
atmosphere

Article

Cluster Sampling Filters for Non-Gaussian Data
Assimilation

Ahmed Attia 1,† ID , Azam Moosavi 2,† and Adrian Sandu 2,∗,† ID

1 Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL60439, USA;
attia@mcs.anl.gov or attia@vt.edu

2 Computational Science Laboratory, Department of Computer Science, Virginia Polytechnic Institute and
State University, Blacksburg, VA 24061, USA; azmosavi@vt.edu

* Correspondence: sandu@cs.vt.edu; Tel.: +1-540-231-2193
† These authors contributed equally to this work.

Received: 20 March 2018; Accepted: 2 May 2018; Published: date

Abstract: This paper presents a fully non-Gaussian filter for sequential data assimilation. The filter is
named the “cluster sampling filter”, and works by directly sampling the posterior distribution following
a Markov Chain Monte-Carlo (MCMC) approach, while the prior distribution is approximated using a
Gaussian Mixture Model (GMM). Specifically, a clustering step is introduced after the forecast phase of
the filter, and the prior density function is estimated by fitting a GMM to the prior ensemble. Using the
data likelihood function, the posterior density is then formulated as a mixture density, and is sampled
following an MCMC approach. Four versions of the proposed filter, namely C`MCMC, C`HMC,
MC-C`HMC, and MC-C`HMC are presented. C`MCMC uses a Gaussian proposal density to sample
the posterior, and C`HMC is an extension to the Hamiltonian Monte-Carlo (HMC) sampling filter.
MC-C`MCMC and MC-C`HMC are multi-chain versions of the cluster sampling filters C`MCMC and
C`HMC respectively. The multi-chain versions are proposed to guarantee that samples are taken from
the vicinities of all probability modes of the formulated posterior. The new methodologies are tested
using a simple one-dimensional example, and a quasi-geostrophic (QG) model with double-gyre
wind forcing and bi-harmonic friction. Numerical results demonstrate the usefulness of using GMMs
to relax the Gaussian prior assumption especially in the HMC filtering paradigm.

Keywords: data assimilation; ensemble filters; markov chain monte-carlo sampling; hamiltonian
monte-carlo; gaussian mixture models

1. Introduction

Data assimilation (DA) is a complex process that involves combining information from different
sources in order to produce accurate estimates of the true state of a physical system such as the
atmosphere. Sources of information include computational models of the system, a background
probability distribution, and observations collected at discrete time instances. With model state
denoted by x ∈ RNvar , the prior probability density Pb(x) encapsulates the knowledge about the
system state before incorporating any other source of information such as the observations. Let y ∈ Rm

be a measurement (observation) vector. The observation likelihood function P(y|x) quantifies the
mismatch between the model predictions (of observed quantities) and the collected measurements.
A standard application of Bayes’ theorem provides the posterior probability distribution P(x|y) that
provides an improved description of the unknown true state of the system of interest.

In the ideal case where the underlying probability distributions are Gaussian, the model dynamics
is linear, and the observations are linearly related to the model state, the posterior can be obtained
analytically for example by applying Kalman filter (KF) Equations [1,2]. For large dimensional
problems the computational cost of the standard Kalman filter is prohibitive, and in practice the
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probability distributions are approximated using small ensembles. The ensemble-based approximation
has led to the ensemble Kalman filter (EnKF) family of methods [3–6]. Several modifications of
EnKF, for example [7–12], have been introduced in the literature to solve practical DA problems of
different complexities.

One of the drawbacks of the EnKF family is the reliance on an ensemble update formula that
comes from the linear Gaussian theory. Several approaches have been proposed in the literature
to alleviate the limitations of the Gaussian assumptions. The maximum likelihood ensemble filter
(MLEF) [13–15] computes the maximum a posteriori estimate of the state in the ensemble space.
The iterative EnKF [10,16] (IEnKF) extends MLEF to handle nonlinearity in models as well as in
observations. IEnKF, however, assumes that the underlying probability distributions are Gaussian and
the analysis state is best estimated by the posterior mode.

These families of filters can generally be tuned (e.g., using inflation and localization) for optimal
performance on the problem at hand. However, if the posterior is a multimodal distribution, these
filters are expected to diverge, or at best capture a single probability mode, especially in the case of
long-term forecasts. Only a small number of filtering methodologies designed to work in the presence
of highly non-Gaussian errors are available, and their efficiency with realistic models is yet to be
established. These promising methods can be classified into two classes, particle filtering, and MCMC
sampling. In this work, we focus on using MCMC to sample the posterior distribution.

The Hybrid/Hamiltonian Monte Carlo (HMC) sampling filter was proposed in [17] as a fully
non-Gaussian filtering algorithm, and has been extended to the four-dimensional (smoothing) setting
in [17–20]. The HMC sampling filter is a sequential DA filtering scheme that works by directly sampling
the posterior probability distribution via an HMC approach [21,22]. The HMC filter is designed to
handle cases where the underlying probability distributions are non-Gaussian. Nevertheless, the first
HMC formulation presented in [17] assumes that the prior distribution can always be approximated
by a Gaussian distribution. This assumption was introduced for simplicity of implementation;
however, it can be too restrictive in many cases, and may lead to inaccurate conclusions. This strong
assumption needs to be relaxed in order to accurately sample from the true posterior, while preserving
computational efficiency.

In this work, we propose relaxing the Gaussian prior assumption, using a Gaussian Mixture
Model (GMM) to approximate the prior distribution. Specifically, in the forecast phase of the filter, the
prior is represented by a GMM that is fitted to the forecast ensemble via a clustering step. The posterior
is formulated accordingly. In the analysis step the resulting mixture posterior is sampled following an
MCMC approach. The resulting algorithm is named the “cluster MCMC (C`MCMC) sampling filter”,
and the version in which HMC is used to sample the posterior is named cluster HMC (C`HMC) sampling
filter. In order to improve the sampling from the mixture posterior, more efficient versions namely
“multi-chain (MC-C`MCMC)“, and “multi-chain C`HMC (MC-C`HMC)“, filters are also discussed.

The proposed MCMC filtering algorithms are not suggested as replacements for EnKF in the
linear-Gaussian settings. MCMC algorithms are generally expensive, compared to EnKF, and should
be considered only when the linear-Gaussian assumption is highly violated, which can cause the
conventional EnKF to fail. The numerical experiments presented herein, are carried out in both linear
and nonlinear settings. Experiments with linear settings aim to compare the performance of the
proposed algorithms, in the presence of benchmark results produced by EnKF. This has the benefit
of demonstrating the advantage of replacing the Gaussian prior with a GMM, for MCMC sampling,
even in the simplified linear settings. Numerical results with nonlinear settings, where EnKF fails,
suggest that the proposed relaxation of the Gaussian-prior assumption is beneficial, especially for the
sequential application of MCMC sampling filters in the presence of nonlinearities.

