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Abstract:

In adaptive cluster sampling, although units may
be randomly selected without replacement, it is
possible to select a cluster more than once. In
many situations it may be more desirable to sample
clusters without replacement. Estimators where
sampling is done without replacement of clusters
are described.

1. Introduction

In the simplest form of adaptive cluster sampling an
initial sample of n units is selected by random sam-
pling without replacement and, whenever the vari-
able of interest for a unit in the sample satisfies a
prespecified condition, neighboring units are added
to the sample until no more units are found that
meet the criterion (Thompson 1990). Even though
the initial sample is selected without replacement,
some units in the sample may be selected more than
once because the initial sample may contain more
than one unit in a given network of units satisfying
the condition. The set of all units meeting the cri-
terion in the neighborhood of one another is called
a network. The units that were adaptively sampled
that did not meet the criterion are called edge units.
Figure 1 illustrates a network and its associated edge
units, called a cluster. In the figure, the variable
of interest for a spatial unit is the number of point-
objects within the unit, the neighborhood of a unit is
defined as including that unit and the four spatially
adjacent units, and the criterion for extra sampling
is defined as the condition that the variable of in-
terest is greater than or equal to three. Units that
do not meet the criterion, including edge units, are
considered networks of size one.

An adaptive cluster sample can also be taken
without replacement of networks (Salehi and Seber
1997), by selecting each unit of the initial sample at

random from the population exclusive of networks
already containing an initially selected unit. Even
with this procedure, however, a unit which was pre-
viously added as an edge unit may be subsequently
selected in the initial sample. In this paper we
describe a design in which clusters, rather than just
networks, are selected without replacement.

Figure 1: A neighborhood is sexual relations, if a
person i has had sexual intercourse with person j
then those two people as said to be in the neigh-
borhood of one another. The criterion to adaptively
add units (people) was a person had to be HIV pos-
itive, if so, their sexual partners were added to the
sample. The two people that make are HIV (+)
form a network, the remaining neighboring HIV (-)
are edge units, and all the units in this example are
connected and form a cluster. In this example the
size of the network is much smaller than that of the
entire cluster.

2. Designs and Terminology

Sampling without replacement of networks
(Salehi and Seber 1997). In this design, an initial
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unit is selected at random from the population and
, if its y-value satisfies the condition, its associated
network and edge units are observed. The second
initial unit is selected at random from the popula-
tion exclusive of the units in the network already
observed. In turn, each of the n units is selected
from the population exclusive of previously observed
networks of units.

Thus the sample contains exactly n distinct
networks, along with their associated edge units.
Although sampling is without replacement of
networks, repeat observations may occur in the
data. A unit observed as an edge unit may be
selected more than once. Also, a unit selected
in the initial sample may subsequently turn up
as an edge unit when an adjacent network is selected.

Sampling without replacement of clusters. In
this design, the previous procedure is modified so
that each initial unit is selected at random from the
population exclusive of all previously observed units,
including edge units as well as network units. The
sample thus contains n distinct networks.

Repeat observations occur only when a unit in the
initial sample is subsequently added as an edge unit
of a network or when a unit appears as an edge unit
of more than one network. But, in contrast to the
previous design, a unit observed first as an edge unit
will not be subsequently selected as an initial unit.

3. Estimators

A modified estimator of the Raj type. The
Raj estimator, used with the design in which units
are selected without replacement such that the i-th
draw is performed with probabilities proportional to
the size of the remaining units, is

µ̂DR =
1
Nn

n∑
i=1

zi, (1)

where z1 = y1/p1, and, for i = 2, 3, ..., n,

zi =
i−1∑
j=1

yj +
(1−

∑i−1
j=1 pj)yi
pi

(2)

The pi represent the first-draw probabilities for each
unit, so that pi/(1 −

∑i−1
j=1 pj) is the conditional i-

th draw selection probability for the i-th unit in the
sample given the first i−1 selections. To avoid dou-
ble subscripts, the observations are indexed by the
order of selection rather than by their population
labels.

