Bootstrap Sampling Distribution and
Confidence Intervals

MTH 541/643: Statistics Theory 11
Instructor: Songfeng Zheng

For some simple cases, we have seen how we can obtain the sampling distribution and
based on the sampling distribution, how we can obtain the confidence intervals for the
unknown parameters. In all the examples, and in theory, only standard distributions allow
us to perform these tasks by the introduced methods. However, in many applications, the
underlying probability model is very complicated or even unknown, and this makes it very
difficult or impossible to obtain sampling distribution. In some other cases, the sampling
distribution can be derived in theory, but it is too complicated to apply. We know the
sampling distribution and confidence interval are desired properties about the estimator. In
these situations, we can use computer simulation to find the sampling distribution and
approximate confidence intervals.

We will introduce the R programming for the simulation method via an example (we have
already studied). The method introduced here is called Bootstrap method.

The Poisson distribution has been used by traffic engineers as a model for light traffic,
based on the rationale that if the rate is approximately constant and the traffic is light (so
the individual cars move independently of each other), the distribution of counts of cars in a
given time interval or space area should be nearly Poisson (Gerlough and Schuhl 1955). The
following table shows the number of right turns during 300 3-minute intervals at a specific
intersection.
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If we suppose Poisson model might be a good model for this dataset, we still need to find out
what Poisson, that is estimate the parameter A in the Poisson model:

x —A
P(X=x)=2C"

Of course, we can use the formula to calculate MLE or MM of the parameter A in the

Poisson model as: A = X (please check this yourselves). The sampling distribution for A can
also be derived as a standard form. For the purpose of demonstrating, let us assume we
don’t know the standard distribution and use this as an example to show the computer
simulation.

Bootstrap Sampling Distribution

Imagine for the moment that we knew the true value of the parameter A;. This means that

the true distribution is known. So we could generate many, many samples of size 300 from
the Poisson distribution with the parameter 4,, and for each of these samples, we could

calculate estimates of 4 . A histogram of the values of the estimates of 4 should then give

us a good idea of the sampling distribution of )

The only problem with this idea is that it requires knowing the true parameter value,

which we don’t know in practice. We can substitute our estimated value of A=3.8933 for
the true value. Suppose from this Poisson distribution, we can draw B samples of size n =

300, and using Method of Moment or MLE to estimate A for each sample. Please see the
following code:

# read the data

y <- c(rep(0,14), rep(1,30), rep(2,36), rep(3,68), rep(4, 43), rep(5,43), rep(6, 30), rep(7,14),
rep(8,10), rep(9, 6), rep(10,4), rep(11,1), rep(12,1))

n <- length(y)
NegLogLike<-function(p){

NegLogLike <- -(mean(y*log(p))-p-mean(log(factorial(y))))
}
# using MLE to find the estimated value
out<-nlm(NegLogLike, p=c(0.5), hessian = TRUE)

lambda_hat MLE <- out$estimate



# Next, we show how to do the sampling and redo estimation. Basically this will use a for
loop.

B <- 2000 # we will sample 2000 samples and estimate 2000 times
# we will save the bootstrap results in this array, and this array is initialized as 0 vector
lambda_hat_ MLE_Bootstrapl <- rep(0,B)
for(i in 1:B) # for loop, we will repeat the experiment B times
{
# get a sample of size n, with parameter lambda_hat MLE
y <- rpois(n, lambda_hat_MLE)
# for this new sample, find the MLE
out<-nlm(NegLogLike, p=c(0.5), hessian=TRUE)
# save the estimation result of the i-th iteration
lambda_hat MLE_Bootstrapl [il<- out$estimate

}

hist(lambda_hat_MLE_Bootstrapl, main="sampling distribution of Bootrapped MLE for
Poisson", xlab = "estimated value", breaks=50, prob=TRUE)

curve(dnorm(x, mean=mean(lambda_hat MLE_Bootstrap1), sd=
sd(lambda_hat_ MLE_Bootstrap1)),col="blue',add=TRUE)

The blue curve shows the normal curve, and we can see the sampling distribution is very
close to normal.

The above shows the histogram of the bootstrapped MLE for Poisson distribution, and this
will give us a rough idea of the sampling distribution of /i The variability shown by the
histogram can be summarized by calculating the standard deviation of the B estimates,

thus providing estimated standard error of /i To be precise, if the B estimates of 4 are

denoted by ﬂn’*o i=12L B , then the standard error of A can be estimated as
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where 1 is the mean of the B estimated values. The standard error can be calculated
efficiently using a command in R by sd(lambda_hat_MLE_Bootstrap1).

