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1. Introduction

In a classical stratified sampling, a population is split into a fixed number L of
strata and in each of them a subsample is observed. Various bootstrap estimators
of the mean have been studied as the strata sizes are finite [16, 18] or infinite
[2, 4]. In a two-stage cluster sampling the population consists of clusters of units,
first some clusters are sampled and then units are sampled within the selected
clusters. Several two-stage boostrap methods have also been studied in the case
of a finite number of finite clusters drawn without replacement [16, 18]. Here, we
consider a two-stage cluster sampling with an infinite number of clusters. The
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general setting is the following: A general population is subdivided into a large
number of independent populations (or clusters) which cannot be all observed.
We consider the problem of estimating some parameters of the distribution
function of a variable X on individuals in the general population and we assume
that the realizations of this variable in the different populations are independent
and identically distributed. The observations of X on individuals within the
same population are supposed to be independent and identically distributed
conditionally on the selected population.

Here the parameters of interest are the means of X , the variance of the
means of X in the different sub-populations and the variance of X and we focus
on the behavior of bootstrap estimators. The normalized and the studentized
estimators of the mean are asymptotic Gaussian as the number of sampled
populations tends to infinity and the variances are consistently estimated. Three
bootstrap procedures are studied,

B1 Sampling the populations with replacement in the set of the observed pop-
ulations, then taking the original observed data of these sampled popula-
tions,

B2 Taking each of the observed populations and sampling the individuals with
replacement in the set of the observed data within each population,

B3 A two-stage bootstrap cluster sampling that is a combination of the first
two procedures. Here the populations are sampled with replacement from
the set of the observed populations, then individuals are sampled with
replacement within each population.

An application and simulation of the B1 sampling for a large number of
populations was presented in [11, 12] for specific parameters in forestry. Boot-
strap sampling with a large number of dependent variables looks like a stratified
sampling, where individuals and variables may be drawn in the bootstrap pro-
cedure. Only the bootstrap resampling of individuals is relevant due to the loss
of dependence between dependent variables of an individual when they are not
jointly resampled, as in [13, 14, 15] with an application to medical data.

The asymptotic properties of the mean bootstrap estimator in the classical
i.i.d. bootstrap were studied by many authors (e.g.[1, 2, 3, 7, 17]). They have
been extended to some cases of independent but non identically distributed vari-
ables and to functional results in [2, 4, 6, 9, 18]. We prove properties for some of
the three bootstrap procedures when the number of strata and the sub-sampling
sizes tend to infinity, under a condition for their respective rate. The results are
quite different from those of [1, 2, 16, 18] for means of fixed sub-populations and
with resampling of all the populations (B2 sampling scheme), equivalent results
are established in proposition 2.2 for the mean of the sub-population means.
Though the bootstrap resampling scheme B1 is consistent for the mean param-
eters µ and µk of the general population and sub-populations, it is not for the
variances of their estimators µ̂ and µ̂k and other bootstrap estimators of the vari-
ances are necessary to obtain asymptotically normal estimators. With random
populations, the bootstrap sampling scheme B2 gives consistent and asymptot-
ically normal estimators for all the parameters with weighted bootstrap. Under
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a weighted bootstrap resampling scheme B1, the estimator of the global mean
and its variance achieve the usual properties. Under sampling scheme B3, the
bootstrap estimators of µ and µk and the variances are not consistent. The rate
of the bootstrap approximation is given for the weighted resampling scheme
B1. As the variance of the estimators splits into within and between-population
variances of different orders, the asymptotic results are quite different from the
usual results.

2. Empirical estimation in a subdivided population

A variable X is observed according to the following two-stage cluster sampling:
a sample of K populations is selected among a large number L of populations
and, in the k-th population of unknown large size, we consider nk independent
observations of the variable of interest, Xki, i ≤ nk, k ≤ K. Let N =

∑
k≤K nk

be the total number of observations, we suppose that N and nk, for each k,
increase with K. The estimators of the global population have then equivalently
indexed by N = NK or K.