As shown by Raj (1956), the conditional expecta-
tion of each zi given the inital i − 1 observations is

the population total, so that, unconditionally, zi/N
is an unbiased estimator of the population mean,
for i = 1, ..., N. Thus their average, the Raj esti-
mator, is an unbiased estimator of the population
mean. Raj showed that this strategy would always
have variance less than or equal to the variance of
the Hansen-Hurwitz estimator used with sampling
with replacement.

With the adaptive designs of this paper, the con-
ditional selection probabilities are not known for ev-
ery sampled unit, and so a modification of the Raj
estimator is needed.

Let p∗i = mi/N, where mi is the number of units
in the network which includes unit i.

For the design in which networks are selected
without replacement, let z∗1 = yi./p

∗
i , and, for i =

2, 3, ..., n,

z∗i =
i−1∑
j=1

yj. +
(1−

∑i−1
j=1 p

∗
j )yi.

p∗i
, (3)

where yi. is the total of the mi y-values in the net-
work which includes the i-th selection. Note that
the edge units are not included in these totals, and
hence units not satisfying the criterion are incorpo-
rated in the estimate only if they are selected as
initial units. Also, the probabilities p∗i are calcu-
lated exclusive of selection as an edge unit. Thus to
estimate the population mean and variance without
replacement of networks the following equations are
used (Salehi and Seber 1997).

µ̂Net =
1
Nn

n∑
i=1

z∗i , (4)

The variance of the estimator µ̂Net (Salehi and Seber
1997 based on Raj 1956) is:

var(µ̂Net) =
1

N2n2

n∑
i=1

var(z∗i ) (5)

An unbiased estimate of the variance is:

v̂ar(µ̂Net) =
1

n(n− 1)

n∑
i=1

(
z∗i
N

− µ̂Net)2 (6)

When the design is selection without replace-
ment of clusters, the relevant probabilities p∗i are
unchanged, but the zi are z1 = yi./p

∗
i , and, for

i = 2, 3, ..., n,

zi =
∑
j∈si−1

yj. +
(1−

∑
j∈si−1

p∗j )yi.
p∗i

, (7)

where si−1 denotes the collection of all distinct units
observed in the first i− 1 selections.
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µ̂Clust =
1
Nn

n∑
i=1

zi, (8)

The variance of the estimator µ̂Clust (Raj 1956) is:

var(µ̂Clust) =
1

N2n2

n∑
i=1

var(zi) (9)

An unbiased estimate of the variance is:

v̂ar(µ̂Clust) =
1

n(n− 1)

n∑
i=1

(
zi
N

− µ̂Clust)2 (10)

Rao-Blackwell improvement of the modified
Raj type estimator - a modified Murthy es-
timator. The Raj estimator depends on order of
selection and so it can be improved by the Rao-
Blackwell method. The resulting expected value
over all possible reorderings is called the Murthy es-
timator (Murthy 1957).

The modified Raj type estimators for use with
the adaptive designs can similarly be improved by
the Rao-Blackwell method. One need in practice
consider only the reorderings of the sequence
in which the networks (and edge units) in the
data are selected, since that is what determines
the values of the statistics. Note that different
possible reorderings of the data do not all have the
same probability. Rather, the probability of each
reordering must be computed as the product of the
conditional selection probabilities. With the design
without replacement of clusters, some reorderings
of the data have zero probability, since an edge unit
may be selected before a cluster containing it but
not after. For the unordering of the estimators we
will use a sufficient statistic, d∗, that is not minimal.
Let d∗ equal the units in the sample, their associ-
ated y-values and which networks are intersected in
the initial sample. Define the indicator variable ei as

ei =
{

1 if i is in the initial sample.
0 otherwise

(11)

d∗ = {(i, ei, yi) : i ∈ s} (12)

Define so to be an ordered sample of n networks.
Since the initial sample determines the final sample
and every value of the statistic d∗, let g(s