Using a GMM to approximate the prior density, given the forecast ensemble, was presented
in [11,23] as a means to solve the nonlinear filtering problem. In [23], a continuous approximation of
the prior density was built as a sum of Gaussian kernels, where the number of kernels is equal to the
ensemble size. Assuming a Gaussian likelihood function, the posterior was formulated as a GMM
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with updated mixture parameters. The updated means and covariance matrices of the GMM posterior
were obtained by applying the convolution rule of Gaussians to the prior mixture components and
the likelihood, and the analysis ensemble was generated by direct sampling from the GMM posterior.
On the other hand, the approach presented in [11] works by fitting a GMM to the prior ensemble with
the number of mixture components detected using Akaike information criterion. The EnKF equations
are applied to each of the components in the mixture distribution to generate an analysis ensemble
from the GMM posterior.

Unlike the existing approaches [11,23], the methodology proposed herein is fully non-Gaussian,
and does not limit the posterior density to a Gaussian mixture distribution or Gaussian likelihood
functions. Moreover, the posterior distribution is directly sampled, and is not approximated by a
Gaussian mixture distribution.

The remaining part of the paper is organized as follows. Section 2 reviews the original formulation
of the HMC sampling filter. Section 3 explains how GMM can be used to approximate the prior
distribution, and presents the new cluster sampling filters. Numerical results and discussions are
presented in Section 4. Conclusions are drawn in Section 5.

2. The HMC Sampling Filter

In this section we present a brief overview of the HMC sampling methodology, followed by the
original formulation of the HMC sampling filter.

2.1. HMC Sampling

HMC sampling follows an auxiliary-variable approach [24,25] to accelerate the sampling process
of Markov chain Monte-Carlo (MCMC) algorithms. In this approach, the MCMC sampler is devoted
to sampling the joint probability density of the target variable, along with an auxiliary variable.
The auxiliary variable is chosen carefully to allow for the construction of a Markov chain that mixes
faster, and is easier to simulate than sampling the marginal density of the target variable [26].

The main component of the HMC sampling scheme is an auxiliary Hamiltonian system that
plays the role of the proposal (jumping) distribution. The Hamiltonian dynamical system operates
in a phase space of points (p, x) ∈ R2Nvar , where the individual variables are the position x ∈ RNvar ,
and the momentum p ∈ RNvar . The total energy of the system, given the position and the momentum,
is described by the Hamiltonian function H(p, x). A general formulation of the Hamiltonian function
(the Hamiltonian) of the system is given by:

H(p, x) =
1
2

pTM−1p− log(φ(x)) =
1
2

pTM−1p + J (x) , (1)

where M ∈ RNvar×Nvar is a symmetric positive definite matrix referred to as the mass matrix. The first
term in the sum (1) quantifies the kinetic energy of the Hamiltonian system, while the second term is
the associated potential energy.

The dynamics of the Hamiltonian system in time is described by the following ordinary differential
equations (ODEs):

dx
dt

= ∇p H ,
dp
dt

= −∇x H. (2)

The time evolution of the system (2) in the phase space is described by the flow: [27,28]

ΦT : R2Nvar → R2Nvar , ΦT
(
p(0), x(0)

)
=
(
p(T), x(T)

)
, (3)

which maps the initial state of the system (p(0), x(0)) to (p(T), x(T)) , the state of the system at
time T. In practical applications, the analytic flow ΦT is replaced by a numerical solution using a
time reversible and symplectic numerical integration method [28,29]. The length of the Hamiltonian
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trajectory T can generally be long, and may lead to instability of the time integrator if the step size is
set to T. In order to accurately approximate ΦT , the symplectic integrator typically takes m steps of
size h = T/m where h is chosen such as to maintain stability. We will use ΦT hereafter to represent the
numerical approximation of the Hamiltonian flow.

Given the formulation of the Hamiltonian (1), the dynamics of the Hamiltonian system is governed
by the equations

dx
dt

= M−1p ,
dp
dt

= −∇xJ (x) . (4)

The canonical probability distribution of the state (p, x) of the Hamiltonian system in the phase
space R2Nvar , up to a scaling factor, is given by

exp (−H(p, x)) = exp
(
−1

2
pTM−1p−J (x)

)
∝ exp

(
−1

2
pTM−1p

)
φ(x). (5)

The product form of this joint probability distribution shows that the two variables p, and x are
independent [29]. The marginal distribution of the momentum variable is Gaussian, p ∼ N (0, M) ,
while the marginal distribution of the position variable is proportional to the negative-logarithm
(negative-log) of the potential energy, that is x ∼ f (x) ∝ φ(x) = exp (−J (x)). Here f (x) is the
normalized marginal density of the position variable, while φ(x) drops the scaling factor (e.g., the
normalization constant) of the density function.

In order to draw samples {x(e)}e=1,2,...,Nens from a given probability distribution f (x) ∝ φ(x) ,
HMC makes the following analogy with the Hamiltonian mechanical system (2). The state x is viewed as
a position variable, and an auxiliary momentum variable p ∼ N (0, M) is included. The negative-log
of the target probability density J (x) = − log(φ(x)) is viewed as the potential energy of an auxiliary
Hamiltonian system. The kinetic energy of the system is given by the negative-log of the Gaussian
distribution of the auxiliary momentum variable. The mass matrix M is a user-defined parameter
that is assumed to be symmetric positive definite. To achieve favorable performance of the HMC
sampler, M is generally assumed to be diagonal, with values on the diagonal chosen to reflect the
scale of the components of the target variable under the target density [17,27]. The HMC sampler
proceeds by constructing a Markov chain whose stationary distribution is set to the canonical joint
density (5). The chain is initialized to some position and momentum values, and at each step of the
chain, a Hamiltonian trajectory starting at the current state is constructed to propose a new state.
A Metropolis-Hastings-like acceptance rule is used to either accept or reject the proposed state. Since
both position and momentum are statistically independent, the retained position samples are actually
sampled from the target density f (x). The collected momentum samples are discarded, and the
position samples are returned as the samples from the target probability distribution f (x).

The performance of the HMC sampling scheme is greatly influenced by the settings of the
Hamiltonian trajectory, that is the choice of the two parameters m, h. The step size h should be small
enough to maintain stability, while m should be generally large for the sampler to reach distant points
in the state space. The parameters of the Hamiltonian trajectory can be set empirically [27] to achieve an
acceptable rejection rate of at most 25% to 30% , or be automatically adapted using tuning schemes such
as the No-U-Turn sampler(NUTS) [30], or the Riemannian Manifold HMC sampler (RMHMC) [31].

The ideas presented in this work can be easily extended to incorporate any of the HMC sampling
algorithms with automatically tuned parameters. In this paper we tune the parameters of the
Hamiltonian trajectory following the empirical approach, and focus on the sampler performance
due to the choice of the prior distribution in the sequential filtering context.
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2.2. HMC Sampling Filter

In the filtering framework, following a perfect-model approach, the posterior distribution Pa(xk)

at a time instance tk follows from Bayes’ theorem:

Pa(xk) = P(xk|yk) =
P(yk|xk)Pb(xk)

P(yk)
∝ P(yk|xk)Pb(xk) , (6)

where Pb(xk) is the prior distribution, P(yk|xk) is the likelihood function, all at time instance tk. P(yk)

acts as a scaling factor and is ignored in the HMC context.
As mentioned in Section 1, the formulation of the HMC sampling filter proposed in [17] assumes

that the prior distribution Pb(xk) can be represented by a Gaussian distribution N (xb
k , Bk) , that is

Pb(xk) =
(2π)−

Nvar
2√

|Bk|
exp

(
−1

2
‖xk − xb

k‖2
B−1

k

)
, (7)

where xb
k , is the background state, and Bk ∈ RNvar×Nvar is the background error covariance matrix.

