
Vol. 100, No. 7, 2010 663 

Analytical and Theoretical Plant Pathology 

Efficiency of Adaptive Cluster Sampling  
for Estimating Plant Disease Incidence 

P. S. Ojiambo and H. Scherm 

First author: Department of Plant Pathology, North Carolina State University, Raleigh 27695; and second author: Department of Plant 
Pathology, University of Georgia, Athens 30602. 

Accepted for publication 10 March 2010. 

ABSTRACT 

Ojiambo, P. S., and Scherm, H. 2010. Efficiency of adaptive cluster 
sampling for estimating plant disease incidence. Phytopathology 
100:663-670. 

Conventional sampling designs such as simple random sampling (SRS) 
tend to be inefficient when assessing rare and highly clustered popula-
tions because most of the time is spent evaluating empty quadrats, leading 
to high error variances and high cost. In previous studies with rare plant 
and animal populations, adaptive cluster sampling, where sampling 
occurs preferentially in the neighborhood of quadrats in which the species 
of interest is detected during the sampling bout, has been shown to 
estimate population parameters with greater precision at an effort 
comparable to SRS. Here, we use computer simulations to evaluate the 
efficiency of adaptive cluster sampling for estimating low levels of 
disease incidence (0.1, 0.5, 1.0, and 5.0%) at various levels of aggregation 
of infected plants having variance-to-mean ratios (V/M) of ≈1, 3, 5, and 
10. For each simulation, an initial sample size of 50, 100, and 150 
quadrats was evaluated, and the condition to adapt neighborhood 
sampling (CA), i.e., the minimum number of infected plants per quadrat 
that triggers a switch from random sampling to sampling in neighboring 
quadrats, was varied from 1 to 4 (corresponding to 7.7 to 30.8% 
incidence of infected plants per quadrat). The simulations showed that 

adaptive cluster sampling was consistently more precise than SRS at a 
field-level disease incidence of 0.1 and 0.5%, especially when diseased 
plants were highly aggregated (V/M = 5 or 10) and when the most liberal 
condition to adapt (CA = 1) was used. One drawback of adaptive cluster 
sampling is that the final sample size is unknown at the beginning of the 
sampling bout because it depends on how often neighborhood sampling is 
triggered. In our simulations, the final sample size was close to the initial 
sample size for disease incidence up to 1.0%, especially when a more 
conservative condition to adapt (CA > 1) was used. For these conditions, 
the effect of disease aggregation was minor. In summary, both precision 
and the sample size required with adaptive cluster sampling responded 
similarly to disease incidence and aggregation, i.e., both were most 
favorable at the lowest disease incidence with the highest levels of 
clustering. However, whereas relative precision was optimized with the 
most liberal condition to adapt, the ratio of final to initial sample size was 
best for more conservative CA values, indicating a tradeoff. In our 
simulations, precision and final sample size were both simultaneously 
favorable for disease incidence of up to 1.0%, but only when infected 
plants were most aggregated (V/M = 10). 

Additional keywords: disease survey, survey efficiency. 

 
Many plant disease management decisions must be made at low 

levels of disease incidence, often below 1% (10,31) to maximize 
treatment efficacy. At such very low levels of disease, the distri-
bution of infected plants in the field is often spatially clustered, 
e.g., as a result of aggregation of the initial inoculum. Conven-
tional sampling designs such as simple random sampling (SRS) 
or stratified random sampling (7,14) may not be very efficient for 
assessing disease at low incidence levels when disease is aggre-
gated. This is because encountering clusters of infected plants 
becomes a chance event, resulting in a high error variance (i.e., 
low precision). In theory, sampling efficiency for rare and spa-
tially clustered populations may be improved by allocating lower 
and higher sampling efforts where the population density is lower 
and higher, respectively (4). 

