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Chapter 4 

Stratified Sampling 

An important objective in any estimation problem is to obtain an estimator of a population parameter 

which can take care of the salient features of the population. If the population is homogeneous with 

respect to the characteristic under study, then the method of simple random sampling will yield a 

homogeneous sample, and in turn, the sample mean will serve as a good estimator of the population 

mean. Thus, if the population is homogeneous with respect to the characteristic under study, then the 

sample drawn through simple random sampling is expected to provide a representative sample. 

Moreover, the variance of the sample mean not only depends on the sample size and sampling fraction 

but also on the population variance. In order to increase the precision of an estimator, we need to use a 

sampling scheme which can reduce the heterogeneity in the population. If the population is 

heterogeneous with respect to the characteristic under study, then one such sampling procedure is a 

stratified sampling. 

 

The basic idea behind the stratified sampling is to  

 divide the whole heterogeneous population into smaller groups or subpopulations, such that the 

sampling units are homogeneous with respect to the characteristic under study within the 

subpopulation and  

 heterogeneous with respect to the characteristic under study between/among the 

subpopulations. Such subpopulations are termed as strata. 

 Treat each subpopulation as a separate population and draw a sample by SRS from each 

stratum. 

[Note: ‘Stratum’ is singular and ‘strata’ is plural]. 

 

Example: In order to find the average height of the students in a school of class 1 to class 12, the 

height varies a lot as the students in class 1 are of age around 6 years, and students in class 10 are of 

age around 16 years. So one can divide all the students into different subpopulations or strata such as  

Students of class 1, 2 and 3: Stratum 1 

Students of class 4, 5 and 6: Stratum 2 

Students of class 7, 8 and 9: Stratum 3 

Students of class 10, 11 and 12: Stratum 4 

Now draw the samples by SRS from each of the strata 1, 2, 3 and 4. All the drawn samples combined 

together will constitute the final stratified sample for further analysis. 
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Notations: 

We use the following symbols and notations: 

N : Population size 

k : Number of strata 

Ni : Number of sampling units in ith strata 

1

k

i

i

N N


  

ni  : Number of sampling units to be drawn from ith stratum. 

1

 : Total sample size
k

i

i

n n


  

 

 

 

Population (N units) 

Stratum 1 

N1 units 

Stratum 2 

N2 units 

Stratum k 

Nk units 
… … … 

 

 … 

 

Sample 

1  

n1 units 

Sample 

2  

n2 units 

Sample 

k 

 nk units 

1

k

i

i

N N


  

1

k

i

i

n n




 

… … … 

 

 … 
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Procedure of stratified sampling 

Divide the population of N units into k strata. Let the ith stratum has 1, 1,2,...,N i k  number of units.  

 Strata are constructed such that they are non-overlapping and homogeneous with respect to the 

characteristic under study such that 
1

.
k

i

i

N N


  

 Draw a sample of size in  from ith ( 1,2,..., )i k  stratum using SRS (preferably WOR) 

independently from each stratum. 

 All the sampling units drawn from each stratum will constitute a stratified sample of size 

1

.
k

i

i

n n


  

 

Difference between stratified and cluster sampling schemes 

In stratified sampling, the strata are constructed such that they are 

 within homogeneous and 

 among heterogeneous. 

 

In cluster sampling, the clusters are constructed such that they are  

 within heterogeneous and 

 among homogeneous. 

[Note: We discuss the cluster sampling later.]  

 

Issues in the estimation of parameters in stratified sampling 

Divide the population of N  units in k  strata. Let the i th  stratum has , 1,2,...,iN i k  number of units. 

Note that there are k independent samples drawn through SRS of sizes 1 2, ,..., kn n n
 
from each of the 

strata. So, one can have k estimators of a parameter based on the sizes 1 2, ,..., kn n n  respectively. Our 

interest is not to have k different estimators of the parameters, but the ultimate goal is to have a single 

estimator. In this case, an important issue is how to combine the different sample information together 

into one estimator, which is good enough to provide information about the parameter. 