Conditionally on the k-th population sampling, the variables Xki, i ≤ nk,
have the distribution function Fk and the distribution of the variables Xki in
the general population is F including the distribution functions of the L sub-
populations. Denote by E the expectation with respect to the sampling of the
populations and by Ek the conditional expectation in the k-th population, µk

the conditional mean of the Xki’s in the k-th population µ = EXki = Eµk.
If E|X |2 < ∞, the variance of X is denoted V in the general population

and the random variance of the Xki’s conditionally on the sampling of the k-th
population is Vk = Ek(Xki − µk)2. We also denote by γ = E(µk − µ)2 the
variance of the independent random variables µk, and σ2 = EVk. The variance
of the Xki’s is

V = σ2 + γ. (1)

The variables Xki and Xkj , i 6= j, are independent within the k-th population
but they are dependent in the general population, with Cov(Xki, Xkj) = γ. The
variables Xki and Xlj , k 6= l, are independent for any i and j. A random effect
linear model having a nested error structure can be used to describe the data,

Xki = µ + ak + uki, i = 1, . . . , nk, k = 1 . . . , K,

with ak = µk − µ and uki = Xki − µk, where Ek uki = 0, V ark uki = Vk and
Ek(ukiukj) = 0 for i 6= j, Eak = 0, V ar ak = γ and E(akal) = 0 for k 6= l.
Within the k-th population, µk and Vk are unbiasedly estimated by

µ̂k =
1

nk

∑

i≤nk

Xki,

V̂k =
1

nk − 1

∑

i≤nk

(Xki − µ̂k)2. (2)
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For the global population, µ is estimated by the empirical mean µ̂N of the
X ’s. Several boostrap estimators of µ will be proved to converge to the empirical
estimator µ̂′

K of the mean of the intra-populations means. For the general mean,
the estimators are denoted

µ̂N =
1

N

∑

k≤K

∑

i≤nk

Xki =
∑

k≤K

nk

N
µ̂k, (3)

µ̂′
K =

1

K

∑

k≤K

µ̂k. (4)

Note that with random populations, both µ̂N and µ̂′
K have the expectation µ

since Eµ̂k = µ for every k. It would not be with fixed populations. We have
V arkµ̂k = Ek(µ̂k − µk)2 = n−1

k Vk and

V arµ̂k = E(µ̂k − µ)2 = γ +
EVk

nk
.

The variance terms σ2, V and γ of the variable X are estimated by

σ̂2
N =

1

N

∑

k≤K

nkV̂k =
1

N

∑

k≤K

nk

nk − 1

∑

i≤nk

(Xki − µ̂k)2,

γ̂N =
K

K − 1

∑

k≤K

(µ̂k − µ̂′
K)2 −

1

K

∑

k≤K

1

nk − 1

∑

i≤nk

(Xki − µ̂k)2, (5)

V̂N = γ̂N + σ̂2
N . (6)

The variances of the estimators are

S2
N := V arµ̂N =

1

N2
(
∑

k

nkEVk) + γn∗ =
σ2

N
+ γn∗, (7)

S
′2
K := V arµ̂′

K =
1

K
(γ +

1

K

∑

k

EVk

nk
) =

1

K
(γ +

σ2

ñ
), (8)

where EVk satisfies (1), ñ−1 = K−1
∑

k n−1
k < 1 is the harmonic mean of the

nk’s and n∗ = N−2
∑

k n2
k < N−1 maxK

k=1 nk with n∗ = K−1 when nk constant
for every k, then the estimators are identical. The variance of µ̂′

K is smaller
than the variance of µ when γσ−2 > {(ñK)−1−N−1}{n∗−K−1}−1 which may
happen even with K = 2. If nk = ckKα with 0 < α < 1 and bounded constants
ck for every k, then SN < S′

K . The variance of both estimators split into a
within-populations variance and a between-populations variance, V arinterµ̂N =
N−1σ2 and V arinterµ̂N = n∗γ.

By (1)-(8) and with nk = O(Kα), asymptotically unbiased estimators of
V arµ̂′

K and V arµ̂N are

V̂ arµ̂′
K =

1

K − 1

∑

k≤K

(µ̂k − µ̂′
K)2, (9)

V̂ arµ̂N = n∗γ̂N +
σ̂2

N

N2
. (10)
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Estimators of the within and between-populations variances follow as

V̂ arinter µ̂N = n∗γ̂N , V̂ arintraµ̂N =
1

N2

∑

k≤K

nkV̂k,

V̂ arinter µ̂
′
K =

γ̂N

K
, V̂ arintraµ̂′

K =
1

K2

∑

k≤K

V̂k

nk
.

