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A B S T R A C T   

Reliable statistical inference is central to forest ecology and management, much of which seeks to estimate 
population parameters for forest attributes and ecological indicators for biodiversity, functions and services in 
forest ecosystems. Many populations in nature such as plants or animals are characterized by aggregation of 
tendencies, introducing a big challenge to sampling. Regardless, a biased or imprecise inference would mislead 
analysis, hence the conclusion and policymaking. Systematic adaptive cluster sampling (SACS) is design- 
unbiased and particularly efficient for inventorying spatially clustered populations. However, (1) over
sampling is common for nonrare variables, making SACS a difficult choice for inventorying common forest at
tributes or ecological indicators; (2) a SACS sample is not completely specified until the field campaign is 
completed, making advance budgeting and logistics difficult; (3) even for rare variables, uncertainty regarding 
the final sample still persists; and (4) a SACS sample may be variable-specific as its formation can be adapted to a 
particular attribute or indicator, thus risking imbalance or non-representativeness for other jointly observed 
variables. Consequently, to solve these challenges, we aim to develop a generalized SACS (GSACS) with respect 
to the design and estimators, and to illustrate its connections with systematic sampling (SS) as has been widely 
employed by national forest inventories and ecological observation networks around the world. In addition to 
theoretical derivations, empirical sampling distributions were validated and compared for GSACS and SS using 
sampling simulations that incorporated a comprehensive set of forest populations exhibiting different spatial 
patterns. Five conclusions are relevant: (1) in contrast to SACS, GSACS explicitly supports inventorying forest 
attributes and ecological indicators that are nonrare, and solved SACS problems of oversampling, uncertain 
sample form, and sample imbalance for alternative attributes or indicators; (2) we demonstrated that SS is a 
special case of GSACS; (3) even with fewer sample plots, GSACS gives estimates identical to SS; (4) GSACS 
outperforms SS with respect to inventorying clustered populations and for making domain-specific estimates; and 
(5) the precision in design-based inference is negatively correlated with the prevalence of a spatial pattern, the 
range of spatial autocorrelation, and the sample plot size, in a descending order.   

1. Introduction 

Reliable statistical inference is central to forest ecology, much of 
which seeks to estimate population parameters for forest attributes such 
as forest area, productivity, carbon, or ecological indicators for biodi
versity, functions and services in forest ecosystems (Margules and 

Pressey, 2000; Williams and Brown, 2019). National parameter esti
mates for these variables are also required by numerous international 
agreements. For example, the Montréal Process, Forest Europe, and the 
Convention on Biological Diversity jointly require that member coun
tries assess, monitor, and report on sustainability and biodiversity in
dicators. The Global Climate Observing System further mandates the 
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inferential uncertainty for essential variables must not exceed 20% 
(Sessa and Dolman, 2008), a challenging but necessary requirement, 
because biased or imprecise procedures from overlooking sampling and 
inference would mislead analysis, hence conclusion and policy-making 
(Conn et al., 2017). 

There are two inferential frameworks, the model-based inference and 
the design-based inference (Särndal, 1978), both having important 
places in forest ecosystem inventory (Kangas et al., 2018). Unbiasedness 
and small variance are common goals in the respective frameworks. 
Inferential uncertainty expressed by the mean squared error is decom
posable into two independent terms, one representing the variance of a 
model- or design-based estimator, known as inferential precision, and 
the other term representing the bias of this estimator, known as infer
ential bias (Cassel et al., 1977). The population representing a spatial 
area of interest is tessellated with small units of a given size serving as 
population units (Cochran, 1977). The two frameworks fork towards 
different directions by treating the attribute value in a population unit to 
be random or fixed (Gregoire, 1998). Model-based inference regards the 
attribute value as a random variable which follows a distribution 
determined by a superpopulation model. A real-life population is 
considered a random realization of this superpopulation model, thus 
making population parameters such as the mean or total random vari
ables as well (Graubard and Korn, 2002). The model-based estimator of 
a population parameter is generally not considered unbiased, suggesting 
that inferential uncertainty regarding a realized population may come 
from both the variance and bias (McRoberts et al., 2018). Because the 
superpopulation model is unknown in practice, the inferential uncer
tainty fully relies on a proxy model constructed using a sample and 
auxiliary data from sources such as remote sensing (McRoberts, 2011; 
Xu et al., 2018). When the proxy model represents the relationship be
tween the dependent and independent variables without systematic 
error, the inferential precision is usually greater for the model-based 
inference than design-based inference (Hou et al., 2018). However, 
when imbalance-sampled, or when the model mis-specified or mis-used 
with external model or auxiliary data, a model-based estimator may not 
only reduce the inferential precision, but increase the inferential bias, 
and hence inferential uncertainty as a whole (Hou et al., 2017). There
fore, cautions are required, particularly for the use of model-based es
timates when reporting to agreements that explicitly advocate 
elimination of inferential bias (IPCC, 2003). 