The background state xb
k is generally taken as the mean of an ensemble of forecasts {xb

k (e)}e=1, 2, ..., Nens ,
obtained by forward model runs from a previous assimilation cycle. The associated weighted norm is
defined as:

‖a− b‖2
C = (a− b)TC(a− b). (8)

Under the traditional, yet non-restrictive assumption, that the observation errors are distributed
according to a Gaussian distribution with zero mean, and observation error covariance matrix
Rk ∈ Rm×m , the likelihood function takes the form

P(yk|xk) =
(2π)−

m
2√

|Rk|
exp

(
−1

2
‖yk −Hk(xk)‖2

R−1
k

)
, (9)

whereHk : RNvar → Rm is the observation operator that maps a given state xk to the observation space
at time instance tk. The dimension of the observation space m is generally much smaller than the state
space dimension, that is m� Nvar.

The posterior follows immediately from (6), (7), and (9)

Pa(xk) ∝ φ(xk) = exp
(
−J (xk)

)
, (10a)

J (xk) =
1
2
‖xk − xb

k‖2
B−1

k
+

1
2
‖yk −Hk(xk)‖2

R−1
k

, (10b)

where J (xk) is the negative-log of the posterior distribution (10b). The derivative of J (xk) with
respect to the system state xk is given by

∇xJ (xk) = B−1
k (xk − xb

k )−HT
k R−1

k
(
yk −Hk(x)

)
, (11)

where Hk = H′k(x) is the linearized observation operator (e.g., the Jacobian).
The HMC sampling filter [17] proceeds in two steps, namely a forecast step and an analysis step.

Given an analysis ensemble of states {xa
k−1(e)}e=1,2,...,Nens at time tk−1 , an ensemble of forecasts at time

tk is generated using the forward modelM:

xb
k (e) =Mtk−1→tk

(
xa

k−1(e)
)

, e = 1, 2, . . . , Nens. (12)

In the analysis step, the posterior (10) is sampled by running a HMC sampler with potential
energy set to (10b), where Bk is approximated using the available ensemble of forecasts.
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The formulation of the HMC filter presented in [17], and reviewed above, tends to be restrictive
due to the assumption that the prior is always approximated by a Gaussian distribution. The prior
distribution can be viewed as the result of propagating the posterior of the previous assimilation cycle
using model dynamics. In the case of nonlinear model dynamics, the prior distribution is a nonlinear
transformation of a non-Gaussian distribution which is generally expected to be non-Gaussian.
Tracking the prior distribution exactly however is not possible, and a relaxation assumption must
take place.

We propose conducting a more accurate density estimation of the prior, by fitting a GMM to the
available prior ensemble, replacing the Gaussian prior with a Gaussian mixture prior.

3. Cluster Sampling Filters

Section 3.1 provides a brief overviews on mixture distributions, and review how a GMM can
be used to represent the prior distribution given an ensemble of forecasts. Section 3.2 describes the
posterior distribution, and presents the new cluster sampling filters.

3.1. Mixture Models

The probability distribution P(x) is said to be a mixture of Nc probability distributions
{Ci(x)}i=1,2,...,Nc , if P(x) takes the form:

P(x) =
Nc

∑
i=1

τi Ci(x) where τi > 0, ∀i and
Nc

∑
i=1

τi = 1 . (13)

The weights τi are commonly referred to as the mixing weights, and Ci(x) are the densities of the
mixing components.

3.1.1. Gaussian Mixture Models (GMM)

A GMM is a special case of (13) where the mixture components are Gaussian densities, that is
Ci(x) = N (x; Θi) with Θi = {µi, Σi} being the parameters of the ith Gaussian component.

Fitting a GMM to a given data set is one of the most popular approaches for density
estimation [32–34]. Given a data set {x(e)}e=1, 2, ..., Nens , sampled from an unknown probability
distribution P(x), one can estimate the density function P(x) by a GMM; the parameters of the
GMM, i.e., the mixing weights τi, the means µi, and the covariances Σi of the mixture components,
can be inferred from the data.

The most popular approach to obtain the maximum likelihood estimate of the GMM parameters
is the expectation-maximization (EM) algorithm [34]. EM is an iterative procedure that alternates
between two steps, expectation (E) and maximization (M). At iteration t + 1 the E-step computes the
expectation of the complete log-likelihood based on the posterior probability of x belonging to the ith
component, with the parameters Θ{t} from the previous iteration. In particular, the following quantity
Q(Θ|Θ{t}) is evaluated:

Q(Θ|Θ{t}) =
Nens

∑
e=1

Nc

∑
i=1

re,i log
(
τiN (x(e); Θi)

)
,

re,i =
τ
{t}
i N

(
x(e); Θ{t}i

)
∑Nc
`=1 τ

{t}
` N

(
x(e); Θ{t}`

) .

(14)

Here Θ = {τi, Θi}i=1...Nc is the parameter set of all the mixture components, and re,i is the
probability that the eth ensemble member lies under the ith mixture component.
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In the M-step, the new parameters Θ{t+1} = arg maxΘ Q are obtained by maximizing the
conditional probability Q in (14) with respect to the parameters Θ. The updated parameters Θ{t+1} are
given by the analytical formulas:

τ
{t+1}
i =

∑Nens
e=1 re,i

Nens
=

wi
Nens

,

µ
{t+1}
i =

Nens

∑
e=1

x(e)
re,i

wi
,

Σ
{t+1}
i =

Nens

∑
e=1

(
x(e)− µ

{t+1}
i

) (
x(e)− µ

{t+1}
i

)T re,i

wi

where wi =
Nens

∑
e=1

re,i .

(15)

To initialize the parameters for the EM iterations, the mixing weights are simply chosen to be
equal τi = N−1

c , the means µi can be randomly selected from the given ensemble, and the covariance
matrices of the components can be all set to covariance matrix of the full ensemble. Regardless of
the initialization, the convergence of the EM algorithm is ensured by the fact that it monotonically
increases the observed data log-likelihood at each iteration [34], that is:

Nens

∑
e=1

log

(
Nc

∑
i=1

τ
{t+1}
i N

(
x(e); Θ{t+1}

i

))
≥

Nens

∑
e=1

log

(
Nc

∑
i=1

τ
{t}
i N

(
x(e); Θ{t}i

))
.

EM algorithm achieves the improvement of the data log-likelihood indirectly by improving the
quantity Q(Θ|Θ{t}) over consecutive iterations, i.e., Q(Θ|Θ{t+1}) ≥ Q(Θ|Θ{t}).

3.1.2. Model Selection

Before EM iterations start, the number of mixture components Nc must be detected. To decide on
the number of components in the prior mixture, model selection is employed. This process refers to
the statistical decision of choosing a model, out of a set of candidate models, to give the best trade-off
between model fit and complexity. Here, the best number of components Nc can be selected with
common model selection methodologies such as Akaike Information Criterion (AIC) and Bayesian
Information Criterion (BIC):

AIC = −2
Nens

∑
e=1

log

(
Nc

∑
i=1

τ̂iN
(

x(e); Θ̂i

))
+ 2 (3Nc − 1) ,

BIC = −2
Nens

∑
e=1

log

(
Nc

∑
i=1

τ̂iN
(

x(e); Θ̂i

))
+ log(Nens) (3Nc − 1) ,

(16)

where {τ̂i, Θ̂i}i=1...Nc is the set of optimal parameters for the candidate GMM model with
Nc components.

