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Cluster-Sample Methods in Applied Econometrics 

By JEFFREY M. WOOLDRIDGE* 

Inference methods that recognize the cluster- 
ing of individual observations have been avail- 
able for more than 25 years. Brent Moulton 
(1990) caught the attention of economists when 
he demonstrated the serious biases that can re- 
sult in estimating the effects of aggregate 
explanatory variables on individual-specific re- 
sponse variables. The source of the downward 
bias in the usual ordinary least-squares (OLS) 
standard errors is the presence of an unob- 
served, state-level effect in the error term. More 
recently, John Pepper (2002) showed how ac- 
counting for multi-level clustering can have 
dramatic effects on t statistics. While adjusting 
for clustering is much more common than it was 
10 years ago, inference methods robust to clus- 
ter correlation are not used routinely across all 
relevant settings. In this paper, I provide an 
overview of applications of cluster-sample 
methods, both to cluster samples and to panel 
data sets. 

Potential problems with inference in the pres- 
ence of group effects when the number of 
groups is small have been highlighted in a re- 
cent paper by Stephen Donald and Kevin Lang 
(2001). I review different ways of handling the 
small number of groups case in Section III. 

I. The Model 

The goal is to estimate the parameters in the 
following linear model: 

(1) Ygm 
= a + xgJ + Zgmy + vg 

m = 1, ... , Mg g = 1, ... , G 

where g indexes the "group" or "cluster," m 
indexes observations within group, Mg is the 
group size, and G is the number of groups. The 
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1 X K vector Xg contains explanatory variables 
that vary only at the group level, and the 1 X L 
vector zgm contains explanatory variables that 
vary within group. The approach to estimation 
and inference in equation (1) depends on several 
factors, including whether one is interested in the 
effects of aggregate variables (3S) or individual- 
specific variables (y). Plus, it is necessary to 
make assumptions about the error terms. An 
important issue is whether Vgm contains a com- 
mon group effect, as in 

(2) Vgm = Cg + gm m= 1,...,Mg 

where Cg is an unobserved cluster effect and 
U gm is the idiosyncratic error. [In the statistics 
literature, (1) and (2) are referred to as a "hier- 
archical linear model."] One important issue is 
whether the explanatory variables in (1) can be 
taken to be appropriately exogenous. Under (2), 
exogeneity issues can be broken down by sep- 
arately considering Cg and Ugm. 

I assume that the sampling scheme generates 
observations that are independent across g. Ap- 
propriate sampling assumptions within cluster 
are more complicated. Theoretically, the sim- 
plest case also allows the most flexibility for 
robust inference: from a large population of 
relatively small clusters, draw a large number of 
clusters (G), of sizes Mg. This setup is appro- 
priate in randomly sampling a large number of 
families or classrooms. The key feature is that 
the number of groups is large enough so that 
one can allow general within-cluster correla- 
tion. Randomly sampling a large number of 
clusters also applies to many panel data sets, 
where the cross-sectional population size is 
large (say, individuals) and the number of time 
periods is small. For panel data, G is the number 
of cross-sectional units, and Mg is the number 
of time periods for unit g. 

Stratified sampling also results in data sets 
that can be arranged by group, where the pop- 
ulation is first stratified into G > 2 nonover- 
lapping groups and then a random sample of 
size Mg is obtained from each group. Ideally, 
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the strata sizes are large in the population, result- 
ing in large Mg. I consider this sampling scheme in 
Section HIl. 