In contrast, design-based inference regards the attribute value for a 
population unit as fixed, with the result that the population parameter 
value is also fixed, rather than random as is the case for model-based 
inference. Estimators are design-unbiased if they correctly correspond 
to samples selected using probabilistic designs, meaning the unbiased
ness does not depend on assumptions about the population. This assures 
the inferential bias to be zero, so the inferential uncertainty reduces to 
the inferential precision which results from the randomness of selecting 
a sample from the population. Systematic sampling (SS) is design-based 
and the corresponding estimators are design-unbiased, with a long his
tory of serving official reporting instruments at local, regional, 
ecosystem and national scales (Kangas and Maltamo 2006). SS is 
convenient for logistic; specifically, it is often less costly to measure a 
collection of SS plots than to measure an equal number of plots selected 
at random (Heikkinen, 2006). Many national forest inventory (NFI) 
programs including for the Nordic countries, France, the United States of 
America and China were established using SS (Tomppo et al., 2010; Zeng 
et al., 2015). An NFI population typically is a country, a state or province 
from which a sample of regularly spaced population units in the form of 
sample plots is selected and measured for estimating parameters for a 
comprehensive set of forest attributes and ecological indicators. The 
number of sample plots annually measured is phenomenal, typically 
ranging from 4400 to 15,000 in the Nordic countries, and 1200 to 3500 
in individual American states (Hou et al., 2021; Räty et al., 2020). 
Therefore, cost-efficiency is crucial for field campaigns at this scale, 
involving a tradeoff between the inferential precision and the number of 

sample plots. Although SS is expected to improve inferential precision 
for clustered populations (Cochran 1977), this feature is conditional on a 
design strategy that can make the within-primary-unit correlation co
efficient less than zero (ρ < 0); otherwise, the inferential precision for SS 
would be the same (ρ = 0) or even less (ρ > 0) than simple random 
sampling (Thompson, 2012, p. 166). 

Much of the attention for SS is focused on optimizing design strate
gies for which sample selection does not depend in any way on obser
vations made during a campaign, so the entire sample may be selected 
prior to fieldwork (Magnussen et al., 2020). Occasionally, foresters and 
ecologists are inclined to improvise during a field campaign, based on 
what has been observed thus far, as to which plots to, or not to, observe 
next (Acharyal et al., 2000). For example, in an inventory of a rare, 
spatially clustered plant population, one may wish to add additional 
plots to an initial SS sample once a large abundance of this species is 
encountered. This adaptiveness is sensible, because often the clustering 
pattern, size and location cannot be predicted beforehand, so that 
traditional means of increasing precision with SS or stratification are not 
always efficient (Hou et al., 2015). Excellent discussions about the 
usefulness of adaptive inventories in ecological studies are available in 
Brown and Manly (1998). 

For clustered populations, systematic adaptive cluster sampling 
(SACS) provides an option that is robust and more efficient than SS. 
SACS is also design-based and the corresponding estimators are design- 
unbiased, as devised by Thompson (1991) for inventorying populations 
such as plants or animals characterized by aggregation tendencies due to 
flocking, dispersal patterns, and environmental patchiness. Forests, 
minerals, fossil fuels, and many other natural resource populations 
exhibit similar patterns. SACS can increase inferential precision still 
further, even after SS has been applied (Thompson, 2012, p. 350). 
However, SACS may cause a complete enumeration, meaning all pop
ulation units are selected for a SACS sample. This oversampling results 
from a networking towards neighbor plots that is subject to in-situ 
measurements during a field campaign, suggesting that (1) over
sampling would be particularly common for inventorying nonrare var
iables whose presence prevails in a population, making SACS a difficult 
choice for inventorying nonrare or regular forest attributes or ecological 
indicators; (2) the final SACS sample cannot be certain until the 
campaign is completed, making advance budgeting and logistics a 
challenge; (3) even for variables that are rare or scarce, uncertainty 
regarding the final sample still persists; and (4) a SACS sample may be 
variable-specific as its growth can be adapted to a particular attribute or 
indicator, thus risking sample imbalance or non-representativeness for 
other variables observed (Gattone and Di Battista, 2011; Turk and 
Borkowski, 2005; Yang et al., 2011, 2016). 