A sampling approach that incorporates such information about 
clustering is adaptive cluster sampling (26). The basic idea is to 
begin sampling for the species of interest following some conven-
tional (random or systematic) pattern, and if the species is found, 
to intensify searching nearby. The approach is intuitive for a 
clustered population in that the likelihood of finding another 
individual is greater in the vicinity of a previously encountered 
individual than in some other, randomly selected location. Com-

puter simulations for animal populations (21–23) and forest 
inventories (1,25) have shown that adaptive cluster sampling can 
be highly efficient, i.e., produce estimates of population density 
with smaller variance at equal sampling effort compared with 
conventional sampling designs. Inevitably, the sample obtained 
through adaptive cluster sampling is biased (i.e., locations con-
taining the species of interest are represented disproportionally), 
but unbiased statistical estimators may be obtained based on the 
Rao-Blackwell theorem. The mathematical and statistical details 
of the method are beyond the scope of this paper but are 
explained in Thompson (26) and Dryver and Thompson (9). 

Briefly, adaptive cluster sampling is implemented as follows: 
(i) start selecting the initial sample using a conventional design 
such as SRS; (ii) once the species of interest (e.g., a rare animal, a 
particular tree species, or in our context, a diseased plant) is 
detected in a sampling unit (e.g., quadrat) and observed to exceed 
a predetermined numerical threshold (referred to as the condition 
to adapt), then switch to systematic sampling of the neighboring 
quadrats, whereby the number of nearby quadrats to be included 
is the neighborhood size; (iii) if the condition to adapt is triggered 
in one of the neighboring quadrats, then continue with step ii, i.e., 
proceed sampling additional quadrats in the neighborhood; (iv) if 
none of the neighboring quadrats meet the condition to adapt, 
then resume random sampling; (v) switch back to neighborhood 
sampling if the condition to adapt is met in one of the next quad-
rats encountered. The approach is illustrated schematically in 
Figure 1, where the task is to estimate the mean number of dis-
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eased plants, scattered unevenly in a field consisting of 400 quad-
rats. An initial random sample of 10 quadrats is shown in Figure 
1A. In this example, whenever two or more diseased plants are 
observed in one of the randomly selected quadrats (condition to 
adapt = 2), the adjacent neighboring quadrats to the left, right, 
top, and bottom are added to the sample (neighborhood size = 4). 
When the process of adding neighboring quadrats is completed, 
the final sample consists of the 48 quadrats shown in Figure 1B. 
Neighborhoods of quadrats may be defined in many ways other 
than the spatial cross-pattern used in Figure 1 (28). 

A collection of neighboring quadrats that results from the 
condition to adapt being satisfied is called a cluster (Fig. 1C). The 
cluster consists of edge units, i.e., quadrats at its boundary where 
the condition to adapt is not met; and of network units, i.e., 
interior units where selection of any one quadrat within the 
network leads to inclusion in the sample of every other quadrat in 
the network (Fig. 1C). Similar to one-way analysis of variance, 
the total population variance can be partitioned into between-
network and within-network components (27). As discussed in 

more detail below, the within-network variance ( 2
wnσ ), i.e., the 

variance among quadrats in the network, is an important property 
that determines the efficiency of adaptive cluster sampling. 

Adaptive cluster sampling differs from conventional sampling 
designs in that the process for selecting an adaptive sample is 
dependent on the population values observed in the field, i.e., the 
exact number and spatial location of sampling units to be sampled 
is not known beforehand. Another, commonly used sampling 
approach for which the final sample size is also not known in 
advance is sequential sampling (6,16). With sequential sampling, 
the decision whether to continue sampling is made after each 
sample is taken based on values observed in previous samples, 
whereas with adaptive cluster sampling, both the decision on 
whether and where to sample is based on previously observed 
values. In practice, therefore, adaptive cluster sampling requires a 
high degree of record-keeping as the sampling proceeds, which 
can be accomplished using a hand-held computer with a global 
positioning system. To alleviate the problem of the unknown final 
sample size, several stopping rules have been developed and 

 

Fig. 1. Illustration of adaptive cluster sampling to estimate the number of infected plants (dots) in a square field consisting of 400 sampling units (quadrats). A,
First, an initial random sample of 10 quadrats, indicated by the heavier borders, is selected. B, Then, four adjacent quadrats are added to the initial sample 
whenever two or more infected plants are observed in a selected quadrat (condition to adapt = 2), resulting in a final sample of 48 quadrats. C, The group of 
adjacent quadrats generated when neighborhood sampling is triggered is a cluster consisting of edge units (white) and network units (gray). The network unit 
shown in light gray is the initial sample, a randomly selected quadrat which triggered neighborhood sampling. 
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evaluated (3,5,24). Conceptually, these stopping rules are similar 
to those used in sequential sampling in that sampling stops when 
a predetermined maximum number of sampling units has been 
evaluated. 

