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Abstract

When the sample is a relatively large proportion of the population, finite popula-
tion inference serves as a more appealing alternative to the usual infinite population
approach. Nevertheless, the finite population inference methods that are currently
available only cover the difference-in-means estimator or independent observations.
Consequently, these methods cannot be applied to the many branches of empirical re-
search that use linear or nonlinear models where dependence due to clustering needs to
be accounted for in computing the standard errors. In this paper, I establish asymp-
totic properties of M-estimators under finite populations with clustered data, allowing
for unbalanced and unbounded cluster sizes. I distinguish between two situations that
justify computing clustered standard errors: i) cluster sampling induced by random
sampling of groups of units, and ii) cluster assignment caused by the correlated as-
signment of “treatment” within the same group. I show that one should only adjust
standard errors for clustering when there is cluster sampling or cluster assignment, or
both, for a general class of linear and nonlinear estimators. I also find the finite pop-
ulation cluster-robust asymptotic variance (CRAV) is no larger than the usual infinite
population CRAV, in the matrix sense. Consistent with the theoretical implication,
the finite population clustered standard errors are smaller than the usual infinite pop-
ulation clustered standard errors by up to 30% in an empirical application.
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1 Introduction

The cluster-robust asymptotic variance (CRAV) has been studied extensively in the liter-

ature because of its wide and often inevitable application.1 However, until recently, the

statistical frameworks used to justify clustering largely assume an infinite population, at

least implicitly. The infinite population approach yields proper inference in some cases.

Intuitively, when the sampling fraction is small, such as the 1% U.S. Public Use Microdata

Sample, it is harmless to assume the sample is drawn from an infinite population. In other

cases, the paradigm of drawing a sample from an infinite population does not lead to usable

inference. A leading case is when the sample and the population coincide, such as when

data are available on all 3,142 counties in the U.S., or when we can collect data on exam

performance for all fourth graders in a school district. Adopting the same finite population

setting in Abadie, Athey, Imbens, and Wooldridge (2017), this paper studies asymptotic

properties of M-estimators where clusters are formed by either the sampling process or the

assignment design.2

There are three approaches to justifying clustering corrections of the standard errors.

The conventional one is the model-based approach; see, for instance, Kloek (1981), Moul-

ton (1986), and Moulton (1990). Empirical researchers often suspect that unobserved

components in outcomes for individual units are correlated within groups. As a result,

error components models are typically set up to account for the potential within-group

correlation, and the clustered standard errors follow after the model setup.

As an example of the model-based approach, MacKinnon (2019) compares the standard

errors based on different assumptions about how the disturbances are clustered. Using

1See, for example, White (1984), Liang and Zeger (1986), Arellano (1987), Wooldridge (2003), Bertrand,
Duflo, and Mullainathan (2004), Hansen (2007), Cameron and Miller (2015), and MacKinnon (2019).

2M-estimators include a broad class of extremum estimators that coincide with a vast majority of
estimators used in empirical research [see Wooldridge (2010, Chapter 12)]. Besides linear regression, other
leading cases of M-estimation include nonlinear least squares and (quasi-) maximum likelihood.
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data from individuals across the 50 states and the District of Columbia from the U.S.

Current Population Survey (CPS), MacKinnon (2019) evaluates the return of obtaining

a postgraduate degree. The assumptions about clustering have an enormous impact on

inference. Confidence intervals are constructed using standard errors clustered at various

levels, including non-nested clusters such as states and years. These confidence intervals

differ from each other and are almost all much wider than using the heteroskedasticity-

robust standard errors that do not account for within-group correlation.

The problem with the model-based approach is the essentially arbitrary nature of the

choice of clustering level. In the previous example, one researcher may claim that the

unobservables are correlated at the zip code level. Another may claim that correlation

exists at the county or the state level. Some rules of thumb suggest clustering at the highest

level possible until the number of clusters becomes too small to use standard asymptotics,

and using the cluster-robust standard errors whenever there is an appreciable difference

between the clustered standard errors and the Eicker-Huber-White (EHW) standard errors

(Cameron and Miller, 2015, p. 333). This approach mainly addresses the question of when

clustering makes a difference in the magnitude of the standard errors which, as shown by

Abadie et al. (2017), is not a justification for whether we should adjust standard errors for

clustering.

Another approach is based purely on sampling considerations; see, for example, Kish

and Frankel (1974), Scott and Holt (1982), Bell and McCaffrey (2002), and Bhattacharya

(2005). Namely, one needs to adjust the standard errors for clustering when the primary

sampling units (PSUs) are groups instead of individuals. There might be a second step

in the sampling process, though, where individual units are sampled randomly within the

selected groups. For instance, cluster sampling occurs when a random group of hospitals

is selected in the first step, followed by a random collection of individual patient data from
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the selected hospitals in the second step for cost reasons. Note, when the entire population

is used in the analysis, there is no cluster sampling.

A third approach to studying clustering is a design-based perspective. Related to

randomized experiments literature, assignments are clustered when individual “treatments”

are correlated within each group. In the leading case, individual assignments are perfectly

correlated within clusters, such as the minimum wage law imposed on states. Because

of cluster assignment, clustering adjustments are required even if the entire population is

observed (i.e., no cluster sampling).

In the context of the difference-in-means estimator, Abadie et al. (2017) show clustering

is only necessary when there is either cluster sampling or cluster assignment, or both. For

multiple regression and nonlinear estimators that are widely used in empirical studies,

no such results are currently available. One contribution of the current paper is to fill

in this gap in the literature; I find the same guidelines for clustering adjustments for

the difference-in-means estimator are also generally true for M-estimators. In addition, I

provide a unified framework of deriving the finite population CRAV for M-estimators by

accounting for and distinguishing between cluster sampling and cluster assignment, which

also allows for unbalanced and unbounded cluster sizes. I find when the number of clusters

in the sample is nonnegligible compared with the total number of clusters in the finite

population, or when the sample coincides with the finite population, the usual CRAV is no

less than the finite population CRAV, in the matrix sense. This means that in cases where

the sampling proportion is reasonably large, clustered standard errors calculated based on

finite population inference will be generally smaller than the usually reported clustered

standard errors.

Samples that are large relative to the population or coincide with the population moti-

vate the finite population setting in this paper. For instance, relatively large samples could
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be drawn from aggregate levels, such as countries, states, or counties. I consider a sequence

of finite populations while allowing the sampling probability, defined as the probability of

each population unit being drawn into a sample, to depend on the population size and the

sample size. As a result, the usual infinite population inference is nested in the framework

by allowing the sampling probability to approach zero in the limit.

The current paper contributes to two strands of literature. The first is on finite popu-

lation inference methods. Abadie, Athey, Imbens, and Wooldridge (2019) propose the fi-

nite population inference methods for ordinary least squares estimators incorporating both

sampling-based and design-based uncertainties (definition for the two sources of uncertainty

can be found in Section 2). Xu (2019) extends Abadie et al. (2019) to M-estimation with

both smooth and nonsmooth objective functions. Both studies mentioned above assume

independent sampling and independent assignment. Abadie et al. (2017) examines the

cluster-robust variance of the difference-in-means estimator caused by cluster sampling or

cluster assignment under finite populations but does not provide a general form of CRAV

for a broad class of linear and nonlinear estimators. As a result, the earlier research on

finite population inference has limited applications but is contained as sub-cases of the

unified framework derived in the current paper.

Second, this paper is related to the literature studying CRAV. The majority of this

literature considers fixed cluster sizes or clusters of equal sizes in the setting of infinite

populations. Recently, several articles contribute to the development of the asymptotic

theory allowing for unbalanced and potentially unbounded cluster sizes; see Carter, Schne-

pel, and Steigerwald (2017), Djogbenou, MacKinnon, and Nielsen (2019), and Hansen and

Lee (2019). I extend the techniques developed by Hansen and Lee (2019) to the finite

population asymptotics. In this way, the framework allows for heterogeneous and large

cluster sizes in the samples; for instance, in the patient data example, clusters could be
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proportional to hospital sizes and hence tend to be unbalanced with the presence of both

large and small hospitals. Short panel data are automatically contained in the framework

as a special case, where the cluster sizes (the number of time periods) are bounded.

The remaining of the paper is organized as follows. Section 2 illustrates the key concepts

of finite population inference using a simple example of the difference-in-means estimator.

Section 3 derives the asymptotic distribution under finite populations for M-estimators

with smooth objective functions. Generally, the finite population CRAV is non-identifiable

because of the missing data problem of the potential outcome framework. Nevertheless,

Section 4 proposes two easy ways to bound the finite population CRAV by using control

variables to partially predict the variance matrix. The resulting adjusted variance estimator

is still conservative in large samples but smaller (in the matrix sense) than the usual

cluster-robust variance estimator (CRVE). Section 5 derives the finite population CRAV of

functions containing M-estimators with the estimator of the average partial effect (APE)

as a direct application. Section 6 compares different standard errors of the APE estimator

from pooled probit regressions with clustered data.3 The simulation results are in line

with the predictions from the large-sample theory. Section 7 summarizes an application

to Antecol, Bedard, and Stearns (2018), who evaluate the effect of tenure clock stopping

policies on tenure rates of female and male faculty members. In this example, the finite

population clustered standard errors are smaller than the usual clustered standard errors

by up to 30%. Lastly, Section 8 concludes and points out directions for future research.

3As a shorthand, clustered data is used in the remaining text to refer to the situation where there is
cluster sampling or cluster assignment, or both.
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2 A Simple Example of the Difference-in-Means Estimator

To introduce the concept of finite population inference, I summarize the example of the

variance of the difference-in-means estimator given in Abadie et al. (2019). We start with

a finite population of size M . There is a single binary treatment variable XiM ∈ {0, 1}.

Based on the framework of potential outcomes, XiM is a stochastic variable representing

different states of the world. Correspondingly, there are two potential outcomes denoted

by {YiM (0), YiM (1)}, which are fixed for unit i irrespective of the realized value of XiM .

For each unit i, we could observe only one realization of the potential outcome YiM =

XiMYiM (1) + (1 −XiM )YiM (0), which leads to the fundamental missing data problem of

the potential outcome framework.

The randomness resulting from not observing all states of the world leads to design-

based uncertainty.4 For example, we are interested in examining the return to education by

computing the difference in wage rates between all U.S. workers who have college degrees

and those who do not. When all U.S. workers are treated as the population of interest,

there is no sampling process in this example. The uncertainty of the estimator then stems

from not observing the counterfactual wage rates, where workers have different years of

schooling from what they actually received. Design-based uncertainty is often neglected in

practice [see Freedman (2008a), Freedman (2008b) and Lin (2013) for a few exceptions].

From the population, a sample of fixed size N is randomly drawn with RiM indicating

whether unit i is sampled (RiM = 1) or not (RiM = 0). The subsample sizes N1 and N0

denote the number of units in the sample with XiM = 1 or XiM = 0 respectively. The

randomness arising from (possibly) not observing the entire population leads to sampling-

based uncertainty. In the traditional inference methods, sampling-based uncertainty is the

4The naming, “design-based,” can be traced back to randomized experiments literature, in which Ney-
man (1923) initially develops the idea of potential outcomes resulted from different assignment of the
treatment.
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only source of variation that induces the standard error of the coefficient estimators.

θ̃N =
1

N1

M∑
i=1

RiMXiMYiM −
1

N0

M∑
i=1

RiM (1−XiM )YiM (1)

I focus on the difference-in-means estimator θ̃N in (1) in this section, which is also the

coefficient estimator on XiM from the simple regression of YiM on 1 and XiM . Since θ̃N

is a function of both RiM and XiM , its variance incorporates both sampling-based and

design-based uncertainties, which has the following form [see (2.3) in Abadie et al. (2019)]:

V(θ̃N |N0, N1) =
S2

1

N1
+
S2

0

N0
−
S2
θ

M
, (2)

where

S2
x =

1

M − 1

M∑
i=1

(
YiM (x)− 1

M

M∑
j=1

YjM (x)
)2
, x = 1, 0 (3)

and

S2
θ =

1

M − 1

M∑
i=1

(
YiM (1)− YiM (0)− 1

M

M∑
j=1

(
YjM (1)− YjM (0)

))2
. (4)

The variance formula in (2) has two implications. First, the last term,
S2
θ
M , is zero either

when the population size M tends to infinity or when the treatment effect is constant across

units, i.e., YiM (1) − YiM (0) = τ , ∀ i. Let us focus on the general case of heterogeneous

treatment effects. The difference between finite population inference and the usual infinite

population inference results from the last term. Since
S2
θ
M is positive when M is finite, the

finite population variance of the difference-in-means estimator is smaller than the usual

infinite population variance. In Section 3, I show that the conservative property of the

usual variance of the difference-in-means estimator can be generalized to M-estimators

with clustered data.
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Second, the extra term,
S2
θ
M , is non-identified in general because we cannot observe

both potential outcomes {YiM (0), YiM (1)} at the same time. The common practice in ran-

domized experiments literature is to ignore the additional term and use the usual overly

conservative variance estimator. As shown in Section 4, we can use regression-based ap-

proach to estimate the adjusted finite population variance, which is still conservative but

smaller than the usual infinite population variance, if there are fixed control variables

available.

3 Asymptotic Properties of M-estimators

3.1 Setup

In this section, I derive the general theory of M-estimators. I use the same setup of M-

estimation with smooth objective functions in Xu (2019) but relax the assumptions of

independent sampling and independent assignment. Consider a sequence of finite popu-

lations indexed by population size M . Suppose there are G mutually exclusive clusters

in population M defined as either the PSUs in the sampling scheme or the partition in

the assignment design, where each cluster has Mg observations, g = 1, 2, . . . , G. I assume

for now that sampling and assignments are clustered at the same level if there are both

cluster sampling and cluster assignment. For each unit i within cluster g, we observe

{XigM , zigM , YigM}, where XigM is the vector of assignment variables, zigM is a set of at-

tributes, and YigM is the realized outcome. There is no restriction in terms of the nature of

the triple above: they can be discrete, continuous, or mixed. When the distinction across

clusters is unnecessary, the triple is denoted by {XiM , ziM , YiM}. For the most part, I

denote WigM = {XigM , YigM} (WiM = {XiM , YiM}) for brevity.