Under a convergence rate for the sub-sample sizes, the estimators are all con-
sistent, and the variances of order K−1 are larger than the variance of µ̂N . The
studentized statistics, as well as the normalized statistics converge in distribu-
tion:

Proposition 2.1 If E|X |2+δ < ∞ for some δ > 0 and nk is of order Kα,

0 < α < 1/2, for k = 1, . . . , K, then µ̂N converges a.s. to µ as N → ∞, and µ̂′
K

converges in probability to µ as K → ∞, V̂ arµ̂N −V arµ̂N and V̂ arµ̂′
K −V arµ̂′

K

converge in probability to 0, (V̂ arµ̂N )−1/2(µ̂N − µ) and (V̂ arµ̂′
K)−1/2(µ̂′

K − µ′)
converge in distribution to standard Gaussian variables.

Proof. µ̂N −µ and µ̂′
K−µ′ are the means of the (weighted) independent variables

having zero mean and variances of main order n∗ and K respectively. With
nk = O(Kα) for k = 1, . . . , K, K = O(N1/(1+α)), n∗ = O(N−1Kα) = O(K−1),
and Kñ = O(Kα+1), the variances S2

N = N−1σ2+γn∗ of µ̂N and S
′2
K = K−1{γ+

σ2/ñ} of µ̂′
K ((7) and (8)) are such that γN−1Kα < S2

N ≤ N−1Kα(γ + o(1))

and K−1γ ≤ S
′2
K ≤ K−1(γ + o(1)). Then

∑
N V arµ̂N < ∞ which ensures the

a.s. converge of the estimator µ̂N by the Borel-Cantelli lemma.
The boundedness of the variances S2

N and S
′2
K imply the following Lindeberg

conditions

1

S2
N

∑

k,i

E(Xki − µ)21{|Xki−µ|>εSN}
N→∞
−→ 0

1

S
′2
K

∑

k

E(µ̂k − Eµk)21
{|µ̂k−µ|>εS′

K
}

K→∞
−→ 0

and the weak convergence of the normalized variables is a consequence of a CLT
[5].

If we consider µ̄K = K−1
∑K

k=1 µk, similar results hold for µ̂′
K−µ̄K , with vari-

ance σ2(Kñ)−1 = V arintraµ̂′
K , and for µ̄−µ with variance γK−1 = V arinterµ̂

′
K .

The result in the proposition below is similar to the convergence property in a
stratified population with fixed strata [4].

Proposition 2.2 Under the conditions of the proposition 2.1 , µ̂′
K − µ̄K and

µ̄K −µ′ converge in probability to zero, K1/2(K−1
∑

k n−1
k V̂k)−1/2(µ̂′

K − µ̄) and

K1/2γ̂
−1/2
K (µ̄K − µ′) converge in distribution to standard Gaussian variables.
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3. Bootstrap estimation

The observed data set is denoted by X and we consider the three bootstrap pro-
cedures described in the introduction. For each of them, E∗ and V ar∗ denote
the mean and variance for the bootstrap sampling distribution conditionally on
X , without any distinction of the specific distribution, F̂k is the empirical sub-
distribution function of the k-th population.

3.1. Bootstrap sampling of individuals

We consider a bootstrap sample which consists of the sub-samples set of size
nk for the k-th observed population, (X∗

ki)i≤nk
, where the variables X∗

ki have

the distribution F̂k, i ≤ nk, k ≤ K and the K populations are independent and
considered as fixed. The bootstrap version of the previous estimators are written

µ̂∗
k = = n−1

k

∑

i≤nk

X∗
ki,

µ̂∗
N = N−1

∑

k≤K

∑

i≤nk

X∗
ki = N−1

∑

k≤K

nkµ̂∗
k,

µ̂′∗
K = K−1

∑

k≤K

µ̂∗
k,

they satisfy E∗µ̂
∗
k = µ̂k, E∗µ̂

∗
N = µ̂N , E∗µ̂

′∗
K = µ̂′

K , E∗µ̂
∗2
k = (nk−1)n−2

k V̂k +µ̂2
k.

The variances of µ̂∗
N and µ̂′∗

K reduce to intra-population variances given by

V ar∗µ̂
∗
k =

nk − 1

n2
k

V̂k,

V ar∗µ̂
∗
N =

1

N2

∑

k≤K

(nk − 1)V̂k,

V ar∗µ̂′∗K =
1

K2

∑

k≤K

nk − 1

n2
k

V̂k.