Consequently, the objectives of this study are fourfold: (1) to 
generalize SACS (GSACS) with respect to the design and estimators 
where GSACS is design-based with design-unbiased estimators, extend
ing the advantages and overcomes the previously noted limitations of 
SACS; (2) to demonstrate that SS is a special case of GSACS. This allows 
GSACS, with a reduced number of sample plots, to produce estimates 
that are identical to those obtained using SS, and thereby introduces a 
useful feature that retains the advantages of SS while being more cost- 
effective for clustered populations; (3) to characterize the effects of 
design strategies and spatial patterns of a forest attribute or ecological 
indicator on sampling distribution by comparing a comprehensive set of 
simulation scenarios; and (4) to illustrate that GSACS is 100% compat
ible with NFI systems constructed with SS, that no modifications to field 
protocols or designs are required, thereby underscoring the generaliz
ability and prospects of GSACS to large scale inventories. 

2. Theory: sampling designs and estimators 

2.1. Systematic sampling (SS) 

In an inventory, a spatial area of interest is tessellated using small 
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units of a given size that serve as population units. With systematic 
sampling, population of these units is partitioned into primary units 
(PUs) in a way that each PU comprises secondary units (SUs) spaced in a 
regular pattern over the spatial area. Whenever a PU is selected from the 
PUs, the values of every SU belonging to this PU are observed. Different 
choices on the size of population unit or on the partitioning lead to 
different designs that, through the sample, would affect the inferential 
precision about population parameters like the mean, μ, or total, τ, of the 
forest attribute or ecological indicator of interest. 

In SS, a sample is selected from the PUs, even though the actual 
measurements are made on SUs. Because drawing a sample is with 
respect to the PUs, the population size, N, refers to the number of PUs, 
and the sample size, n, the number of selected PUs. The number of SUs, 
M, refers to the number of SUs in a PU, so the total number of population 
units is MN. When a PU is selected, its SUs will be taken as sample plots 
and then measured for that forest attribute. What is important in a 
systematic arrangement is that whenever a SU of a PU, denoted by uij, is 
included in the sample, the remaining SUs of this PU must be included as 
well. Fig. 1 illustrates a SS design deployed to a simulated forest 
compartment where the visualizations of respective notions are given. 

In this study, we focus on μ per population unit since τ = MNμ. When 
a sample is selected from PUs by simple random sampling without 
replacement, the unbiased expansion estimator (Thompson, 2012, p. 
343–344) is 

μ̂1 =
1

Mn
∑n

i=1

∑M

j=1
yij =

1
Mn

∑n

i=1
Yi (1)  

where yij is the attribute or indicator value in the jth SU of the ith PU, uij; 
and Yi =

∑M
j=1yij is the total of the y-values in the ith PU. 

The variance of μ̂1 is 

Var
(

μ̂1

)
=

N − n
M2Nn

∙
∑N

i=1(Yi − Mμ)
2

N − 1
(2) 

An unbiased estimator of this variance is therefore 

V̂ar
(

μ̂1

)
=

N − n
M2Nn

∙

∑n
i=1

(
Yi − Mμ̂1

)2

n − 1
(3)  

2.2. Systematic adaptive cluster sampling (SACS) 

With systematic adaptive cluster sampling (SACS), the systematic 
sample of selected PUs in Section 2.1 was used as an initial sample to 
which additional population units are subsequently added from a clearly 
defined neighborhood and for a clearly defined condition of interest, C. 
In an inventory, the role of this C is to specify a domain for making 
inference; the role of the neighborhood is to transform the population of 
units to a population of networks (Thompson, 1991, 2012). 