Given the potential outcome framework, there exists a mapping, denoted by the po-
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tential outcome function yigM (x), from the assignment variables to the potential out-

comes. For example, yigM (x) = xθ01 + zigMθ02 + eigM for unrestricted outcomes, and

yigM (x) = 1[xθ01 + zigMθ02 + eigM > 0] for binary outcomes. The potential outcome func-

tion, yigM (x), along with the observed attributes zigM and the unobserved attributes eigM ,

are non-stochastic. By contrast, the assignment vector x is random, with XigM denoting

the assignment for unit i of cluster g in population M . As a result, the realized poten-

tial outcome, YigM = yigM (XigM ), is random. The subscripts attached to the functions

emphasize its dependence on both the fixed attributes and the fixed unobservables.

The distinction between the stochastic assignment variables and the fixed attribute

variables is justified by having a thought experiment of certain “policy” or “treatment”

assignments. The variables in XiM are the “intervention” variables of interest, and ziM

effectively contains control variables. In the example given by Imbens and Rubin (2015)

in evaluating the effect of job training on future earnings, the assignment variable is the

treatment status, and the “attributes may include age, previous educational achievement,

family, and socio-economic status, or pre-training earnings” (p. 15). They elaborate, “the

key characteristics of these covariates is that they are a priori known to be unaffected

by the treatment assignment. This knowledge often comes from the fact that they are

permanent characteristics of units, or that they took on their values prior to the treatment

being assigned” (Imbens and Rubin, 2015, p. 16). In observational studies, the assignment

variables can be any variables of interest, such as years of education in the study of return

to schooling, but are not restricted to treatment variables only. The categorization of

assignments and attributes is subjective in practice and is related to the empirical question

under research.

As is the starting point in the infinite population paradigm, I study solutions to a

population minimization problem, where the estimand of interest is a k× 1 vector denoted
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by θ∗M .

θ∗M = arg min
θ

1

M

G∑
g=1

Mg∑
i=1

EX
[
qigM (WigM , θ)

]
= arg min

θ

1

M

M∑
i=1

EX
[
qiM (WiM , θ)

] (5)

Note that the expectation in (5) is taken over the distribution of X since X is the source

of randomness here. Function qiM (·, ·) is the objective function for a single unit. For

example, qiM (WiM , θ) = (YiM − XiMθ1 − ziMθ2)2 for linear regression, qiM (WiM , θ) =

−log
[
fiM (WiM , θ)

]
for (quasi-) maximum likelihood estimation (MLE), in which fiM (·, ·)

is some density function. I focus on pooled estimation. For MLE, pooled MLE is adopted

since it is challenging to specify the joint density in practice. Besides, pooled MLE can

still estimate interesting quantities such as the APE.

For each finite population M , the sampling process involves two steps.5 In the first

step, a random group of clusters is drawn according to Bernoulli sampling with sampling

probability ρcM . Therefore, we have clustered samples whenever ρcM < 1. In the second

step, each unit within the selected clusters is again sampled independently according to a

Bernoulli trial with probability ρuM . As a result, there is a binary sampling indicator RgM ,

which is equal to one if cluster g is sampled, and another sampling indicator R̃igM , which is

equal to one if unit i would be sampled in a one-step sampling process with probability ρuM .

The appearance of unit i in the sample is then denoted by a composite sampling indicator

RigM = RgM ·R̃igM . Occasionally, RigM is suppressed as RiM when the emphasis of clusters

is unnecessary. Consequently, we have a random sample size N =
G∑
g=1

Mg∑
i=1

RigM =
M∑
i=1

RiM ,

where E(RiM ) = E(RigM ) = ρuMρcM . Besides cluster sampling, the assignment can also be

clustered in the sense that within-cluster covariance of the assignment variables is nonzero.

5The sampling process can be generalized to multi-level cluster sampling, though formal results are not
provided in the paper.
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The estimator of θ∗M is denoted by θ̂N , which solves the minimization problem in the

sample.

θ̂N = arg min
θ

1

N

G∑
g=1

Mg∑
i=1

RigMqigM (WigM , θ)

= arg min
θ

1

N

M∑
i=1

RiMqiM (WiM , θ)

(6)

Panel data could be thought of as a special case of the cluster framework described

above without second-layer sampling, i.e., ρuM = 1. In a balanced panel, Mg has equal

values across clusters (cross-sectional units). Even with unbalanced panels, the results can

be applied as long as the observation of cross-sectional units at certain time periods is

random.

Also, note that the objective function is abstract of any correlation between the unob-

served cluster heterogeneity and the covariates. In the linear model, the objective function

allows for cluster fixed effects, where either zigM includes a set of cluster dummies or

the variables are cluster-demeaned. In nonlinear models, Wooldridge (2019) proposes a

generalization of correlated random effects model to unbalanced panels, assuming both

strict “exogeneity” of the selection indicators and the covariates. The same Chamberlain-

Mundlak device can be applied to clustered data where selection indicators go away by

nature. The only difference from the standard case would be that now the objective func-

tion contains additional sufficient statistics composed of functions of the covariates and

cluster sizes.6

I make the following assumptions throughout the paper.

Assumption 1. (i) The sampling scheme consists of two stages. In the first stage, clusters

6Alternative approaches to dealing with the correlation between the unobserved group heterogeneity
and covariates in the nonlinear model, such as bias-corrected fixed effects estimators (e.g., Fernández-Val
and Weidner (2016)), cannot be easily incorporated in the framework of M-estimation; thus they are not
considered here.
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are randomly sampled with probability ρcM ; in the second stage, units are randomly sampled

from the subpopulation consisting of all the sampled clusters with probability ρuM . Hence,

the sample size is N =
M∑
i=1

RiM . (ii) The sequence of sampling probabilities ρcM and ρuM

satisfies MρuMρcM → ∞, GρcM → ∞, and ρcM → ρc ∈ [0, 1], ρuM → ρu ∈ [0, 1] as

M →∞.

Assumption 2. (i) The assignments {XigM , i=1, 2,. . . , Mg, g=1, 2,. . . ,G} are not (nec-

essarily) identically distributed; (ii) the assignments are independent across clusters but

allowed to be correlated within clusters.

Assumption 3. The vector of assignments is independent of the vector of sampling indi-

cators.

Assumption 4. max
g≤G

Mg

M → 0, as M →∞.

Assumption 5.

G∑
g=1

M2
g

M ≤ C <∞ and max
g≤G

M2
g

M → 0, as M →∞.

Assumption 1(i) formalizes the sampling process. Similar to the independent sam-

pling case, the sample size is random, which does not affect the asymptotic distribution

of M-estimators as long as the sampling fraction N
M converges to the composite sampling

probability ρuρc [see the lemma of asymptotic equivalence in Rao (1973, p. 122)]. Assump-

tion 1(ii) assumes both the expected sample size, E(N) = MρuMρcM , and the expected

number of clusters in the sample, E(GN ) = GρcM , tend to infinity along with the pop-

ulation size since I adopt the large-G asymptotics throughout the paper. Note that the

limiting sampling probabilities ρc and ρu are allowed to take value zero, which not only

nests infinite populations in the framework but also allows for unbounded cluster sizes in

the limit, at least in some clusters.

Assumption 2(i) allows for either identically distributed or nonidentically distributed
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assignment variables XigM . The latter allows the assignments to depend on fixed at-

tributes zigM . Assumption 2(ii) allows for clustered assignment, which is another source of

within-cluster correlation in addition to within-cluster correlation of the composite sam-

pling indicators. Assumption 3 implies that the sampling process and the assignment

process are independent of each other. When ρcM = 1 and the assignment of XigM is inde-

pendent both across and within clusters, Assumptions 1-3 contains independent sampling

and independent assignment as a special case. Hence, this paper generalizes results in Xu

(2019).

Assumptions 4 and 5 are adapted from Hansen and Lee (2019) to restrict cluster het-

erogeneity and the growth rate of the cluster sizes relative to that of the population size.

The cluster sizes in the sample and the overall sample size in Hansen and Lee (2019) are re-

placed by their population counterparts. Assumption 4 rules out the case where a particular

group of clusters dominates the population since each cluster is asymptotically negligible.

Suppose all clusters are of the same size; then Mg = M
G . As a result, max

g≤G
Mg

M = 1
G . An

implication of Assumption 4 is thus G → ∞. Assumption 5 strengthens Assumption 4

since it is used to show asymptotic normality, which involves higher moments. We can see

that

max
g≤G

Mg

M
≤ max

g≤G

M2
g

M
→ 0. (7)

Therefore, once Assumption 5 is imposed, there is no need to impose Assumption 4 since

the latter is implied by the former. However, to show consistency, only Assumption 4 is

required.

The first part of Assumption 5 deserves the most detailed discussion. The finite popula-
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tion counterpart of the original assumption in Hansen and Lee (2019) is for some 2 ≤ r <∞

( G∑
g=1

M r
g

)2/r

M
≤ C <∞. (8)

The assumption in (8) becomes more restrictive when r approaches 2 with a trade-off

between cluster sizes and the order of moments. The intuition can be most easily seen

with balanced clusters; the cluster sizes are required to be bounded when r = 2 but can

grow uniformly at the rate Mg = Mα for 0 ≤ α ≤ r−2
2r−2 for any r > 2. In fact, Assumption

5 rules out clustered data with all clusters unbounded since

C ≥

G∑
g=1

M2
g

M
≥

min
g≤G

Mg

( G∑
g=1

Mg

)
M

= min
g≤G

Mg. (9)

It is appropriate for Hansen and Lee (2019) to assume (8) since their main contri-

bution is providing fundamental asymptotic distribution theory, such as the weak law of

large numbers and the central limit theorem, for clustered data with a large number of

independent groups, and potentially unbalanced and unbounded cluster sizes. Also, if we

only consider linear models, Assumption 5 can be relaxed to (8), including the cases where

all cluster sizes are unbounded. However, for nonlinear models, Assumption 5 is required

for the sufficient conditions provided to apply the uniform laws of large numbers for the

CRVE. Since I study the asymptotic properties of a general class of M-estimators in this

paper, I impose the more restrictive assumption directly. Consequently, the asymptotic

theory in this paper is most relevant to clustered data where some cluster sizes are small.
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3.2 Asymptotic Distribution

The next theorem proves consistency of M-estimators. The limiting population estimand

θ∗ in the theorem is defined in the following way:

θ∗ = lim
M→∞

θ∗M = arg min
θ
Q(θ), (10)

where Q(θ) ≡ lim
M→∞

1
M

∑M
i=1 EX

[
qiM (WiM , θ)

]
. The asymptotic theory relies on the num-

ber of clusters G → ∞ as M → ∞. In the meanwhile, heterogeneous and unbounded

cluster sizes are allowed.

Theorem 3.1. In addition to Assumptions 1-4, assume that: (i) Q(θ) is uniquely mini-

mized at θ∗; (ii) Θ is compact; (iii) qiM (w, θ) is continuous in θ for all w in the support of

WiM , ∀ i,M ; (iv) sup
i,M

EX
[

sup
θ∈Θ
|qiM (WiM , θ)|r

]
< ∞ for some r > 1; (v) there is h(u) ↓ 0

as u ↓ 0 and b1(·) : W → R such that sup
i,M

EX
[
b1,iM (WiM )

]
< ∞, and for all θ̃, θ ∈ Θ,∣∣qiM (WiM , θ̃)− qiM (WiM , θ)

∣∣ ≤ b1,iM (WiM )h(‖θ̃ − θ‖). Then θ̂N − θ∗
p→ 0.

The major difference between the regularity conditions here and those in the standard

case is that the expectation here is taken only over the distribution of X (besides the

sampling indicator) while the expectation is taken over the joint distribution of {X, z, Y }

in the standard case. The introduction of θ∗ and the assumption of the existence of Q(θ) is

not needed for what follows, but it entails little loss of generality and simplifies regularity

conditions. Theorem 3.1 implies that θ̂N − θ∗M
p→ 0 since θ∗M − θ∗ → 0 holds by definition.

The finite population estimand θ∗M may not be the true parameters in the potential outcome

function since I do not impose correct specification of the objective function. Nevertheless,

it generally provides the best approximation to the underlying parameters given the models

specified.

I introduce the following notation to help guide the discussion of the asymptotic dis-
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tribution of M-estimators:

∆ehw,M (θ) =
1

M

M∑
i=1

EX
[
miM (WiM , θ)miM (WiM , θ)

′], (11)

∆E,M =
1

M

M∑
i=1

EX
[
miM (WiM , θ

∗
M )
]
EX
[
miM (WiM , θ

∗
M )
]′
, (12)

∆cluster,M (θ) =
1

M

G∑
g=1

Mg∑
i=1

Mg∑
j 6=i

EX
[
migM (WigM , θ)mjgM (WjgM , θ)

′], (13)

∆EC,M =
1

M

G∑
g=1

Mg∑
i=1

Mg∑
j 6=i

EX
[
migM (WigM , θ

∗
M )]EX [mjgM (WjgM , θ

∗
M )
]′
, (14)

HM (θ) =
1

M

M∑
i=1

EX
[
∇θmiM (WiM , θ)

]
, (15)

where miM (WiM , θ) denotes the score function of qiM (WiM , θ). The variance matrix of

M-estimators is then defined as

VM = HM (θ∗M )−1
(
∆ehw,M (θ∗M )+ρuM∆cluster,M (θ∗M )−ρuMρcM∆E,M−ρuMρcM∆EC,M

)
HM (θ∗M )−1.

(16)

Notice that all the matrices are denoted by a subscript M to emphasize their dependence

on the population size. Also, the middle part of the sandwich form in (16) is different from

the standard case with two additional terms. I denote the conventional infinite population

variance matrix and its estimator below:

V1M = HM (θ∗M )−1
(
∆ehw,M (θ∗M ) + ρuM∆cluster,M (θ∗M )

)
HM (θ∗M )−1, (17)

ĤN (θ) =
1

N

M∑
i=1

RiM∇θmiM (WiM , θ), (18)
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∆̂ehw,N (θ) =
1

N

M∑
i=1

RiM ·miM (WiM , θ)miM (WiM , θ)
′, (19)

∆̂cluster,N (θ) =
1

N

G∑
g=1

Mg∑
i=1

Mg∑
j 6=i

RigMRjgM ·migM (WigM , θ)mjgM (WjgM , θ)
′, (20)

V̂1N = ĤN

(
θ̂N )−1(∆̂ehw,N (θ̂N ) + ∆̂cluster,N (θ̂N )

)
ĤN (θ̂N )−1. (21)

The theorem below summarizes the regularity conditions required for asymptotic nor-

mality of M-estimators and consistency of the usual CRVE to V1M .