 

 

We now consider the estimation of population mean and population variance from a stratified sample. 
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Estimation of population mean and its variance 

Let 

:Y characteristic under study, 

:ijy value of jth unit in ith stratum j = 1,2,…,ni, i = 1,2,...,k, 

1

1
:

iN

i ij

ji

Y y
N 

  population mean of ith stratum 

1

1
:

in

i ij

ji

y y
n 

  sample mean from ith stratum  

1 1

1
:

k k

i i i i

i i

Y N Y wY
N  

   population mean where .i
i

N
w

N
  

 

Estimation of population mean: 

First, we discuss the estimation of the population mean. 

Note that the population mean is defined as the weighted arithmetic mean of stratum means in the case 

of stratified sampling where the weights are provided in terms of strata sizes. 

Based on the expression 
1

1
,

k

i i

i

Y N Y
N 

   one may choose the sample mean 

1

1 k

i i

i

y n y
n 

   

as a possible estimator of Y . 

 

Since the sample in each stratum is drawn by SRS, so 

( ) ,i iE y Y  

thus 

1

1

1
( ) ( )

1

k

i i

i

k

i i

i

E y n E y
n

n Y
n

Y













  

and y  turns out to be a biased estimator of Y . Based on this, one can modify y  so as to obtain an 

unbiased estimator of Y . Consider the stratum mean which is defined as the weighted arithmetic mean 

of strata sample means with strata sizes as weights given by 

1

1
.

k

st i i

i

y N y
N 

   
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Now 

1

1

1
( ) ( )

1

k

st i i

i

k

ii

i

E y N E y
N

N Y
N

Y













  

Thus sty  is an unbiased estimator of Y . 

 

Variance of sty  

2

1 ( ) 1 1

( ) ( ) ( , ).
ink k

st i i i j i j

i i j j

Var y w Var y w w Cov y y
   

     

Since all the samples have been drawn independently from each of the strata by SRSWOR so  

2

( , ) 0,

( )

i j

i i
i i

i i

Cov y y i j

N n
Var y S

N n

 




 

2 2

1

2 2

1

2
2

1

where

1
( ) .

1

Thus

( )

1 .

iN

ii ij

ji

k
i i

st i i

i i i

k
i i

i

i i i

S Y Y
N

N n
Var y w S

N n

n S
w

N n







 





 
  

 







 

Observe that ( )stVar y  is small when 
2

iS  is small. This observation suggests how to construct the strata. 

If 
2

iS  is small for all i = 1,2,...,k, then ( )stVar y  will also be small.  

The total variation in the population is fixed and can be orthogonally partitioned into   between and 

within strata variations, i.e.,  

Total variation = Between strata variation + Within strata variation (
2

iS ).  

Since 
2

iS is small, so obviously “Between strata variation” has to be large. That is why it was 

mentioned earlier that the strata are to be constructed such that they are within homogeneous, i.e., 
2

iS  

is small and among heterogeneous (“Between strata variation” is large). 
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For example, the units in geographical proximity will tend to be more closer. The consumption pattern 

in the households will be similar within a lower income group housing society and within a higher 

income group housing society, whereas they will differ a lot between the two housing societies based 

on income. 

 

Estimate of Variance 

Since the samples have been drawn by SRSWOR, so 

2 2

2 2

1

2

2

1

2 2

1

( )

1
where ( )

1

and ( )

so ( ) ( )

 

i

i i

n

i ij i

ji

i i
i i

i i

k

st i i

i

k
i i

i i

i i i

E s S

s y y
n

N n
Var y s

N n

Var y w Var y

N n
w s

N n









 







 
  

 






 

 

Note: If SRSWR is used instead of SRSWOR for drawing the samples from each stratum, then in this 

case 

1

2
2 2 2

1 1

2 2

1

2 2

1

( )

1
( )  

( )

1
where ( ) .

i

k

st i i

i

st

k k
i i

st i i i

i ii i i

k
i i

st

i i

N

i ij i

ji

y w y

E y Y

N
Var y w S w

N n n

w s
Var y

n

y y
n







 









 
  

 



 



 




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Advantages of stratified sampling 

1. Data of known precision may be required for certain parts of the population. 

 This can be accomplished with a more careful investigation to a few strata. 

Example: In order to know the direct impact of the hike in petrol prices, the population can be 

divided into strata like lower income group, middle-income group and higher income group. 

Obviously, the higher income group is more affected than the lower-income group. So more 

careful investigation can be made in the higher income group strata. 

