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Cluster Sampling Techniques for Estimating 
Transit Patronage 

PETER G. FURTH, KEITH L. KILLOUGH, AND GARY F. RUPRECHT 

Sampling of trips ls necessary to estimate rldership on most 
transit systems. Decause of UMTA Section 15 and other inter­
nal requirements, It Is Important to know the accuracy of 
estimates made. Simple random sampling of trips Is a tech­
nique approved by UMTA, and Its accuracy formulas are well 
known. However, random sampling of trips ls a very unnatural 
and wasteful method of gathering data becau ·e of time lost In 
truvellng from one selected trip to another. A more natural 
way of sampling Is by run-piece, the sequence of trips that a 
driver follows for a day or half a day. Estimation and accuracy 
formulas for several techniques of sampling by clusters of trips 
are 1>resented, with and without conversion factors. Stratifica­
tion to improve accuracy Is also incorporated. A case study In 
Los Angeles Is used to demonstrate the merits of the various 
teclmlques. Pittsburgh data are also used to evaluate cluster 
sampling for route-level estimates. The results confirm the 
superior value of cluster sampling as compared to simple 
random sampling In most cases. 

Ever since the transit industry dropped the practice of issuing 
tickets to all patrons (due to the advent of lhe one-man crew), 
transit companies have had to cslimate patronage. Because of 
zone fares, reduced fares for various groups such as elderly and 
students, varying transfer policies, and the popularity of passes, 
applying a simple average fare factor to system revenue may 
not necessarily yield an accurate estimate. Even if the average 
fare factor is to be used, it should be estimated scientifically. 

Accurate patronage estimates are needed for many reasons. 
Many transit systems are evaluated and fWlded in proportion to 
the number of passengers lhcy carry. Patronage estimates are 
needed to evaluate lhe impacts of fare and service changes. 
Recognizing the need for accurate patronage estimates, Section 
15 of the Urban Mass TransportaLion Act requires all systems 
receiving federal operating assistance to report total annual 
unlinked trips at a specified level of accuracy, namely, a 
precision of ±10 percent at the 95 percent confidence level. 
Many transit systems have developed lheiI own reporting 
requirements, which often call for accurate estimates on a 
monthly or quarterly basis. 

Along with its Section 15 reporting requirements, UMTA 
has issued two circulars (1, 2) containing approved sampling 
techniques for making the needed estimates. Both of them take 
a one-way vehicle trip as the sampling unit. The first technique 
is measuring boardings on a random sample of about 600 trips, 
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calculating an estimate of systemwide mean boardings per trip, 
and then expanding it by the number of trips in lhe year. The 
second technique, described in more detail by Furth and 
McCollom (3), uses revenue as an auxiliary variable. In this 
technique, boardings and revenue are measured on a random 
sample of about 200 trips, from which average cash revenue 
per boarding is estimated. This figure is then applied to system 
annual revenue to yield an estimate of system annual board­
ings. These estimation methods require a random sample of 
trips, and the UMTA circulars give clear instructions on how 
u-jps are to be selected to ensure randomness. Essentially, trips 
are chosen with equal probability out of a single "hat" that 

contains all trips. The only departure from pure random sam­
pling allowed is the widely accepted practice of sampling the 
same number of trips each day. 

While random seleclion of trips has advantages in allowing 
the use of simple formulas for expansion of the sample results 
and estimating accuracy level, it is an inefficient, unnatural way 
of sampling. The checker must almost always perfonn a round 
trip so as not to be stranded at the end of the line, yet only data 
from half the round trip are allowed. There may be long waits 
and distances between lhe selected trips, resulting in unproduc­
tive time spent either waiting or traveling. In contrast to 
random trip selection, transit systems have traditionally per­
formed ride checks by having a checker stay on a bus, 
following the duty of a driver. This natural unit of sampling 
already conforms to work rules concerning the length of a 
workday. Furthermore, driver duties have been designed to 
cover the entire set of trips in lhe system efficiently, minimizing 
labor cost. Many driver duties, or runs as they are often called, 
consist of an early and a late piece of work of about 4 hr each, 
and in many transit systems lhese run-pieces form a natural 
sampling unit, as the early piece of one run can easily be 
matched with Lhe late piece of anolher. Since most run-pieces 
operate exclusively on a single line, sampling a rWl-piece will 
often provide line-specific data, which are often needed for 
internal monitoring and decision making. When a run-piece is 
interlined, special checker-pieces can be designed that switch 
vehicles once or twice in order to stay on a line if lhat is 
desired. The procedure of sampling by a natural group of 
elements (in this case trips) is known as cluster sampling. 

Anolher variation from random selection of trips lhat is 
useful is stratification. Stratification will improve accuracy 
when relatively homogeneous strata can be found. Perhaps 
more importantly, by making each line or each garage or each 
route type (local, express, etc.) a different stratum, estimates 
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for these subdivisions can be obtained at specified accuracy 
levels in the process of obtaining ystem estimates. 