The best number of components Nc minimizes the AIC or BIC criterion [35,36]. The main difference
between the two criteria, as explained by the second terms in Equation (16), is that BIC imposes greater
penalty on the number of parameters (3Nc − 1) of the candidate GMM model. For small or moderate
numbers of samples BIC often chooses models that are too simple because of its heavy penalty
on complexity.
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3.2. Cluster Sampling Filters

The prior distribution is approximated by a GMM fitted to the forecast ensemble, e.g., using an
EM clustering step. The prior PDF reads:

Pb(xk) =
Nc

∑
i=1

τk,iN (x; µk,i, Σk,i) =
Nc

∑
i=1

τk,i
(2π)−

Nvar
2√

|Σk,i|
exp

(
−1

2
‖x− µk,i‖2

Σk,i
−1

)
, (17)

where the weights τk,i quantify the probability that an ensemble member xk(e) belongs to the ith
component, and (µk,i, Σk,i) are the mean and the covariance matrix associated with the ith component
of the mixture model at time instance tk.

Assuming Gaussian observation errors, the posterior can be formulated using Equations (6), (9),
and (17) as follows:

f (xk) = Pa(xk)

=
(2π)−

m
2√

|Rk|
exp

(
−1

2
‖Hk(xk)− yk‖2

R−1
k

) Nc

∑
i=1

τk,i
(2π)−

Nvar
2√

|Σk,i|
exp

(
−1

2
‖xk − µk,i‖2

Σk,i
−1

)
∝ φ(xk) =

Nc

∑
i=1

τk,i√
|Σk,i|

exp
(
−1

2
‖xk − µk,i‖2

Σk,i
−1 −

1
2
‖Hk(xk)− yk‖2

R−1
k

)
.

(18)

In general the posterior PDF (18) will not correspond to a Gaussian mixture due to the nonlinearity
of the observation operator. This makes analytical solutions not possible. Here we seek to sample
directly from the posterior PDF (18) following a MCMC approach. A proposal distribution and
acceptance/rejection criterion, are the backbones of any MCMC sampler.

The simplest proposal is a Gaussian centered around the current state of the Markov chain.
Specifically, at the rth iteration of the chain, the proposal isN (xr

k, Bens
k ), where xr

k is the current state of
the chain, and Bens

k is the ensemble-based covariance matrix

Bens
k =

1
Nens − 1

Nens

∑
e=1

(xk(e)− xk) (xk(e)− xk)
T , (19)

where xk = ∑Nens
e=1 xk(e) is the forecast ensemble mean. The Metropolis-Hastings acceptance/rejection,

in this case, can be evaluated using the acceptance probability u(r) = φ(x∗k )/φ(xr
k), where x∗k is the

proposed state, e.g., sampled from N (xr
k, Bens

k ). We refer to this approach of filtering as the cluster
MCMC (C`MCMC) sampling filter.

Gradient-based MCMC sampling methods, such as the HMC sampler, use the gradient of the
negative log-posterior to direct the sampler towards high-probability regions, and thus yielding
low rejection rates. Specifically, the HMC sampler require setting the potential energy term in the
Hamiltonian (1) to the negative-log of the posterior distribution (18). The potential energy term J (xk)

J (xk) = − log

(
Nc

∑
i=1

τk,i√
|Σk,i|

exp
(
−1

2
‖xk − µk,i‖2

Σk,i
−1 −

1
2
(‖Hk(xk)− yk‖2

R−1
k

))
(20a)

=
1
2
‖Hk(xk)− yk‖2

R−1
k
− log

(
Nc

∑
i=1

τk,i√
|Σk,i|

exp
(
−1

2
‖xk − µk,i‖2

Σk,i
−1

))

=
1
2
‖Hk(xk)− yk‖2

R−1
k
− log

(
Nc

∑
i=1

τk,i√
|Σk,i|

exp
(
−Jk,i(xk)

))
,

Jk,i(xk) =
1
2
‖xk − µk,i‖2

Σk,i
−1 . (20b)
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Equation (20) is expected to suffer from numerical difficulties due to evaluating the logarithm of a
sum of very small values. To address the accumulation of roundoff errors, and without loss of generality,
we assume from now on that the terms in Equation (20) under the sum are sorted in decreasing
order, i.e., (τk,i/

√
|Σk,i|) exp (−Jk,i(xk)) > (τk,i+1/

√
|Σk,i+1|) exp (−Jk,i+1(xk)), ∀ i = 1, . . . , Nc− 1.

The potential energy function (20) is rewritten as:

J (xk) =
1
2
‖Hk(xk)− yk‖2

R−1
k

−
log

(
τk,1 exp (−Jk,1(xk))√

|Σk,1|

)
+ log

1 +
Nc

∑
i=2

τk,i√
|Σk,i |

exp (−Jk,i(xk))

τk,1√
|Σk,1|

exp (−Jk,1(xk))


=

1
2
‖Hk(xk)− yk‖2

R−1
k

+ Jk,1(xk)

− log

(
τk,1√
|Σk,1|

)
− log

(
1 +

Nc

∑
i=2

τk,i
√
|Σk,1|

τk,1
√
|Σk,i|

exp
(
Jk,1(xk)−Jk,i(xk)

))
.

(21)

The gradient of the potential energy (21) is:

∇xkJ (xk) = HT
k R−1

k (Hk(xk)− yk) +∇xkJk,1(xk)

− s
Nc

∑
i=2

{τk,i
√
|Σk,1|

τk,1
√
|Σk,i|

exp
(
Jk,1(xk)−Jk,i(xk)

)[
∇xkJk,1(xk)−∇xkJk,i(xk)

]}
,

s =
1(

1 + ∑Nc
i=2

τk,i
√
|Σk,1|

τk,1
√
|Σk,i |

exp
(
Jk,1(xk)−Jk,i(xk)

)) ,

∇xkJk,i(xk) = Σ−1
k,i (xk − µk,i) ∀ i = 1, 2, . . . , Nc .

(22)

The cluster HMC sampling filter (C`HMC) results by replacing the potential energy function (10b)
and its derivative (11) in the HMC sampling filter, with Equations (21) and (22) respectively. The steps
of the C`HMC sampling filter are explained in Algorithm 1.

Note that in the case where the mixture contains a single component (one Gaussian distribution),
the potential energy function (21) and its gradient (22) reduce to the following, respectively:

J (xk) =
1
2
‖xk − xb

k‖2
B−1

k
+

1
2
‖Hk(xk)− yk‖2

R−1
k

,

∇xkJ (xk) = B−1
k

(
xk − xb

k

)
+ HT

k R−1
k (Hk(xk)− yk) .

(23)

This shows that the C`HMC sampling filter proposed herein, reduces to the original HMC filter
when the EM algorithm detects a single component during the prior density approximation phase.