SACS pertains to sampling the population of networks rather than the 
population of units. A SACS sample takes form in a recursive manner 
such that each unit in the initial SS sample is a seed to be evaluated 
against C. When the C criterion is met, neighbors of this seed, typically 
those contiguous to the left, right, top and bottom, are then evaluated 
respectively. A valid neighbor will be enrolled with that seed in a 
network, and taken as a new seed for another iteration of this process 
with the aim of growing this network. This recursive process exhaus
tively searches and grows towards additional population units permis
sible under the neighborhood constraint, and automatically stops when 
all PU-intersected networks are included in a SACS sample. Fig. 2 il
lustrates a SACS sample under the typical neighborhood definition when 
applied to inventorying stem volume (m3/ha), a nonrare or regular 
forest attribute. Thorough SACS design descriptions are available in 

Fig. 1. Illustration of systematic sampling with a partition into primary units and secondary units. The systematic sample results from one randomly selected PU that 
consists of 34 SUs to be observed. 
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Thompson (1991, 2012). 
A SACS sample consists of networks instead of individual population 

units as is the case for SS. This distinction highlights the differences 
between estimators derived for SACS and SS, with the former taking 
network-level observations into account, and the latter unit-level ob
servations into account. For SACS, an unbiased Hanse-Hurwitz estimator 
based on partial selection probability (Thompson, 2012, p. 345) is 

μ̂2 =
1

Mn
∑n

i=1

∑K

k=1

ykIik

xk
=

1
n

∑n

i=1
ωi (4)  

where the notation M, N, n and PU are consistent with SS in Section 2.1; 
K is the number of networks; yk is the total of the y-values in the kth 

network; Iik is an indicator variable, with Iik = 1 if the ith PU intersects 
the kth network or Iik = 0, otherwise; xk =

∑N
i=1Iik is the number of PUs 

in N intersecting the kth network; and ωi = 1
M

∑K
k=1

ykIik
xk 

is a PU-specific 
estimate for μ. 

The variance of μ̂2 is 

Var
(

μ̂2

)
=

N − n
Nn
∙

∑N
i=1(ωi − μ)

2

N − 1
(5) 

An unbiased estimator of this variance is therefore 

V̂ar
(

μ̂2

)
=

N − n
Nn
∙

∑n
i=1

(
ωi − μ̂2

)2

n − 1
(6)  

2.3. Generalized systematic adaptive cluster sampling (GSACS) 

As Fig. 2 indicates, SACS may cause a complete enumeration, 
meaning all population units are network members of a SACS sample. 
This oversampling results from the recursive process that is dynamic 
relative to in-situ or on-the-spot measurements during a field campaign, 
leading to a series of complex effects noted in the Introduction. To 
resolve these challenges, we generalized SACS (GSACS) with respect to 
the design and estimators, prior to illustrating its connections with SS. 

Fig. 2. Inventorying a nonrare forest attribute, e.g. stem volume (m3/ha), with 
SACS caused a complete enumeration, a situation disastrous for forest 
ecosystem inventory. 

Fig. 3. the final form of GSACS samples in two simulated forest compartments.  
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In GSACS, the neighbor of a seed is spatially noncontiguous, con
strained to be population units to the left, right, top and bottom 
following the spacing pattern identical to the initial SS sample. Spatial 
contiguity is not a requirement (Thompson, 2012, p. 341). Thereby, a 
network is always specific to a PU, because networks can only grow 
within the initial sample, achieving a transformation from the unit-level 
observations to the network-level observations. As a result, the final 
form of a GSACS sample becomes tethered and predictable and is similar 
or even identical to the initial SS sample. Fig. 3 illustrates the final form 
of GSACS samples and the formation of GSACS networks for two forest 
compartments. 

While the SACS estimators in Section 2.2 remain valid, GSACS has a 
reduced form that is easier to use and analytically comparable with SS, 

μ̂3 =
1

Mn
∑n

i=1

∑K

k=1
ykIik =

1
n

∑n

i=1
φi (7)  

where φi = 1
M

∑K
k=1ykIik is a PU-specific estimate for μ evaluated base on 

the y-values of respective networks intersected by the ith PU. Note xk = 1 
in GSACS, because only one PU can intersect the kth network, which is 
illustrated in Fig. 3. 