Because of the unnaturalness of random sampling by trip, 
most transit systems that follow the UMfA-published pro­
cedures perform their Section 15 ride checks separately from 
ride checks perform~ for other purposes, and they use the 
Section 15 data for no purpose other Lhan Section 15 reporting. 
Other transit systems have tried to develop patronage esti­
mating procedures that involve sampling by run-piece and 
stratification and provide estimates that are used for internal as 
well as Section 15 reporting. In order to satisfy the Section 15 
requirements, however, the transit system must demonstrate 
that its procedures are unbiased and that they meet the statisti­
cal accuracy target. 

In the following sections of the paper, several unbiased 
cluster sampling techniques will be described. Where appropri­
ate, stratification is incorporated. Estimation and variance/ 
precision formu.las are also supplied. A case slUdy is then 
de! cribed in which these techniques were applied to data from 
the Southern California Rapid Transit District (SCRTD). Fi­
nally, data from both SCRTD and the Port Authority for 
Allegheny County (Pittsburgh) are presented indicating the 
increase in sampling rate called for by cluster sampling (versus 
simple random sampling) in estimating items at the system, 
route, and route/direction time period levels. 

NOTATION 

The following variables will be used: 
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stratum index, 
cluster index (each cluster belongs to a single 
stratum), 
trip index, 
number of trips in cluster i, 
boardings on trip j of cluster i, 
Mhi 

L, Ynij = total boardings in cluster i, 
J=l 
Yh;0 /mhi = trip mean boardings for cluster i, 
number of stratum h clusters in population, 
number of stratum h clusters in sample, 
number of clusters in sample, 
number of stratum h trips in population, 
number of stratum h trips in sample, 
M110/N1o =mean cluster size in stratum h, 
number of stratum h clusters in analysis 
dataset, 
z-value corresponding to confidence level 
(e.g., z = 1.96 for 95 percent confidence level 
when standard devia1ion is known), and 
precision (e.g., d = 0.1 means ±10 percent). 

TECHNIQUE 1: SAMPLING CLUSTERS 
AS ELEMENTS 

The simplest cluster sampling technique is to simply treat 
clusters, rather than trips, as elements to be sampled, derive the 
mean boardings per cluster from a sample, and then expand by 
the number of clusters in the population. This technique may be 
appropriate when the clusters are uniform throughout the 
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system, for example, if each cluster were a round trip. This 
technique is likely to be more efficient than sampling one-way 
trips at random, since the cost of sampling the return !rip is near 
zero and the coefficient of variation (COY) of boardings on 
round trips is almost certain to be less than the COY f 
boardings on one-way trips. Since this technique is really 
simple random sampling (with a different sampling unit), the 
estimation and variance formulas used for simple random 
sampling apply. Th.is technique is not given further considera­
tion in this paper because more gain was expected from using 
run-pieces as clusters than from using round trips, s.incc 
randomly ampling round trips will slill involve a lot of 
unproductive waiting and traveling time. 

When clu ters are run-pieces, they can vary g.rearly in the 
number of trips included and in duration, and consequently the 
cluster totals will vary greatly. For this reason, techniques 
appropriate co clusters of unequal size are needed. Four such 
techniques are described next. 

TECHNIQUE 2: STRATIFIED RATIO-TO­
CLUSTER-SIZE SAMPLING 

Clusters are prestratified and are selected with equal probability 
within each stratum. The value for mean boardings per trip is 

(1) 

which is the form of a ratio estimator (with nh being the 
auxiliary variable). The theory of ratio estimators is described 
by Cochran (4) and by Furth and McCollom (3). 

The estimator of stratum total boardings is Yh = Mh,]11, and 
the system total estimator is 

h h 

Yo = L. Y.~ M 1io = L. Y1t (2) 

The variance of the stratum total estimator is estimated to be 

(3) 

The squared COV of the stratum total e timator (which is also 
the COV of the stratum mean boardings per trip) is 

The squared COV on a per cluster basis is defined to be 

1 
TA2 -2 
m1o Y1t Ph - 1 

(5) 
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The per cluster term u11 lends itself to use in the familiar 
equation 

(COV of mean or total) = ---'('-C_O_V_of_u_ru_·...:..r)_ 
(number of units)112 

which for this case takes the form v(Y11 ) = u11/(n 11)
1fl. The u11 

term is also useful because it can be calculated from the 
analysis dataset without prior specification of n11• 

The system total variance is simply 

h 
V(Y0 ) = :E V(Y n) (6) 

since the clusters in each stratum are selected independently. 
The system total COV is therefore 

Iu~ M~0 y~/n,J 1 fl 
v(Y o> = ----- ­

:E Nf,,o Y1t 

and its precision (relative tolerance) is 

d = z v(YJ 

(7) 

(8) 

To minimize the system total COV for a given overall 
sample size or to minimize overall sample size for a desired 
overall COV, the number of clusters sampled in stratum h 
should be proportional to u,.M11;]11 , under the assumption that 
sampling cost is proportional to number of clusters sampled. 
This is easily seen by minimizing v(Y

0
) subject to a constraint 

on n0 , or by minimizing n
0 

subject to a given v(Y
0

). 