In recent years, adaptive cluster sampling has been evaluated 
for use in several plant and animal ecology studies (1,17,21, 
23,25) and in one preliminary report for assessing insect pest 
density (30), but to our knowledge there are no reports that docu-
ment the performance of this sampling design for estimating plant 
disease incidence. In previous research, the efficiency of adaptive 
cluster sampling was found to depend on the rareness and spatial 
distribution of the species of interest, quadrat size, method of 
selecting and the size of the initial sample, and condition to adapt 
neighborhood sampling. Here, we use computer simulations to 
assess these design parameters in a plant disease sampling con-
text. Simulations, in general, allows for greater insight into 
specific biological phenomena in a variety of ceteris paribus 
conditions and at scales not practical in the field (18,20,29), and 
is used commonly for evaluating disease survey designs 
(7,13,14,16). Our specific objectives were to (i) demonstrate the 
application of adaptive cluster sampling for estimating mean plant 
disease incidence; (ii) determine the relative efficiency of adaptive 
cluster sampling compared with SRS; and (iii) evaluate the 
influence of several design factors on the efficiency of adaptive 
cluster sampling for plant disease incidence. Efficiency is defined 
broadly to include both precision and the required sample size. 

THEORY AND APPROACHES 

Simulated fields that varied in disease incidence and clustering 
of infected plants were generated stochastically for use in this 
study. Each field measured 50 × 100 m2 units (0.5 ha) in size and 
contained 65,000 plants at a spacing of 0.1 m × 0.76 m (13 
plants/m2 representing soybean, for example). Thus, each field 
was divided into 5,000 equally sized 1 × 1 m2 (quadrats), each of 
which could contain between 0 and 13 infected plants. Field-level 
disease incidence values of 0.1, 0.5, 1.0, and 5.0% with variance-
to-mean (V/M) ratios (based on the 1 × 1 m2 quadrats) of 
approximately 1, 3, 5, and 10 were generated using a variant of a 
Poisson cluster process (2,8). At low disease incidence, as 
simulated here, V/M is a very good approximation of a more exact 
index of dispersion, the D-statistic, which is sometimes used to 
quantify spatial heterogeneity (15). The cluster process was 
implemented as follows. First, the number of clusters was 
selected from a Poisson distribution with mean cluster distance 
ranging from 1 to 30 m. Cluster centers were positioned randomly 
within the field grid. In the second stage, diseased plants associ-
ated with each cluster were created as a random number from a 
Poisson distribution with a mean varying from 1 to 500. Infected 
plants were distributed around the cluster center at a random 
distance drawn from an exponential distribution and at a random 
angle between 0 and 360° (Fig. 2). Populations were generated 
using SAMPLE software version 1.5.4 (U.S. Geological Survey, 
Leetown Service Center, Kearneysville, WV). Each of the 16 
disease incidence-aggregation combinations was simulated sto-
chastically 100 times, i.e., there were 100 disease maps for each 
combination. 