Finally, let

V̂ ∗
k =

nk

(nk − 1)2

∑

i≤nk

(X∗
ki − µ̂∗

k)2,

it is an unbiased bootstrap estimator of V̂k and unbiased bootstrap estimators
the variances of µ̂∗

N and µ̂′∗
K follow.

Then bootstrapping on independent individuals only with fixed populations
(resampling scheme B2) as in the classical stratified sampling leads to estima-
tors of µ having variances asymptotically equivalent to the within-populations
variance of the estimators µ̂. All variables X∗

ki, i ≤ nk, k ≤ n are independent
conditionally on the sample X and µ̂∗

N − µ̂N is the mean of the N independent
centered variables (X∗

ki − µ̂k). The next convergence results are then proved as
Proposition 2.1,
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Proposition 3.1 If E|X |2+δ < ∞ for some δ > 0 and nk is of order Kα, 0 <
α < 1/2, for k = 1, . . . , K, then conditionally on X , (µ̂∗

N − µ̂N ) and (µ̂′∗
K − µ̂′

K)

converge a.s. to zero, (V̂ ar∗intraµ̂∗
N )−1/2(µ̂∗

N − µ̂N) and (V̂ ar∗intraµ̂′∗
K)−1/2(µ̂′∗

K −
µ̂′

K) converge weakly to standard Gaussian variables.

3.2. Bootstrap sampling of the populations

A sample of K populations is drawn uniformly from the observed population
set, each of them having the probability K−1, and the variables X∗

ki are defined
as the observed values of the variable X in these sampled populations, according
to the sampling scheme B1. We get µ̂∗

k = µ̂l with probability K−1, for every
k, l ≤ K, and E∗µ̂

∗
k = µ̂′

K and E∗µ̂
∗2
k = K−1

∑
l≤K µ̂2

l for every k. It follows
that both µ̂′∗

K and µ̂∗
N have the bootstrap mean µ̂′

K and the bootstrap variances
are

V ar∗µ̂
∗
N = N−1

∑

k≤K

nk(µ̂k − µ̂′
K)2 = n∗K − 1

K
V̂ arµ̂′

K ,

V ar∗µ̂
′∗
K =

1

K2

∑

k≤K

(µ̂k − µ̂′
K)2 =

K − 1

K2
V̂ arµ̂′

K .

The usual bootstrap estimator of the variance of µ̂′∗
K is K−1Ŝ∗2

K where Ŝ∗2
K =

1
K−1

∑
k≤K(µ̂∗

k − µ̂′∗
K)2 is the bootstrap variance of the µ̂∗

k’s, it is a strongly con-

sistent bootstrap estimator and E∗Ŝ∗2
K = (K−1)K−1V̂ arµ̂′

K . We now get boot-

strap estimators of µ having a variance asymptotically equivalent to K−1V̂ arµ̂′
K

as K → ∞ and the asymptotic behavior of µ̂′∗
K is similar to that of µ̂′

K :

Proposition 3.2 Under the conditions of Proposition 3.4 and conditionally on

X , K1/2Ŝ∗−1
K (µ̂′∗

K − µ̂′
K) converges weakly to a standard Gaussian variables.

As the uniform population sampling is not relevant for µ̂N , let us consider a
sample of K populations drawn with probabilities nkN−1 for population k =
1, . . . , K, and the variables X∗

ki are defined as the observed values of the variable
X in these sampled populations. The means of the bootstrap estimators are
E∗µ̂

∗
k = E∗µ̂

∗
N = µ̂N , and for l = 1, . . . , K their variance are

V ar∗µ̂
∗
k =

1

N

∑

l≤K

nl(µ̂l − µ̂N )2,

V ar∗µ̂
∗
N =

n∗

N

∑

k≤K

nk(µ̂k − µ̂N )2.

An unbiased bootstrap estimator of the variance of µ̂N is also an estimator of
this variance:

Ŝ∗2
N =

n∗

n∗ − 1

∑

k≤K

nk(µ̂∗
k − µ̂∗

N )2,

a weighted bootstrap variance of the µ̂∗
k’s.
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Proposition 3.3 Under the conditions of Proposition 3.4 and conditionally on

X , Ŝ∗−1
N (µ̂∗

N − µ̂N ) converges weakly to a standard Gaussian variable.