For a given total number of clusters n0 , optimal allocation is 

(9) 

and for a given desired precision d, 

(10) 

However, if cost is proportional to the number of trips 
sampled (rather than number of runs), it follows that strata with 
more trips per run should be sampled less. Optimizing leads to 

(11) 

Most generally, if the cost of sampling a stratum h cluster is 
c11 , optimum allocation calls for 

(12) 

However, Cochran (4) and others point out that the optimum 
is relatively flat, in the sense that even moderate departures 
from optimal allocation will lead to little deterioration in 
accuracy. In our case study, we found that using equal sampling 
rates (which has the advantage of simplicity and of flexibility in 
analysis) rarely increased necessary sample size by more than 5 
percent optimum allocation. 
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TECHNIQUE 3: STRATIFIED CLUSTER SAMPLING 
WITH PROBABILITY PROPORTIONAL TO SIZE 

Another sampling approach that recognizes differing cluster 
sizes is to sample clusters with the selection probability propor­
tional to the number of trips in the cluster ( 4). The unbiased 
estimator of stratum h total boardings is 

(13) 

where y11 is the unweighted mean of the cluster trip-level 
means. One way of selecting run-pieces in proportion to this 
size is to select trips with equal probability and then take the 
run-piece to which the selected trips belong. The probability 
proportional to size (PPS) strategy is different from the ratio­
cluster-size approach and requires a different expansion pro­
cedure (Equation 13 versus Equation 1). Compared to the ratio­
to-cluster-size approach, PPS sampling will tend to sample 
more large clusters and fewer small clusters, often implying a 
greater sampling cost per cluster. 

Using an analysis dataset of p 11 clusters, the variance of the 
stratum total estimator is estimated to be 

(14) 

Its squared COV on a per cluster basis is 

Ph 

L. - 2 <Yiii - 'Y1i) 
2 2 i=I (15) 

uhPPS =nit vltPPS = 
(p,. - 1) ~ y,, 

The system total estimator is Y0 pps = :E11 Y11pps· Its variance is 
again the sum of the stratum total variances: 

The system total is 

h 2 2 - 2 1/2 
I uhPPS Mho Y1tl11h) 

v(YoPPs) = ---------
'f!' MhoJh 

Its precision is 

(16) 

(17) 

(18) 

If the sampling cost is proportional to the number of runs 
sampled, and all strata have the same cost per run, optimal 
allocation between strata calls for 

(19) 

If cost is proportional to number of trips, it is important to 
recognize that the expected number of trips per cluster sampled 
in stratum h is greater than M,. since bigger clusters are 
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sampled with greater probability. The expected size of a 
sampled cluster is M,. (1 + v!n), where v,,.,, is the COV of 
cluster size in stratum h. Optimum allocittion in this case yields 

(20) 

Accuracy can be improved by stratifying the sample into 
homogeneous groups (meaning every trip in the group has 
nearly equal boardings). The identification of such groups 
depends to a large degree on the data available. For instance, 
lines can be stratified by type (local, express, crosstown, etc.) 
without any data, but these groups may not be very homoge­
neous. With past data on each line, lines could be stratified by 
average boardings per trip (e.g., into light, medium, and heavy 
lines). Further homogeneity can be achieved by stratifying trips 
according to the average boardings on their line/direction/time 
period (L/Dff P), if L/Dff P boarding estimates are available. 
Ideally, if previous estimates of boardings were available for 
every trip in the system, trips could be stratified directly by 
their previous estimate. With run-piece clusters, however, 
clusters may overlap several strata when stratifying by line 
(i.e., when runs are interlined), and clusters are certain to 
overlap strata if the finer levels of stratification are used. 
Technique 4 (ex post facto stratification) is designed to handle 
clusters that overlap strata. 

One way to avoid overlapping strata at a fine level of 
siraiificaiion is direci siraiificaiion of clusters, as opposed io 
stratification of lines or trips. For this purpose, every cluster 
(run-piece) must be assigned a value of expected boardings per 
trip, and then clusters can be stratified by this assigned value. If 
past data on boardings on each trip are available, these figures 
can be used to generate the value of expected boardings per trip 
by cluster. If past data do not contain a figure for every trip 
(e.g., because there are new trips in the schedule), L/Dff P 
averages derived from past data can be used as estimates for 
each trip, and these estimates can be aggregated to yield cluster 
total estimates. 

TECHNIQUE 4: RATIO-TO-REVENlJE 
CLUSTER SAMPLING 

Based on the reasoning that the number of passengers carried in 
a trip is approximately proportional to the amount of cash 
revenue received, a ratio-to-revenue sampling strategy is at­
tractive. Since system cash revenue is known in every transit 
system, all that must be estimated is the average cash revenue 
received per boarding passenger. (It is theoretically possible to 
use an auxiliary variable other than revenue if it is known at the 
system level, it is well correlated with boardings, and it can be 
measured at trip level.) The accuracy of this approach will 
depend, of course, on how uniform cash revenue per boarding 
is. One limitation of this approach is that revenue must be 
measurable, either with a registering farebox or by some other 
means, at trip level. Another limitation is that stratification can 
only be done to the extent that total revenue is known for the 
strata. In most transit systems, revenue is not totaled by route, 
though it may be totaled by garage in some cases. Most often, 
however, revenue is counted in a central counting room, 
making stratification impossible. Stratification is not included 
in our presentation of this sampling approach, although an 

TRANSPORTATION RESEARCH RECORD 1165 

extension to stratified sampling is straightforward. The stratum 
subscript h is dropped in this section. 