The variance of μ̂3 is 

Var
(

μ̂3

)

=
N − n

Nn
∙

∑N
i=1(φi − μ)

2

N − 1
(8) 

An unbiased estimator of this variance is therefore 

V̂ar
(

μ̂3

)

=
N − n

Nn
∙

∑n
i=1

(

φi − μ̂3

)2

n − 1
(9) 

Interestingly, the SS estimators in Section 2.1 can be regarded as a 

special case of the GSACS estimators, i.e. μ̂3 = μ̂1, Var
(

μ̂3

)

=

Var
(

μ̂1

)

, and V̂ar
(

μ̂3

)

= V̂ar
(

μ̂1

)

, demonstrated as follows: 

μ̂1 =
1

Mn

∑n

i=1
Yi  

=
1
n

∑n

i=1

Yi

M  

=
1
n

∑n

i=1
φi  

= μ̂3; and  

Var
(

μ̂1

)
=

N − n
M2Nn

∙
∑N

i=1(Yi − Mμ)
2

N − 1  

=
N − n
M2Nn

∙

∑N
i=1

(

M
(

Yi
M − μ

) )2

N − 1  

=
N − n

Nn
∙

∑N
i=1

(
Yi
M − μ

)2

N − 1  

=
N − n

Nn
∙

∑N
i=1(φi − μ)

2

N − 1  

= Var
(

μ̂3

)

Likewise, V̂ar
(

μ̂1

)

= V̂ar
(

μ̂3

)

. Note φi = Yi
M in the same domain of 

interest, which is illustrated in Fig. 3; both V̂ar
(

μ̂1

)

for SS (Thompson, 

2012, p. 162) and V̂ar
(

μ̂3

)

for GSACS are not applicable when n = 1, 

namely when the sample size is only one. However, as the sample size 
increases, the variance estimators for GSACS and SS converge equally 
fast at the rate of N−n

Nn . 

3. Simulation: validation and comparison 

3.1. Sampling distribution 

Because the procedures for selecting a sample and for producing 
estimates are clear, the validation, effectiveness, and behavior of GSACS 
versus SS were analyzed using sampling simulations. Although much of 
the attention was devoted to the simulation of the populations and 
sampling strategies specified in Sections 3.2 and 3.3, the basic idea of 
sampling simulation involves three steps. First, construct an artificial 
population that mimics as much as possible a real one. Because the 
parameters of a simulated population are readily known, estimators and 
sampling strategies can be assessed. Therefore, second, carry out a 
sampling strategy iteratively on this simulated population. Third, for 
each iteration, draw a sample following a prescribed design and then use 
it for estimating the population parameter. 

The distribution of these estimates over respective iterations is the 
sampling distribution. The sampling distribution depends on the sam
pling design and estimation procedure but is Gaussian as per the central 
limit theorem and follows N(E(μ̂), Var(μ̂) ). Incidentally, the difference 

Table 1 
Summary of artificial populations generated for sampling simulations.  

Population alias μ(stem volume, m3/ha)  Mortality (%) No. of clusters Cluster radius (m) No. of Trees No. of dead trees 

Zero Mort 244.64 0 n.a. n.a. 101,166 0 
Random.10 220.07 10 n.a. n.a. 101,166 10,006 
Random.20 195.32 20 n.a. n.a. 101,166 20,122 
Random.30 171.44 30 n.a. n.a. 101,166 30,307 
Cluster.10.c161.r10 220.10 10 161 10 101,166 10,182 
Cluster.10.c40.r20 220.30 10 40 20 101,166 10,061 
Cluster.10.c18.r30 220.22 10 18 30 101,166 10,189 
Cluster.10.c10.r40 220.12 10 10 40 101,166 10,062 
Cluster.20.c322.r10 195.14 20 322 10 101,166 20,323 
Cluster.20.c81.r20 194.96 20 81 20 101,166 20,397 
Cluster.20.c36.r30 195.69 20 36 30 101,166 20,360 
Cluster.20.c20.r40 195.72 20 20 40 101,166 20,129 
Cluster.30.c483.r10 170.51 30 483 10 101,166 30,406 
Cluster.30.c121.r20 170.89 30 121 20 101,166 30,457 
Cluster.30.c54.r30 170.64 30 54 30 101,166 30,544 
Cluster.30.c30.r40 171.50 30 30 40 101,166 30,194  
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between a standard error and a standard deviation is that the former 
refers to the standard deviation of a sampling distribution, SE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Var(μ̂)

√
, and thus 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

V̂ar(μ̂)

√

is an estimate for SE. Because GSACS, SACS 
and SS are design-unbiased, meaning E(μ̂) = μ and hence N(μ, Var(μ̂) ), 
the inferential uncertainty is explicitly associated with the inferential 
precision. For this study, this precision is evaluated using the coefficient 
of variation, CV% = SE

μ̂
× 100, for comparisons between estimators and 

among sampling strategies. The CV% is also termed as sampling error. 