3.3. Cluster bootstrap sampling

For the B3 bootstrap sampling, K independent populations are drawn uni-
formly from the observed population set and the bootstrap sample consists of
sub-samples of size nl−1 and distribution F̂l if the the k-th bootstrap population
is the l-th observed population. Denote Y ∗

li bootstrap variables having the distri-

bution F̂l and X∗
ki bootstrap variables having the distribution F̂l with probabil-

ity K−1, for every l, k = 1, . . . , K. The bootstrap sampling distribution is then
F̂ = K−1

∑
l≤K F̂l, E∗X

∗
ki = µ̂′

K and µ̂∗
k = (nl−1)−1

∑
i≤nl

Y ∗
li with probability

K−1, for every l and k = 1, . . . , K. We obtain E∗µ̂
∗
k = E∗µ̂

′∗
K = µ̂′

K = E∗µ̂
∗
N ,

E∗µ̂
∗2
k =

1

K

∑

l





1

nl(nl − 1)

∑

j≤nl

(X2
lj − µ̂2

l ) + µ̂2
l



 =

1

K

∑

l

{
V̂l

nl
+ µ̂2

l

}

for every k and

V ar∗µ̂
′∗
K =

1

K2

∑

k

{(µ̂k − µ̂′
K)2 +

V̂k

nk
} =

K − 1

K2
V̂ arµ̂′

K + V̂ arintraµ̂′
K

is unbiasedly estimated by

V̂ ar∗µ̂′∗
K =

1

K(K − 1)

∑

k

(µ̂∗
k − µ̂′∗

K)2.

The behavior of µ̂∗
N also depends on µ̂′2

K in this procedure, with

V ar∗µ̂
∗
N = (n∗ − 1)K2V ar∗µ̂

′∗
K + (µ̂′2

K − µ̂2
N )

and µ̂2
N cannot be simply estimated in this way. For µ̂′

K , the variance of the
bootstrap estimator µ̂′∗

K in the two-stage cluster procedure is equivalent to the
sum of the total and within-populations variances of µ̂N as N and K → ∞, it
is therefore unsuitable, and we get

Proposition 3.4 Under the conditions of Proposition and conditionally on X ,

(V ar∗µ̂
′∗
K)−1/2(µ̂′∗

K − µ̂′
K) converges weakly to a standard Gaussian variable.

3.4. Second order asymptotics

It appears that among the studied bootstrap procedures, only the second re-
sampling scheme of B2 provides consistent estimators for µ and the variances
of the estimators. Further expansions prove that the bootstrap estimator of µ
satisfy the classical properties of bootstrap estimators in the independent case
[1, 2, 8, 10, 17]. The variances are denoted S2

N = V arµ̂N , Ŝ2
N = V̂ arµ̂N and

Ŝ2
∗N = V̂ ar∗µ̂

∗
N .
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Proposition 3.5 If E|X |3 < ∞ and nk = ckKα, for some positive and bounded

ck and 0 < α < 1/2, for k = 1, . . . , K, then the bootstrap estimators based on the

population sampling procedure, with probability nkN−1 for population k, satisfy

a.s.

lim sup
K→∞

sup
x

K1/2+2α|P{S−1
N (µ̂N − µ) ≤ x}

−P∗{Ŝ
−1
N (µ̂∗

N − µ̂N ) ≤ x}| ≤
4CE|X − µ|3

γ3/2
.

where C is the constant of the Berry-Esseen bound.

If E|X |6+δ < ∞ for some δ > 0 and the d.f. Fk are continuous for k ≤ K,

then a.s.

lim sup
K→∞

sup
x

K1/2+2α|P{Ŝ−1
N (µ̂N − µ) ≤ x} − P∗{S

∗−1
N (µ̂∗

N − µ̂N ) ≤ x}| = 0.