The ratio estimator of the number of boardings per cash 
revenue is 

n 

I. Yio 
i=l 

(21) R =---
n 

I. sio 
i=l 

where sio and Yio are the cluster i total revenue and boardings. 
Systemwide boardings can then be estimated as 

(22) 

The squared COV of R (v;) and Lhc squared COV on a per 
cluster basis (u;) are estimated from an maly i dataset with p 
clusters as follows: 

p 

I. 
i=l (23) 

n (,p - 1) ~ 

where y
0 

is the mean cluster boardings. Another way to 
2. 

com-pute uR is 

(24) 

where the subscript CL denotes a reference to cluster totals, 
and where rysCL is the correlation coefficient between cluster 
total boardings and revenue. 

YR has the same COV as R, since they differ only by a 
multiplicative constant. Therefore the precision of the system 
estimate is 

d = rv' - z uR 
Z l\. R, - (n)l{l. (25) 

and the necessary number of clusters to attain a precision level 
dis 

TECHNIQUE 5: CLUSTER SAMPLING WITH EX 
POST FACTO LINE/DIRECTION/TIME PERIOD 
STRATIFICATION 

(26) 

Suppose trips are to be stratified by line (as to whether the line 
to which they belong is a high, medium, or low boarding line) 
and that run-pieces, the natural sampling units, have extensive 
interlining. Or suppose, in an effort to increase within stratum 
homogeneity, trips are to be stratified by L/D{f P. In this case a 
run-piece will nearly always span two directions and often span 
two or more time periods. One way to deal with run-pieces that 
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overlap strata is to sample run-pieces without regard to strata 
(so that all run-pieces are sampled with equal probability) and 
then stratify the sample trips afterwards. Jn this context, a run­
piece (the sampling unit) is called a supercluster. 

All of the trips in supercluster k that belong to stratum h 
constitute a stratum h cluster. A trip belongs to stratum h if the 
L/Dff P to which it belongs is classified into stratum h. Thus, 
there will be at most one stratum h cluster per supercluster, 
even if the supercluster contains trips of several lines. The time 
periods according to which trips are classified can be as long or 
short as desired; in the limit, the time period could be so short 
as to include a single trip, implying that trips are classified 
according to past measured boardings on this trip. While this 
level of detail is desirable in increasing homogeneity, it re­
quires past data on every trip, and is impractical inasmuch as 
trip schedules change from year to year. 

Some additional notation must be introduced: 

n = 
g,, = 

f 1i11 = 

nhll = 

P1i11 = 

Shll = 

number of superclusters sampled, 
fraction of superclusters in the population 
containing a stratum h trip, 
fraction of superclusters in the population 
containing both a stratum h trip and a stratum 
H trip, 
number of selected superclusters that contain 
clusters in both strata h and H, 
number of superclusters in the analysis 
dataset with clusters in both strata h and H, 
and 
covariance between boardings in a stratum h 
cluster and boardings in a stratum H cluster 
when both clusters lie in the same 
supercluster. 

The estimator of boardings per trip within stratum h is y 11 as 
given by Equation 1. (The index i continues to refer to clusters, 
not superclusters.) The estimate of system boardings is 

(27) 

Between superclusters, sample selection is random; 
however, within superclusters, cluster selection is not random, 
and therefore the variance of the system total must include 
covariance teffilS for clusters lying in the same supercluster. 
The following derivation omits teffilS that are O(n2

) and hlgher. 
Since YEX = 'f." M1a 0 y,,, 

= E[Vi] + E[V2] (28) 

Here, V1 is the intracluster variance and V2 is the intercluster 
(but intrasupercluster) contribution to variance. 

The intracluster variance V1 is calculated as in the ratio-to­
cluster-size approach (Equations 3-5). Expressing the variance 
of the stratum h mean in terms of the per cluster COV yields 
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(29) 

Before the sample is selected, n11 is unknown. Using the first 
order approximation £(1/n,,) = 1/E(n11), it can be determined 
that 

(30) 

With respect to V2, the between cluster contribution to 
variance, 

· Cov (31) 

j j j j 
Using the identity Cov ('f. Ai, r. B) = r. r. Cov (Ai• Bi), it 

can be determined that 

nh nn 
L. L. Cov (yhio• Ym•o) 
i=l i'=l 

The second equality follows here because 

{ 

s11H if cluster i and cluster i' lie 

Cov (y . y ., ) = in the same supercluster 
11
'
0

' Hi 
0 0 otherwise 

(32) 

(33) 

since superclusters are chosen independently. Using the index k 
to refer to a supercluster, and dropping the indices i and i' 
(since a supercluster cannot contain more than one cluster in a 
given stratum), the covariance term is estimated as 

P1r11 
L. 
k=l (34) 

The corresponding correlation coefficient is 

(35) 

Now V2 can be expressed as follows: 

Vz = 2 ~ 11h nhff 
mho mHo 

(36) 
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To get E[V2], the first order approximation is made 

E [ m~';., l = E[m:;::m
8
,] 

nfhH 
(37) =-------

Combining the V1 and V2, the variance of the ex post facto 
estimator is 

E[V(YEX)] _ .!_ { ~ M~0 u~ ~ 
n g,. 