For the method of moment, we can do the same sampling process to obtain the approximate
sampling distribution.

sampling distribution of lambda_hat_MLE_Bootstrap
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Note: The above method is from Mathematical Statistics and Data Analysis, 3-rd Edition,
by John A. Rice. In this method, the Bootstrap is different from other literature, and
another version of Bootstrap is introduced below

Another Version of Bootstrap

The following description for Bootstrap is widely accepted in literature, and it is available
at http://en.wikipedia.org/wiki/Bootstrapping (statistics)

The basic 1dea of bootstrapping is that the sample we have collected is often the best guess
we have as to the shape of the population from which the sample was taken. For instance, a
sample of observations with two peaks in its histogram would not be well approximated by
a Gaussian or normal bell curve, which has only one peak. Therefore, instead of assuming a
mathematical shape (like the normal curve or some other) for the population, we instead
use the shape of the sample.

As an example, assume we are interested in the average (or mean) height of people
worldwide. We cannot measure all the people in the global population, so instead we sample



only a tiny part of it, and measure that. Assume the sample is of size N; that is, we measure
the heights of N individuals. From that single sample, only one value of the mean can be
obtained. In order to reason about the population, we need some sense of the variability of
the mean that we have computed.

To use the simplest bootstrap technique, we take our original data set of N heights, and,
using a computer, make a new sample (called a bootstrap sample) that is also of size N.
This new sample i1s taken from the original using sampling with replacement so it is not
identical with the original "real” sample. We repeat this a lot (maybe 1000 or 10,000 times),
and for each of these bootstrap samples we compute its mean (each of these are called
bootstrap estimates). We now have a histogram of bootstrap means. This provides an
estimate of the shape of the distribution of the mean from which we can answer questions
about how much the mean varies. (The method here, described for the mean, can be applied
to almost any other statistic or estimator.)

The key principle of the bootstrap is to provide a way to simulate repeated observations
from an unknown population using the obtained sample as a basis. A great advantage of
bootstrap is its simplicity. It 1s straightforward to derive estimates of standard errors and
confidence intervals for complex estimators of complex parameters of the distribution, such
as percentile points, proportions, odds ratio, and correlation coefficients. Moreover, it is an
appropriate way to control and check the stability of the results.

For a concrete example, please refer to the following link:
https://en.wikipedia.org/wiki/Bootstrapping (statistics)#Estimating the distribution of sample mean

Let’s study the following code for implementing this version of Bootstrap:
# y_original is for the original data

y_original <- c(rep(0,14), rep(1,30), rep(2,36), rep(3,68), rep(4, 43), rep(5,43), rep(6, 30),
rep(7,14), rep(8,10), rep(9, 6), rep(10,4), rep(11,1), rep(12,1))

# this y will be changed in the iterations
y <- y_original

n <- length(y)
NegLogLike<-function(p){

NegLogLike <- -(mean(y*log(p))-p-mean(log(factorial(y))))

B <- 2000 # we will sample 2000 samples and estimate 2000 times



# we will save the bootstrap results in this array, and this array is initialized as 0 vector
lambda_hat_MLE_Bootstrap2 <- rep(0,B)

for(i in 1:B) # for loop, we will repeat the experiment B times

{

# sample from the original data, using sampling with replacement!
y <- sample(y_original, n, replace=T)

# for this new sample, find the MLE

out<-nlm(NegLogLike, p=c(0.5), hessian=TRUE)

# save the estimation result of the i-th iteration
lambda_hat_MLE_Bootstrap2 [il<- out$estimate

}

hist(lambda_hat_MLE_Bootstrap2, main="sampling distribution of Bootrapped MLE for
Poisson", xlab = "estimated value", breaks=50, prob=TRUE)

curve(dnorm(x, mean=mean(lambda_hat_MLE_Bootstrap2), sd=
sd(lambda_hat MLE_Bootstrap2)), col="red', add=TRUE)

sampling distribution of Bootrapped MLE for Poisson
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Comparing the results:

> mean(lambda_hat_MLE_Bootstrap2)



[1] 3.887253

> mean(lambda_hat_MLE_Bootstrap1)
[1] 3.89412

> sd(lambda_hat_MLE_Bootstrap1)

[1] 0.1108861

> sd(lambda_hat_ MLE_Bootstrap2)

[1] 0.1275645

Getting Fisher Information and the approximate CI from the MLE code

In the MLE code above, we are minimizing the negative log-likelihood function
1< 1<
g= —;Zlogf(xi |A)= —;Zl(xi | 4)
i=l1 i=1

then the Hessian (second order derivative) is

"= L3 1" | 1) s _E(I"(X | 4)) = I(A)

i=l1

As such, we can get the approximated Fisher information from the output of the MLE code.
As in this example, the output is

$minimum
[1] 2.223943
festimate
[1] 3.893331
$gradient
[1] 1.140641e-09
$hessian

[,1]
[1,] 0.2567982

$code



[1]1
Siterations
(1] 9

Thus, from the code, we can get the Fisher Information as 0.2567982. This example is about
a Poisson distribution, and we can calculate the Fisher Information as [(1)=1/4

The the estimated Fisher Information is 1/3.893331= 0.2568495, which is very close to the
Hessian.