Theorem 3.2. Under Assumptions 1, 2, 3, 5, and conditions in Theorem 3.1, sup-

pose that 1
N

M∑
i=1

RiM · miM (WiM , θ̂N ) = op(N
−1/2) and (i) θ∗ ∈ int(Θ); (ii) qiM (w, θ)

is twice continuously differentiable on int(Θ) for all w in the support of WiM , ∀ i,M ; (iii)

sup
i,M

EX
[

sup
θ∈Θ
‖miM (WiM , θ)‖r

]
< ∞ for some r > 2; (iv) ∆ehw,M (θ∗M ) − ρuMρcM∆E,M +

ρuM∆cluster,M (θ∗M )−ρuMρcM∆EC,M is nonsingular; (v) sup
i,M

EX
[

sup
θ∈Θ
‖∇θmiM (WiM , θ)‖r

]
<

∞ for some r > 1; (vi) there is h(u) ↓ 0 as u ↓ 0 and b2(·) : W → R such that

sup
i,M

EX
[
b2,iM (WiM )

]
< ∞, and for all θ̃, θ ∈ Θ,

∥∥∥∇θmiM (WiM , θ̃)−∇θmiM (WiM , θ)
∥∥∥ ≤

b2,iM (WiM )h(‖θ̃−θ‖); (vii) HM (θ∗M ) is nonsingular; (viii) ∆ehw,M (θ∗M )+ρuM∆cluster,M (θ∗M )

is nonsingular; (ix) there is h(u) ↓ 0 as u ↓ 0 and b3(·) :W → R such that sup
i,M

EX
[
b3,iM (WiM )2

]
<

∞, and for all θ̃, θ ∈ Θ,
∥∥∥miM (WiM , θ̃)−miM (WiM , θ)

∥∥∥ ≤ b3,iM (WiM )h(‖θ̃ − θ‖). Then

(1) V
−1/2
M

√
N(θ̂N − θ∗M )

d→ N (0, Ik); (2) V
−1/2

1M V̂1NV
−1/2

1M

p→ Ik.

Because I allow arbitrary within-cluster correlations of the score functions, the con-

vergence rate of M-estimators is unknown. The typical convergence rates with clustered

data are
√
N or

√
GN , but Hansen and Lee (2019) have given examples showing that the

convergence rate can be in between or even slower than these rates. Since the rate of

convergence can be calculated as the standard deviation of M-estimators, the composite

V
−1/2
M

√
N serves as the implicit rate in Theorem 3.2. As it turns out, it is not necessary
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to know the convergence rate since VM/N gives the correct variance of θ̂N .

In terms of the variance-covariance matrices, the term ∆cluster,M (θ∗M ) is scaled by the

sampling probability ρuM because of the two-stage sampling scheme. Nevertheless, the

usual CRVE, V̂1N , converges to V1M , in which the estimation of ρuM has been accounted

for.

Corollary 1. Clustering is necessary when there is cluster sampling (ρcM < 1) or cluster

assignment (∆cluster,M (θ∗M ) 6= ∆EC,M ), or both.

The term related to clustering in the variance formula, ρuM
(
∆cluster,M (θ∗M )−ρcM∆EC,M (θ∗M )

)
,

is nonzero unless we have both independent sampling and independent assignment. Corol-

lary 1 states that we should adjust standard errors of M-estimators for clustering at the

level of cluster sampling or cluster assignment. It can be shown using similar arguments

that when cluster sampling and cluster assignment occur at different but nested levels, one

should cluster at the higher level. This conclusion may seem counterintuitive at first, since

correlations among individual unobservables play no specific role in determining clustering

adjustment. Instead of arbitrary clustering based on clustered errors, the guidelines in the

corollary give a more clear-cut of clustering adjustment: whenever the sampling schemes

or the assignment rules are known, we have the idea of the appropriate level to cluster the

standard errors.

Corollary 1 reproduces results of Corollary 1(i) in Abadie et al. (2017) but in a much

more generalized way. Abadie et al. (2017) prove the case for the difference-in-means

estimator, while the corollary above holds for all M-estimators with either continuous or

discrete assignment variables. However, Corollary 1 mainly applies to finite populations,

although the generalization to infinite populations would be a natural conjecture.

Let us revisit the example in MacKinnon (2019). Given education is a personal choice,

the assignment of education levels is independent across individuals. On the other hand,

19



since CPS has a two-stage sampling design with the PSUs being either one county or

contiguous counties, we need to adjust for clustering at the PSU level whenever the PSU

identifier is available. When we have access to the same CPS data, we can consider a

different problem, such as the effect of state minimum wage laws on individual wage rates.

In this example, there is cluster assignment given the policy is imposed on states. As a

result, we should cluster the standard errors at the state level. These two examples serve

as the leading cases in practice.

Corollary 2. Since

∆E,M+∆EC,M =
1

M

G∑
g=1

[ Mg∑
i=1

EX
(
migM (WigM , θ

∗
M )
)][ Mg∑

i=1

EX
(
migM (WigM , θ

∗
M )
)]′

(22)

is positive semidefinite, the infinite population CRAV of M-estimators is no less than the

finite population CRAV, in the matrix sense.

When clustering is necessary, I rewrite the two additional terms in (22) to compare

the asymptotic variance of M-estimators obtained in Theorem 3.2 to the usual infinite

population asymptotic variance. Corollary 2 is a generalization of Theorem 2.3 in Xu (2019)

to clustered data, which accounts for both sampling-based and design-based uncertainties.

Although the usual CRVE is often overly conservative, there are exceptional cases where

it is appropriate to use the usual CRVE for inference. The first scenario is summarized in

the corollary below.

Corollary 3. If few clusters are sampled from a large population of clusters, namely,

ρcM → 0, or there is at most one unit sampled from each cluster, i.e., ρuM → 0, it is

appropriate to use the usual CRVE of M-estimators for inference.

Corollary 3 reaches the same conclusion of Corollary 2(ii) and 2(iii) in Abadie et al.

(2017) but in a general framework of M-estimation. When ρcM is small, which is the case
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close to sampling from an infinite number of clusters, we are left with the usual expression

of the CRAV. In other words, the CRAV of M-estimators in the infinite population setting

is in general conservative unless few clusters are sampled. When ρuM is close to zero,

there is at most one unit sampled from each cluster. The CRAV then reduces to the EHW

asymptotic variance, ∆ehw(θ∗M )−ρuMρcM∆E . Because ρuM is close to zero, the composite

sampling probability ρuMρcM is also small, which is again close to the case of sampling

from an infinite population. As a result, the usual EHW variance estimator is appropriate,

and so is the usual CRVE since clustering adjustment does not matter in this case.

Another special case for the usual CRVE to be appropriate is when ∆E,M +∆EC,M = 0,

which is true if either EX
[
migM (WigM , θ

∗
M )
]

= 0, ∀ i = 1, . . . ,Mg, g = 1, . . . , G or∑Mg

i=1 EX
[
migM (WigM , θ

∗
M )
]

= 0, ∀ g = 1, . . . , G. The former is true for the coefficient

estimator on the assignment variables under the sufficient conditions provided by Abadie

et al. (2019), including constant treatment effects, which is required for a correct spec-

ification of a linear regression function, and other linearity conditions. The latter holds

if the finite population is composed of repetitions of the smallest cluster in terms of the

potential outcomes, the fixed attributes, and assignment rules. With this kind of data

structure, θ∗M that solves EX
[∑G

g=1

∑Mg

i=1migM (WigM , θ
∗
M )
]

= 0 is also the solution to

EX
[∑Mg

i=1migM (WigM , θ
∗
M )
]

= 0 for each cluster g.

However, these kinds of special cases rarely hold in practice. The following example

demonstrates why the finite population CRAV is generally smaller than the usual CRAV,

in the matrix sense. In the case of linear regression, suppose we regress YiM on XiM . The

population estimand has the following closed form:

θ∗M =

[ M∑
i=1

EX(X ′iMXiM )

]−1 M∑
i=1

EX(X ′iMYiM ). (23)

The population residual is defined as UiM = YiM − XiMθ
∗
M = yiM (XiM ) − XiMθ

∗
M .
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Though
∑M

i=1 EX(X ′iMUiM ) = 0 because of the first order condition in the population

minimization problem, EX(X ′iMUiM ) is nonzero at least for some unit i. The underlying

reason is that given UiM contains the fixed potential outcome function, the joint distri-

bution of {XiM , UiM} is necessarily nonidentical.7 Consequently, the cluster summation∑Mg

i=1 EX(X ′igMUigM ) will only equal to zero by chance, ∀ g = 1, . . . , G. Hence, when

we derive the usual asymptotic variance of the least squares estimator, the positive defi-

nite term
[∑Mg

i=1 EX(X ′igMUigM )
][∑Mg

i=1 EX(X ′igMUigM )
]′

remains in the variance matrix,

which resulted in a larger (in the matrix sense) asymptotic variance.

4 Estimation of the Extra Terms in the Asymptotic Variance

The terms that show up in the usual CRAV can be estimated in the standard way. It

is more challenging to estimate the two extra terms, ∆E,M and ∆EC,M . The underlying

reason is that EX
[
miM (WiM , θ

∗
M )
]

is generally non-identifiable due to the missing data

problem of the potential outcome framework. However, there is a menu of options valid

under different circumstances to at least find a lower bound of the two extra terms.

No matter whether there is second-step sampling within clusters or not, we can always

remove part of ∆E,M using the regression-based approach proposed in Theorem 4.2 in Xu

(2019). Consider the estimator,

∆̂Z
N =

1

N

M∑
i=1

RiM L̂
′
Nz
′
iMziM L̂N , (24)

where L̂N =
( M∑
i=1

RiMz
′
iMziM

)−1
[
M∑
i=1

RiMz
′
iMmiM (WiM , θ̂N )′

]
.

Theorem 4.1. In addition to Assumptions 1-4 and conditions in Theorem 3.2, assume that

7Even if XiM is identically distributed, the usual asymptotic variance is in general too large with the
presence of the fixed potential outcome function.
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1
M

∑M
i=1 z

′
iMziM and ∆Z

M are nonsingular. Then 0 ≤ ∆Z
M ≤ ∆E,M , where ∆Z

M
−1/2

∆̂Z
N∆Z

M
−1/2 p→

Ik (all inequalities are in the matrix sense).

With clustered data, we can include cluster dummies as regressors in the linear projec-

tion of miM (WiM , θ̂N ) on the fixed attributes. Therefore, the estimation method proposed

in Theorem 4.1 is applicable even when there are no other fixed attribute variables avail-

able, since the cluster dummies are always known. Alternatively, when the variables in ziM

are discrete, we can partition the population into different strata based on the values of

ziM . Then EX
[
miM (WiM , θ

∗
M )
]

can be partially predicted by its within-stratum averages.

However, the downside is that ∆EC,M , which contains
∑G

g=1Mg(Mg − 1) terms, still re-

mains in the usual CRVE. Consequently, the adjusted finite population CRVE, using ∆̂Z
N

to partially estimate ∆E,M , is still quite conservative.

We can do better if there is no second-step sampling within the selected clusters.

In this case, we could sum migM (WigM , θ̂N ) within each cluster, and linearly project∑Mg

i=1migM (WigM , θ̂N ) on the fixed attributes. The number of observations in the lin-

ear projection would be the number of clusters in the sample. Hence, cluster dummies

should be dropped from the regression. Otherwise, we would run out of degrees of freedom.

To reduce the dimensionality of the regressors, the fixed attributes can also be summed

within clusters as one way of aggregation. As a result,
∑Mg

i=1 EX
[
migM (WigM , θ

∗
M )
]

can be

partially estimated by its predicted value from the linear projection. Let

z̃gM =

Mg∑
i=1

zigM , (25)

m̃gM (θ) =

Mg∑
i=1

migM (WigM , θ), (26)
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and

P̂N =

( G∑
g=1

RgM z̃
′
gM z̃gM

)−1( G∑
g=1

RgM z̃
′
gMm̃gM (θ̂N )′

)
. (27)

Estimate ∆E,M + ∆EC,M by

∆̂Z
CE,N =

1

N

G∑
g=1

RgM P̂
′
N z̃
′
gM z̃gM P̂N . (28)

Theorem 4.2. In addition to Assumptions 1, 2, 3, 5, and conditions in Theorem 3.2,

assume that (i) ρuM = 1; (ii)
G∑
g=1

z̃′gM z̃gM is nonsingular; (iii) ∆Z
CE,M is nonsingular.

Then 0 ≤ ∆Z
CE,M ≤

(
∆E,M + ∆EC,M

)
, where ∆Z

CE,M
−1/2

∆̂Z
CE,N∆Z

CE,M
−1/2 p→ Ik (all

inequalities are in the matrix sense).

Theorem 4.2 proposes an easy way to partially remove ∆E,M + ∆EC,M all at once.

The sampling probability ρuMρcM can be estimated by N
M , where the population size M is

assumed to be known. If the entire population is observed, ρuMρcM is simply one. Since

∆̂Z
CE,N is positive semidefinite,

∆̂ehw,N (θ̂N ) + ∆̂cluster,N (θ̂N )− N

M
∆̂Z
CE,N ≤ ∆̂ehw,N (θ̂N ) + ∆̂cluster,N (θ̂N ) (29)

(in the matrix sense) is an algebraic fact with finite samples. With large samples, even

though the limit of the adjusted finite population CRVE is still conservative, it improves

over the limit of the usual CRVE.

5 Asymptotic Distribution of Functions of M-estimators

Sometimes, we are interested in the functions of M-estimators rather than M-estimators

themselves. Let fiM (WiM , θ
∗
M ) be a q × 1 function of WiM and θ∗M . Suppose we wish
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to estimate γ∗M = 1
M

M∑
i=1

EX
[
fiM (WiM , θ

∗
M )
]
. As an example, γ∗M could be the APE

from nonlinear models, where f(·, ·) is some partial derivative for continuous variables

or some difference function for discrete variables. The estimator of γ∗M is denoted by

γ̂N = 1
N

M∑
i=1

RiMfiM (WiM , θ̂N ). The conditional variance of γ̂N (conditional on W ), such

as the variance of the partial effect estimator, can be obtained by applying Theorem 3.2

and the delta method directly. The delta method can also be applied to functions f(θ∗M )

without W . When the randomness of W is also taken into account, γ̂N has the asymptotic

distribution as shown in Theorem 5.1 (see below).