3.2. Populations 

A total of 16 artificial populations was generated using real data 
collected from eucalyptus compartments located in Hainan province, 
China. These populations were generated at tree-level following Hou 
et al. (2015) in a way that the spatial pattern of a forest attribute or 
ecological indicator is either random or clustered. Tree locations were 
generated for these compartments with a density of 5 m2 per tree (4 by 
1.25 m), forming a systematic lattice of known coordinates. Summary 
statistics of these populations are detailed in Table 1 with visuals in 
Figs. 1 and 4. 

In these populations, tree mortality was used as surrogate for any 

Fig. 4. Artificial populations generated for sampling simulations; living trees in green, dead trees in red; dead trees are surrogate for any forest attributes or 
ecological indicators relying on living status; mortality patterns represent the spatial distribution of any surrogated attributes or indicators. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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forest attributes or ecological indicators relying on living status, because 
an associated variable would be deprived as its carrier is deceased. For 
simplicity, variable values were zeros for dead trees. Spatial patterns 
were simulated for dead trees using the DNR Sampling Tools (DNR, 
2020). The prevalence of a pattern is expressed using mortality (%), and 
the range of spatial autocorrelation using cluster diameter (meters). In a 
cluster, all trees are dead. In this context, investigating the spatial effects 
of a variable is equivalent to investigating the spatial effects of mortality. 

The associated variable we chose was the stem volume (m3/ha) 
because related attributes such as biomass, carbon and their changes 
that are important in forestry and ecology can be approximated using 
stem volume and expansion factors (Petersson et al., 2012). Stem vol
ume was assigned for every tree using an allometric model based on 
class frequencies of compartment-wise diameter distribution (Hou et al., 
2015). A dead tree was, of course, deprived of stem volume. With this 
comprehensive set of populations, we gain clear insight into the 
behavior of GSACS when used in practice. 

3.3. Sampling designs 

A sample was selected following SS and then networked following 
GSACS. Nevertheless, in practice, GSACS works independently and does 
not have to require a SS sample observed in the first place. There were 
two plot sizes, or equivalently, two population unit sizes considered and 
compared, the large unit was 30 by 32 m, and the small unit was 20 by 
20 m, both rectangular. The number of plots in a sample is determined 
by the partitioning into PU as explained in Section 2.1, which was 
represented by sampling intensity. The sampling intensity is expressed 
as the ratio of the sampled area and the entire area. The sampled area 
refers to the product of the number of plots and the plot size. The par
titioning employed in this study is graphed in Fig. 5 which stresses the 
comparability of the two plot sizes for similar sampling intensities, with 
other conditions being equal. 

4. Results and discussion 

4.1. Behavior of GSACS 

For the respective sampling strategies, sampling distributions of 
GSACS and SS are summarized in Fig. 6. The sampling distribution is 

presented in the form of coefficient of variation, and the sampling 
strategy in the form of sampling intensity. 

As expected, SS turns out to be a special case of GSACS, and the es

timates for GSACS and SS are identical, i.e. μ̂3 = μ̂1, Var
(

μ̂3

)

=

Var
(

μ̂1

)

and V̂ar
(

μ̂3

)

= V̂ar
(

μ̂1

)

, consistent with the demonstration 

in Section 2.3. This identity is spatially or temporally invariant and is not 
conditional on population characteristics intrinsic to the spatial distri
bution of forest attributes or design characteristics driven by sampling 
strategies. In Fig. 6, the mortality is on behalf of any variable of forest 
attributes or ecological indicators relying on the living status. When a 
variable is randomly distributed, or precisely, follows a spatial Poisson 
point process (Daley and Vere-Jones, 2007), GSACS behaves exactly the 
same as SS as illustrated in Fig. 6 (A) by the overlaps between the dotted 
lines for GSACS and the solid lines for SS. 