2.         Sampling problems may differ in different parts of the population. 

Example: To study the consumption pattern of households, the people living in houses, hotels, 

hospitals, prison etc. are to be treated differently. 

3. Administrative convenience can be exercised in stratified sampling. 

Example: In taking a sample of villages from a big state, it is more administratively convenient 

to consider the districts as strata so that the administrative set up at district level may be used 

for this purpose. Such administrative convenience and the convenience in the organization of 

fieldwork are important aspects in national level surveys. 

4. Full cross-section of the population can be obtained through stratified sampling. It may be 

possible in SRS that some large part of the population may remain unrepresented. Stratified 

sampling enables one to draw a sample representing different segments of the population to any 

desired extent. The desired degree of representation of some specified parts of the population is 

also possible. 

5. Substantial gain in efficiency is achieved if the strata are formed intelligently. 

6. In the case of skewed population, use of stratification is of importance since larger weight may 

have to be given for the few extremely large units, which in turn reduces the sampling 

variability. 

7. When estimates are required not only for the population but also for the subpopulations, then 

the stratified sampling is helpful. 

8. When the sampling frame for subpopulations is more easily available than the sampling frame 

for the whole population, then stratified sampling is helpful. 

9. If the population is large, then it is convenient to sample separately from the strata rather than 

the entire population. 

10. The population mean or population total can be estimated with higher precision by suitably 

providing the weights to the estimates obtained from each stratum. 
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Allocation problem and choice of sample sizes is different strata 

Question: How to choose the sample sizes 1 2, ,..., kn n n  so that the available resources are used in an 

effective way?  

There are two aspects of choosing the sample sizes: 

(i) Minimize the cost of survey for a specified precision. 

(ii) Maximize the precision for a given cost. 

 

Note: The sample size cannot be determined by minimizing both the cost and variability 

simultaneously. The cost function is directly proportional to the sample size, whereas variability is 

inversely proportional to the sample size. 

Based on different ideas, some allocation procedures are as follows: 

1. Equal allocation 

Choose the sample size in  to be the same for all the strata. 

Draw samples of equal size from each stratum. 

Let n be the sample size and k be the number of strata, then 

for all 1,2,..., .i

n
n i k

k
 

 

 

2. Proportional allocation 

For fixed k, select in  such that it is proportional to stratum size iN , i.e., 

     

or

i i

i i

n N

n CN




 

where C is the constant of proportionality. 

 

1 1

      

or 

.

Thus .

k k

i i

i i

i i

n CN

n CN

n
C

N

n
n N

N

 





 

 
  
 

 

 

Such allocation arises from considerations like operational convenience. 
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3. Neyman or optimum allocation 

This allocation considers the size of strata as well as variability  

*

i i i

i i i

n N S

n C N S




 

where C* is the constant of proportionality. 

*

1 1

*

1

*

1

or

or .

k k

i i i

i i

k

i i

i

k

i i

i

n C N S

n C N S

n
C

N S

 











 





 

Thus 

1

.i i
i k

i i

i

nN S
n

N S





  

This allocation arises when the  stVar y  is minimized subject to the constraint 
1

k

i

i

n


  (prespecified).  

There are some limitations to the optimum allocation. The knowledge of ( 1,2,..., )iS i k  is needed to 

know in . If there are more than one characteristics, then they may lead to conflicting allocation. 

 

Choice of sample size based on the cost of survey and variability 

The cost of the survey depends upon the nature of the survey. A simple choice of the cost function is 

 0

1

k

i i

i

C C C n


   

where 

:C  total cost 

0 :C
 
overhead cost, e.g., setting up the office, training people etc 

:iC
 
cost per unit in the ith stratum 

1

:
k

i i

i

C n



 

total cost within the sample. 

To find in  under this cost function, consider the Lagrangian function with a Lagrangian  

multiplier  as 
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2

0

2 2 2

1 1

2 2 2 2
2

1 1 1

2

1

( ) ( )

1 1

terms independent of .

st

k k

i i i i

i ii i

k k k
i i i i

i i

i i ii i

k
i i

i i i

i i

Var y C C

w S C n
n N

w S w S
C n

n N

w S
C n n

n

 







 

  



  

 
   

 

  

 
   

  

 

  



 

 

Thus   is minimum when 

     for all 

1
or  .     

i i
i i

i

i i
i

i

w S
C n i

n

w S
n

C









 

 

How to determine ?  