The notation used in the theorem is defined as follows:

FM (θ) =
1

M

M∑
i=1

EX
[
∇θfiM (WiM , θ)

]
, (30)

F̂N (θ) =
1

N

M∑
i=1

RiM∇θfiM (WiM , θ), (31)

∆f
ehw,M =

1

M

M∑
i=1

EX
{[
fiM (WiM , θ

∗
M )− γ∗M − FM (θ∗M )HM (θ∗M )−1miM (WiM , θ

∗
M )
]
·

[
fiM (WiM , θ

∗
M )− γ∗M − FM (θ∗M )HM (θ∗M )−1miM (WiM , θ

∗
M )
]′}

,

(32)

∆f
E,M =

1

M

M∑
i=1

{
EX
[
fiM (WiM , θ

∗
M )− γ∗M − FM (θ∗M )HM (θ∗M )−1miM (WiM , θ

∗
M )
]
·

EX
[
fiM (WiM , θ

∗
M )− γ∗M − FM (θ∗M )HM (θ∗M )−1miM (WiM , θ

∗
M )
]′}

,

(33)

∆f
cluster,M =

1

M

G∑
g=1

Mg∑
i=1

Mg∑
j 6=i

EX
{[
figM (WigM , θ

∗
M )− γ∗M − FM (θ∗M )HM (θ∗M )−1migM (WigM , θ

∗
M )
]
·

[
fjgM (WjgM , θ

∗
M )− γ∗M − FM (θ∗M )HM (θ∗M )−1mjgM (WjgM , θ

∗
M )
]′}

,

(34)
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∆f
EC,M =

1

M

G∑
g=1

Mg∑
i=1

Mg∑
j 6=i

{
EX
[
figM (WigM , θ

∗
M )− γ∗M − FM (θ∗M )HM (θ∗M )−1migM (WigM , θ

∗
M )
]
·

EX
[
fjgM (WjgM , θ

∗
M )− γ∗M − FM (θ∗M )HM (θ∗M )−1mjgM (WjgM , θ

∗
M )
]′}

.

(35)

The variance matrix of γ̂N is then defined as

Vf,M = ∆f
ehw,M + ρuM∆f

cluster,M − ρuMρcM∆f
E,M − ρuMρcM∆f

EC,M . (36)

The usual CRVE in the setting of infinite populations is denoted by ∆̂f
ehw,N + ∆̂f

cluster,N ,

where

∆̂f
ehw,N =

1

N

M∑
i=1

RiM
[
fiM (WiM , θ̂N )− γ̂N − F̂N (θ̂N )ĤN (θ̂N )−1miM (WiM , θ̂N )

]
·

[
fiM (WiM , θ̂N )− γ̂N − F̂N (θ̂N )ĤN (θ̂N )−1miM (WiM , θ̂N )

] (37)

and

∆̂f
cluster,N =

1

N

G∑
g=1

Mg∑
i=1

Mg∑
j 6=i

RigMRjgM
[
figM (WigM , θ̂N )− γ̂N − F̂N (θ̂N )ĤN (θ̂N )−1migM (WigM , θ̂N )

]
·

[
fjgM (WjgM , θ̂N )− γ̂N − F̂N (θ̂N )ĤN (θ̂N )−1mjgM (WjgM , θ̂N )

]′
.

(38)

Theorem 5.1. Under Assumptions 1, 2, 3, 5, and conditions in Theorem 3.2, sup-

pose that (i) fiM (w, θ) is continuously differentiable on int(Θ) for all w in the support

of WiM , ∀ i,M ; (ii) sup
i,M

EX
[

sup
θ∈Θ
‖fiM (WiM , θ)‖r

]
< ∞ for some r > 2; (iii) V f

M is

nonsingular; (iv) sup
i,M

EX
[

sup
θ∈Θ
‖∇θfiM (WiM , θ)‖r

]
< ∞ for some r > 1; (v) there is

h(u) ↓ 0 as u ↓ 0 and b4(·) : W → R such that sup
i,M

EX
[
b4,iM (WiM )

]
< ∞, and for all

θ̃, θ ∈ Θ,
∥∥∥∇θfiM (WiM , θ̃)−∇θfiM (WiM , θ)

∥∥∥ ≤ b4,iM (WiM )h(‖θ̃ − θ‖); (vi) ∆f
ehw,M +
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ρuM∆f
cluster,M is nonsingular; (vii) there is h(u) ↓ 0 as u ↓ 0 and b5(·) : W → R such

that sup
i,M

EX
[
b5,iM (WiM )2

]
< ∞, and for all θ̃, θ ∈ Θ,

∥∥∥fiM (WiM , θ̃)− fiM (WiM , θ)
∥∥∥ ≤

b5,iM (WiM )h(‖θ̃ − θ‖). Then (1) V
−1/2
f,M

√
N(γ̂N − γ∗M )

d→ N (0, Iq);

(2) (∆f
ehw,M+ρuM∆f

cluster,M )−1/2
(
∆̂f
ehw,N+∆̂f

cluster,N

)
(∆f

ehw,M+ρuM∆f
cluster,M )−1/2 p→ Iq.

Theorem 5.1 shows that the conservative property of the usual CRVE of M-estimators

carries over to the usual CRVE of any functions of M-estimators. We can also apply the

same techniques in Section 4 to estimate the two extra terms, ∆f
E,M and ∆f

EC,M . The only

difference is that the dependent variables in the regression-based approach would be

figM (WigM , θ̂N )− γ̂N − F̂N (θ̂N )ĤN (θ̂N )−1migM (WigM , θ̂N ) (39)

or the cluster sum of it rather than migM (WigM , θ̂N ) alone.

6 Simulation

In this section, I compare the Monte Carlo standard deviation of the APE estimator of the

assignment variable in a binary response model with a set of different standard errors. In

the population generating process, there is a single assignment variable XigM ∈ {0, 1} and

a single attribute variable zigM ∈ {−1, 1}, each equal to one with a probability of 1/2. The

potential outcome of a binary response is generated as

yigM (x) = 1[x+ 2zigM · x+ cgM + eigM > 0]. (40)

Because of the cluster setup, there is an unobserved group heterogeneity for each cluster,

cgM , which is generated as residuals from regressing random realization of a standard

normal distribution on zigM . The idiosyncratic unobservables eigM is the residual from
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regressing random realization of a standard normal distribution on zigM and cgM . The

data of zigM , cgM , and eigM are generated once and kept fixed in the population M .

The random assignment of XigM involves two stages. In the first stage, an assignment

probability pgM ∈ [0, 1] for cluster g is drawn randomly from a distribution h(·) with mean

1/2 and variance σ2. In the second stage, XigM in cluster g is assigned to 1 independently,

with cluster specific probability pgM . If σ2 > 0, we have correlated assignment within each

cluster but independent assignment across clusters. In the simulation, pgM is either drawn

from the standard uniform distribution or kept fixed at 1/2. Hence, σ2 ∈ {0, 1/12}.

There are 10,000 replications for each design. For each replication, XigM is assigned

according to the assignment rules above and then clusters are sampled with probability

ρc ∈ {0.1, 0.5, 1} from the finite population. Each resembles the case of sampling from an

infinite number of clusters, drawing a nonnegligible chunk of clusters in the population,

and observing all clusters in the population, respectively. Since I want to show the finite-

sample performance of the regression-based adjusted finite population CRVE proposed in

Theorem 4.2, there is no second-stage sampling, i.e., ρu = 1.

The expected sample size is kept the same across different designs with varying popula-

tion sizes. Results with two different expected cluster numbers in the sample, 50 and 100,

are reported. Within each population M , half of the clusters have four units and another

half have eight units. Hence, the expected sample size is 300 and 600 respectively.
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Table 1: Standard Errors and Coverage Rates for Probit: APE

No Cluster Assignment With Cluster Assignment

(1) (2) (3) (4) (5) (6)
ρc = 0.1 ρc = 0.5 ρc = 1 ρc = 0.1 ρc = 0.5 ρc = 1

Gρc = 50

APE∗M 0.1007 0.1350 0.1300 0.1007 0.1350 0.1300

ÂPE 0.1091 0.1413 0.1376 0.1090 0.1431 0.1388
std 0.0736 0.0618 0.0395 0.0809 0.0724 0.0572
selimit 0.0745 0.0623 0.0390 0.0817 0.0717 0.0553
s̄ecluster 0.0761 0.0783 0.0785 0.0829 0.0855 0.0874
covcluster (0.955) (0.985) (1.000) (0.953) (0.977) (0.996)
s̄eadj 0.0740 0.0659 0.0507 0.0810 0.0744 0.0635
covadj (0.949) (0.964) (0.988) (0.948) (0.956) (0.969)
s̄eehw,adj 0.0513 0.0491 0.0468 0.0516 0.0495 0.0471

Gρc = 100

APE∗M 0.1182 0.1075 0.1350 0.1182 0.1075 0.1350

ÂPE 0.1263 0.1174 0.1418 0.1261 0.1165 0.1422
std 0.0523 0.0439 0.0270 0.0581 0.0501 0.0373
selimit 0.0533 0.0442 0.0272 0.0591 0.0506 0.0371
s̄ecluster 0.0550 0.0558 0.0558 0.0604 0.0608 0.0612
covcluster (0.961) (0.985) (1.000) (0.954) (0.982) (0.999)
s̄eadj 0.0535 0.0471 0.0361 0.0590 0.0530 0.0440
covadj (0.955) (0.963) (0.989) (0.949) (0.962) (0.979)
s̄eehw,adj 0.0364 0.0349 0.0327 0.0365 0.0350 0.0329

1 G is the number of clusters in the population; ρc is the sampling probability of clusters; thus,

E(GN ) = Gρc is the expected number of clusters in the sample.
2 For cluster assignment, the variance of the assignment probability across clusters is 1/12.
3 APE∗

M stands for the population APE; ÂPE stands for the average of the APE estimates across

replications; std stands for the Monte Carlo standard deviation; selimit stands for the analytical

cluster-robust standard error with finite populations; s̄ecluster stands for the average of the usual

infinite population cluster-robust standard error; covcluster stands for the coverage rate of the 95%

confidence interval based on the usual cluster-robust standard error; s̄eadj stands for the average

of the adjusted finite population cluster-robust standard error; covadj stands for the coverage rate

of the 95% confidence interval based on the adjusted finite population cluster-robust standard

error; s̄eehw,adj stands for the average of the adjusted finite population EHW standard error.
4 In the construction of the confidence intervals, 97.5th percentile of t(Gρc−1) is used as the critical

value.
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Estimates from the pooled probit regression of YigM on 1, XigM , and zigM are collected

in Table 1. To report the analytical standard errors, θ∗M is computed by minimizing the

finite population objective function as in (5) with each population size, where qiM (WiM , θ)

is the Bernoulli log-likelihood function. In the left panel (columns (1)-(3)), the assign-

ment variable XigM is independently assigned for each unit in the population given that

the assignment probability pgM is fixed at 0.5 for all clusters. While in the right panel

(columns (4)-(6)), assignments within clusters are correlated as each cluster has its specific

assignment probability. Cluster sampling occurs when ρc < 1. As a result, for columns

(1) and (2), there is cluster sampling but no cluster assignment; for column (3), there is

neither cluster sampling nor cluster assignment; for columns (4) and (5), there are both

cluster sampling and cluster assignment; while for column (6), there is cluster assignment

but no cluster sampling.

Within each sample size, the first two rows in Table 1 report the APE of X in the

population obtained from the potential outcome function and the average of the APE

estimates across the replications. The population APEs vary across columns because the

population sizes are different in the design of each column. Even though there is some

gap between the population APEs and the estimated APEs due to misspecification of the

model, the estimated ones are not too off from the truth.8 With quasi-MLE, the hope is

to get the best approximation to the population APE given the model specified.

The third and fourth rows report the Monte Carlo standard deviation of the APE

estimator and its analytical cluster-robust standard error with finite populations using the

formula in Theorem 5.1.9 In all designs, the analytical cluster-robust standard errors are

8The model is misspecified because the interaction term in the potential outcome function is not captured
by the probit regression and {eigM , i = 1, . . . ,Mg, g = 1, . . . , G} has a discrete rather than standard normal
distribution.

9It is equivalent to apply the delta method in this case since the individual partial effect does not contain
stochastic assignment variables.
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pretty close to the Monte Carlo standard deviations, confirming the correctness of the

analytical formula at least in this population generating process.

The next two rows report the average of the usual cluster-robust standard error and

the corresponding coverage rate of the 95% confidence interval. Consistent with the theory,

the usual cluster-robust standard errors are always larger than the Monte Carlo standard

deviation of the APE estimator. Consequently, the coverage rates of the confidence intervals

are always larger than its nominal level. The discrepancy between the usual cluster-robust

standard error and the standard deviation is the smallest when the sampling probability

is 0.1, as this is the case closest to sampling from an infinite number of clusters.

The coverage rates here, especially the ones in the top panel, should be interpreted with

caution though due to the cluster heterogeneity and the relatively small cluster number

in the sample. In the setting of infinite populations, Bester, Conley, and Hansen (2011),

by adopting the fixed-G asymptotics, show that the cluster-robust t statistic follows a t

distribution with GN−1 degrees of freedom under homogeneity of both the design matrices

and the variance of the within-group scores. Simulation results in MacKinnon and Webb

(2017) with wildly different cluster sizes show that using critical values from t(GN − 1) at

least outperforms critical values from the standard normal distribution. As a result, the

97.5th percentile of t(Gρc − 1) is used as the critical value in constructing the confidence

intervals. The appropriateness of using critical values as such is a conjecture without proof

in the context of finite populations. Nevertheless, since I use the same set of critical values

across confidence intervals, it is still fare to compare their coverage rates resulted from

different standard errors.

The seventh and eighth rows report the average of the adjusted finite population cluster-

robust standard error and the coverage rate of the corresponding 95% confidence interval.

Since the fixed attribute zigM is correlated with the score function, the adjusted finite
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population cluster-robust standard error is quite a bit smaller than the usual infinite pop-

ulation cluster-robust standard error, making the coverage rate of the confidence interval

closer to its nominal level.

The averages of the adjusted finite population EHW standard error are reported in the

last row, which are almost always smaller than the Monte Carlo standard deviations except

in column (3).10 For the design in column (3), the adjusted finite population EHW stan-

dard error is smaller than the cluster-robust standard error but larger than the standard

deviation. Therefore, when there is neither cluster assignment nor cluster sampling, the

usual cluster-robust standard error is overly conservative because the population is incor-

rectly treated as infinite and the clustering is unnecessary even though there are common

error components within clusters.