+ 2 ~ Hr_h M1w M,.,0 uh ufl Yn YH r1Jifhf1} (38) 

gh g,., 

The per-supercluster squared COV uk (which is stratum 
independent) is given by 

2 n E[V(YEX)] 
UEX = ----­y2 

EX 

(39) 

and can be calculated directly from an analysis dataset. The 
precision obtained from a sample of n superclusters (run­
pieces) is therefore 

Z UEX 
d=--

(n/12 
(40) 

and the number of superclusters that must be sampled to obtain 
a precision d is 

_ (z UEX) 2 n- --
d 

(41) 

SCRTD CASE STUDY 

SCRTD has for many years had a regular program of system­
wide estimation of unlinked passenger trips. Fare checks are 
conducted on a sample of about 200 half-runs each quarter, 
observing the fare type for each boarding passenger. The 
estimation procedure used was ratio-to-cluster-size with lines 
stratified into four groups: express, and three groups of local 
lines. A dataset of most recent ride checks on each line 
provides an estimate of average boardings per trip on each line, 
and these estimates are used to stratify lines into low, medium, 
and high boarding groups. In order to provide a scientific basis 
for the choice of sample sizes, SCRTD contracted with Multi­
systems, Inc. to choose a sampling technique and to determine 
what sample size would be needed to meet both internal and 
external (Section 15) accuracy requirements. 

Techniques 2-5 were tested. Technique 2 was tested with 
two different stratification schemes: stratification by line (as 
previously done by SCRTD) and direct stratification by cluster, 
using past ride check data to estimate expected boardings in 
each half-run. In all cases, the cluster used was half a run. A 
run at SCRTD is the set of trips performed in a day by a single 
vehicle. 
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The 95 percent confidence level is used throughout. If the 
standard deviation is known, the corresponding z-value is 1.96 
(i.e., there is a 95 percent chance that a standard normal variate 
lies between -1.96 and +1.96). Because standard deviations 
that are estimated from the samples are being used, a z-value of 
2.1 is used throughout. (This may be somewhat conservative, 
since 2.1 is the t-value for the 95 percent confidence level with 
18 degrees of freedom, whereas the fare survey results supplied 
between 15 and 200 degrees of freedom, depending on the 
level of stratification, in estimating standard deviations.) 

Reported results are based on the February 1987 fare check 
dataset, weekdays only. The February dataset uniformly 
showed more variation than the November 1986 dataset, and so 
these results are conservative. 

Ratio-to-cluster-size and PPS sampling were both analyzed 
using the stratification scheme now used by SCRTD (i.e., with 
one stratum for express lines and three strata for local lines 
according to whether the value of mean boardings per trip on a 
line, as measured by past ride checks, was high, medium, or 
low). These analyses were then repeated using eight strata, by 
simply bisecting the four strata. Ratio-to-cluster~size sampling 
was also analyzed with direct stratification of run-pieces. In 
this case, expected boardings were calculated for each run­
piece in the population (by summing expected boardings on 
each trip in the run-piece, which was in tum set equal to the 
mean boardings for trips in the corresponding line, direction, 
and 1-hr time period from past data) and run-pieces were 
stratified into eight strata according to expected boardings per 
trip without regard to line type. A ninth stratum had to be 
created for clusters for which there were no past ride check data 
for calculating expected boardings. 

The ratio-to-revenue approach was also analyzed, without 
stratification. This approach presented a difficulty in that 
SCRTD fareboxes do not register receipts. Cash revenue must 
therefore be estimated from the number of people boarding in 
each fare category and is subject to error from miscounting 
people and from underpayment and overpayment. A project 
report (5) documents how this problem was analyzed. Essen­
tially, it was found that calculated revenue differed less from 
measured revenue than the normal sampling error expected for 
measured revenue, so that calculated revenue could be treated 
as virtually identical to measured revenue. 

Finally, stratified sampling with ex post facto L/DffP strat­
ification was examined. Five time periods were used. No 
distinction was made between express and local lines. Analyses 
were done using both four and eight strata. Optimum allocation 
was used with a goal of minimizing clusters. 

The results of ratio-to-cluster-size and PPS sampling with 
four and eight strata are found in Tables 1 and 2. Accuracy 
improves significantly by going to eight strata. The methods 
produce similar results. To achieve a ±10 percent precision 
with eight strata, and constraining each stratum's sample to 
contain at least four clusters, the ratio-to-cluster-size approach 
requires 58 clusters, while the PPS approach requires 64 
clusters. However, since the PPS method oversamples the 
larger cluster, the number of trips to be sampled by the PPS 
method is far more--408 versus 252 for ratio-to-cluster-size 
sampling. 