There are two ways to determine  . 

(i) Minimize variability for a fixed cost.  

(ii) Minimize cost for given variability. 

We consider both cases. 

 

(i) Minimize variability for fixed cost 

Let 
*

0C C  be the pre-specified cost which is fixed. 

*

0

1

*

0

1

1

*

0

So 

or

or .

k

i i

i

k
i i

i

i i

k

i i i

i

C n C

w S
C C

C

C w S

C























 

Substituting   in the expression for 
1 i i

i

i

w S
n

C
  , the optimum in  is obtained as 

*
* 0

1

.i i
i k

i
i i i

i

w S C
n

C
C w S



 
 
 
 
 
 

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The required sample size to estimate Y  such that the variance is minimum for the given cost 
*

0C C  is 

*

1

.
k

i

i

n n



 

 

(ii)  Minimize cost for a given variability 

Let 0V V  be the pre-specified variance. Now determine in  such that 

2 2

0

1

2 2 2 2

0

1 1

2 2
2 2

0

1 1

1 1
      

or

or

k

i i

i i i

k k
i i i i

i ii i

k k
i i i

i i

i ii i i

w S V
n N

w S w S
V

n N

C w S
w S V

w S N





 

 

 
  

 

 

 



 

 

 

2 2

0

1

1

1
or       (after substituting ).

k
i i

i i i i
ik

i
i i i

i

w S
V

N w S
n

C
w S C










 




 

Thus the optimum in  is 

 1

2 2

0

1

.

k

i i i

i i i
i k

i ii

i i

w S C
w S

n
w SC

V
N





 
 
 
 

 
 




 

So the required sample size to estimate Y  such that cost C is minimum for a  

prespecified variance 0V  is 
1

.
k

i

i

n n



 

 

Sample size under proportional allocation for fixed cost and for fixed variance 

(i) If cost 0C C  is fixed then 0

1

k

i i

i

C C n


  . 

Under proportional allocation, 
i i i

n
n N nw

N
   

So 0

1

k

i i

i

C n w C


    or 0

1

k

i i

i

C
n

w C





. Thus .o i

i

i i

C w
n

w C



 

 

1

The required sample size to estimate in this case is .
k

i

i

Y n n



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(ii) If variance = 0V  is fixed, then 

 

2 2

0

1

2 2 2 2

0

1 1

2 2 2 2

0

1 1

2 2

1

2 2

0

1

2 2

1

2 2

0

1

1 1
    

or

or (using )

or

or .

k

i i

i i i

k k
i i i i

i ii i

k k
i i i i

i i

i ii i

k

i i

i

k
i i

i i

k

i i

i
i i k

i i

i i

w S V
n N

w S w S
V

n N

w S w S
V n nw

nw N

w S

n
w S

V
N

w S

n w
w S

V
N



 

 









 
  

 

 

  











 

 








 

This is known as Bowley’s allocation. 

 

Variances under different allocations 

Now we derive the variance of sty  under proportional and optimum allocations. 

(i) Proportional allocation 

Under proportional allocation 

2 2

1

2

2

1

2

1

2

1

and

( )

( )

.

i i

k
i i

st i i

i i i

k i i
i

prop st i

i
i i

k
i i

i

k

i i

i

n
n N

N

N n
Var y w S

N n

n
N N

NNVar y S
n N

N N
N

N SN n

Nn N

N n
w S

Nn











 
  

 

 
  

   
  

 














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(ii)  Optimum allocation 

Under optimum allocation 

1

2 2

1

2 2 2 2

1 1

2 2
2 2 1

1 1

2 2

2
1 1 1

1 1
( )

1
.

1

i i
i k

i i

i

k

opt st i i

i i i

k k
i i i i

i ii i

k

i ik k
i i i

i i

i ii i i

k k k
i i i i

i i

i i i i

i i

nN S
n

N S

V y w S
n N

w S w S

n N

N S
w S

w S
nN S N

N S w S
N S

n N N

N S

n





 



 

  



 
  

 

 

  
  
   
  

  
  

  
   

  







 


 

  

2 22 2
2

1 1 1 1

1 1
.

k k k k
i i

i i i i

i i i ii

w S
w S w S

N N n N   

   
     

   
   

 

 

Comparison of variances of the sample mean under SRS with stratified 

mean under proportional and optimal allocation: 

(a) Proportional allocation: 

2

2

r

1

( )

( ) .