II. The Number of Groups is "Large" 

The asymptotic theory for G -> co is well 
developed; for a recent treatment, see Chapters 
7, 10, and 11 in Wooldridge (2002). Suppose 
that the covariates are exogenous in the sense 
that 

(3) E(Vgmlg, Zg) = 0 

m=l, ...,Mg g=l ,...G 

where Zg contains Zgm, m = 1, ..., Mg. Then 
a pooled ordinary least-squares (OLS) estima- 
tor, where Ygm is regressed on 1, Xg, Zgm (m = 
1, .... Mg; g = 1, ..., G) is consistent for A 
-(a, 1', y')' (as G -> oo with Mg fixed) and 
V/-asymptotically normal. Without more as- 
sumptions, a robust variance matrix is needed to 
account for correlation within clusters or het- 
eroscedasticity in Var(vgmlxg, Zg). When Vgm 
has the form in (2), the within-cluster correla- 
tion can be substantial, which means the usual 
OLS standard errors can be very misleading. 
Section 7.8 in Wooldridge (2002) gives the for- 
mula for a variance-matrix estimator that as- 
sumes no particular kind of within-cluster 
correlation nor a particular form of heterosce- 
dasticity. These formulas apply without change 
to panel data with a large number of cross- 
sectional observations. Such variance matrices 
are easy to compute now with existing software 
packages. 

Under (2) one can use generalized least 
squares (GLS) to exploit the presence of Cg in 
vgm. The standard assumptions imply that the 
Mg X Mg variance-covariance matrix of Vg = 

(Vgl, g2, ..., Vg M )' has the "random effects" 
form, Var(vg) = (rcjM jM + 0ruIM, where 

jM is the Mg X 1 vector of l's and IM is 
the Mg X Mg identity matrix. The standard as- 
sumptions also include the "system homosce- 
dasticity" assumption, Var(vglxg, Zg) = Var(vg). 
The resulting GLS estimator is the well-known 
random-effects (RE) estimator (see Section 10.3 
in Wooldridge [2002]). 

The RE estimator is asymptotically more ef- 
ficient than pooled OLS under the usual 

RE assumptions, and RE estimates and test 
statistics are computed by popular software 
packages. Something often overlooked in appli- 
cations is that one can make inference completely 
robust to an unknown form of Var(vglxg, Zg). 
Equation 7.49 in Wooldridge (2002) gives the 
robust formula. Even if Var(vglxg, Zg) does not 
have the RE form, the RE estimator is still 
consistent and </G-asymptotically normal, and 
for interesting departures from the full RE as- 
sumptions, the RE estimator is likely to be more 
efficient than pooled OLS. Making inference 
robust to serial correlation in the idiosyncratic 
errors for panel-data applications can be very 
important. Within-group correlation in the ugm 
can arise for cluster samples too. For example, 
suppose that underlying (1) is a random coeffi- 
cient model where ZgmYg replaces Zgmy. By 
estimating an RE model, one effectively puts 
zg(-yg - y) in the idiosyncratic error, and this 
induces correlation across ugm. Under standard 
exogeneity assumptions, the RE estimator still 
consistently estimates the average effect, y = 

E(yg). For a large G one might estimate an 
unrestricted version of Var(vg), but even in this 
case one should use a variance matrix robust to 
Var(vgmlxg, Zg) 6 Var(vg). 

In economics, the prevailing view is that ro- 
bust inference is not necessary when using 
GLS, but the "generalized estimation equation" 
literature (see Kung-Yee Liang and Scott Zeger, 
1986) explicitly recognizes that a specified vari- 
ance matrix in panel-data applications need not 
be equal to the true conditional variance matrix. 

If Cg is correlated with (Xg, Zg), neither f3 nor 
y is consistently estimated by RE. Nevertheless, 
by using the "fixed-effects" (FE) or "within" 
estimator, one can still estimate y. The within 
transformation subtracts off group averages 
from the dependent variable and explanatory 
variables: 

(4) Ygm --Yg= (Zgm- Zg)Y + Ugm- g 

m = 1,... ,Mg g = 1, ... , G 

and this equation is estimated by pooled OLS. 
Under a full set of "fixed-effects" assumptions 
(which allows arbitrary correlation between Cg 
and the Zgm), inference is straightforward using 
standard software. Nevertheless, analogous to 
the random-effects case, it is important to allow 
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Var(ugIZg) to have an arbitrary form, including 
within-group correlation and heteroscedasticity. 
Manuel Arellano (1987) proposed a fully robust 
variance-matrix estimator for the fixed-effects 
estimator, and it works with cluster samples or 
panel data (see also equation 10.59 in Wool- 
dridge [2002]). Reasons for wanting a fully 
robust variance-matrix estimator for FE applied 
to cluster samples are similar to the RE case. 