To simulate sampling, a rectangular grid with 1-m2 quadrats 
was superimposed on each field, with each quadrat thus contain-
ing 13 plants. Using SAMPLE software, sampling was simulated 
for two designs: (i) SRS, the ‘null’ sampling model, with the only 
design factor being initial sampling fraction ( f ), i.e., the number 
of quadrats sampled relative to the total number of quadrats in the 
field; and (ii) adaptive cluster sampling, in which the design 
factors evaluated were initial sampling fraction ( f ) and the con-
dition to adapt neighborhood sampling (CA). An initial sample of 
size ni = 50 ( f  = 1.0%), 100 ( f  = 2.0%), or 150 ( f  = 3.0%) quad-
rats was selected randomly (without replacement), and the num-

ber of symptomatic plants per quadrat was counted. If the 
observed value satisfied the condition to adapt (of which values of 
CA = 1, 2, and 4 infected plants per quadrat were evaluated), then 
four additional quadrats adjacent to that quadrat were sampled in 
a cross-pattern; in other words, the neighborhood size was 4, 
which is typical for the first-order neighborhood (28). If the 
condition to adapt was met in any quadrat of that neighborhood, 
then their neighborhoods were also sampled similarly. This 
process was repeated until a boundary of edge units was encoun-
tered which no longer satisfied the condition to adapt. At that 
point, random sampling was resumed if the number of quadrats 
sampled randomly was <ni. The final number of samples ( fn ), 
which included ni as well as the quadrats added by neighborhood 
sampling, was recorded for each field. The ratio of the final to the 
initial sample size ( if nn ) was then calculated. For adaptive 
cluster sampling to be efficient, this ratio should be close to 1 (2). 
In the example shown in Figure 1, if nn = 4.8, indicating that the 
scenario is not very efficient as far as sample size is concerned. 

Two estimators, the Horvitz-Thompson, HT (12) and the 
Hansen-Hurwitz, HH (11) estimators, are available to estimate the 
population mean in adaptive sampling designs. Thompson (26) 
presented modified, unbiased HT and HH-type estimators, of 
which we used the modified HT estimator since it results in 
smaller estimates of the variance in single-stage adaptive cluster 
sampling with initial samples selected randomly (19). Based on 
500 simulations, the variance of the estimated mean obtained 
from SRS, var ( )y , was calculated for each disease map. Simi-
larly, the variance of the estimated mean from adaptive cluster 
sampling, var ( )μ̂ , was computed for the same map. Values from 
the 100 maps per disease incidence-aggregation combination 
were averaged, and the ratio var ( )y /var ( )μ̂  was used as a 
measure of relative precision (RP). Adaptive cluster sampling is 
more precise than SRS, i.e., results in a smaller variance, when 
RP > 1. Details on computing the modified HT-estimator and its 
variance are given in the Appendix. 

RESULTS AND DISCUSSION 

Precision. The relative precision (RP) achieved with adaptive 
cluster sampling relative to SRS was highest at the lowest disease 
incidence and the highest level of clustering of diseased plants 
(Fig. 3). At CA = 1 (i.e., the most liberal condition to adapt where 
presence of a single infected plant in a 13-plant quadrat triggers 
neighborhood sampling), RP was consistently greater than 1.0 for 
disease incidence levels of 0.1 and 0.5% (Fig. 3A), except when 
diseased plants were distributed randomly (V/M = 1). As disease 
incidence increased to 1.0%, adaptive cluster sampling was more 
precise than SRS only for the two highest levels of aggregation 
(V/M = 5 and 10). At a disease incidence of 5%, adaptive cluster 
sampling was consistently less precise than SRS as indicated by 
RP < 1. 

The effect of aggregation on precision can be explained in 
terms of networks (i.e., interconnected quadrats containing dis-
eased plants) formed during adaptive cluster sampling (2). Popu-
lations with highly aggregated clusters have networks with large 
variances relative to the population variance, and adaptive samp-
ling is efficient when the ratio of within-network variance ( 2

wnσ ) 
to population variance ( 2σ ) is large (23). For adaptive cluster 
sampling to be efficient, the size of a network should be large 
enough such that 2

wnσ  is similar to 2σ  (2,26). In our simulations, 
we observed a direct, positive relationship between 2

wnσ / 2σ  and 
V/M (Fig. 4). 