SRS

k
i i

p op st

i

N n
V y S

Nn

N SN n
V y

Nn N





 

 

In order to compare ( ) and ( ),SRS prop stV y V y  first we attempt to express 2S  as a function of 
2.iS  

Consider 

2 2

1 1

2

1 1

2 2

1 1 1 1

2 2

1 1

( 1) ( )

( ) ( )

( ) ( )

( 1) ( )

i

i

i i

Nk

ij

i j

Nk

ij i i

i j

N Nk k

ij i i

i j i j

k k

i i i i

i i

N S Y Y

Y Y Y Y

Y Y Y Y

N S N Y Y

 

 

   

 

  

     

   

   





 

 
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2 2 2

1 1

11
( ) .

k k
i i

i i

i i

N NN
S S Y Y

N N N 


      

For simplification, we assume that iN  is large enough to permit the approximation 

 
1 1

1 and 1i

i

N N

N N

 
  . 

Thus 

2 2 2

1 1

2 2 2

1 1

2

1

2

1

       ( )

-
or ( ) (Premultiply by on both sides)

      ( ) ( ) ( )

Since ( ) 0,

( )

k k
i i

i i

i i

k k
i i

i i

i i

k

SRS prop i ist

i

k

i i

i

prop st

N N
S S Y Y

N N

N NN n N n N n N n
S S Y Y

Nn Nn N Nn N Nn

N n
Var Y V y w Y Y

Nn

w Y Y

Var y Var

 

 





  

  
  


  

 

 

 

 





( ).SRS y

 

A larger gain in the difference is achieved when iY  differs from Y  more. 

 

(b) Optimum allocation 

2

2

1 1

1 1
( ) .

k k

opt st i i i i

i i

V y w S w S
n N 

 
  

 
   

Consider 

2

2 2

1 1 1

2

2

1 1

2 2

1

2

1

1 1
( ) ( )

1

1 1

1
( )

k k k

prop st opt st i i i i i i

i i i

k k

i i i i

i i

k

i i

i

k

i i

i

N n
V y V y w S w S w S

Nn n N

w S w S
n

w S S
n n

w S S
n

  

 





      
        

       

  
   

   

 

 

  

 





 

where 
1

k

i i

i

S w S


 and the larger gain in efficiency is achieved when iS  differs from S more.  

( ) ( ) 0     or    ( ) ( ).prop st opt st opt st prop stVar y Var y Var y Var y     

Combining the results in (a) and (b), we have ( ) ( ) ( )opt st prop st SRSVar y Var y Var y   



 

Sampling Theory| Chapter 4 | Stratified Sampling | Shalabh, IIT Kanpur 
Page 15 

Estimate of variance and confidence intervals 

Under SRSWOR, an unbiased estimate of 
2

iS  for the ith stratum (i = 1,2,...,k) is 

2 2

1

1
( ) .

1

in

i ij i

ji

s y y
n 

 

  

In stratified sampling, 

2 2

1

( ) .
k

i i
st i i

i i i

N n
Var y w S

N n


  

So, an unbiased estimate of ( )stVar y  is 

2 2

1

2 2 2 2

1 1

2 2
2

1 1

( )

1

k
i i

st i i

i i i

k k
i i i i

i ii i

k k
i i

i i

i ii

N n
Var y w s

N n

w s w s

n N

w s
w s

n N



 

 




 

 



 

 

 

The second term in this expression represents the reduction due to finite population correction. 

The confidence limits of Y  can be obtained as 

 ( )st sty t Var y  

assuming sty  is normally distributed and ( )stVar y  is well determined so that t can be read from 

normal distribution tables. If only few degrees of freedom are provided by each stratum, then t values 

are obtained from the table of student’s t-distribution. 