It is interesting to find that the adjusted finite population cluster-robust standard

error can undo the unnecessary clustering to some extent, which supplements another

reason to use the adjusted finite population standard errors whenever appropriate. This

phenomenon is implied by the theory since if the extra terms in the finite population CRAV

can be identified, then clustering makes no difference when it is unnecessary. However, it is

usually undetermined whether the adjusted finite population EHW standard error or the

adjusted finite population cluster-robust standard error is closer to the standard deviation.

The limited evidence in column (3) shows that the former performs better, though.

The different standard errors of the coefficient estimator on the assignment variable

perform in the same way as those of the APE estimator, as shown in Table 3 in Appendix

B. When the interaction term is removed from the potential outcome function in (40), the

probit specification can be considered as approximately correct as long as the population

size is large enough for {eigM , i = 1, . . . ,Mg, g = 1, . . . , G} to approach the standard

10The adjusted EHW standard errors are obtained using the regression-based approach in Theorem 4.1
without the clustering term.
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normal distribution; in the simulation, we do observe that the average APE estimates are

pretty close to the population APEs. The simulation results in terms of the comparison of

the standard errors show the same pattern (not reported here). The only major difference

is that since now the attribute zigM is no longer correlated with the score function, the

adjusted finite population clustered standard errors are equivalently conservative as the

usual clustered standard errors.

All in all, we can conclude from the simulation results that the usual cluster-robust

standard error is overly conservative unless the sample is a small proportion of a large

number of clusters in the population. When there are fixed attributes available, they can

be used to estimate a lower bound of the finite population CRAV. Although the adjusted

finite population cluster-robust standard error is still conservative, it often improves over

the usual cluster-robust standard error.

7 Application

The adjusted finite population CRVE proposed in Theorem 4.2 is applied to Antecol et al.

(2018), who study the effect of tenure clock stopping policies on tenure rates among assis-

tant professors. The unique dataset collected by the authors contains all assistant professor

hires at the top-50 Economics departments from 1980-2005 as pooled cross sections, re-

sulting in 1,392 observations in total. Furthermore, the tenure clock stopping policies are

assigned at the university level while the data are collected at the individual level, imply-

ing that we have a setting of observing the entire population with cluster assignment. The

standard errors in the original paper are clustered at the policy university level, which is

the correct level to cluster the standard errors implied by Corollary 1.

Since the dependent variable is a binary response, I analyze the linear probability model

given in the original paper along with an additional probit model given in (41) below, which
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adopts the same notation from the original paper.

P (Yugit = 1|GNut, Fugit, Eut, FOut, Xugit, Zut, ρgt, ψug) =

Φ(β0 + β1GNut + β2GNut × Fugit + β3GNut × Eut + β4GNut × Eut × Fugit

+β5FOut + β6FOut × Fugit + β7FOut × Eut + β8FOut × Eut × Fugit

+Xugitξ + Zutη + ρgt + ψug)

(41)

The dependent variable Y is an indicator of obtaining tenure at the policy university.

Binary variables GN and FO are indicators of gender-neutral and female-only tenure clock

stopping policies respectively. The dummy variable F is the indicator for females. The

variable E is an indicator of starting jobs in years zero through three after policy adoption.

The vector X contains individual characteristics and the vector Z includes university level

controls.11 The parameter ρ captures gender-specific time trend and ψ represents gender-

specific university heterogeneity. The subscripts, u, g, i, t, are indicators for university,

gender, individual, and the year the job started respectively.

The authors of the original paper include gender-specific university dummies to cap-

ture different unobserved university heterogeneity for males and females. Adding group

dummies in the linear model is equivalent to performing fixed effects with clustered data.

However, adding group dummies in the nonlinear model may cause the incidental param-

eter problem. Since the cluster sizes are unbalanced, I use pooled probit with correlated

random effects as suggested by Wooldridge (2010) to allow for correlation between the

gender-specific university heterogeneity and the covariates. Using Chamberlain-Mundlak

device, the cluster size, the gender-specific university averages of individual and time-

varying university characteristics, and their interactions with cluster sizes are included as

additional controls.

11Please refer to the original paper for the details of the variables included as controls.
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Given the probit model above is a nonlinear “difference-in-differences” model, the com-

mon trend assumption is imposed on the latent outcome variable following Lechner (2011)

and Puhani (2012). The treatment effects are defined as the differences in the probit prob-

abilities induced by the incremental effect of the coefficient on the treatment variables. For

instance, the total effect of the female-only policy for men hired in years zero through three

after policy adoption is defined in (42) below.

Φ
(
β0c + β5c + β7c + ξcXugit + ηcZut + ρmtc + X̄ugλ1c + Z̄uλ2c + λ3cMg + (Mg × X̄ug)λ4c + (Mg × Z̄u)λ5c

)
−Φ
(
β0c + ξcXugit + ηcZut + ρmtc + X̄ugλ1c + Z̄uλ2c + λ3cMg + (Mg × X̄ug)λ4c + (Mg × Z̄u)λ5c

)
(42)

Notice that the potential outcomes for males with or without treatment is obtained by

imposing the male time trend, denoted by ρmtc, to both males and females. The average

treatment effect on the treated is then calculated as the average of the treatment effect for

those actually treated by the specific policy. Assume that ψ conditional on the sufficient

statistics (the additional controls included) follows a normal distribution. The subscript c

denotes the scaled parameters. Even though the parameters can only be identified up to

scale via pooled probit, we can still obtain the APEs. The total effects of other treatment

groups are defined similarly.

35



Table 2: The Effect of Clock Stopping Policies on the Probability of Tenure at the Policy
University

LPM Probit

APE
standard error

APE
standard error

inf pop finite pop inf pop finite pop
(1) (2) (3) (4) (5) (6)

Panel A. Policy effects years 0-3
Men FOCS -0.0085 0.0670 0.0574 -0.0067 0.0610 0.0422
Women FOCS 0.1723 0.1405 0.1102 0.1491 0.1826 0.1241
Men GNCS 0.0511 0.0787 0.0690 0.0426 0.0693 0.0553
Women GNCS -0.0166 0.1071 0.0894 0.0256 0.1213 0.0857

Panel B. Policy effects years 4+
Men FOCS 0.0023 0.0747 0.0639 -0.0054 0.0638 0.0458
Women FOCS 0.0493 0.1015 0.0743 0.0433 0.0959 0.0643
Men GNCS 0.1757 0.0826 0.0650 0.1468 0.0733 0.0549
Women GNCS -0.1945 0.1057 0.0859 -0.2207 0.0924 0.0660

1 Standard errors are clustered at the policy university level.
2 Columns (1) and (4) report the APEs under the linear probability model and the correlated random effects

probit model, respectively; columns (2) and (5) report the usual infinite population cluster-robust standard

errors of the APE estimators (coefficient estimators in the case of the linear probability model); columns (3)

and (6) report the adjusted finite population cluster-robust standard errors of the APE estimators.
3 Please refer to the original paper for detailed control variables.

In Table 2, panel A presents the total effects for men and women hired in years zero

through three after policy adoption, and panel B shows the effects for those employed in

years four or later. The left panel (columns (1)-(3)) summarizes the results under the linear

probability model. Columns (1) and (2) report the total effects and the standard errors,

as shown in column (1) in the original table labelled Table 2 in Antecol et al. (2018),

while column (3) reports the adjusted finite population clustered standard errors. The

coefficients (APEs) are interpreted as the policy effect on the tenure attainment of the

assistant professors compared with those of the same genders at the same university but

without any clock stopping policies. For example, the coefficient in the third row of panel
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B shows that “men whose first job was at a top-50 university with a gender-neutral tenure

clock stopping policy in place for more than three years have a 17.6 percentage point tenure

rate advantage over men at the same university prior to the implementation of any policy”

(Antecol et al., 2018, p. 2429-2430).

To estimate the adjusted finite population CRAV, I sum all the estimated score func-

tions and control variables within clusters and apply the variance estimator in the left-hand

side of (29) together with the usual estimator of the Hessian matrix. Since the number

of control variables exceeds the number of clusters in the data, I only include individual

and university characteristics as the fixed attributes in the linear projection, resulting in a

linear regression with 49 observations and 12 independent variables. Compared with the

usual cluster-robust standard errors, the finite population cluster-robust standard errors

shrink by about 12% to 27% across the eight treatment groups. In terms of the statistical

significance, the effect of gender-neutral policy for men hired three or more years after the

policy adoption is significant at the 1% rather than the 5% level based on the adjusted

finite population cluster-robust standard error. Also, the effect of gender-neutral policy for

women hired in later years is now significant at the 5% instead of the 10% level. The same

results hold when the critical values from t(48) distribution are used.

In the right panel (columns (4)-(6)), we can see that the APEs from the probit regression

are close in magnitudes to those from the linear model. The adjusted finite population

CRAV is estimated applying Theorem 4.2 and the delta method. The reduction from the

usual clustered standard error to the finite population clustered standard error is even

more substantial in the nonlinear model, varying from 20% to 33%, partly because the

fixed sufficient statistics are also included as regressors in the linear projection. Based on

the critical values from t(48), the effect of gender-neutral policy for men hired in later years

is significant at the 5% level rather than the 10% level when the finite population clustered
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standard error is adopted. In addition, the significance level of the effect of gender-neutral

policy for women hired in later years changes from the 5% to the 1% level under finite

population inference.

Table 4 in Appendix B provides empirical results under an alternative specification of

the correlated random effects probit model, where the cluster size in the set of sufficient

statistics is replaced by the dummy variables indicating different bins of cluster sizes.

The APE estimates from the more flexible functional form are quite similar to those in

the right panel of Table 2. The only exception is that the positive effect of female-only

clock stopping policy on female assistant professors, in the early years of policy adoption, is

significant nearly at the 5% level when the finite population clustered standard error is used.

Under this specification, the finite population clustered standard errors are smaller than

the infinite population clustered standard errors by up to 25% where the score functions

are regressed on the cluster sums of the cluster size dummies and the attribute variables.

To sum up, control variables can help shrink the standard errors when the population

is treated as finite in both linear and nonlinear models. The empirical evidence suggests

that gender-neutral tenure clock stopping policy is beneficial to men in obtaining tenured

positions but detrimental to women. Furthermore, there is evidence that female-only pol-

icy helps women without hurting men, which is not found previously using the linear

probability model and the infinite population clustered standard error.

8 Conclusion

This paper develops finite population inference methods for M-estimators with clustered

data. The takeaway for empirical practice is summarized as follows. One should only

adjust standard errors for clustering if there is cluster sampling or cluster assignment. If

the number of clusters in the sample is minimal compared with the number of clusters in
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the population, one can use the usual cluster-robust standard error. However, if the sample

contains a moderate fraction of clusters in the population or the entire population is used

in the analysis, one can obtain M-estimators with smaller cluster-robust standard errors if

the population is treated as finite rather than infinite. When there are control variables

available, such as the baseline characteristics, they can be used to provide a better estimate

of the finite population CRAV.

The current paper focuses on the asymptotics as the number of clusters tends to infinity.

For wildly unbalanced clusters or a small number of clusters, the wild cluster bootstrap 12

has been proposed as a better-performing inference method for linear models in the setting

of infinite populations. The finite population inference method for few heterogeneous

clusters remains an interesting future research topic.

12See, for example, Cameron, Gelbach, and Miller (2008) and MacKinnon and Webb (2017).
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A Proof

In the following proofs, C denotes a generic positive constant that may be different in

different circumstances.

Lemma A.1. Under Assumption 4, suppose N =
G∑
g=1

Mg∑
i=1

RigM , where RigM = RgM R̃igM ,

and RgM and R̃igM follow Bernoulli distribution with probability ρuM > 0 and ρcM > 0

respectively. Then N
MρuMρcM

p→ 1.

Proof. Since

E
(∣∣∣ RigM
ρuMρcM

∣∣∣) = 1 <∞, (A.1)

N

MρuMρcM
=

∑G
g=1

∑Mg

i=1RigM

MρuMρcM

p→ 1 (A.2)

follows from Theorem 1 in Hansen and Lee (2019) under Assumption 4.

Lemma A.2. Suppose there exists h(u) ↓ 0 as u ↓ 0 and b(·) : W → R such that

sup
i,M

EX
[
biM (WiM )

]
<∞, and for all θ̃, θ ∈ Θ,

∥∥∥aiM (WiM , θ̃)− aiM (WiM , θ)
∥∥∥ ≤ biM (WiM )h(‖θ̃−

θ‖). Then BN ≡ 1
N

M∑
i=1

RiM · biM (WiM ) = Op(1) and
∥∥∥AN (θ̃)−AN (θ)

∥∥∥ ≤ BNh(‖θ̃ − θ‖),

where AN (θ) ≡ 1
N

M∑
i=1

RiM · aiM (WiM , θ).

Proof. The proof is modifications of the proof of Corollary 3.1 in Newey (1991).

∥∥∥AN (θ̃)−AN (θ)
∥∥∥

=

∥∥∥∥∥ 1

N

M∑
i=1

RiM
[
aiM (WiM , θ̃)− aiM (WiM , θ)

]∥∥∥∥∥
≤ 1

N

M∑
i=1

RiM

∥∥∥aiM (WiM , θ̃)− aiM (WiM , θ)
∥∥∥

≤ 1

N

M∑
i=1

RiM · biM (WiM )h(‖θ̃ − θ‖)
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=BNh(‖θ̃ − θ‖) (A.3)

BN ≡
1

N

M∑
i=1

RiM · biM (WiM ) =
MρuMρcM

N

1

M

M∑
i=1

RiM
ρuMρcM

biM (WiM ) (A.4)

Because of Lemma A.1 and the continuous mapping theorem, MρuMρcM
N

p→ 1. As a result,

it is sufficient to prove 1
M

M∑
i=1

RiM
ρuMρcM

biM (WiM ) = Op(1). For all ε > 0, let bε = C/ε,

P

(∣∣∣∣ 1

M

M∑
i=1

RiM
ρuMρcM

biM (WiM )

∣∣∣∣ ≥ bε)

≤EX
(∣∣∣∣ 1

M

M∑
i=1

RiM
ρuMρcM

biM (WiM )

∣∣∣∣)/bε
≤ 1

M

M∑
i=1

E
( RiM
ρuMρcM

)
EX
[∣∣biM (WiM )

∣∣]/bε
= sup

i,M
EX
[∣∣biM (WiM )

∣∣]/bε < C/bε = ε.