The C`HMC Sampling Algorithm

As in the HMC sampling filter, information about the analysis probability density at the previous
time tk−1 is captured by the analysis ensemble of states {xa

k−1(e)}e=1,...,Nens . The forecast step consists
of two stages. First, the model (12) is used to integrate each analysis ensemble member forward to
time tk where observations are available. Next, a clustering scheme (e.g., EM) is used to generate the
parameters of the GMM. The analysis step constructs a Markov chain starting from an initial state x0

k ,
and proceeds by sampling the posterior PDF (18) at stationarity. Here the superscript over xk refers to
the iteration number in the Markov chain.

It is worth mentioning that the Hamiltonian system used as a mechanism to generate proposals
for the Markov Chain, along with its associated pseudo time-step settings, are independent from the
physical model being simulated.
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As discussed in [17], Algorithm 1 can be used either as a non-Gaussian filter, or as a replenishment
tool for parallel implementations of the traditional filters such as EnKF.

Algorithm 1 Cluster HMC sampling filter (C`HMC)
1: Forecast step: given an analysis ensemble {xa

k−1(e)}e=1,2,...,Nens at time tk−1;

i- generate the forecast ensemble using the modelM:

xb
k (e) =Mtk−1→tk

(
xa

k−1(e)
)

, e = 1, 2, . . . , Nens.

ii- Use AIC/BIC criteria to detect the number of mixture components Nc in the GMM, then use
EM to estimate the GMM parameters {(τk,i; µk,i, Σk,i)}i=1,2,...,Nc .

2: Analysis step: given the observation yk at time point tk , follow the steps i to v:

i- Initialize the Markov Chain (x0
k) to be to the best estimate available, e.g., to the mean of the

joint forecast ensemble, or the mixture component mean with maximum likelihood.
ii- Choose a positive definite mass matrix M. A recommended choice is to set M to be a

diagonal matrix whose diagonal is equal to the diagonal of the posterior precision matrix.
The precisions calculated from the prior ensemble can be used as a proxy.

iii- Set the potential energy function to (21), and its derivative to (22).
iv- Initialize the chain with a state x0

k and generate Nens ensemble members from the posterior
distribution (18) as follows:

(1) Draw a random vector pr ∼ N (0, M).
(2) Use a symplectic numerical integrator (e.g., Verlet, 2-Stage, or 3-Stage [17,29]) to

advance the current state (pr, xr
k) by a pseudo-time increment T to obtain a proposal

state (p∗, x∗k ):
(p∗, x∗k ) = ΦT

(
(pr, xr

k)
)
. (24)

(a) Evaluate the energy loss : ∆H = H(p∗, x∗k )− H(pr, xr
k).

(b) Calculate the acceptance probability: a(r) = 1∧ e−∆H .
(c) Discard both p∗, pr.
(d) (Acceptance/Rejection) Draw a uniform random variable u(r) ∼ U (0, 1):

i- If a(r) > u(r) accept the proposal as the next sample: xr+1
k := x∗k ;

ii- If a(r) ≤ u(r) reject the proposal and continue with the current state: xr+1
k := xr

k.

(e) Repeat steps 1 to 6 until Nens distinct samples are drawn.

v- Use the generated samples {xa
k(e)}e=1,2,...,Nens as an analysis ensemble. The analysis ensemble

can be used to infer the posterior moments, e.g., posterior mean and posterior covariance
matrix.

3: Increase time k := k + 1 and repeat steps 1 and 2.

3.3. Computational Considerations

To initialize the Markov chain one seeks a state that is likely with respect to the analysis
distribution. Therefore one can start with the background ensemble mean, or with the mean of
the component that has the highest weight. Alternatively, one can apply a traditional EnKF step and
use the mean analysis to initialize the chain.
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The joint ensemble mean and covariance matrix can be evaluated using the forecast ensemble,
or using the GMM parameters. Given the GMM parameters (τk,i; µk,i, Σk,i), the joint background mean
and covariance matrix are, respectively:

xb
k =

Nc

∑
i=1

τk,i µk,i , (25a)

Bens
k =

Nc

∑
i=1

τk,i Σk,i +
Nc

∑
i=1

τk,i (µk,i − xb
k )(µk,i − xb

k )
T . (25b)

Both the potential energy (21) and its gradient (22) require evaluating the determinants of the
covariance matrices associated with the mixture components. This is a computationally expensive
process that is best avoided for large-scale problems. A simple remedy is to force the covariance
matrices Σk,i, ∀i = 1, 2, . . . , Nc to be diagonal while constructing the GMM.

When the Algorithm 1 is applied sequentially, at some steps a single mixture component could
be detected in the prior ensemble. In this case, forcing a diagonal covariance structure does not help,
and we fall back to the standard HMC sampler, where the full ensemble covariance matrix is utilized.

3.4. A Multi-Chain Version of the C`HMC Filter (MC-C`HMC)

Given the special geometry of the posterior mixture distribution, one can construct separate
Markov chains for different components of the posterior. These chains can run in parallel to
independently sample different regions of the analysis distribution. By running a Markov chain
starting at each component of the mixture distribution we ensure that the proposed algorithm navigates
all modes of the posterior, and covers all regions of high probability. The parameters of the jumping
distribution for each of the chains can be tuned locally based on the statistics of the ensemble points
belonging to the corresponding component in the mixture.

A multi-chain version of the C`MCMC filter (MC-C`MCMC) is developed by choosing the
proposal of the ith chain to be N (xr

k,i, Σk,i).
Running an HMC sampling chain under each of the posterior mixture components formulates

the multi-chain C`HMC (MC-C`HMC) sampling filter. In this case, the diagonal of the mass matrix
can be set globally for all components, for example using the diagonal of the precision matrix of the
forecast ensemble, or can be chosen locally based on the second-order moments estimated from the
prior ensemble under the corresponding component in the prior mixture. This local choice of the mass
matrix does not change the marginal density of the target variable.

The local ensemble size (sample size per chain) can be specified based on the prior weight of the
corresponding component multiplied by the likelihood of the mean of that component. Every chain is
initialized to the mean of the corresponding component in the prior mixture.

The computational cost of the original HMC sampling filter depends greatly on the parameters
of the Markov chain. A comprehensive discussion of the cost of the HMC sampling filter is given
in Section 4.1 [17]. The C`HMC sampling filter replaces the Gaussian prior with a GMM, which
introduces an additional cost for utilizing the EM algorithm. This added cost, however, is negligible
compared to cost of the sampling step. Moreover, MC-C`HMC allows running the chains in parallel,
which reduces the computational cost by a factor of up to the number of posterior probability modes
Nc. This approach is potentially very efficient, not only because it reduces the total running time of the
sampler, but also because it favors an increased acceptance rate.

4. Numerical Results

We first apply the proposed algorithms to sample a simple one-dimensional mixture distribution.
The cluster HMC sampling filters are then tested using a quasi-geostrophic (QG) model and compared
against the original HMC sampling filter and against EnKF. We mainly use a nonlinear 1.5-layer
reduced-gravity QG model with double-gyre wind forcing and bi-harmonic friction [37]. The data
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assimilation testing suite (DATeS) [38,39] is used to carry out the numerical experiments presented in
this work.