TABLE 1 RESULTS: RATIO-TO-CLUSTER-SIZE APPROACH 

Clusters 
Mean Clusters to 
Cluster in Mean Reach 10 Adjusted 

Stratum Threshold Clusters Size Dataset Boardings COY Percent (min. 4) 

Sample with Four Strata 

1 100 1,874 4.0 49 111.8 0.32 36 36 
2 50 1,178 4.7 53 68.0 0.45 23 23 
3 0 252 6.0 44 29.8 0.70 4 4 
4 Express 1,160 2.4 48 48.4 0.94 17 17 
Total number of 

clusters 80 80 
Expected number of 

trips 317 317 

Sampling with Eight Strata 

1 0 154 6.1 23 23.98 0.713 2 4 
2 35 228 5.2 22 42.82 0.252 1 4 
3 50 498 5.4 23 62.05 0.484 9 8 
4 75 940 4.3 33 88.93 0.327 13 12 
5 100 754 4.1 19 111.00 0.242 9 9 
6 115 690 4.1 18 127.95 0.359 14 13 
7 Express 244 2.7 18 28.47 0.582 1 4 

0 
8 Express 688 2.9 27 46.85 0.405 4 4 

50 
Total number of 

clusters 53 58 
Expected number of 

trips 228 252 

TABLE 2 RESULTS: SELECTION PROBABILITY PROPORTIONAL TO CLUSTER-SIZE APPROACH 

Clusters 
Mean Clusters to 
Cluster in Mean Reach 10 Adjusted 

Stratum Threshold Clusters Size Dataset Boardings COY Percent (min. 4) 

Sample with Four Strata 

1 100 1,874 4.9 49 118.2 0.121 36 34 
2 50 1,178 5.9 53 72.8 0.175 20 20 
3 0 252 9.1 44 33.1 0.177 2 4 
4 Express 1,160 3.4 48 42.8 0.288 8 8 
Total number of 

clusters 66 66 
Expected number of 

trips 341 341 

Sampling with Eight Strata 

1 0 154 10.7 23 29.1 0.224 1.0 4 
2 35 228 7.3 22 41.9 0.072 2.0 4 
3 50 498 8.0 23 71.3 0.176 9.0 8 
4 75 940 6.1 33 90.9 0.072 11.0 10 
5 100 754 6.0 19 108.3 0.147 14.0 13 
6 115 690 6.1 18 134.7 0.146 17.0 16 
7 Express 244 4.7 18 30.3 0.348 1.0 4 

0 
8 Express 688 4.7 27 51.7 0.196 5.0 5 

50 
Total number of 

clusters 60 64 
Expected number of 

trips 382 408 
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The results of directly stratifying run-pieces are found in 
Table 3. Only 38 clusters or 154 trips are needed to achieve ±10 
percent precision. The improved accuracy follows from using a 
stratification scheme that indirectly accounts for direction and 
time period as well as line, and thus reduces the within stratum 
variability. 

The ratio-to-revenue approach requires 59 clusters to 
achieve a ±10 percent precision, about the same as revenue-to­
cluster-size with eight strata. This implies that the boardings on 
a trip can be guessed equally well by either knowing cash 
revenue on the trip or knowing which of the eight strata it 
belongs to. This rather disappointing performance of the ratio­
to-revenue approach is apparently due to the variability be­
tween routes in the incidence of pass use (which constitutes 50 
percent of all boardings) and of reduced fares, making cash 
revenue a weak indicator of total boardings. 

Ex post facto stratification stratum characteristics are given 
in Table 4 and the interstratum correlations in Table 5. The 
results of using ex post facto stratification with four strata are 
presented in Table 6. Of particular interest is the level of 
between-cluster, within-supercluster correlation. The correla­
tions between adjacent strata are quite strong while those 
between nonadjacent strata are nearly zero. The overall be­
tween-cluster effect is small but significant; it is 12 percent as 
large as the within-cluster variance. (Interestingly, the between­
cluster effect in the November dataset was slightly negative, 
reducing the overall COV.) The number of run-pieces needed to 
reach the ±10 percent precision, based on February results, is 
74. With eight strata, the between-cluster effect is larger, 
increasing to 63 percent of the within-cluster effect, and the 
needed sample size increases to 97. 

TRANSPORTATION RESEARCH RECORD 1165 

TABLE 5 EX POST FACTO STRATIFICATION: 
INTERSTRATUM CORRELATION 

Population Sample 

Stratum 2 3 4 2 3 4 

1 11 9 3 36 12 0 
2 15 11 25 2 
3 30 21 

An overall comparison of the sample size requirements of 
the different sampling approaches is given in Table 7. The 
recommended approach, direct stratification, requires only 38 
half-runs, an 81 percent savings as compared with the 200 half­
runs that were being sampled by SCRTD before this study was 
done. 

Comparison of Cluster Sampling and 
Simple Random Sampling 

One way of comparing simple random sampling with cluster 
sampling is the quantity known as Kish 's def! (for design 
effect), given by 

def!= sample size under cluster sampling (42) 
sample size under simple random sampling 

Note that'the numerator is the number of elements (i.e., trips, 
sampled) rather than the number of clusters sampled. 