′

o) denote
the function that maps an initial sample into a
value of d∗ resulting from its selection. For any two

values of s
′

o and d∗ let

I(s
′

o, d
∗) =

{
1 if g(s

′

o) = d∗

0 otherwise (13)

Let S be the set of all possible ordered initial samples
that can be obtained. The following equation can be
used for the ”unordering” (Murthy 1957) of either
estimator, µ̂Clust or µ̂Net:

µ̂Murthy =
∑
so∈S

P (so)I(s
′

o, d
∗)µ̂(so)÷∑

so∈S
P (so)I(s

′

o, d
∗)

(14)

Unfortunately, for without replacement of clusters
equation 14 can not be reduced but for without
replacement of networks it reduces to the estimator
given in Salehi and Seber (1997):

µ̂MNet =
1
N

n∑
i=1

P (s|i)
P (s)

yi. (15)

Let K denote the number of networks in the pop-
ulation. Let ψi denote the network which includes
unit i and wi represents the average value of a unit
in the network which contains unit i, that is

wi =
1
mi

∑
j∈ψi

yj (16)

The variance for µ̂MNet (Salehi and Seber 1997) is

var(µ̂MNet) =
1
N2

K∑
i=1

K∑
j<i

mimj × [1−
∑
s3i,j

P (s|i)P (s|j)
P (s)

](wi − wj)2

(17)

Let P (s|i, j) denote the probability of sample s
given that networks i, j are in the sample regardless
of order. Then an unbiased estimator of the variance
is

v̂ar(µ̂MNet) =
1

N2P (s)2
[

n∑
i=1

n∑
j<i

mimj ×
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(wi − wj)2 ×

{P (s)P (s|i, j)− P (s|i)P (s|j)}]
(18)

Equation 14 for without replacement of clusters can
also be viewed as

µ̂MC = E[µ̂Clust|d∗] (19)

Thus the variance of the estimator µ̂MC (Rao 1945,
Blackwell 1947) is

var(µ̂MC) = var(µ̂Clust)−
E[(µ̂Clust − µ̂MC)2]

=
1

N2n2

n∑
i=1

var(zi)−

∑
so∈S

P (so)[µ̂Clust(so)− µ̂MC(so)]
2

(20)

An unbiased estimate of the variance is:

ṽar(µ̂MC) =
1

n(n− 1)

n∑
i=1

(
zi
N

− µ̂Clust)2

− 1∑
so∈S P (so)I(s

′
o, d

∗)
×∑

so∈S
P (so)I(s

′

o, d
∗)×

[µ̂Clust(so)− µ̂MC]
2

(21)

A more efficient estimator of the variance is

v̂ar(µ̂MC) = E[ṽar(µ̂MC)|d∗]

=
1∑

so∈S P (so)I(s
′
o, d

∗)
×∑

so∈S
P (so)I(s

′

o, d
∗)×

1
n(n− 1)

n∑
i=1

(
zi
N

− µ̂Clust)2

− 1∑
so∈S P (so)I(s

′
o, d

∗)
×∑

so∈S
P (so)I(s

′

o, d
∗)×

[µ̂Clust(so)− µ̂MC]
2

(22)

The estimators µ̂MC and µ̂MNet may be hard to
compute for large n. The number of different per-
mutations we have to compute is n! for equation 14.
The number of calculations can be reduced by noting
that certain sets of permutations give the same value
of the estimator. Permutations that switch the order
of networks that do not meet the condition, are not
in the neighborhood of a network selected, that does
meet the condition, and have the same y-value give
the same value of the estimators. One such situation
is when the condition is yi > 0 and two networks of
value zero that aren’t edge units of an intersected
network can be interchanged. Although, this can
reduce the number of permutations to be looked at
considerably, µ̂MC may still be complicated to com-
pute. For calculating µ̂MNet it is possible to reduce
the number of calculations still further (Salehi and
Seber 1997).
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