling more elements. Schweigert and Sibert (1983) discuss the sample size 

problem in multistage sampling of commercial fisheries. One useful rule-of-thumb is to 

sample an average of m elements per primary sampling unit where: 

2
2
2
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s
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For example, from the data in Box 8.4, 2
1s  = 3.14 and 2

2s  = 284.3 and M = 100 possible 

subsamples per primary unit: thus - 

2 284.3 = 3.14 -  = 0.29
100

284.3  = 31.3 elements
0.29

Us

m

 
 
 

≈
 

There are 100 possible subsamples to be counted, and this result suggests you should 

count 31 of the 100. This result reflects the large variance between subsample counts 

in the data of Box 8.4. 

Once you have an estimate of the optimal number of subsamples (m in equation 

8.44) you can determine the sample size of the primary units (n) from knowing what 

standard error you desire in the total mean x
=

 (equation 8.39) from the approximate 

formula: 

2
2 2 22
1 2 1

1 1 1S.E.  = sx s s s
n M mn N

=      − + −        
 (8.45) 

where: 

( )
2
1
2
2

=
S.E. x   Desired standard error of mean

  Sample size of primary units needed
  Variance among primary units (equation 8.41)
  Variance among elements (equation 8.38)
  Total number of element

n
s
s
M

=
=
=
=
= s per primary unit

  Optimal number of elements to subsample (equation 8.43)m =

 

This equation can be solved for n if all the other parameters have been estimated in a 

pilot survey or guessed from prior knowledge. 

8.6 SUMMARY 
If you cannot count or measure the entire population, you must sample. Several types 

of sampling designs can be used in ecology. The more complex the design, the more 

efficient it is, but to use complex designs correctly you must already know a great deal 

about your population. 
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Simple random sampling is the easiest and most common sampling design. Each 

possible sample unit must have an equal chance of being selected to obtain a random 

sample. All the formulas of statistics are based on random sampling, and probability 

theory is the foundation of statistics. Thus you should always sample randomly when 

you have a choice. 

In some cases the statistical population is finite in size and the idea of a finite 

population correction must be added into formulae for variances and standard errors. 

These formulas are reviewed for measurements, ratios, and proportions. 

Often a statistical population can be subdivided into homogeneous 

subpopulations, and random sampling can be applied to each subpopulation 

separately. This is stratified random sampling, and represents the single most powerful 

sampling design that ecologists can adopt in the field with relative ease. Stratified 

sampling is almost always more precise than simple random sampling, and every 

ecologist should use it whenever possible. 

Sample size allocation in stratified sampling can be determined using proportional 

or optimal allocation. To use optimal allocation you need to have rough estimates of 

the variances in each of the strata and the cost of sampling each strata. Optimal 

allocation is more precise than proportional allocation, and is to be preferred. 

Some simple rules are presented to allow you to estimate the optimal number of 

strata you should define in setting up a program of stratified random sampling. 

If organisms are rare and patchily distributed, you should consider using adaptive 

cluster sampling to estimate abundance. When a randomly placed quadrat contains a 

rare species, adaptive sampling adds quadrats in the vicinity of the original quadrat to 

sample the potential cluster. This additional non-random sampling requires special 

formulas to estimate abundance without bias. 

Systematic sampling is easier to apply in the field than random sampling, but may 

produce biased estimates of means and confidence limits if there are periodicities in 

the data. In field ecology this is usually not the case, and systematic samples seem to 

be the equivalent of random samples in many field situations. If a gradient exists in the 
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ecological community, systematic sampling will be better than random sampling for 

describing it. 

More complex multistage sampling designs involve sampling in two or more 

stages, often called subsampling. If all the sample units are equal in size, calculations 

are simple. But in many ecological situations the sampling units are not of equal size, 

and the sampling design can become very complex so you should consult a 

statistician. Multistage sampling requires considerable background information and 

unless this is available, ecologists are usually better off using stratified random 

sampling.  

It is always useful to talk to a professional statistician about your sampling design 

before you begin a large research project. Many sampling designs are available, and 

pitfalls abound.  
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QUESTIONS AND PROBLEMS 
8.1. Reverse the ratio calculations for the wolf-moose data in Box 8.2 (page 000) and 

calculate the estimated ratio of moose to wolves for these data, along with the 
95% confidence interval. Are these limits the reciprocal of those calculated in Box 
8.2? Why or why not?  
(a) How would these estimates change if the population was considered infinite 
instead of finite? 

8.2. Assume that the total volume of the lake in the example in Box 8.4 (page 000) is 1 
million liters (N). Calculate the confidence limits that occur under this assumption 
and compare them with those in Box 8.4 which assumes N is infinite. 

8.3. In the wood lemming (Myopus schisticolor) in Scandinavia there are two kinds of 
females - normal females that produce equal numbers of males and females, and 
special females that produce only female offspring. In a spruce forest with an 
estimated total population of 72 females, a geneticist found in a sample of 41 
females, 15 individuals were female-only types. What is the estimate of the 
fraction of normal females in this population? What are the 95% confidence 
limits? 

8.4. Hoisaeter and Matthiesen (1979) report the following data for the estimation of 
seaweed (Ulva) biomass for a reef flat in the Philippines: (quadrat size 0.25 m2) 

Stratum Area (m2) Sample size Mean (g) Variance 

I (near shore) 2175 9 0.5889 0.1661 

II 3996 14 19.3857 179.1121 

III 1590 7 2.1429 3.7962 

IV 

 

1039 6 0.2000 0.1120 

Estimate the total Ulva biomass for the study zone, along with its 95% confidence 
limits. Calculate proportional and optimal allocations of samples for these data, 
assuming the cost of sampling is equal in all strata, and you require a confidence 
belt of ±25% of the mean. 

8.5. Tabulate the observed no. of clams (x) in column 6 of Table 8.4 (page 000) in a 
cumulative frequency distribution. Estimate the optimal strata boundaries for this 
variable, based on 3 strata, using the cum f  procedure. How do the results of 
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this stratification differ from those stratified on the depth variable (as in Table 
8.4)? 

8.6. A plant ecologist subsampled 0.25 m2 areas within 9 different deer-exclosures of 
16 m2. She subsampled 2 areas within each exclosure, and randomly selected 9 
of 18 exclosures that had been established in the study area. She got these 
results for herb biomass (g dry weight per 0.25 m2): 
 Exclosure no. 

Subsample 3 5 8 9 12 13 15 16 18 

A 2 5 32 23 19 16 23 25 13 

B 26 3 6 9 8 7 9 3 9 

Estimate the mean biomass per 0.25 m2 for these exclosures, along with 95% 
confidence limits. How would the confidence limits for the mean be affected if you 
assumed all these estimates were replicates from simple random sampling with n 
= 18? What recommendation would you give regarding the optimal number of 
subsamples for these data? 

8.7. Describe an ecological sampling situation in which you would not recommend 
using stratified random sampling. In what situation would you not recommend 
using adaptive cluster sampling? 

8.8. How does multistage sampling differ from stratified random sampling? 

8.9. Use the marked 25 x 25 grid on Figure 6.2 of the redwood seedlings (page 000) to 
set out an adaptive sampling program to estimate density of these seedlings. 
From a random number table select 15 of the possible 625 plots and apply 
adaptive cluster sampling to estimate density. Compare your results with simple 
random sampling of n = 15 quadrats. 
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