With the estimated Fisher Information, we can get the approximate confidence interval for
the parameter using the asymptotic distribution of MLE as

P z(1-a/2)
i)

By the following command, we can get the confidence bounds as
FI <- out$hessian
alpha<- 0.05
Upper <- lambda_hat_MLE+gnorm(1-alpha/2)/sqrt(n*FI)
Lower <- lambda_hat_MLE-qnorm(1-alpha/2)/sqrt(n*FI)
The results are:
> Upper

[,1]
[1,] 4.116633
> Lower

[,1]
[1,] 3.67003
We will compare to the results in the next section.
Check sd(lambda_hat_MLE_Bootstrapl) and sqrt(1/(n*FI)), what do you observe? Why?

Bootstrap Confidence Interval




We now describe the use of the bootstrap for finding approximate confidence intervals.

Suppose that 0 is an estimate of a parameter € --- the true, unknown value of which is 6, --

- and suppose for the moment that the distribution of A= 0— 6, is known. Denote the a /2

and 1—a /2 quantiles of this distribution by § and d,ie.
P(O-6, sg):% and P(O-6, < 5):1—%

Then,
P(6<0-6,<8)=1-a
and manipulating this, we have the confidence interval:

P(O-5<6,<6-5)=1-a.

The above process assumes that the distribution of A= é—@o 1s known, which is typically

not the case. If 8, were known, this distribution can be approximated arbitrarily well by
simulation: many, many samples of observations could be randomly generated on a

computer with the true value 6,; for each sample, we can estimate é, and the difference
é—@o can be recorded; and the two quantiles 0 and & could be consequently determined
as desired. Since 6, is not known, the bootstrap principle suggests using 0 to replace 6, :

generate many, many samples (say, B in total) from a distribution with value é, and for

each sample, construct an estimate of @, say 6’:, j=12,L ,B. The distribution of 9—6’0 is

then approximated by that of (9*—49, the quantiles of which are used to form an
approximate confidence interval.

Let us use the above Poisson distribution as an example for estimating an approximate 95%
confidence interval. See the following code:

# the difference of the bootstrapped estimations and the original MLE
diff <-lambda_hat_MLE_Bootstrapl -lambda_hat_MLE

# find the 2.5% and 97.5% quantiles

delta <- quantile(diff, probs=c(0.025,0.975), names=FALSE)

# find the upper and lower quantiles

delta_up <- delta [2]



delta_down<- delta [1]

hist(diff, main="sampling distribution of boot_lambda_hat MLE1 - lambda_hat_MLE", xlab
= "difference", breaks=50, prob=TRUE)

abline(v= delta_down, col = "blue")

abline(v= delta_up, col = "red")

# calculate the upper and lower confidence bound for the CI
L <- lambda_hat_MLE - delta_up

U <- lambda_hat_MLE - delta_down

# the output:

>L

[1] 3.663331

>U

[1] 4.106665

So the desired confidence interval is [3.663331, 4.106665], which is close to the CI obtained
from asymptotic distribution.

The histogram of the difference:

sampling distribution of boot_lambda_hat_MLE - lambda_hat_MLE

I T T 1
-0.2 00 02 04

difference



Exercise

The file gamma-arrivals.txt contains another set of gamma-ray data, this one consisting of

the times between arrivals (inter-arrival times) of 3935 photons (units are seconds).

Assume the Gamma distribution is a good model for the data:

f(x|a,ﬁ)=%xa_le'ﬂx, forx>0

where both alpha and beta are unknown.

a.

For maximum likelihood method, using the bootstrap method to simulate the
sampling distributions of the estimated parameters. Plot out the histograms, and
find the standard errors. Bootstrap 2000 estimations. Please do this using both
versions of Bootstrapping for both alpha and beta (that is, you will have to draw four
histograms).

For each histogram, please also plot the normal curve, is the histogram close to the
normal curve? Please also plot the qgqnorm plot for each histogram, is the qq plot
close to a straight line?

For the method of moments, repeat what you are asked to do in problem a). How do
the estimated standard errors of the two methods compare? Which estimator is
better and why? Also, please redo part b) for the results from method of moments.
For the results of maximum likelihood, use the Fisher information method to form
approximate 95% confidence intervals for both the parameters.

For the results of maximum likelihood, use the bootstrap (that is, the methods on
page 9) to form approximate 95% confidence intervals for both the parameters. What
are the lengths of the confidence intervals? For this part, you can either use
Bootstrap version 1 or 2.

For the method of moments, repeat what you are asked to do prob e). How do the
confidence intervals for the two methods compare? Which estimator is better and
why?

Notes: to sample from a Gamma distribution, please google or help the function “rgamma” in

R.