As the condition to adapt became more conservative (i.e., larger 
numbers of diseased plants per quadrat are required to trigger 
neighborhood sampling), the gain in precision of adaptive cluster 
sampling relative to SRS diminished (Fig. 3B and C). For CA = 2, 
RP was greater than 1 for disease incidence levels of up to 1.0% 
for the two highest level of clustering; whereas at CA = 4, a gain 
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in precision relative to SRS was realized only when disease was 
most highly aggregated (V/M = 10). This result is intuitive in that 
low levels of clustering combined with low levels of disease 
incidence will lead to most quadrats having only few infected 
plants; if the condition to adapt is conservative (i.e., CA is large), 
neighborhood sampling will be triggered infrequently and adap-
tive cluster sampling will approximate SRS, leading to RP values 
around 1. This is also reflected in the effect of spatial aggregation 
on the within-network to population variance (Fig. 4), where a 
more conservative condition to adapt neighborhood sampling 
resulted in a lower ratio of 2

wnσ / 2σ . 
The effect of the initial sampling fraction ( f ) on RP was rela-

tively small and was most pronounced for high disease incidence 

(Fig. 5). Thus, in summary, adaptive cluster sampling was most 
precise for low levels of disease incidence (0.1 or 0.5%), 
especially when diseased plants were highly aggregated (V/M = 5 
or 10) and when the most liberal condition to adapt (CA = 1, 
corresponding to 7.7% of the 13 plants per quadrat in these 
simulations) was used. 

Final sample size. Sampling efficiency is a function not only 
of precision (as expressed by RP), but also of sample size. 
Although the initial sample size, in , is fixed in adaptive cluster 
sampling, as defined by the sampling fraction ( f ), the final 
sample size, fn , is variable in that it depends on how often neigh-
borhood sampling is triggered, which itself is a function of dis-
ease incidence, V/M, and CA. For adaptive cluster sampling to be 

Fig. 2. Illustration of various degrees of spatial aggregation of infected plants (variance-to-mean ratio [V/M] = 1, 3, 5, and 10 from left to right) for disease 
incidence = 0.1% (top), 1.0% (middle), and 5.0% (bottom). Each simulated field contains a total of 65,000 plants. 
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efficient, the final sample size should not be excessively larger 
than the initial sample size. In our simulations, final sample size 
was close to the initial sample size when disease incidence was 
≤0.5%, irrespective of V/M and CA (Fig. 6). For incidence levels 
>0.5%, the ratio of final to initial sample size was dependent on 
V/M and CA. For example, at disease incidence = 1.0%, the final 
sample size was very close to the initial sample size only for CA > 
1; whereas for CA = 1, the final sample size was approximately 

twice the initial sample size. At incidence levels >1.0%, adaptive 
cluster sampling became inefficient as expressed by more or less 
rapidly (depending on V/M) increasing ratios of if nn . In the 
worst-case scenario in our simulations (disease incidence = 5.0%, 
V/M = 1, CA = 1), the final sample size was ≈20 times greater 
than the initial sample size (Fig. 6A). 

The initial sampling fraction ( f ) had a very limited effect on 
the ratio of final to initial sample size, except for disease inci-
dence >1.0%, for which the ratio became less favorable for 
smaller initial sampling fractions (Fig. 7). Thus, in summary, the 
final sample size was closest to the initial sample size for disease 
incidence levels up to 1.0%, especially when a more conservative 
condition to adapt (CA > 1) was used. Under these conditions, the 
effect of disease aggregation was minor. 