(A.5)

Hence, BN = Op(1).

Proof of Theorem 3.1

Proof. To prove Theorem 3.1, I proceed by verifying the conditions of Theorem 2.1 in

Newey and McFadden (1994).

Their first two conditions are the same as conditions (i) and (ii) in Theorem 3.1. Their

condition (iii) holds under conditions (iii) and (iv) in Theorem 3.1 by the dominated

convergence theorem (DCT) and Jensen’s inequality. To show their condition (iv) holds

under the conditions in Theorem 3.1, first note that

1

N

M∑
i=1

RiMqiM (WiM , θ) =
MρuMρcM

N

1

M

M∑
i=1

RiM
ρuMρcM

qiM (WiM , θ). (A.6)
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By Lemma A.1 and the continuous mapping theorem,
MρuMρcM

N

p→ 1. Hence, it is

sufficient to show that for each θ ∈ Θ

∥∥∥∥∥ 1

M

M∑
i=1

RiM
ρuMρcM

qiM (WiM , θ)−
1

M

M∑
i=1

EX
[
qiM (WiM , θ)

]∥∥∥∥∥ p→ 0. (A.7)

Condition (iii) in Theorem 3.1 implies ∀ θ ∈ Θ

sup
i,M

EX

[∣∣∣∣ RiM
ρuMρcM

qiM (WiM , θ)

∣∣∣∣r
]
≤ 1

(ρuMρcM )r−1
sup
i,M

EX
[

sup
θ∈Θ
|qiM (WiM , θ)|r

]
<∞

(A.8)

for some r > 1, which further implies

lim
C→∞

sup
i,M

{
E
[∣∣∣∣ RiM
ρuMρcM

qiM (WiM , θ)

∣∣∣∣ · 1(∣∣∣∣ RiM
ρuMρcM

qiM (WiM , θ)

∣∣∣∣ > C

)]}
= 0. (A.9)

(A.7) thus follows by Theorem 1 in Hansen and Lee (2019) under Assumption 4. As a

result, condition (iv) in Newey and McFadden (1994) holds by Lemma A.2 and Corollary

2.2 in Newey (1991) under condition (v) in Theorem 3.1.

Proof of Theorem 3.2

Proof. The proof is modifications of the proof of Theorem 11 in Hansen and Lee (2019) to

M-estimators with smooth objective functions under finite populations.

I start by showing that

M∑
i=1

EX
[
miM (WiM , θ

∗
M )
]

= 0, (A.10)

which holds by Lemma 3.6 in Newey and McFadden (1994) and Jensen’s inequality under

conditions (ii) and (iii) in Theorem 3.2.
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By the element-by-element mean value expansion around θ∗M ,

op(N
−1/2) = V

−1/2
M

1

N

M∑
i=1

RiM ·miM (WiM , θ̂N )

=V
−1/2
M

1

N

M∑
i=1

RiM ·miM (WiM , θ
∗
M ) + V

−1/2
M

1

N

M∑
i=1

RiM∇θmiM (WiM , θ̌)(θ̂N − θ∗M ),

(A.11)

where θ̌ lies on the line segment connecting θ∗M and θ̂N .

I first show

ĤN (θ̌) = HM (θ∗M )
(
Ik + op(1)

)
. (A.12)

Since we can write

ĤN (θ̌) = HM (θ∗M )
[
Ik +HM (θ∗M )−1

(
ĤN (θ̌)−HM (θ∗M )

)]
, (A.13)

it suffices to show ∥∥∥HM (θ∗M )−1
(
ĤN (θ̌)−HM (θ∗M )

)∥∥∥ p→ 0. (A.14)

We can write

ĤN (θ) =
MρuMρcM

N

1

M

M∑
i=1

RiM
ρuMρcM

∇θmiM (WiM , θ)

=
(
1 + op(1)

) 1

M

M∑
i=1

RiM
ρuMρcM

∇θmiM (WiM , θ).

(A.15)

Since ∀ θ ∈ Θ

sup
i,M

EX

[∥∥∥∥ RiM
ρuMρcM

∇θmiM (WiM , θ)

∥∥∥∥r
]

≤ 1

(ρuMρcM )r−1
sup
i,M

EX
[

sup
θ∈Θ
‖∇θmiM (WiM , θ)‖r

]
<∞

(A.16)
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for some r > 1, ∥∥∥∥∥ 1

M

M∑
i=1

RiM
ρuMρcM

∇θmiM (WiM , θ)−HM (θ)

∥∥∥∥∥ p→ 0 (A.17)

by Theorem 1 in Hansen and Lee (2019) under Assumption 4 (implied by Assumption

5) and condition (v) in Theorem 3.2. Note that HM (θ) is continuous in θ by the DCT

and Jensen’s inequality under conditions (ii) and (v) in Theorem 3.2. By Corollary 2.2 in

Newey (1991) and Lemma A.2,

∥∥∥HM (θ∗M )−1
(
ĤN (θ̌)−HM (θ∗M )

)∥∥∥
≤C

(
sup
θ∈Θ

∥∥∥ĤN (θ)−HM (θ)
∥∥∥+

∥∥HM (θ̌)−HM (θ∗M )
∥∥) p→ 0

(A.18)

under conditions (vi) and (vii) in Theorem 3.2.

(A.12) implies

ĤN (θ̌)−1 = HM (θ∗M )−1(Ik + op(1)). (A.19)

Using (A.19), (A.11) can be written as

V
−1/2
M

√
N(θ̂N − θ∗M ) =− V −1/2

M HM (θ∗M )−1 1√
N

M∑
i=1

RiM ·miM (WiM , θ
∗
M )

− V −1/2
M HM (θ∗M )−1op(1)

1√
N

M∑
i=1

RiM ·miM (WiM , θ
∗
M ) + op(1).

(A.20)

We can write

1√
N

M∑
i=1

RiM ·miM (WiM , θ
∗
M ) =

√
MρuMρcM

N

1√
M

M∑
i=1

RiM√
ρuMρcM

miM (WiM , θ
∗
M )

=
(
1 + op(1)

) 1√
M

M∑
i=1

RiM√
ρuMρcM

miM (WiM , θ
∗
M ).

(A.21)
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Plug (A.21) into (A.20), we have

V
−1/2
M

√
N(θ̂N − θ∗M )

=− V −1/2
M HM (θ∗M )−1 1√

M

M∑
i=1

RiM√
ρuMρcM

miM (WiM , θ
∗
M )

− V −1/2
M HM (θ∗M )−1 1√

M

M∑
i=1

RiM√
ρuMρcM

miM (WiM , θ
∗
M ) · op(1) + op(1). (A.22)

Since

VX

(
1√
M

M∑
i=1

RiM√
ρuMρcM

miM (WiM , θ
∗
M )

)

=
1

MρuMρcM

{ M∑
i=1

VX
[
RiM ·miM (WiM , θ

∗
M )
]

+
G∑
g=1

Mg∑
i=1

Mg∑
j 6=i

COVX
[
RigM ·migM (WigM , θ

∗
M ), RjgM ·mjgM (WjgM , θ

∗
M )
]}

=
1

MρuMρcM

{ M∑
i=1

[
EX
(
RiM ·miM (WiM , θ

∗
M )miM (WiM , θ

∗
M )′
)

− EX
(
RiM ·miM (WiM , θ

∗
M )
)
EX
(
RiM ·miM (WiM , θ

∗
M )
)′]

+

G∑
g=1

Mg∑
i=1

Mg∑
j 6=i

[
EX
(
RigMRjgM ·migM (WigM , θ

∗
M )mjgM (WjgM , θ

∗
M )′
)

− EX
(
RigM ·migM (WigM , θ

∗
M )
)
EX
(
RjgM ·mjgM (WjgM , θ

∗
M )
)′]}

=
1

M

{ M∑
i=1

[
EX
(
miM (WiM , θ

∗
M )miM (WiM , θ

∗
M )′
)
− ρuMρcMEX

(
miM (WiM , θ

∗
M )
)
EX
(
miM (WiM , θ

∗
M )
)′]

+

G∑
g=1

Mg∑
i=1

Mg∑
j 6=i

[
ρuMEX

(
migM (WigM , θ

∗
M )mjgM (WjgM , θ

∗
M )′
)

− ρuMρcMEX
(
migM (WigM , θ

∗
M )
)
EX
(
mjgM (WjgM , θ

∗
M )
)′]}
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= ∆ehw,M (θ∗M )− ρuMρcM∆E,M + ρuM∆cluster,M (θ∗M )− ρuMρcM∆EC,M , (A.23)

we have

VX

(
V
−1/2
M HM (θ∗M )−1 1√

M

M∑
i=1

RiM√
ρuMρcM

miM (WiM , θ
∗
M )

)
= Ik. (A.24)

Given ∀ θ ∈ Θ

sup
i,M

EX

[∥∥∥∥ RiM√
ρuMρcM

miM (WiM , θ)

∥∥∥∥r
]
≤ 1

(ρuMρcM )r/2−1
sup
i,M

EX
[

sup
θ∈Θ
‖miM (WiM , θ)‖r

]
<∞

(A.25)

for some r > 2 under condition (iii) in Theorem 3.2,

V
−1/2
M HM (θ∗M )−1 1√

M

M∑
i=1

RiM√
ρuMρcM

miM (WiM , θ
∗
M )

d→ N (0, Ik) (A.26)

by Theorem 2 in Hansen and Lee (2019) under Assumption 5 and condition (iv) in Theorem

3.2.

Because of (A.26),

V
−1/2
M

√
N(θ̂N − θ∗M ) =− V −1/2

M HM (θ∗M )−1 1√
M

M∑
i=1

RiM√
ρuMρcM

miM (WiM , θ
∗
M )

+ op(1)Op(1) + op(1)
d→ N (0, Ik).

(A.27)

As for Theorem 3.2(2), it is equivalent to show
∥∥∥V −1/2

1M V̂1NV
−1/2

1M − Ik
∥∥∥ p→ 0.

Since (A.19) holds by replacing θ̌ with θ̂N ,

ĤN (θ̂N )−1 = HM (θ∗M )−1
(
Ik + op(1)

)
. (A.28)
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We can write

∆̂ehw,N (θ) + ∆̂cluster,N (θ)

=
1

N

G∑
g=1

[ Mg∑
i=1

RigM ·migM (WigM , θ)

][ Mg∑
i=1

RigM ·migM (WigM , θ)

]′

=
MρuMρcM

N

1

M

G∑
g=1

[ Mg∑
i=1

RigM√
ρuMρcM

migM (WigM , θ)

][ Mg∑
i=1

RigM√
ρuMρcM

migM (WigM , θ)

]′

=
(
1 + op(1)

) 1

M

G∑
g=1

[ Mg∑
i=1

RigM√
ρuMρcM

migM (WigM , θ)

][ Mg∑
i=1

RigM√
ρuMρcM

migM (WigM , θ)

]′
.

(A.29)

Note that

EX

{
1

M

G∑
g=1

[ Mg∑
i=1

RigM√
ρuMρcM

migM (WigM , θ)

][ Mg∑
i=1

RigM√
ρuMρcM

migM (WigM , θ)

]′}

=EX
[

1

M

M∑
i=1

RiM
ρuMρcM

miM (WiM , θ)miM (WiM , θ)
′
]

+ EX
[

1

M

G∑
g=1

Mg∑
i=1

Mg∑
j 6=i

RigMRjgM
ρuMρcM

migM (WigM , θ)mjgM (WjgM , θ)
′
]

=
1

M

M∑
i=1

EX
[
miM (WiM , θ)miM (WiM , θ)

′]
+

1

M

G∑
g=1

Mg∑
i=1

Mg∑
j 6=i

ρuMEX
[
migM (WigM , θ)mjgM (WjgM , θ)

′]
=∆ehw,M (θ) + ρuM∆cluster,M (θ).

(A.30)

Hence, ∀ θ ∈ Θ

∥∥∥∥∥ 1

M

G∑
g=1

[ Mg∑
i=1

RigM√
ρuMρcM

migM (WigM , θ)

][ Mg∑
i=1

RigM√
ρuMρcM

migM (WigM , θ)

]′
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−
(
∆ehw,M (θ) + ρuM∆cluster,M (θ)

)∥∥∥∥∥ p→ 0 (A.31)

follows by (A.25) and the same proof of (62) in Hansen and Lee (2019) under Assumption

5. Also, ∆ehw,M (θ) + ρuM∆cluster,M (θ) is continuous in θ by the DCT, Jensen’s inequality,

and Cauchy-Schwarz Inequality under conditions (ii) and (iii) in Theorem 3.2. In addition,

∥∥∥∆̂ehw,N (θ̃) + ∆̂cluster,N (θ̃)−
(
∆̂ehw,N (θ) + ∆̂cluster,N (θ)

)∥∥∥
≤ 1

N

G∑
g=1

∥∥∥∥∥
[ Mg∑
i=1

RigM ·migM (WigM , θ̃)

][ Mg∑
i=1

RigM ·migM (WigM , θ̃)

]′

−
[ Mg∑
i=1

RigM ·migM (WigM , θ)

][ Mg∑
i=1

RigM ·migM (WigM , θ)

]′∥∥∥∥∥
≤ 1

N

G∑
g=1

2 sup
θ∈Θ

∥∥∥∥∥∥
Mg∑
i=1

RigM ·migM (WigM , θ)

∥∥∥∥∥∥ ·
∥∥∥∥∥∥
Mg∑
i=1

RigM ·migM (WigM , θ̃)−
Mg∑
i=1

RigM ·migM (WigM , θ)

∥∥∥∥∥∥
≤ 2

N

G∑
g=1

sup
θ∈Θ

∥∥∥∥∥∥
Mg∑
i=1

RigM ·migM (WigM , θ)

∥∥∥∥∥∥
Mg∑
i=1

RigMb3,igM (WigM )h(‖θ̃ − θ‖).