III. The Number of Groups is "Small" 

The procedures described in Section II are 
easy to implement, so it is natural to ask: Even 
though those procedures are theoretically justi- 
fied for large G, might they work well for 
moderate, or even small, G? Joshua D. Angrist 
and Victor Lavy (2002) provide references that 
show how cluster-robust estimators after pooled 
OLS do not work very well, even when G is as 
large as 40 or 50. Less is known about how well 
the fully robust variance-matrix estimator and 
the associated robust inference work after RE 
estimation. 

Recently, in the context of fixed-effects esti- 
mation and panel data, Gabor K6zde (2001) and 
Marianne Bertrand et al. (2002) study the finite- 
sample properties of robust variance-matrix es- 
timators that are theoretically justified only as 
G --> oo. One common finding is that the fully 
robust estimator works reasonably well even 
when the cross-sectional sample size is not es- 
pecially large relative to the time-series dimen- 
sion. When Var(ugIZg) does not depend on Zg, 
a variance matrix that exploits system homosce- 
dasticity can perform better than the fully robust 
variance-matrix estimator. 

Importantly, the encouraging findings of the 
simulations for fixed effects with panel data are 
not in conflict with findings that the robust 
variance matrix for the pooled OLS estimator 
with a small number of groups can behave 
poorly. For FE estimation using panel data, the 
issue is serial correlation in { ugm: m = 1, .... 
Mg }, which dies out as the time periods get far 
apart. The pooled OLS estimator that keeps cg 
in the error term suffers because of the constant 
correlation across all observations within clus- 
ter. Plus, FE estimates y, while for pooled OLS 
with clustering the focus is usually on f. 

When G is very small, relying on large G 
asymptotics can be very misleading. Donald 

and Lang (2001; hereafter, DL) have recently 
offered an alternative approach to inference, 
particularly for hypothesis testing about ,3. To 
begin, consider a special case of (1) where Zgm 
is not in the equation and Xg is a scalar. The 
equation is 

(5) ygm = a + 1Xg + cg + ugm 

m= l,...,Mg g= 1,...,G 

where Cg and { ugm: m = 1, ..., Mg } are 
independent of xg and { ugm: m = 1, ... , Mg } 
is a mean-zero, independent, identically distrib- 
uted sequence for each g. Even with small G, 
the pooled OLS estimator is natural for estimat- 
ing /3. If the cluster effect Cg is absent from the 
model and Var(ugm) is constant across g, then 
provided N M + ... + MG is large enough 
(whether or not G is not large), we can use the 
usual t statistics from the pooled OLS regres- 
sion as having an approximate standard normal 
distribution. Making inference robust to het- 
eroscedasticity is straightforward for large N. 

As pointed out by DL, the presence of Cg 
makes the usual pooled-OLS inference methods 
poorly behaved with small G. With a common 
cluster effect, there is no averaging out within 
cluster that allows application of the central- 
limit theorem. One way to see the problem is to 
note that the pooled-OLS estimator, ,3, is iden- 
tical to the "between" estimator obtained from 
the regression of yg on 1, xg (g = 1, ..., G). 
Given the Xg, I8 inherits its distribution from 
{ vg: g = 1, ..., G}, the within-group averages 
of the vgm. The presence of Cg means new 
observations within group do not provide addi- 
tional information for estimating 13 beyond af- 
fecting the group average, yg. 