Practical implications for sampling. As documented above, 
both precision and the required sample size responded similarly to 
disease incidence and aggregation, i.e., both were most favorable 
at low disease incidence and high levels of clustering. However, 
the two parameters responded differently to changes in CA; 
whereas relative precision was optimized with the most liberal 
condition to adapt (CA = 1), the ratio of final to initial sample size 
was best for more conservative CA values (CA = 4), indicating a 
tradeoff. The difficulty in optimizing both parameters simul-
taneously is illustrated in Figure 8 where all 48 tested combina-
tions of disease incidence, V/M, and CA are plotted on a pre-
cision-sample size plane. For the purpose of illustration, suppose 
we demand that (on average) adaptive cluster sampling be at least 
1.5 times as precise as SRS (RP ≥ 1.5), but the required sample 
size be no more than 1.25 times that of SRS ( if nn ≤ 1.25). This 
condition, indicated by gray shading in Figure 8, is satisfied for 
only 4 of the 48 tested combinations, all with very low disease 
incidence (0.1 or 0.5%), high levels of aggregation (V/M = 5 or 
10), and liberal to intermediate conditions to adapt neighborhood 
sampling (CA = 1 or 2). Whether an investigator would be inter-
ested in improving precision at such a low level of disease (where 
the focus may be more on detection than on estimating the mean) 
is debatable. However, two additional data points (incidence = 
0.1%, V/M = 3; incidence = 1.0%, V/M =10) are close to meeting 
the precision-sample size condition defined above. Of these, the 
latter would appear to be a more realistic scenario for the practical 
application of adaptive sampling. 

Fundamentally, the tradeoff between maximizing precision and 
minimizing final sample size is a function of network size and the 

Fig. 3. Relative precision of adaptive cluster sampling as affected by disease
incidence and spatial aggregation (variance-to-mean ratio, V/M) when the 
condition to adapt neighborhood sampling (CA) is A, 1, B, 2, or C, 4 infected 
plants per 13-plant quadrat, for an initial sampling fraction ( f ) = 2.0% (100 
quadrats). Precision is expressed as the ratio of the variance around the mean
incidence from simple random sampling to the variance from adaptive cluster
sampling; values >1 indicate that adaptive cluster sampling is more precise
than simple random sampling. Simulations are based on 100 realizations of
each incidence-aggregation combination, each sampled 500 times. 

Fig. 4. Ratio of within-network variance to population variance in adaptive 
cluster sampling for disease incidence as influenced by spatial aggregation
(variance-to-mean ratio) of infected plants, for an initial sampling fraction 
( f )  = 2.0% (100 quadrats) when the condition to adapt neighborhood samp-
ling (CA) is 1, 2, or 4 infected plants per quadrat. Means and standard errors 
are calculated across disease incidence levels of 0.1, 0.5, 1.0, and 5.0%. 
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associated within-network variance ( 2
wnσ ), but the relationship 

between 2
wnσ  and sample size is not straightforward. As the size 

of the networks generated by adaptive cluster sampling increases, 
both 2

wnσ / 2σ  and if nn  will increase. Thompson (26) presents 

equations that can be used to understand the dynamics of the 
‘network-effect’ via simulation. A rule of thumb for designing an 
efficient adaptive cluster sample is to aim for small networks so 
that fn  is not excessively greater than in , but networks should 
not be so small that 2

wnσ is very low (2). 
Our simulations showed that both precision and the sample size 

required with adaptive cluster sampling responded similarly to 
disease incidence and aggregation, i.e., both were most favorable 
at the lowest disease incidence with the highest levels of cluster-
ing. However, whereas relative precision was optimized with the 

Fig. 5. Relative precision of adaptive cluster sampling as affected by disease
incidence and initial sampling fraction ( f )  when the condition to adapt neigh-
borhood sampling (CA) is A, 1, B, 2, or C, 4 infected plants per 13-plant 
quadrat, at disease aggregation (variance-to-mean ratio) = 5. Precision is
expressed as the ratio of the variance around the mean incidence from simple
random sampling to the variance from adaptive cluster sampling; values >1
indicate that adaptive cluster sampling is more precise than simple random
sampling. Simulations are based on 100 realizations of each incidence-aggre-
gation combination, each sampled 500 times. 

Fig. 6. Ratio of final to initial sample size of adaptive cluster sampling as 
affected by disease incidence and spatial aggregation (variance-to-mean ratio, 
V/M) when the condition to adapt neighborhood sampling (CA) is A, 1, B, 2, 
or C, 4 infected plants per 13-plant quadrat, for an initial sampling fraction 
( f ) = 2.0% (100 quadrats). Simulations are based on 100 realizations of each 
incidence-aggregation combination, each sampled 500 times. 
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most liberal condition to adapt, the ratio of final to initial sample 
size was best for more conservative CA values, indicating a 
tradeoff. Precision and final sample sized were both simul-
taneously favorable for disease incidence of up to 1.0%, but only 
when infected plants were most aggregated (V/M = 10). 