(A.32)

under condition (ix) in Theorem 3.2. Let

B1
N ≡

2

N

G∑
g=1

sup
θ∈Θ

∥∥∥∥∥∥
Mg∑
i=1

RigM ·migM (WigM , θ)

∥∥∥∥∥∥
Mg∑
i=1

RigMb3,igM (WigM )

=2
MρuMρcM

N

1

M

G∑
g=1

sup
θ∈Θ

∥∥∥∥∥∥
Mg∑
i=1

RigM√
ρuMρcM

migM (WigM , θ)

∥∥∥∥∥∥
Mg∑
i=1

RigM√
ρuMρcM

b3,igM (WigM )

=
(
1 + op(1)

) 2

M

G∑
g=1

sup
θ∈Θ

∥∥∥∥∥∥
Mg∑
i=1

RigM√
ρuMρcM

migM (WigM , θ)

∥∥∥∥∥∥
Mg∑
i=1

RigM√
ρuMρcM

b3,igM (WigM ).

(A.33)
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Since

EX

[
sup
θ∈Θ

∥∥∥∥∥∥
Mg∑
i=1

RigM√
ρuMρcM

migM (WigM , θ)

∥∥∥∥∥∥
2 ]

< CM2
g (A.34)

by Cr inequality and Jensen’s inequality under condition (iii) in Theorem 3.2,

EX

[
2

M

G∑
g=1

sup
θ∈Θ

∥∥∥∥∥∥
Mg∑
i=1

RigM√
ρuMρcM

migM (WigM , θ)

∥∥∥∥∥∥
Mg∑
i=1

RigM√
ρuMρcM

b3,igM (WigM )

]

≤ 2

M

G∑
g=1

Mg∑
i=1

{
EX

[
sup
θ∈Θ

∥∥∥∥∥∥
Mg∑
i=1

RigM√
ρuMρcM

migM (WigM , θ)

∥∥∥∥∥∥
2 ]}1/2{

EX
[
RigM
ρuMρcM

b3,igM (WigM )2

]}1/2

≤2C
1

M

G∑
g=1

M2
g <∞

(A.35)

by Cauchy-Schwarz inequality under Assumption 5 and condition (ix) in Theorem 3.2. As

a result, B1
N = Op(1) by Markov’s inequality. Therefore, given condition (viii) in Theorem

3.2,

∥∥∥[∆ehw,M (θ∗M ) + ρuM∆cluster,M (θ∗M )
]−1

[
∆̂ehw,N (θ̂N ) + ∆̂cluster,N (θ̂N )−∆ehw,M (θ∗M )− ρuM∆cluster,M (θ∗M )

]∥∥∥
≤C
(

sup
θ∈Θ
‖∆̂ehw,N (θ) + ∆̂cluster,N (θ)−∆ehw,M (θ)− ρuM∆cluster,M (θ)‖

+
∥∥∥∆ehw,M (θ̂N ) + ρuM∆cluster,M (θ̂N )−∆ehw,M (θ∗M )− ρuM∆cluster,M (θ∗M )

∥∥∥) = op(1)

(A.36)

by Corollary 2.2 in Newey (1991) under θ̂N − θ∗M
p→ 0 (implied by Theorem 3.1). Hence,

∆̂ehw,N (θ̂N ) + ∆̂cluster,N (θ̂N )

53



=
(
∆ehw,M (θ∗M ) + ρuM∆cluster,M (θ∗M )

)[
Ik +

(
∆ehw,M (θ∗M ) + ρuM∆cluster,M (θ∗M )

)−1

(
∆̂ehw,N (θ̂N ) + ∆̂cluster,N (θ̂N )−∆ehw,M (θ∗M )− ρuM∆cluster,M (θ∗M )

)]
=
(
∆ehw,M (θ∗M ) + ρuM∆cluster,M (θ∗M )

)(
Ik + op(1)

)
. (A.37)

Using (A.28) and (A.37),

∥∥∥V −1/2
1M V̂1NV

−1/2
1M − Ik

∥∥∥
=
∥∥∥V −1/2

1M ĤN (θ̂N )−1
(
∆̂ehw,N (θ̂N ) + ∆̂cluster,N (θ̂N )

)
ĤN (θ̂N )−1V

−1/2
1M − Ik

∥∥∥
=
∥∥∥V −1/2

1M HM (θ∗M )−1
(
Ik + op(1)

)(
∆ehw,M (θ∗M ) + ρuM∆cluster,M (θ∗M )

)(
Ik + op(1)

)
·

HM (θ∗M )−1
(
Ik + op(1)

)
V
−1/2

1M − Ik
∥∥∥

≤
∥∥∥V −1/2

1M V1MV
−1/2

1M − Ik
∥∥∥+

∥∥∥V −1/2
1M V1MV

−1/2
1M

∥∥∥ op(1)

=op(1).

(A.38)

Hence the result.

Proof of Theorem 4.1

Proof. Let

LM =

( M∑
i=1

z′iMziM

)−1{ M∑
i=1

z′iMEX
[
miM (WiM , θ

∗
M )
]′}

. (A.39)

To show
∥∥∥L̂N − LM∥∥∥ p→ 0, I first show

∥∥∥∥∥ 1

N

M∑
i=1

RiMz
′
iMziM −

1

M

M∑
i=1

z′iMziM

∥∥∥∥∥ p→ 0. (A.40)
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We can write

1

N

M∑
i=1

RiMz
′
iMziM =

MρuMρcM
N

1

M

M∑
i=1

RiM
ρuMρcM

z′iMziM . (A.41)

Since MρuMρcM
N

p→ 1, it suffices to show

∥∥∥∥∥ 1

M

M∑
i=1

RiM
ρuMρcM

z′iMziM −
1

M

M∑
i=1

z′iMziM

∥∥∥∥∥ p→ 0. (A.42)

Given for some r > 1

sup
i,M

EX

[∥∥∥∥ RiM
ρuMρcM

z′iMziM

∥∥∥∥r
]

=
1

(ρuMρcM )r−1
‖ziM‖2r <∞, (A.43)

(A.42) is implied by Theorem 1 in Hansen and Lee (2019) under Assumption 4.

Next, I show

∥∥∥∥∥ 1

N

M∑
i=1

RiM ·miM (WiM , θ̂N )ziM −
1

M

M∑
i=1

EX
[
miM (WiM , θ

∗
M )
]
ziM

∥∥∥∥∥ p→ 0. (A.44)

Again, we can write

1

N

M∑
i=1

RiM ·miM (WiM , θ̂N )ziM =
MρuMρcM

N

1

M

M∑
i=1

RiM
ρuMρcM

miM (WiM , θ̂N )ziM

=
(
1 + op(1)

) 1

M

M∑
i=1

RiM
ρuMρcM

miM (WiM , θ̂N )ziM

(A.45)

I first show ∀ θ ∈ Θ

∥∥∥∥∥ 1

M

M∑
i=1

RiM
ρuMρcM

miM (WiM , θ)ziM −
1

M

M∑
i=1

EX
[
miM (WiM , θ)

]
ziM

∥∥∥∥∥ p→ 0. (A.46)
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Since ∀ θ ∈ Θ

sup
i,M

EX

[∥∥∥∥ RiM
ρuMρcM

miM (WiM , θ)ziM

∥∥∥∥r
]

≤ 1

(ρuMρcM )r−1

{
sup
i,M

EX
[

sup
θ∈Θ
‖miM (WiM , θ)‖2r

]}1/2

sup
i,M
‖ziM‖r <∞

(A.47)

for some r > 1 by Jensen’s inequality under condition (iii) in Theorem 3.2, (A.46) holds

by Theorem 1 in Hansen and Lee (2019) under Assumption 4. Next, I show the Lipschitz

condition. ∀ θ̃, θ ∈ Θ

∥∥∥miM (WiM , θ̃)ziM −miM (WiM , θ)ziM

∥∥∥ ≤‖ziM‖ · ∥∥∥miM (WiM , θ̃)−miM (WiM , θ)
∥∥∥

≤‖ziM‖ b3,iM (WiM )h(‖θ̃ − θ‖),
(A.48)

and

sup
i,M

EX
[
‖ziM‖ b3,iM (WiM )

]
≤ sup

i,M
‖ziM‖ sup

i,M

{
EX
[
b3,iM (WiM )2

]}1/2
<∞ (A.49)

by Jensen’s inequality under condition (ix) in Theorem 3.2. Also, 1
M

∑M
i=1 EX

[
miM (WiM , θ)

]
ziM

is continuous in θ by the DCT and Jensen’s inequality under conditions (ii) and (iii) in

Theorem 3.2. As a result,

∥∥∥∥∥ 1

M

M∑
i=1

RiM
ρuMρcM

miM (WiM , θ̂N )ziM −
1

M

M∑
i=1

EX
[
miM (WiM , θ

∗
M )
]
ziM

∥∥∥∥∥
≤ sup
θ∈Θ

∥∥∥∥∥ 1

M

M∑
i=1

RiM
ρuMρcM

miM (WiM , θ)ziM −
1

M

M∑
i=1

EX
[
miM (WiM , θ)

]
ziM

∥∥∥∥∥
+

∥∥∥∥∥ 1

M

M∑
i=1

EX
[
miM (WiM , θ̂N )

]
ziM −

1

M

M∑
i=1

EX
[
miM (WiM , θ

∗
M )
]
ziM

∥∥∥∥∥ p→ 0

(A.50)

56



by Lemma A.2 and Corollary 2.2 in Newey (1991) under θ̂N − θ∗M
p→ 0. Combining (A.40)

and (A.44), we conclude that
∥∥∥L̂N − LM∥∥∥ p→ 0.

Hence,

∆̂Z
N =

MρuMρcM
N

1

M

M∑
i=1

RiM
ρuMρcM

(
L′M + op(1)

)
z′iMziM

(
LM + op(1)

)
=
(
1 + op(1)

) 1

M

M∑
i=1

RiM
ρuMρcM

(
L′M + op(1)

)
z′iMziM

(
LM + op(1)

)
=

1

M

M∑
i=1

RiM
ρuMρcM

L′Mz
′
iMziMLM +

1

M

M∑
i=1

RiM
ρuMρcM

L′Mz
′
iMziMLM · op(1)

+
1

M

M∑
i=1

RiM
ρuMρcM

L′Mz
′
iMziM · op(1) +

1

M

M∑
i=1

RiM
ρuMρcM

z′iMziMLM · op(1)

+
1

M

M∑
i=1

RiM
ρuMρcM

z′iMziM · op(1). (A.51)

Let

∆Z
M =

1

M

M∑
i=1

EX
[
miM (WiM , θ

∗
M )
]
ziM

(
1

M

M∑
i=1

z′iMziM

)−1 1

M

M∑
i=1

z′iMEX
[
miM (WiM , θ

∗
M )
]′
.

(A.52)∥∥∥∆Z
M
−1/2

∆̂Z
N∆Z

M
−1/2 − Ik

∥∥∥ = op(1) (A.53)

follows by (A.43) and Theorem 1 in Hansen and Lee (2019).

Let AM and DM be the matrices with i-th rows equal to EX
[
miM (WiM , θ

∗
M )
]′
/
√
M

and ziM/
√
M respectively. Let IM be the identity matrix of size M . Then,

∆E,M −∆Z
M = A′M

(
IM −DM (D′MDM )−1D′M

)
AM , (A.54)

which is positive semidefinite. Hence, the result.
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Proof of Theorem 4.2

Proof. Let

PM =

[
G∑
g=1

z̃′gM z̃gM

]−1 G∑
g=1

z̃′gMEX
[
m̃gM (θ∗M )

]′
. (A.55)

To show
∥∥∥P̂N − PM∥∥∥ p→ 0, I first show

∥∥∥∥∥∥ 1

N

G∑
g=1

RgM z̃
′
gM z̃gM −

1

M

G∑
g=1

z̃′gM z̃gM

∥∥∥∥∥∥ p→ 0. (A.56)

We can write

1

N

G∑
g=1

RgM z̃
′
gM z̃gM =

MρcM
N

1

M

G∑
g=1

RgM
ρcM

z̃′gM z̃gM . (A.57)

Since ρuM = 1, MρcM
N

p→ 1. Hence, it suffices to show

∥∥∥∥∥∥ 1

M

G∑
g=1

RgM
ρcM

z̃′gM z̃gM −
1

M

G∑
g=1

z̃′gM z̃gM

∥∥∥∥∥∥ p→ 0, (A.58)

Because for some r > 2

sup
i,g,M

EX
(∥∥∥∥ RgM√

ρcM
zigM

∥∥∥∥r ) <∞, (A.59)

(A.58) follows by the proof of (62) in Hansen and Lee (2019)

Next, I show

∥∥∥∥∥∥ 1

N

G∑
g=1

RgMm̃gM (θ̂N )z̃gM −
1

M

G∑
g=1

EX
[
m̃gM (θ∗M )

]
z̃gM

∥∥∥∥∥∥ p→ 0. (A.60)
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Again, we can write

1

N

G∑
g=1

RgMm̃gM (θ̂N )z̃gM =
MρcM
N

1

M

G∑
g=1

RgM
ρcM

m̃gM (θ̂N )z̃gM

=
(
1 + op(1)

) 1

M

G∑
g=1

RgM
ρcM

m̃gM (θ̂N )z̃gM

(A.61)

As a first step, I show ∀ θ ∈ Θ

∥∥∥∥∥∥ 1

M

G∑
g=1

RgM
ρcM

m̃gM (θ)z̃gM −
1

M

G∑
g=1

EX
[
m̃gM (θ)

]
z̃gM

∥∥∥∥∥∥ p→ 0. (A.62)

Fix δ > 0. Set ε = (δ/C)2. Let

l̃gM =
RgM
ρcM

m̃gM (θ)z̃gM1

(
RgM
ρcM

‖m̃gM (θ)z̃gM‖ ≤Mε

)
. (A.63)

Then

EX

[∥∥∥∥∥∥ 1

M

G∑
g=1

RgM
ρcM

m̃gM (θ)z̃gM −
1

M

G∑
g=1

EX
[
m̃gM (θ)

]
z̃gM

∥∥∥∥∥∥
]

≤ 1

M
EX

{∥∥∥∥∥∥
G∑
g=1

[
l̃gM − EX

(
l̃gM
)]∥∥∥∥∥∥

}

+
2

M

G∑
g=1

EX

[
‖m̃gM (θ)z̃gM‖1

(
RgM
ρcM

‖m̃gM (θ)z̃gM‖ > Mε

)]
.