The distribution of ( )stVar y  is generally complex. An approximate method of assigning an effective 

number of degrees of freedom ( )en  to ( )stVar y  is 

2

2

1

2 4

1 1

k

i i

i

e k
i i

i i

g s

n
g s

n





 
 
 






 

where
( )i i i

i

i

N N n
g

n


  and

1

( 1) ( 1)
k

i e i

i

Min n n n


     assuming ijy  are normally distributed. 
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Modification of optimal allocation 

Sometimes in the optimal allocation, the size of subsample exceeds the stratum size. In such a case, 

 replace in  by iN  

and recompute the rest of 'in s  by the revised allocation. 

For example, if 1 1,n N  then take the revised 'in s  as 

 1 1n N  

and 

 

1

2

( )
; 2,3,...,i i

i k

i i

i

n N w S
n i k

w S



 


 

provided i in N  for all i = 2,3,…,k. 

Suppose in revised allocation, we find that 2 2n N  then the revised allocation would be 

 
1 1

2 2

1 2

3

( )
; 3,4,..., .i i

i k

i i

i

n N

n N

n N N w S
n i k

w S






 
 



 

provided i in N  for all 3,4,..., .i k  

We continue this process until every i in N . 

In such cases, the formula for the minimum variance of sty  need to be modified as 

 

* 2 * 2

*

( )
( )

i i i i

st

w S w S
Min Var y

n N
 
 

 

where *  denotes the summation over the strata in which i in N  and n* is the revised total sample 

size in the strata. 
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Stratified sampling for proportions 

If the characteristic under study is qualitative in nature, then its values will fall into one of the two 

mutually exclusive complimentary classes C and C’. Ideally, only two strata are needed in which all 

the units can be divided depending on whether they belong to C or its complement C’. Thus is difficult 

to achieve in practice. So the strata are constructed such that the proportion in C varies as much as 

possible among strata. 

Let 

:i
i

i

A
P

N
 Proportion of units in C in the ith stratum 

:i
i

i

a
p

n
 Proportion of units in C in the sample from the ith stratum 

An estimate of population proportion based on the stratified sampling is  

 
1

k
i i

st

i

N p
p

N

 . 

which is based on the indicator variable 

2

1 when unit belongs to the stratum is in
         

0 otherwise

and .

Here
1

th th

ij

st st

i
i i i

i

j i C
Y

y p

N
S P Q

N


 







 

where 1i iQ P  . 

Also 2 2

1

( ) .
k

i i
st i i

i i i

N n
Var y w S

N n


  

So 
2

2
1

( )1
( )

1

k
i i i i i

st

i i i

N N n PQ
Var p

N N n





 . 

If the finite population correction can be ignored, then 

 2

1

( )
k

i i
st i

i i

PQ
Var p w

n

 . 

If the proportional allocation is used for in  , then the variance of stp  is 

 

2

1

1

1
( )

1

k
i i i

prop st

i i

k

i i i

i

N PQN n
Var p

N Nn N

N n
w PQ

Nn
















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and its estimate is  

1

( ) .
1

k
i i

prop st i

i i

p qN n
Var p w

Nn n





  

The best choice of in such that it minimizes the variance for fixed total sample size is 

 1

i i i
i i

i

i i i

N PQ
n N

N

N PQ






 

Thus 

1

i i i

i k

i i i

i

N PQ
n n

N PQ





. 

Similarly, the best choice of in  such that the variance is minimum for fixed cost 0

1

k

i i

i

C C C n


   is  

 

1

i i
i

i

i k
i i

i

i i

PQ
nN

C
n

PQ
N

C




. 

 

Estimation of the gain in precision due to stratification 

An obvious question crops up that what is the advantage of stratifying a population in the sense that 

instead of using SRS, the population is divided into various strata? This is answered by estimating the 

variance of estimators of population mean under SRS (without stratification) and stratified sampling by 

evaluating  

 
( ) ( )

.
( )

SRS st

st

Var y Var y

Var y


 

This gives an idea about the gain in efficiency due to stratification.  