Proof. The variances satisfy S2
N = K−1(γ + σ2O(K−α)), Ŝ2

N = S2
N + op(1) a.s.

under convergence rate of the nk’s. The bootstrap variance Ŝ2
∗N is estimated by

S∗2
N in 3.1, and S∗2

N = S2
N + o(1) a.s. The Berry-Esseen theorem for a weighted

sum of independent variables with varying distributions applies for both µ̂N −µ
and µ̂∗

N − µ̂N . Using the expansion S−3
N = K3/2{γ−3/2 + O(K−α)} and the

inequality E|N−1nk(µ̂k −µ)|3 ≤ N−3E|
∑

i≤nk
(Xki −µ)|3 ≤ 4N−3nkE|X−µ|3

for each k, we have
∑

k E|N−1nk(µ̂k − µ)|3 ≤ 4N−2E|X − µ|3 and, uniformly
in x,

sup
x

|P{S−1
N

∑

k≤K

nk

N
(µ̂k − µ) ≤ x} − Φ(x)| ≤ CS−3

N

∑

k

E(
nk

N
|µ̂k − µ|)3

≤ K−1/2−2αγ−3/24CE|X − µ|3 (1 + op(1)).

For the bootstrap estimator, a.s. conditionally on X uniformly in x,

E∗N
−3

∑

k

n3
k|µ̂

∗
k − µ̂N |3 = N−3

∑

k

n3
k|µ̂k − µ|3,

sup
x

|P∗{Ŝ
−1
N

∑

k≤K

nk

N
(µ̂∗

k − µ̂N ) ≤ x} − Φ(x)| ≤ CŜ−3
N

∑

k

E∗|
nk

N
(µ̂∗

k − µ̂N )|3

= CS−3
N

∑

k

(
nk

N
|µ̂k − µ|)3(1 + op(1))

and the first result follows.
The second part of the proposition is a consequence of Edgeworth expansions

of µ̂N − µ and µ̂∗
N − µ̂N , with S−3

N = K3/2{γ−3/2 + O(K−α)}. Uniformly in x,

P{Ŝ−1
N (µ̂N − µ) ≤ x} =

Φ(x) +
1

6S3
N

E(
∑

k

|
nk

N
(µ̂k − µ)|3)p(x)φ(x) + o(K−(α+1/2)).
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with p(x) = 2x2 + 1. The expansion for the bootstrap estimator is

P∗{(Ŝ
∗
N )−1(µ̂∗

N − µ̂N ) ≤ x} = Φ(x) +
1

6Ŝ
3/2
N

E∗(µ̂
∗
k − µ̂N )3/2{p(x)φ(x)

+o(1)} = Φ(x) +
1

6Ŝ
3/2
N

N−3
∑

k

|nk(µ̂k − µ)|3{p(x)φ(x) + o(1)},

with ŜN converging to SN and the sum of third moments converging to their
expectation at the rate N−1.

4. Discussion

The model studied in this paper is the model of means of a variable Xi having a
mixture distribution of L d.f. F1, . . . , FL, defined as Fk(x) = P{Xi ≤ x|i ∈ Pk},

for the k-th sub-population Pk. The variable Xi has the d.f. F =
∑L

k=1 pkFk,
with pk = P{Xi ∈ Pk}.

For a stratified population with a fixed number of strata, [2] have proved
convergence of the bootstrap Studentized estimators under the condition of sub-
sample sizes nk of the same order O(N), they have proved in particular that the
distribution function of (V arµ̂∗

k)−1/2
∑

k E∗(µ̂
∗
k − µ̂k)3 is an approximation of

(V arµ̂k)−1/2
∑

k E(µ̂k − µk)3. Their model is different from the random model
considered in this paper under the slower convergence rate nk = O(Kα), 0 <
α < 1/2 and with weighted estimators. In proposition 3.5, the order of the
approximations is K1/2+2α, that is stronger than the usual results.

Inversion of several expansions improve coverage probabilities and have been
compared to bootstrap confidence intervals deduced from the approximation of
the distribution of Studentized statistics, these numerical improvements were
discussed in [1, 8, 10] and in many other papers later. Here all the estimators
are differentiable transformations of moment estimators that admit Edgeworth
expansions which provides a second order approximation of the distribution
function of S−1

N (µ̂N − µ) by its inversion,

P{S−1
N (µ̂N − µ) ≤ x − (1 − x2)

∑
k(nk

N |µ̂k − µ|)3

6Ŝ3
N

} = Φ(x) + 0(K−(α+1/2))

but the order 0(K−(α+1/2)), coming from the expression of SN , differs from
O(K−1), the expected term after a correction term O(K−1/2) in a one-stage
sampling. For the studentized statistic, the correction is similar, with 1 − x2

replaced by 1 + 2x2.
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