(A.64)

Observe that

1

M
EX

[∥∥∥∥∥∥
G∑
g=1

(
l̃gM − EX

(
l̃gM
))∥∥∥∥∥∥

]

≤ 1

M

{
EX

[∥∥∥∥∥∥
G∑
g=1

(
l̃gM − EX

(
l̃gM
))∥∥∥∥∥∥

2 ]}1/2
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≤ 1

M

{
G∑
g=1

EX
[ ∥∥∥l̃gM∥∥∥2 ]}1/2

≤ (εC)1/2

(
1

M

G∑
g=1

M2
g

)1/2

≤ δ (A.65)

by Jensen’s inequality and Cr inequality under Assumption 5 and condition (iii) in Theorem

3.2. Also for some r > 1

sup
g,M

EX
[ ∥∥∥∥RgMρcM

m̃gM (θ)z̃gM/M
2
g

∥∥∥∥r ]
≤ 1

ρr−1
cM

{
sup
g,M

EX
[

sup
θ∈Θ
‖m̃gM (θ)/Mg‖2r

]}1/2

sup
g,M
‖z̃gM/Mg‖r ≤ ∞

(A.66)

by Jensen’s inequality under condition (iii) in Theorem 3.2. Hence, we can pick B suffi-

ciently large so that

sup
g,M

EX

[∥∥∥∥RgMρcM
m̃gM (θ)z̃gM/M

2
g

∥∥∥∥1(∥∥∥∥RgMρcM
m̃gM (θ)z̃gM/M

2
g

∥∥∥∥ > B

)]
≤ δ

C
. (A.67)

Pick M large enough so that

max
g≤G

M2
g

M
≤ ε

B
, (A.68)

which is feasible under Assumption 5. Then,

2

M

G∑
g=1

EX

[
‖m̃gM (θ)z̃gM‖1

(
RgM
ρcM

‖m̃gM (θ)z̃gM‖ > Mε

)]
≤ 2

M

G∑
g=1

M2
g

δ

C
≤ 2δ. (A.69)

Combining (A.65) and (A.69), (A.62) holds by Markov’s inequality.

Next,

∥∥∥∥∥∥ 1

N

G∑
g=1

RgM
[
m̃gM (θ̃)z̃gM − m̃gM (θ)z̃gM

]∥∥∥∥∥∥
≤ 1

N

G∑
g=1

RgM

∥∥∥m̃gM (θ̃)z̃gM − m̃gM (θ)z̃gM

∥∥∥
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=
1

N

G∑
g=1

RgM

∥∥∥∥∥∥
Mg∑
i=1

Mg∑
j=1

migM (WigM , θ̃)zjgM −
Mg∑
i=1

Mg∑
j=1

migM (WigM , θ)zjgM

∥∥∥∥∥∥
≤ 1

N

G∑
g=1

RgM

Mg∑
i=1

Mg∑
j=1

∥∥∥migM (WigM , θ̃)−migM (WigM , θ)
∥∥∥ · ‖zjgM‖

≤ 1

N

G∑
g=1

RgM

Mg∑
i=1

Mg∑
j=1

b3,igM (WigM ) · ‖zjgM‖ · h(‖θ̃ − θ‖) (A.70)

Let

B2
N ≡

1

N

G∑
g=1

RgM

Mg∑
i=1

Mg∑
j=1

b3,igM (WigM ) · ‖zjgM‖

=
MρcM
N

1

M

G∑
g=1

RgM
ρcM

Mg∑
i=1

Mg∑
j=1

b3,igM (WigM ) · ‖zjgM‖

=
(
1 + op(1)

) 1

M

G∑
g=1

RgM
ρcM

Mg∑
i=1

Mg∑
j=1

b3,igM (WigM ) · ‖zjgM‖

(A.71)

Since

EX

[
1

M

G∑
g=1

RgM
ρcM

Mg∑
i=1

Mg∑
j=1

b3,igM (WigM ) · ‖zigM‖

]

≤ 1

M

G∑
g=1

E
(RgM
ρcM

) Mg∑
i=1

Mg∑
j=1

EX
[
b3,igM (WigM )

]
‖zigM‖

≤ 1

M

G∑
g=1

M2
g sup
i,g,M

{
EX
[
b3,igM (WigM )2

]}1/2
sup
i,g,M

‖zigM‖ <∞

(A.72)

by Jensen’s inequality under condition (ix) in Theorem 3.2 and Assumption 5, B2
N = Op(1)

by Markov’s inequality. Also, 1
M

∑G
g=1 EX

[
m̃gM (θ)

]
z̃gM is continuous in θ by the DCT and

Jensen’s inequality under Assumption 5 and conditions (ii) and (iii) in Theorem 3.2. As a

result,

∥∥∥∥∥∥ 1

N

G∑
g=1

RgMm̃gM (θ̂N )z̃gM −
1

M

G∑
g=1

EX
[
m̃gM (θ∗M )

]
z̃gM

∥∥∥∥∥∥
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≤ sup
θ∈Θ

∥∥∥∥∥∥ 1

N

G∑
g=1

RgMm̃gM (θ)z̃gM −
1

M

G∑
g=1

EX
[
m̃gM (θ)

]
z̃gM

∥∥∥∥∥∥
+

∥∥∥∥∥∥ 1

M

G∑
g=1

EX
[
m̃gM (θ̂N )

]
z̃gM −

1

M

G∑
g=1

EX
[
m̃gM (θ∗M )

]
z̃gM

∥∥∥∥∥∥ p→ 0. (A.73)

follows by Corollary 2.2 in Newey (1991) under θ̂N − θ∗M
p→ 0.

The result
∥∥∥P̂N − PM∥∥∥ p→ 0 is immediately implied by (A.56) and (A.60) under the

continuity of inversion and multiplication.

Denote ∆Z
CE,M ≡

1
M

G∑
g=1

P ′M z̃
′
gM z̃gMPM . We can write

∆̂Z
CE,N =

MρcM
N

1

M

G∑
g=1

RgM
ρcM

P̂ ′N z̃
′
gM z̃gM P̂N

=
(
1 + op(1)

) 1

M

G∑
g=1

RgM
ρcM

(
P ′M + op(1)

)
z̃′gM z̃gM

(
PM + op(1)

)
=

1

M

G∑
g=1

RgM
ρcM

P ′M z̃
′
gM z̃gMPM +

1

M

G∑
g=1

RgM
ρcM

P ′M z̃
′
gM z̃gMPM · op(1)

+
1

M

G∑
g=1

RgM
ρcM

P ′M z̃
′
gM z̃gM · op(1) +

1

M

G∑
g=1

RgM
ρcM

z̃′gM z̃gMPM · op(1)

+
1

M

G∑
g=1

RgM
ρcM

z̃′gM z̃gM · op(1).

(A.74)

∥∥∥∆Z
CE,M

−1/2
∆̂Z
CE,N∆Z

CE,M
−1/2 − Ik

∥∥∥ = op(1) (A.75)

follows from the similar arguments of the proof of (62) in Hansen and Lee (2019) under

Assumption 5.

To show the ordering of the variance-covariance matrices in Theorem 4.2, notice that

∆E,M + ∆EC,M −∆Z
CE,M
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=
1

M

G∑
g=1

EX
[
m̃gM (θ∗M )

]
EX
[
m̃gM (θ∗M )

]′
− 1

M

G∑
g=1

EX
[
m̃gM (θ∗M )

]
z̃gM

[
1

M

G∑
g=1

z̃′gM z̃gM

]−1
1

M

G∑
g=1

z̃′gMEX
[
m̃gM (θ∗M )

]′
, (A.76)

which is positive semidefinite.

Hence, the result.

Proof of Theorem 5.1

Proof. First, using similar arguments in the proof of Theorem 3.2,

γ̂N − γ∗M
p→ 0 (A.77)

under conditions (i), (ii), and (vii) in Theorem 5.1.

By a mean value expansion around θ∗M ,

V
−1/2
f,M

1√
N

M∑
i=1

RiMfiM (WiM , θ̂N )

=V
−1/2
f,M

1√
N

M∑
i=1

RiMfiM (WiM , θ
∗
M )

+ V
−1/2
f,M

1

N

M∑
i=1

RiM∇θfiM (WiM , θ̌)
√
N(θ̂N − θ∗M ),

(A.78)

where θ̌ lies on the line segment connecting θ∗M and θ̂N .

Given Theorem 3.2, V
−1/2
M

√
N(θ̂N − θ∗M ) = Op(1). Further,

F̂N (θ̌) = FM (θ∗M ) + op(1) (A.79)
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under conditions (i), (iv), and (v) in Theorem 5.1. Therefore,

V
−1/2
f,M

1

N

M∑
i=1

RiM∇θfiM (WiM , θ̃)
√
N(θ̂N − θ∗M ) = V

−1/2
f,M FM (θ∗M )

√
N(θ̂N − θ∗M ) + op(1).

(A.80)

According to the mean value expansion in the proof of the asymptotic normality of V
−1/2
M

√
N(θ̂N−

θ∗M ),

V
−1/2
M

√
N(θ̂N − θ∗M ) = −V −1/2

M

1√
N

M∑
i=1

RiMHM (θ∗M )−1miM (WiM , θ
∗
M ) + op(1). (A.81)

Combining (A.78), (A.80), and (A.81),

V
−1/2
f,M

1√
N

M∑
i=1

RiMfiM (WiM , θ̂N )

=V
−1/2
f,M

1√
N

M∑
i=1

RiM
[
fiM (WiM , θ

∗
M )− FM (θ∗M )HM (θ∗M )−1miM (WiM , θ

∗
M )
]

+ op(1).

(A.82)

Subtract V
−1/2
f,M

√
Nγ∗M from both sides of (A.82).

V
−1/2
f,M

√
N
(
γ̂ − γ∗M

)
=V

−1/2
f,M

1√
N

M∑
i=1

RiM
[
fiM (WiM , θ

∗
M )− γ∗M − FM (θ∗M )HM (θ∗M )−1miM (WiM , θ

∗
M )
]

+ op(1)

=V
−1/2
f,M

√
MρuMρcM

N

1√
M

M∑
i=1

RiM√
ρuMρcM

[
fiM (WiM , θ

∗
M )− γ∗M − FM (θ∗M )HM (θ∗M )−1miM (WiM , θ

∗
M )
]

+ op(1)

=
(
1 + op(1)

)
V
−1/2
f,M

1√
M

M∑
i=1

RiM√
ρuMρcM

[
fiM (WiM , θ

∗
M )− γ∗M − FM (θ∗M )HM (θ∗M )−1miM (WiM , θ

∗
M )
]

+ op(1)

(A.83)
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Observe that ∀ θ ∈ Θ

sup
i,M

EX

{∥∥∥∥ RiM√
ρuMρcM

[
fiM (WiM , θ)− γ∗M − FM (θ∗M )HM (θ∗M )−1miM (WiM , θ)

]∥∥∥∥r
}

≤ 1

(ρuMρcM )r/2−1

{[
sup
i,M

EX
(

sup
θ∈Θ
‖fiM (WiM , θ)‖r

)]1/r

+ ‖γ∗M‖

+ C ‖FM (θ∗M )‖
[

sup
i,M

EX
(

sup
θ∈Θ
‖miM (WiM , θ)‖r

)]1/r
}r

<∞ (A.84)

for some r > 2 by Minkowski’s inequality and Jensen’s inequality under conditions (ii) and

(iv) in Theorem 5.1, and condition (iii) in Theorem 3.2. Also,

VX

{
1√
M

M∑
i=1

RiM√
ρuMρcM

[
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(A.85)

By Theorem 2 in Hansen and Lee (2019)
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(A.86)

under condition (iii) in Theorem 5.1 and Assumption 5.

To show Theorem 5.1(2), observe that
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under condition (ii) in Theorem 5.1, condition (iii) in Theorem 3.2, and Assumption 5.

Denote
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It suffices to show
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Let

b6,igM (WigM ) =
RigM√
ρuMρcM

[
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Observe that
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(A.92)

by Cauchy-Schwarz inequality under condition (ix) in Theorem 3.2 and condition (vii) in

Theorem 5.1. Therefore, (A.89) follows from similar arguments in the proof of Theorem

3.2(2).
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B Additional Tables

Table 3: Standard Errors and Coverage Rates for Probit: the Coefficient Estimator

No Cluster Assignment With Cluster Assignment

(1) (2) (3) (4) (5) (6)
ρc = 0.1 ρc = 0.5 ρc = 1 ρc = 0.1 ρc = 0.5 ρc = 1

Gρc = 50

std 0.2199 0.1831 0.1137 0.2443 0.2154 0.1680
selimit 0.2126 0.1773 0.1118 0.2340 0.2052 0.1600
s̄ecluster 0.2242 0.2279 0.2255 0.2460 0.2511 0.2541
covcluster (0.957) (0.985) (1.000) (0.954) (0.978) (0.997)
s̄eadj 0.2180 0.1912 0.1447 0.2403 0.2182 0.1850
covadj (0.950) (0.963) (0.988) (0.951) (0.958) (0.969)
s̄eehw,adj 0.1510 0.1433 0.1339 0.1530 0.1452 0.1358

Gρc = 100

std 0.1544 0.1287 0.0781 0.1723 0.1472 0.1085
selimit 0.1512 0.1258 0.0785 0.1682 0.1446 0.1073
s̄ecluster 0.1587 0.1603 0.1596 0.1753 0.1758 0.1760
covcluster (0.958) (0.986) (1.000) (0.952) (0.982) (0.999)
s̄eadj 0.1542 0.1351 0.1019 0.1712 0.1532 0.1261
covadj (0.952) (0.965) (0.989) (0.947) (0.960) (0.978)
s̄eehw,adj 0.1052 0.1006 0.0939 0.1059 0.1012 0.0946

1 See notes under Table 1.
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Table 4: The Effect of Clock Stopping Policies: an Alternative Probit Specification

APE
standard error

inf pop finite pop

Panel A. Policy effects years 0-3
Men FOCS -0.0137 0.0580 0.0473
Women FOCS 0.2467 0.1610 0.1234
Men GNCS 0.0451 0.0649 0.0542
Women GNCS 0.0253 0.1323 0.1132

Panel B. Policy effects years 4+
Men FOCS 0.0004 0.0628 0.0532
Women FOCS 0.0458 0.0972 0.0727
Men GNCS 0.1537 0.0705 0.0551
Women GNCS -0.2758 0.1137 0.0888

1 See notes under Table 2.
2 Estimates are obtained from the correlated random effects probit model,

where cluster sizes are grouped into three bins: Mg1 = 1(Mg <= 25),

Mg2 = 1(25 < Mg <= 35), and Mg3 = 1(Mg > 35) with Mg3 omitted as

the base group.
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