Adaptive cluster sampling is rich in options, but this flexibility 
complicates survey designs. As such, further research is needed to 
develop analytical guidelines for designing plant disease surveys 
that use adaptive cluster sampling. This simulation study utilized 
realistic parameters for disease incidence, spatial aggregation, 

quadrat size, and condition to adapt neighborhood sampling, but it 
addressed only one field size and host plant density. We evaluated 
single-stage adaptive sampling, but more complex adaptive samp-
ling designs may be better able to balance the tradeoff between 
optimizing precision and minimizing sample size. For example, 
modified adaptive sampling designs such as adaptive grid-based 
systematic sampling and geographical information system-based 
adaptive sampling (17) can further increase sampling efficiency. 
In an effort to limit final sample size, stopping rules have also 
been developed for use in adaptive cluster sampling. For example, 
Brown and Manly (3) suggested that sampling could stop after a 
cumulative sample size meets or exceeds a preset value. We are 
currently examining these more advanced designs, in conjunction 
with different field and quadrat sizes, with respect to efficiency 
and cost of sampling. 

APPENDIX 

The mean number of individuals per unit (quadrat), y , for an 
initial sample of size in  selected by simple random sampling 
without replacement is  
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where ky  is the number of individuals in the kth unit. The 
variance of the estimator y  is given by 
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Following Thompson (26), the modified Horvitz-Thompson 

estimator of the mean is 
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where nf is the number of units in the final sample, Jk an indicator 

Fig. 7. Ratio of final to initial sample size of adaptive cluster sampling as
affected by disease incidence and initial sampling fraction ( f ) when the 
condition to adapt neighborhood sampling (CA) is A, 1, B, 2, or C, 4 infected 
plants per 13-plant quadrat, at disease aggregation (variance-to-mean ratio) = 
5. Simulations are based on 100 realizations of each incidence-aggregation 
combination, each sampled 500 times. 

Fig. 8. Relationship between precision and the ratio of final to initial sample 
size in adaptive cluster sampling for disease incidence. Data points shown are
48 combinations of disease incidence (DI = 0.1, 0.5, 1.0, and 5.0%), spatial 
aggregation (variance-to-mean ratio [V/M] = 1, 3, 5, and 10), and condition to 
adapt neighborhood sampling (CA = 1, 2, and 4), for an initial sampling
fraction ( f )  = 2.0% (100 quadrats). Precision is expressed as the ratio of the 
variance around the mean incidence from simple random sampling to the
variance from adaptive cluster sampling. The gray shading indicates
combinations where adaptive cluster sampling is at least 1.5 times as precise
as simple random sampling (relative precision ≥ 1.5), but the required sample 
size is no more than 1.25 times that of simple random sampling (ratio of final
to initial sample size ≤ 1.25). Simulations are based on 100 realizations of 
each incidence-aggregation combination, each sampled 500 times. 
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variable with values of 0 or 1, and kπ  the probability that the kth 
unit is used in the estimator. Jk = 1 if the kth unit is part of the 
initial (random) sample and/or the condition to adapt neigh-
borhood sampling is met in the unit; otherwise, Jk = 0. kπ  is 
given by 
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where km  is the number of units in the network of which the kth 
unit is a member; for units in which the condition to adapt is not 
met, mk = 1. 

The unbiased sample variance for adaptive cluster sampling for 
the Horvitz-Thompson estimator is 

kmmk

mkkm

k m
mk yy

N πππ
ππ−π

=μ ∑ ∑
Κ

=

Κ

=

)(1
)ˆvar(

1 1

**
2

 

where K is the number of networks in the sample; *
ky  and *

my  the 
sum of the number of individuals in two networks, k and m; and 
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Application of the Rao-Blackwell method to improve the above 
estimators is described by Thompson (26). 
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