Cochran (4) shows that deff will be greater or less than unity 
to the degree that between-cluster variance, as opposed to 

TABLE 3 RESULTS: DIRECT STRATIFICATION OF CLUSTERS 

Clusters 
Mean Clusters to 
Cluster in Mean Reach 10 Adjusted 

Stratum Threshold Clusters Size Dataset Boardings cov Percent (min. 4) 

0 Unknown 134 3.1 14 28.3 1.664 2 4 
1 0 639 4.2 52 30.0 0.506 3 4 
2 40 429 4.6 35 44.6 0.352 3 4 
3 55 544 4.4 21 69.4 0.253 3 4 
4 70 644 4.4 25 76.3 0.247 4 4 
5 85 556 4.3 16 117.3 0.190 4 4 
6 100 391 4.2 11 107.1 0.197 3 4 
7 110 608 3.8 9 128.6 0.313 8 6 
8 130 397 3.5 10 142.3 0.281 4 4 
Total number of 

clusters 34 38 
Expected number of 

trips 139 154 

TABLE 4 EX POST FACTO STRATIFICATION: STRATUM CHARACTERISTICS 

Population 

Percent Sample 

Su per clusters Trips/ Boardings/ Cluster 
Stratum Threshold Trips Touching Cluster Trip cov 
1 0 1,712 18 3.2 39.3 0.63 
2 30 2,781 31 2.4 54.6 0.68 
3 50 4,345 49 2.4 90.8 0.44 
4 80 8,170 62 2.4 104.9 0.43 
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TABLE 6 RESULTS OF EX POST FACTO 
S1RATIFICATION 

Stratum 

1 
2 
3 

2 

0.7475 

3 

-0.1176 
0.7312 

4 

0.0422 
0.7445 

Norn: Rela1ive Covuriance = V,,JV1 = 0.1210. Per clus1er 
COV = 0.41. Sample size 10 reach 10 percent precision= 
74. 

TABLE 7 COMPARISON OF CLUSTER SAMPLING 
APPROACHES 

Sampling 

Number Requirement for 10 

of 
Percent Precision 

Approach Strata Clusters Trips 

Ratio-to-cluster-size, 4 80 317 
line stratification 8 58 252 

Ratio-to-cluster-size, 
cluster stratification 8 38 154 

PPS with line stratification 4 66 341 
8 64 408 

Ratio-to-revenue 1 59 232 
Ex post facto 4 74 290 

stratification by L/D{fP 8 97 390 

within-cluster variance, contributes to overall variance. If the 
majority of the variance is within clusters, cluster sampling can 
require fewer data than simple random sampling. Cochran also 
shows how deft can be related to the intracluster correlation. 

To get an indication of the value of deft for a system level 
estimate of boardings, the necessary sample size to achieve 
0.10 precision with stratified simple random sampling of trips 
was calculated-stratifying by line into four strata (three strata 
of local lines, one of express) and using optimal allocation 
among strata-and compared with the number of trips required 
by cluster sampling using the ratio-to-cluster-size approach 
with the same stratification scheme. The results, displayed in 
Table 8, show that cluster sampling requires 2.2 times as many 
trips as simple random sampling. However, because sampling 
trips by run-piece is about three to four times less costly than 
random sampling of trips (because return trips are allowed and 
no time is wasted traveling between trips and waiting for trips), 
cluster sampling is estimated to cost only one-half to two-thirds 
as much as simple random sampling. 

Kish's deft was also calculated for each of the four strata 
separately. The results, displayed in Table 8, show that cluster 
sampling produces little if any savings in the strata of low 
volume lines and express lines, where the per cluster COV is 
about the same as the per trip COV (implying that it is just as 
good to sample a trip as it is to sample a cluster of trips). 

Under a separate UMTA Service and Methods Demonstra­
tion also performed by Multisystems, Inc., cluster sampling 
was compared with simple random sampling for estimating 
line-specific and LID/IP-specific averages. The data were ride 
checks done intensively by run-piece on selected Pittsburgh 
routes in spring 1984. For these purposes, a cluster was defined 
as a group of trips on the same line in the same driver run. 
Because many of the clusters in the dataset consisted of only 
two or three trips, and because the intent was to determine the 
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TABLE 8 COMPARISON OF CLUSTER AND SIMPLE 
RANDOM SAMPLING, SCRTD 

Simple 
Random 

Cluster Sampling Sampling 
Clusters Trips Trips 

Stratum Needed Needed Needed def! 

Requirements to Achieve 10 Percent Precision for Each 
Stratum 

Express 390 935 223 4.2 
Local 

Low 216 1,297 322 4.0 
Medium 89 420 173 2.4 
High 45 181 115 1.6 

Requirements to Achieve 10 Percent Precision at the System 
Level 

Express 17 41 18 
Local 

Low 4 24 7 
Medium 23 108 43 
High 36 144 -11 

Total 317 145 2.2 

effect of sampling in larger clusters, only clusters of four or 
more trips were admitted. There were 18 routes with at least 
eight such clusters (mean = 40 clusters per route). The mean 
cluster size was 5.0, as four- and five-trip clusters accounted for 
75 percent of all the clusters with at least four trips. This 
average seems to indjcate either a practice of sampling run­
pieces of 3 to 4 hours or that runs are interlined and therefore 
each run produces two or more smaller clusters. 