If some assumptions are added, there is a solu- 
tion to the inference problem. In particular, as- 
sume Cg -- .N(0, oa2) is independent of Ugm 

.N(0, oru) and Mg = M for all g where JV 
denotes a normal distribution. Then vg - N(0, 
o2 + c2M). Since independence across g is 
assumed, the equation 

(6) yg = a + " Bxg + -g g = 1, ..., G 

satisfies the classical linear-model assumptions. 
Therefore, one can use inference based on the 
tG-2 distribution to test hypotheses about 13, 
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provided G > 2. When G is small, the require- 
ments for a significant t statistic are much more 
stringent then if one uses the tM, + M2 +-- + MG - 2 
distribution, which is what one would be 
doing by using the usual pooled OLS statistics. 
When Xg is a 1 X K vector, one needs G > 
K + 1 to use the tG -K-1 distribution for 
inference after estimating the aggregated equa- 
tion (6) by OLS. If Zgm is in the model, then one 
can add the group averages, zg, to (6), provided 
G > K + L + 1, and use the tG-K-L- 
distribution for inference. (An alternative ap- 
proach that conserves on degrees of freedom, 
but is only approximately valid, is described 
below.) 

Importantly, performing the correct inference 
in the presence of Cg is not just a matter of 
correcting the pooled-OLS standard errors for 
cluster correlation, or using the RE estimator. 
All three estimation methods lead to the same ,. 
But using the between regression in (6) gives 
the appropriate standard error and reports the 
small degrees of freedom in the t distribution. 

If the common group size M is large, then ug 
will be approximately normal very generally, so 
vg is approximately normal with constant vari- 
ance. Even if the group sizes differ, for very 
large group sizes ug will be a negligible part of 
vg. Provided Cg is normally distributed, classi- 
cal linear model analysis on (6) should be 
roughly valid. 

For small G and large Mg, inference obtained 
from analyzing (6) as a classical linear model 
can be very conservative if there is no cluster 
effect. Perhaps this is desirable, but it also ex- 
cludes some staples of policy analysis. In the 
simplest case, suppose there are two popula- 
tions with means /ug (g = 1, 2), and the 
question is whether their difference is zero. Un- 
der random sampling from each population, and 
assuming normality and equal population vari- 
ances, the usual comparison-of-means statistic 
is distributed exactly as tM +M2-2 under the 
null hypothesis of equal means. With even 
moderate-sized Ml and M2, one can relax nor- 
mality and adjust the statistic for different pop- 
ulation variances. In the DL setup, the standard 
comparison-of-means case cannot even be ana- 
lyzed, because G = 2. DL criticize David Card 
and Alan B. Krueger (1994) for comparing 
mean wage changes of fast-food workers be- 
cause Card and Krueger fail to account for cg in 

vgm, but the criticism in the G = 2 case is 
indistinguishable from a common criticism of 
difference-in-differences (DID) analyses: How 
can one be sure that any observed difference in 
means is due entirely to the policy change? 

More generally, in studies with G > 2 it 
often makes sense to view the observations as 
coming from standard stratified sampling. With 
large group sample sizes one can get precise 
estimates of the group population means, /ug. 
For example, suppose that G = 4 and groups 1 
and 2 are control groups, while groups 3 and 4 
are treated groups. One might estimate the pol- 
icy effect by T = (x3 + /x4)/2 - (,1 + /2)/2, 
or different fixed weights could be used to allow 
for different group population sizes. In any case, 
one can get a good estimator of r by plugging in 
the group means, and when properly standard- 
ized, T will be approximately standard normal 
even if the Mg are as small as, say, 30. To obtain 
a valid standard error, it is not necessary to 
assume that the group means or variances 
within, say, the treated group, are the same. In 
the DL approach, the estimated treatment effect, 
A, is obtained by pooling within the treated and 
control groups, and then differencing the treat- 
ment and control means. Their inference using 
the t2 distribution is a different way of account- 
ing for ,1 :/ /2 or /23 + ,L4. It seems that more 
work is needed to reconcile the two approaches 
when G is small. 