4.1. One-Dimensional Test Problem

We start with a prior ensemble generated from a GMM with Nc = 5 and the following
mixture parameters:

{(τi; µi, σ2
i )}i=1,...,5 = {(0.2; −2.4, 0.05), (0.1; −1.0, 0.07),

(0.1; 0, 0.02), (0.3; 1.0, 0.06), (0.3; 2.4, 0.1) } .
(26)

The EM algorithm is used to construct a GMM approximation of the true probability distribution
from which the given prior ensemble is drawn. The model selection criterion used here is AIC.
The generated GMM approximation of the prior has Nc = 4 and the following parameters:

{(τi; µi, σ2
i )}i=1,...,4 = {(0.169; −2.370, 0.052), (0.278; −0.727, 0.423),

(0.229; 1.070, 0.065), (0.324; 2.436, 0.159) } .
(27)

The true prior, the prior ensemble, and the GMM approximation fitted to the prior ensemble, are
shown in Figure 1.
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)

True prior

Fitted GMM prior

Prior ensemble

Figure 1. The one-dimensional example. A random sample of size Nens = 100 generated from the
“true” GMM prior with parameters given by (26), and a GMM constructed by EM algorithm with AIC
model selection criterion.

Assuming the observation likelihood function is given by:

P(y|x) = 1√
1.2
√

2π
exp

(
−1

2
(x− y)2

1.2

)
, (28)

with an observation y = −0.06858, the posterior and the histograms of Nens = 1000 sample points
generated by C`MCMC, MC-C`MCMC, C`HMC, and MC-C`HMC algorithms, are shown in Figure 2.
The acceptance rates of the cluster sampling filters are given in Table 1. In this example, the symplectic
integrator used for the HMC-based filters, is Verlet with pseudo-time stepping parameters T = mh
with m = 20, and h = 0.05. Since the chains are initialized to the means of the prior mixture
components, the burn-in stage is waived, i.e., the number of burn-in steps is set to zero. To reduce the
correlation between the ensemble members of one chain we discard 20 states (mixing steps) between
each two consecutive sampled points. In MC-C`MCMC, and MC-C`HMC filters, the ensemble size
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per component (per chain) is set to Nens × `i × τi, where `i is the likelihood of the mean of the ith

component in the prior mixture.
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(a) C`MCMC
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(b) MC-C`MCMC
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(c) C`HMC
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(d) MC-C`HMC

Figure 2. The one-dimensional example. A GMM prior, a Gaussian likelihood, and the resulting
posterior, along with histograms of 1000 sample points generated by the C`MCMC (a), MC-C`MCMC
(b), C`HMC (c), and the MC-C`HMC (d) sampling algorithms. The symplectic integrator used for
HMC filters is Verlet with pseudo-time stepping parameters T = mh with m = 20, and h = 0.045. The
number of burn-in steps is zero, and the number of mixing steps is 20.

Table 1. Acceptance rates of the cluster sampling filters, for the one-dimensional example.

Sampling Filter

C`MCMC MC-C`MCMC C`HMC MC-C`HMC
Acceptance rate 44.32 77.39 99.21 99.23

The results reported in Figure 2 show that the four versions of the cluster sampling filter,
C`MCMC and MC-C`MCMC, C`HMC and MC-C`HMC are capable of generating ensembles with
mass distribution accurately representing the underlying target posterior. The serial version C`HMC,
however fails to sample one of the probability modes (the leftmost probability mode in Figure 2c), while
the multi-chain version MC-C`HMC generates samples from the vicinities of all posterior probability
modes. Moreover, the acceptance rates shown in Table 1 explain that the HMC-based samplers yield
much lower rejection rates, and thus are more favorable.

In large-scale settings, the C`MCMC filter and the multi-chain version MC-C`MCMC, are expected
to suffer from random walk behavior, and would require large ensemble sizes to cover all probability
modes properly. Unlike C`MCMC, the C`HMC sampler is suited for high-dimensional settings,
and can explore the probability space quickly with small ensemble size. This is mainly because the
HMC proposals target high-probability regions more frequently. The performance of the original
HMC sampling filter was evaluated, and its usefulness in nonlinear settings was demonstrated,
e.g., in [17]. The remainder of this Section is devoted to assessing the benefit of using a GMM, to relax
the Gaussian-prior assumption posed by the original HMC filter, in sequential non-Gaussian filtering,
and in relatively high-dimensional settings. Thus, in the numerical experiments shown in Section 4.2,
we focus only on results of the C`HMC, and MC-C`HMC cluster sampling filters.
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4.2. Quasi-Geostrophic Model

We employ the QG-1.5 model described by Sakov and Oke [37]. This model is a numerical
approximation of the equations:

qt = ψx − εJ(ψ, q)− A∆3ψ + 2π sin(2πy) ,

q = ∆ψ− Fψ ,

J(ψ, q) ≡ ψxqx − ψyqy ,

(29)

where ∆ := ∂2/∂x2 + ∂2/∂y2 and ψ is either the stream function or the surface elevation. We use the
values of the model coefficients (29) from [37], as follows: F = 1600, ε = 10−5, and A = 2× 10−12.
The domain of the model is a 1× 1 [space units] square, with 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 , and is discretized
by a grid of size 129× 129 (including boundaries). Boundary conditions used are ψ = ∆ψ = ∆2ψ = 0.
The model state dimension is Nvar = 16641, while the model trajectories belong to affine subspaces
with dimensions of the order of 102 − 103 [37].

The time integration scheme used is the fourth-order Runge-Kutta scheme with a time step 1.25
[time units].

For all experiments in this work, the model is run over 1000 model time steps, with observations
made available every 10 time steps. In this synthetic model the scales are not relevant, and we use
generic space, time, and solution amplitude units.

4.2.1. Observations and Observation Operators

Two observation operators are used with this model.

• First we use a standard linear operator to observe 300 components of ψ. The observation error
variance is 4.0 [units squared]. Synthetic the observations are obtained by adding white noise to
measurements of the sea surface height (SSH) extracted from a model run with lower viscosity.

• The second observation operator measures the magnitude of the flow velocity
√

u2 + v2. The flow
velocity components u, v are obtained using a finite difference approximation of the following
relations to the stream function:

u = +
∂ψ

∂y
, v = −∂ψ

∂x
. (30)

In both cases, the observed components are uniformly distributed over the state vector length,
with a random offset, that is updated at each assimilation cycle. As mentioned in [37], the observational
settings used here are motivated by typical distribution of satellite altimetry for oceanic applications.

The reference initial state along with an example of the observational grid used, and the initial
forecast state are shown in Figure 3.
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(a) Reference initial state and
observational grid
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Figure 3. The QG-1.5 model. The red dots in (a) indicate the location of observations for one of the test
cases employed.
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4.2.2. Filter Tuning

We used a deterministic implementation of EnKF (DEnKF) with parameters tuned as suggested
in [37]. Specifically, we apply a covariance localization by means of a Hadamard product as explained
in [8]. The localization function used is Gaspari-Cohn [40] with localization radius set to 12 grid cells.
Inflation is applied with factor δ = 1.06 to the analysis ensemble of anomalies at the end of each
assimilation cycle of DEnKF.