The results for line-specific estimates are summarized in 
Table 9. Two ratios, boardings/maximum load and passenger-

TABLE 9 DESIGN EFFECT DUE TO SAMPLING BY RUN FOR 
ROUTE LEVEL STATISTICS 

Standard 
Mean Deviation Min Max Mean 

Statistic def! of def! def! def! rhoa 

Ratio: 
boardings/ 
maximum load 1.24 0.31 0.70 1.84 0.056 

Ratio: pass-mi/ 
maximum load 1.10 0.40 0.38 1.80 O.Q18 

Mean boardings 1.32 0.67 0.12 3.20 0.065 

NoTE: Mean cluster size = 5.0 (min = 4, max = 16, COV = 0.26). Mean 
number of cluslers per route = 39.8 (min = 10, max = 97). Nwnber of 
routes = 18. 
arho = intracluster correlation. 

TABLE 10 ESTIMATED DESIGN EFFECT FOR SAMPLING BY 
RUN-PIECE FOR ROUTE LEVEL STATISTICS 

Average Number Ratio of Ratio of Pass-
of One-Way Trips Boardings/ Miles/Max Mean 
per Run-Piece Max Load Load Boardings 

3 1.15 1.10 1.20 
5 1.30 1.15 1.40 

10 1.60 1.25 1.75 
15 2.00 1.35 2.20 
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TABLE 11 DESIGN EFFECT AS A RESULT OF SAMPLING BY RUN FOR LINE/DIRECTION{fIME 
PERIOD STATISTICS 

Standard 
Number of Mean Deviation 

Time Period L/DffPs de ff of def! Min def! Max def! Mean rhoa 

Early a.m 4 0.96 0.18 0.78 1.21 -0.03 
Peak a.m. 5 0.60 0.35 0.40 1.22 -0.40 
Base 25 1.00 0.33 0.52 1.60 -0.01 
Peak p.m. 3 1.29 0.36 1.00 1.69 0.29 
Evening 7 0.71 0.33 0.16 1.10 -0.22 
Saturday 15 1.19 0.43 0.56 1.75 0.11 
Sunday 10 1.10 0.29 0.62 1.72 0.06 
Overall 69 1.01 0.38 0.16 1.75 -0.01 

Norn: Statistic = ratio of boardings/max load. Mean cluster size = 2.3 (min = 2, max = 8, COV = 0.18). Mean number of 
clusters per L/D/TP = 13.6 (min = 8, max= 33). 
arho = intcluster correlation. 

miles/maximwn load, were examined, along with one mean, 
boardings. The average design effect is moderate, calling for 
sample size increases of 10 to 32 percent. However, the 
variation is quite wide, especially for mean boardings, where 
def! varies from 0.12 for one route to 3.20 for another. The 
range for the ratios is smaller, with the highest def! calculated 
to be 1.84. 

The results were extended to cover situations of different 
average cluster size. The average design effect was calculated 
using the measures of intracluster correlation (rho) and COV of 
cluster size calculated from the Pittsburgh data. The resulting 
figures were then inflated a little to make them somewhat 
conservative, considering the large amount of variation be­
tween routes. The resulting reconunended design effects are 
given in Table 10. As the results indicate, the design effect 
becomes quite large as cluster size increases. Since sampling 
run-pieces of around five trips captures most of the cost savings 
of sampling by run, sampling by half-run appears to be more 
efficient than sampling by entire run. 

The impact of cluster sampling in estimating mearis and 
ratios at the line/direction/time period level was also investi­
gated. Since runs do not usually contain more than a few trips 
in a given direction in a given time period, clusters are very 
small. In the Pittsburgh data, there were 69 L/D/TPs with at 
least eight clusters; average cluster size was 2.3. The results for 
the ratio of boardings to maximum load are presented in Table 
11. 

The overall average def! was 1.0, indicating a neutral effect 
of sampling by run. As expected, a larger design effect was 
observed in the all-day weekend periods (average def!= 1.19 
for Saturday, 1.10 for Sunday), which have larger clusters. The 
greatest def! for a single L/D/TP was 1.75. A further test 
showed no difference between the average def! for better 
patronized L/D/TPs (mean peak load greater than 25) and less 
well patronized L/D/TPs. Because of the small cluster sizes and 

neutral design effect found for the L/D/TP-level boardings per 
maximum load ratio, no further investigation for L/D/TP-level 
statistics was done. 

Based on these results, it seems safe to say that cluster 
sampling for L/D/TP level statistics can be considered Lo be 
just as good as simple random sampling for weekday lime 
periods. For all-day weekend periods, sample size should be 
increased by 20 percent. This additional burden is still small, 
however, in comparison with the inefficiencies of simple 
random sampling by trip. 
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