With large group sizes, a minimum distance 
(MD) approach to estimating 18 sheds additional 
insight. For each group g, write a linear model 
with individual-specific covariates as 

(7) Ygm = 6g + ZgmYg + Ugm m = 1, ..., Mg 

assuming random sampling within groups. 
Also, make the assumptions for OLS to be 
consistent (as Mg -> oo) and VKg-asymptotically 
normal (see Wooldridge, 2002 Ch. 4). The presence 
of group-level variables Xg in (1) can be viewed 
as putting restrictions on the intercepts, 8g. In 
particular, 

(8) g = a + Xg g1,...,G 

where we now think of xg as fixed observed 
attributes of the different groups. Given that one 
can estimate the hg precisely, a simple two-step 
estimation strategy suggests itself. First, obtain 
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the 8g (along with 'g) from an OLS regression 
within each group. Alternatively, to impose 
yg = y for all g, then pool across groups and 
include group dummy variables to get the 8g. 
If G = K + 1 then one can solve for =- (a, 
A')' uniquely in terms of the G X 1 vector &: O = 
X -1, where X is the (K + 1) X (K + 1) 
matrix with gth row (1, Xg). If G > K + 1, 
then in a second step, one can use an MD 
approach, as described in Section 14.6 of Wool- 
dridge (2002). If the G X G identity matrix is 
the weighting matrix, the MD estimator can be 
computed from the OLS regression of 

(9) g on 1, xg g = 1, ..., G. 

If Mg = pgM where 0 < pg ' 1 and M oo, 
the MD estimator 0 is consistent and VMM- 
asymptotically normal. However, this MD esti- 
mator is asymptotically inefficient except under 
strong assumptions. It is not difficult to obtain 
the efficient MD estimator-also called the 
"minimum chi-square" estimator. The simplest 
case is when zgm does not appear in the first- 
stage estimation, so that the 8g are sample 
means. Let g^ denote the usual sample variance 
for group g. The minimum chi-square estimator 
can be computed by using the weighted-least- 
squares (WLS) version of (9), where group g is 
weighted by Mg/l2. Conveniently, the reported 
t statistics from the WLS regression are asymp- 
totically standard normal as the group sizes Mg 
get large. An example of this kind of procedure 
is given by Susanna Loeb and John Bound 
(1996). 

A by-product of the WLS regression is a 
minimum chi-square statistic that can be used to 
test the G - K - 1 overidentifying restrictions. 
The statistic is easily obtained as the weighted 
sum of squared residuals (SSR): under the null 
hypothesis in (8), SSRw a X2-K-1 If the null 
hypothesis Ho is rejected at a small significance 
level, the Xg are not sufficient for characterizing 
the changing intercepts across groups. If one 
fails to reject Ho, one can have some confidence 
in the specification and perform inference using 
the standard normal distribution for t statistics. 

If Zg, appears in the first stage, one can use 
as weights the asymptotic variances of the G 
intercepts. These might be made fully robust to 
heteroscedasticity in E(u2mIZgm), or at least al- 
low different o2. In any case, the weights are 

given by 1/[SE(8g)]2 (g = 1, ... , G), where 

SE(8g) are the asymptotic standard errors. 
For example, suppose Xg is a binary treatment 

indicator. Then ,3 is an estimate of an average 
treatment effect. If G = 2 there are no restric- 
tions to test. With G > 2 one can test the 
overidentifying restrictions. Rejection implies 
that there are missing group-level characteris- 
tics, and one might re-specify the model by 
adding elements to Xg, even if the new elements 
are not thought to be systematically related to 
the original elements (as when treatment is ran- 
domly assigned at the group level). 

Alternatively, if the restrictions in (8) are 
rejected, one concludes that 6g = a + Xg3 + 

Cg, where Cg is the error made in imposing the 
restrictions. This leads to the DL approach, 
which is to analyze the OLS regression in (9) 
where inference is based on the tG - K-1 i distri- 
bution. Why is this approach justified? Since 
8g = Og -+ Op(Mg 1/2), for large Mg one might 
ignore the estimation error in 8g. Then, it is 
as if the equation 8g = a + xg1 + Cg (g = 
1, ... , G) is being estimated by OLS. Classical 
analysis is applicable when Cg -- V(0, 0o2) and 
Cg is independent of Xg. The latter assumption 
means that differences in the intercepts 6g not 
due to Xg must be unrelated to xg, which seems 
reasonable if G is not too small and Xg is a 
randomly assigned treatment variable assigned 
at the group level, as in Angrist and Lavy 
(2002). 
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