The parameters of the HMC and C`HMC sampling filters are tuned empirically in a preprocessing
step in the HMC filter to guarantee a rejection rate at most between 25% to 30%. Here we tune the
parameters of the Hamiltonian trajectory only once at the beginning of the assimilation experiment.
Specifically, the step size parameters of the symplectic integrator are set to h = 0.075, m = 25 in the
presence of the linear observation operator, and are set to h = 0.015, m = 25 when the nonlinear
observation operator (30) is used. The integrator used for the Hamiltonian system in all experiments
is the three-stage symplectic integrator [17,29]. The mass matrix M is chosen to be a diagonal matrix
whose nonzero entries are equal to the precisions, i.e., reciprocal of the variances, of the forecast
ensemble. In the current experiments, the first 50 steps of the Markov chains are discarded as a burn-in
stage. Alternatively, one can run a suboptimal minimization of the negative-log of the posterior to
achieve convergence to the posterior.

The parameters of the MC-C`HMC filter are set as follows. The step size parameters of the
symplectic integrator are set to h = 0.05/Nc, m = 15 in the experiments with linear observation
operator, and h = 0.0075/Nc, m = 15 in the case of the nonlinear observation operator (30). The mass
matrix is a diagonal matrix whose diagonal is set to the diagonal of the precision matrix of the forecast
ensemble labeled under the corresponding mixture component. To avoid numerical problems related
to very small ensemble variances, for example in the case of outliers, the variances are averaged with
the modeled forecast variances of 5 units squared.

The prior GMM is built with number of components determined using AIC model selection
criteria, with a lower bound of 5 of the number of ensemble members belonging to each component
of the mixture. This lower bound is enforced as a means to ameliorate the effect of outliers on the
GMM construction. In all experiments involving C`HMC, and MC-C`HMC, the diagonal covariances
relaxation assumption is imposed. However, this structure is not imposed if only one mixture
component is detected, and C`HMC and MC-C`HMC filters fall back to the original HMC filter.
For cases where a component contains a very small number of ensemble members covariance
tapering [41] can prove useful.

The ensemble size for all filters used here is set to Nens = 25.

4.2.3. Assessment Metrics

To assess the accuracy of the tested filters we use the root mean squared error (RMSE):

RMSE =

√√√√ 1
Nvar

Nvar

∑
i=1

(xi − xtrue
i )2 , (31)

where xtrue = ψtrue is the reference state of the system and x is the analysis state, e.g., the average of
the analysis ensemble. Here Nvar = 129× 129 = 16641 is the dimension of the model state. We also use
Talagrand (rank) histogram [42,43] to assess the quality of the ensemble spread around the true state.

4.2.4. Results with Linear Observation Operator

In the linear settings of this experiment, EnKF produces the best possible results, under both
RMSE and Rank histogram uniformity metrics. Our main goal in this section, is to test the performance
of the proposed algorithms, C`HMC and MC-C`HMC against the original HMC sampling filter,
with EnKF results as a benchmark. The results below suggest that relaxing the Gaussian-prior using
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an ensemble-based GMM estimate could be dangerous, unless the sampler is guaranteed to cover all
posterior probability modes.

Figure 4 presents the RMSE (31) results of the analyses obtained using EnKF, HMC, C`HMC, and
MC-C`HMC filters in the presence of a linear observation operator. Figure 4 shows that the results
of all HMC filter versions improve quickly at the first few assimilation windows. While the results
of the original HMC filter improve quickly at the first few assimilation windows, the performance of
the original HMC filter degrades compared to the DEnKF filter performance especially in the long
run. We believe that the two main factors contribute to the HMC filter degradation are the parameter
tuning, and the development of non-Gaussianity in the prior distribution. The C`HMC analysis drifts
away quickly from the true trajectory. This is mainly because the HMC sampling strategy is unable to
cover all probability modes in the posterior distribution. To guarantee that the sampling filter covers
the truth well, the sampler has to be able to sample properly from all posterior probability modes.
This is achieved by design by the MC-C`HMC filter. The MC-C`HMC version produces RMSE results
comparable to the RMSE obtained by DEnKF.
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Figure 4. Data assimilation results with the linear observation operator. RMSE of the (31) analyses
obtained by EnKF, HMC, C`HMC, and MC-C`HMC filters. Forecast results here refer to the RMSE
obtained from a free run of the dynamical model, with initial condition set to the forecast state at the
initial time.

As discussed in [17] the performance of HMC filter can be further enhanced by automatically
tuning the parameters of the symplectic integrator at the beginning of each assimilation cycle.
Here however we are mainly interested in assessing the performance of the new methodologies
compared to the original HMC filter using equivalent settings.

It is important to note that the MC-C`HMC filter requires shorter Hamiltonian trajectories to
explore the space under each local mixture component, which results in computational savings.
Additional savings can be obtains by running the chains in parallel to sample different regions of
the posterior.

Since we are not interested in only a single best estimate of the true state of the system, RMSE
alone is not sufficient to judge the quality of the filtering system. The analysis ensemble sampled
from the posterior should be spread widely enough to cover the truth and avoid filter collapse. The
rank histograms of the analysis ensembles are shown in Figure 5. Generally speaking, Talagrand
diagram is a histogram constructed by calculating the rank of the true state, compared to the ensemble
members ordered increasingly in magnitude. The ranks are calculated over several assimilation cycles,
for individual entries of the true state with respect to the corresponding entries of the ensemble
members. Observations are used instead of model states in real experiments where the truth is
unknown. A U-shaped rank histogram indicates an under-dispersed ensemble, while a mound rank
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histogram indicates over-dispersion. A nearly-uniform rank histogram is desirable, and suggests that
the truth is indistinguishable from the ensemble members.

The two small spikes in Figure 5b suggest that the performance of the original HMC filter could
be enhanced by increasing the length of the Hamiltonian trajectories in some assimilation cycles.
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(b) HMC
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(c) C`HMC +AIC
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(d) MC-C`HMC +AIC

Figure 5. Data assimilation results with the linear observation operator. The rank histograms of where
the truth ranks among posterior ensemble members. The ranks are evaluated for every 16th variable in
the state vector (past the correlation bound) at 100 assimilation times.

The rank histogram shown in Figure 5c shows that the analysis ensembles produced by the
C`HMC filter tend to be under-dispersed. Since the ensemble size is relatively small and the prior
GMM is multimodal, with regions of low-probability between the different mixture components,
a multimodal mixture posterior with isolated components is obtained. As explained in [44], this is a
case where HMC sampling in general can suffer from being entrapped in a local minimum (and fails
to jump between different high probability modes). This behavior is expected to result in ensemble
collapse, as seen in Figure 5c, leading to filter degradation in the long run as illustrated by the RMS
errors shown in Figure 4.

The results shown in Figure 5c suggest that the analysis ensemble collected by C`HMC fails to
cover all mixture components, thereby losing its dispersion when it is applied repetitively. This is
supported by the results in Figure 6, where the rank histograms are plotted using results from the first
two, five, and 10 cycles, respectively.

The ensemble collapse can be avoided if we force the sampler to collect ensemble members from
all the probability modes. This is illustrated by the rank histograms of results obtained using the
MC-C`HMC filter with AIC criteria as shown in Figure 5d.

We believe that having isolated regions of high probability, e.g., with very small number
of ensemble members in each component, can be the critical factor leading the poor long-term
performance of C`HMC. This is alleviated here by imposing a minimum number of 3 ensemble
points in each component, e.g., via hard assignment, of the mixture while constructing the GMM
approximation of the prior.