Since 2( ) ,SRS

N n
Var y S

Nn




 
so there is a need to express 2S  in terms of 

2

iS . How to estimate 2S  based 

on a stratified sample?  
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Consider 

2 2

1 1

2

1 1

2 2

1 1 1

2 2

1 1

2 2 2

1 1

( 1) ( )

( ) ( )

( ) ( )

( 1) ( )

( 1) .

i

i

i

Nk

ij

i j

Nk

ij i i

i j

Nk k

ij i i

i j i

k k

i i i i

i i

k k

i i i i

i i

N S Y Y

Y Y Y Y

Y Y N Y Y

N S N Y Y

N S N wY Y

 

 

  

 

 

  

     

   

   

 
    

 





 

 

 

 

In order to estimate 2S , we need to estimates of 
2 2 2, and .i iS Y Y We consider their estimation one by 

one. 

  

(I) For an estimate of 
2

iS , we have 

 
2 2( )i iE s S  

So 2 2ˆ .i iS s  

 

(II) For estimate of 
2 ,iY  we know 

 

2 2

2 2

2 2
or

( ) ( ) [ ( )]

( )

 ( ) ( ).

i i i

i i

i i i

Var y E y E y

E y Y

Y E y Var y

 

 

 
 

 

An unbiased estimate of 
2

iY  is 

 

2 2

2 2

ˆ ( )

.

i i i

i i
i i

i i

Y y Var y

N n
y s

N n

 

 
   

 

 

(III) For the estimation of 
2 ,Y  we know  

 

2 2

2 2

2 2

( ) ( ) [ ( )]

( )

( ) ( )

st st st

st

st st

Var y E y E y

E y Y

Y E y Var y

 

 

  
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So, an estimate of 2Y  is 

 

2 2

2 2 2

1

ˆ ( )

.

st st

k
i i

st i i

i i i

Y y Var y

N n
y w s

N n

 

 
   

 


 

Substituting these estimates in the expression 
2( 1)n S  as follows, the estimate of 2S  is obtained as 

 

2 2 2 2

1 1

2 2 2 2

1 1

2 2 2 2 2 2

1 1 1

( 1) ( 1)

1 ˆ ˆˆ ˆ( 1)
1 1

1
1

1 1

k k

i i i i

i i

k k

i i i i

i i

k k k
i i i i

i i i i i st i i

i i ii i i i

N S N S N w Y Y

N
as S N S w Y Y

N N

N n N nN
N s w y s y w s

N N N n N n

 

 

  

 
     

 

 
       

       
                      

 

 

  

  2 2 2

1 1 1

1
1 ( ) (1 ) .

1 1

k k k
i i

i i i i st i i i

i i i i i

N nN
N s w y y w w s

N N N n  


 
  

  
           

  

 

Thus 

2

2 2 2

1 1 1

2 2

1

ˆ( )

( )
( 1) ( ) (1 )

( 1) ( 1)

and

( ) .

SRS

k k k
i i

i i i i st i i i

i i i i i

k
i i

st i i

i i i

N n
Var y S

Nn

N nN n N N n
N s w y y w w s

N N n nN N N n

N n
Var y w s

N n

  






   
           




  



 

 

Substituting these expressions in 

 
( ) ( )

,
( )

SRS st

st

Var y Var y

Var y


 

the gain in efficiency due to stratification can be obtained. 

 

If any other particular allocation is used, then substituting the appropriate under that allocation,in
 

such gain can be estimated. 
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Interpenetrating subsampling 

Suppose a sample consists of two or more subsamples which are drawn according to the same 

sampling scheme. The samples are such that each subsample yields an estimate of the parameter. Such 

subsamples are called interpenetrating subsamples. 

 

The subsamples need not necessarily be independent. The assumption of independent subsamples 

helps in obtaining an unbiased estimate of the variance of the composite estimator. This is even helpful 

if the sample design is complicated and the expression for variance of the composite estimator is 

complex. 

 

Let there be g independent interpenetrating subsamples and 1 2, ,..., gt t t be g unbiased estimators of 

parameter   where ( 1, 2,..., )jt j g  is based on jth interpenetrating subsample. 

 

Then an unbiased estimator of   is given by 

 
1

1ˆ , say.
g

j

j

t t
g




   

Then 

 ˆ( ) ( )E E t    

and 

 2

1

1ˆ( ) ( ) ( )
( 1)

g

j

j

Var Var t t t
g g




  

 . 