With automatic tuning of the Hamiltonian parameters the performance of both HMC and
MC-C`HMC filters is expected to be greatly enhanced. We have only shown the results of C`HMC,
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and MC-C`HMC with AIC information criterion; experiments carried out using other model selection
criteria such as BIC have proven to be very similar.

To help decide whether to apply the original formulation of the HMC filter, or the proposed
methodology, one can run tests of non-Gaussianity on the forecast ensemble. To asses non-Gaussianity
of the forecast several numeric or visualization normality tests are available, e.g., the Mardia test [45]
based on multivariate extensions of skewness and kurtosis measures. Indication of non-Gaussianity
can be found by visually inspecting several bivariate contour plots of the joint distribution of selected
components in the state vector. Visualization methods for multivariate normality assessment such
as chi-square QQ-plots can be very useful as well. Given a multivariate normal random variable
x ∼ N (µ, Σ), the squared Mahalanobis distance d2 = (x − µ)TΣ−1(x − µ) follow a Chi-Squared
distribution. Multivariate QQ-plot assesses the normality of a random variable x, by comparing the
quantiles of a sample of Mahalanobis distances to the quantiles of the correct Chi-Squared distribution,
under the normality assumption. Deviations from the true distribution, e.g., the solid line in Figure 7,
indicate possible departure of the sampled variable from multivariate normality.
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(a) C`HMC +AIC; first two observation windows
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(b) C`HMC +AIC; first five observation windows
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(c) C`HMC +AIC; first ten observation windows

Figure 6. Data assimilation results using a linear observation operator. Rank histograms of where the
truth ranks among posterior ensemble members. The ranks are evaluated for every 16th variable in the
state vector (past the correlation bound). Rank histograms of C`HMC results obtained at the first two,
five, and 10 assimilation cycles, respectively, are shown. The model selection criterion used is AIC.

Figure 7 shows several chi-square Q-Q plots of the forecast ensembles generated from the result
of EnKF, HMC, and MC-C`HMC filters at different time instances. These plots show strong signs of
non-Gaussianity in the forecast ensemble, and suggest that the Gaussian-prior assumption may in
general lead to inaccurate conclusions.
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(a) EnKF; t = 300
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(b) EnKF; t = 775
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(c) EnKF; t = 1000
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(d) EnKF; t = 1200
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(e) HMC; t = 300
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(f) HMC; t = 775
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(g) HMC; t = 1000
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(h) HMC; t = 1200
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(i) MC-C`HMC; t = 300
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(j) MC-C`HMC; t = 775
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(k) MC-C`HMC; t = 1000
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(l) MC-C`HMC; t = 1200

Figure 7. Data assimilation with a linear observation operator. Chi-square Q-Q plots for the forecast
ensembles obtained from propagating analyses of EnKF, HMC, and MC-C`HMC filtering systems
to times t = 300, 775, 1000, and 1200 provide a strong indication of non-Gaussianity. The filtering
methodology, and the assimilation time are given under each panel. Localization is applied to the
ensemble covariance matrix to avoid singularity while evaluating the Mahalanobis distances of the
ensemble members.

4.2.5. Results with Nonlinear Wind-Magnitude Observations

In the presence of a nonlinear observation operator the distribution is expected to show even
stronger signs of non-Gaussianity. With stronger non-Gaussianity, the cluster methodology is expected
to outperform the original formulation of the HMC sampling filter. In the settings used in this Section,
EnKF diverges after the third cycle, and its results are omitted for clarity.

Figure 8 shows RMSE results, with the nonlinear observation operator (30), for the analyses
obtained by HMC, C`HMC, MC-C`HMC filtering systems. While EnKF diverges quickly under these
settings, the HMC algorithms, i.e., HMC, C`HMC, and MC-C`HMC sampling filters, continue to show
behavior similar to the case where the linear observation operator is used (Section 4.2.4).

Figure 9 shows rank histograms of HMC, C`HMC, and MC-C`HMC, with a nonlinear observation
operator. We can see that C`HMC performance is similar to the case when the linear observation
operator is used. It seems to be entrapped into a local minimum losing its dispersion quickly.
The results of the MC-C`HMC filter avoid this effect and show a reasonable spread.



Atmosphere 2018, xx, 1 20 of 23

0 20 40 60 80 100
Time (assimilation cycles)

0
1
2
3
4
5
6
7
8
9

RM
SE

Forecast
HMC
ClHMC
MC-ClHMC

Figure 8. Data assimilation results with the nonlinear observation operator (30). RMSE of the analyses
obtained by HMC, C`HMC, and MC-C`HMC filtering schemes. The Forecast RMSE results are obtained
from a free run of the dynamical model.
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(a) HMC
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(b) C`HMC +AIC

0 5 10 15 20 25
Rank (truth among ensemble members)

0.00

0.05

0.10

0.15

0.20

R
e
la

ti
v
e
 f

re
q

u
e
n

c
y

(c) MC-C`HMC +AIC

Figure 9. Data assimilation results using the nonlinear observation operator (30). The rank histograms
of where the truth ranks among posterior ensemble members. The ranks are evaluated for every 16th
variable in the state vector (past the correlation bound) at 100 assimilation times. The filtering scheme
used is indicated under each panel.

The results presented here suggest that the cluster formulation of the HMC sampling filter is
advantageous, especially in the presence of highly nonlinear observation operator, or strong indication
of non-Gaussianity.

5. Conclusions and Future Work

This work presents a set of fully non-Gaussian sampling filters for sequential data assimilation.
The filters use a GMM to approximate the prior distribution, given the forecast ensemble. The posterior
mixture distribution is directly sampled following a MCMC approach. Several proposals are suggested
for the MCMC sampling step. The C`MCMC filter uses a Gaussian proposal, and C`HMC follows
a HMC approach for sampling the posterior, using a single Markov chain. These two versions may
suffer from high-rejection rates, and may fail to sample all posterior probability modes, especially
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in highly non-linear settings. More efficient multi-chain versions of C`MCMC and C`HMC, namely
MC-C`MCMC and MC-C`HMC respectively, are developed in order to alleviate such difficulties.

Numerical experiments are carried out using a simple one-dimensional example, and a nonlinear
1.5-layer reduced-gravity quasi geostrophic model in the presence of observation operators of different
levels of nonlinearity. The results show that the new methodologies are much more efficient that the
original HMC sampling filter especially in the presence of a highly nonlinear observation operator.

The multi-chain cluster sampling filters, MC-C`HMC and MC-C`HMC, deserve further
investigation. For example the local sample sizes here are selected based on the prior weight multiplied
by the likelihood of the corresponding component mean. An optimal selection of the local ensemble
size is required to guarantee efficient sampling from the target distribution.

Instead of using MC-C`HMC filter, one can use C`HMC with geometrically tempered Hamiltonian
sampler as recently proposed in [44], such as to guarantee navigation between separate modes of the
posterior. Alternatively, the posterior distribution can be split into Nc target distributions with different
potential energy functions and associated gradients. This is equivalent to running independent HMC
sampling filters in different regions of the state space under the target posterior.

The authors have started to investigate the ideas discussed here, in addition to testing the proposed
methodologies with automatically tuned HMC samplers.
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