Note that   

           

2 2

1

1

2

1
( ) ( ) ( )

( 1)

1
( ) ( )

( 1)

1
( ) ( ) ( )

( 1)

g

j

j

g

j

j

E Var t E t g t
g g

Var t gVar t
g g

g g Var t Var t
g g

 




 
          

 
  

  

  




  

If the distribution of each estimator tj is symmetric about  , then the confidence interval of   can be 

obtained by 

1

1 2 1 2

1
( , ,..., ) ( , ,..., ) 1 .

2

g

g gP Min t t t Max t t t



 
      

 
 



 

Sampling Theory| Chapter 4 | Stratified Sampling | Shalabh, IIT Kanpur 
Page 22 

Implementation of interpenetrating subsamples in stratified sampling 

Consider the set up of stratified sampling. Suppose that each stratum provides an independent 

interpenetrating subsample. So based on each stratum, there are L independent interpenetrating 

subsamples drawn according to the same sampling scheme. 

 

Let ( )
ˆ
ij totY  be an unbiased estimator of the total of jth stratum based on the ith subsample , 

i = 1,2,...,L; j = 1,2,...,k. 

 

An unbiased estimator of the jth stratum total is given by 

 ( ) ( )

1

1ˆ ˆ
J

j tot ij tot

i

Y Y
L 

   

and an unbiased estimator of the variance of ( )
ˆ

j totY  is given by 

 
2

( ) ( ) ( )

1

1ˆ ˆ ˆ( ) ( )
( 1)

L

j tot ij tot j tot

i

Var Y Y Y
L L 

 

 . 

Thus an unbiased estimator of population total totY  is 

 
( ) ( )

1 1 1

1ˆ ˆ ˆ
k L k

tot j tot ij tot

j i j

Y Y Y
k  

    

And an unbiased estimator of its variance is given by 

 

( )

1

2

( ) ( )

1 1

ˆ ˆ( ) ( )

1 ˆ ˆ             ( ) .
( 1)

k

tot j tot

j

L k

ij tot j tot

i j

Var Y Var Y

Y Y
L L



 



 





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Post Stratifications 

Sometimes the stratum to which a unit belongs may be known after the field survey only. For example, 

the age of persons, their educational qualifications etc. can not be known in advance. In such cases, we 

adopt the post-stratification procedure to increase the precision of the estimates. 

 

Note: This topic is to be read after the next module on ratio method of estimation. Since it is related to 

the stratification, so it is given here.  

 

In post-stratification, 

 draw a sample by simple random sampling from the population and carry out the survey. 

 After the completion of the survey, stratify the sampling units to increase the precision of the 

estimates. 

Assume that the stratum size iN  is fairly accurately known. Let 

:im
 
number of sampling units from ith stratum, i = 1,2,...,k. 

1

.
k

i

i

m n


  

Note that im  is a random variable (and that is why we are not using the symbol in  as earlier). 

 

Assume n is large enough or the stratification is such that the probability that some 0im 
 
is negligibly 

small. In case, 0im   for some strata, two or more strata can be combined to make the sample size 

non-zero before evaluating the final estimates. 

 

A post stratified estimator of the population mean Y  is 

 
1

1 k

post i i

i

y N y
N 

  . 

Now 

 

1 2

1

1

1
( ) ( , ,..., )

1





 
  

 

 
  

 







k

post i i k

i

k

i i

i

E y E N E y m m m
N

E N Y
N

Y
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1 2 1 2
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To find , proceed as follows :
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Consider the estimate of ratio based on ratio method of estimation as 
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We know that 
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Using these values in ˆ( ) ,E R R we have 

2

2 2

( )( )ˆ             ( ) .
( 1)

Thus

( )( )1 1 1
            

( 1)

( ) 1
1 .

( 1)
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i
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N n N N

n N N N n n
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    

 

 
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Replacing im  in place of ,in  we obtain 
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Now substitute this in the expression of ( )postVar y  as 
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Assuming 1 .N N   
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The second term is the contribution to the variance of posty  due to 'im s  not being proportionately 

distributed. 
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If 
2 2 ,i wS S  say for all i, then the last term in the expression is 
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
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The increase in the variance over ( )prop stVar y  is small if the average sample size 
2

n
n   per stratum is 

reasonably large. 

 

Thus a post-stratification with a large sample produces an estimator which is almost as precise as an 

estimator in the stratified sampling with proportional allocation. 

 