When a variable is spatially clustered, following a Matérn cluster 
point process (Matérn 1986), GSACS outperforms SS in terms of cost- 
efficiency, because GSACS produces estimates identical to SS while 
requiring fewer sample plots, as shown in Fig. 6 (B to D) in the form of a 
blank space between the dotted lines for GSACS and the solid lines for 
SS. The reduced plots are saved from those not meeting C. As the 
prevalence of clustering increases from 10% to 30%, or as the range of 
spatial autocorrelation increases from 10 m to 40 m in radius, this 
advantage becomes increasingly prominent for GSACS, suggesting that 
GSACS is more efficient than SS for sampling clustered populations 
Fig. 6 (B to D). In practice, although the spatial pattern may be un
known, GSACS applies where SS applies, and typically is more effective 
given the aggregation tendency common in nature. 

What makes GSACS advantageous relative to SS is the difference in 
the inferential basis. GSACS pertains to selecting a sample of networks 
from a population of networks, whereas SS pertains to selecting a sample 
of units from a population of units. Units not meeting C are irrelevant to 
GSACS and are thus excluded from estimators (Thompson, 2012). 
Nevertheless, these units are always required by SS. This explains why 
using GSACS instead of SS would be more efficient for field campaigns, 
and attractive for construction of ecological observation networks where 
expensive mensuration equipment must be deployed and maintained at 
appointed locations (FIA, 2020). 

Sample data may have a shelf-life for a timely reason, but GSACS also 
works for mining historic data through domain-specific or small-domain 
estimation. Domain estimation is realized through the networking pro
cedure that transforms population units to networks within a sample. 
Because this networking is subject to C, the domain specifier, domain- 
specific estimates are thus obtainable by adjusting C. This convenient 
feature is somewhat analogous to quantile regression that exploits extra 
information from the same sample (Xu et al., 2019). However, GSACS is 
design-unbiased, whereas quantile regression is model-unbiased. 
Although SS would achieve a similar effect on estimation by manually 
choosing qualified units from the specified domain, GSACS is auto
mated, computationally fast, and thus particularly useful for large scale 
analysis with national forest inventory databases as an example (FIA, 
2020). 

Although it may appear that a comparison between SACS and GSACS 
or even SACS and SS was omitted, in effect, this comparison was already 
made. This is because GSACS is the SACS under a particular neighbor
hood specification. When the neighborhood is spatially noncontiguous, 
constrained to be population units to the left, right, top and bottom 
following the spacing pattern identical to the initial SS sample, SACS 
exactly is GSACS with an identical performance, and thus the compar
ison between GSACS and SS is equivalent to the comparison between 
SACS and SS. Alternatively, when the neighborhood is spatially 
contiguous, constrained to be population units to the left, right, top and 
bottom, SACS is not GSACS, and SACS would introduce a complete 
enumeration as in Fig. 2, which leads straight to μ as in Table 1. Upon the 

Fig. 5. Strategy for partitioning population units into primary and second
ary units. 
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complete enumeration or oversampling, SACS certainly outperforms 
GSACS, but would merit little consideration in practice, if any. 

4.2. Effects of plot size 

Reducing mean squared error, MSE = Variance + Bias2, is a target 
when deriving estimators for sampling designs (Thompson, 2012). 
GSACS and SS estimators are design-unbiased, meaning Bias = 0 assured 
by their respective probabilistic designs. However, this variance term 
expressed by CV% turns out to be strongly affected by the population 
unit size, specifically the sample plot size, highlighting the effects of plot 
size on the gain or loss in inferential precision. 

When a forest attribute or ecological indicator is spatially random 
(Fig. 6, A), CV% is consistently less for the small plots than the large 
plots. Regardless, the range of CV% for respective sampling intensities 
rooted in different sampling strategies is slightly wider for the small 
plots. This widening could be associated with the within-PU observa
tions being slightly more variable for small-sized units because small 
plots outnumber large plots at a sampling intensity, contributing to the 
increase of within-PU variance or the decrease of within-PU correlation. 

However, as per Eq. (2) or (3) and Eq. (8) or (9), the variance estimators 
account for the between-PU variability rather than the within-PU vari
ability (Thompson, 2012, p. 163). 

With spatial clustering (Fig. 6, B-D), however, the CV% is consis
tently less, again, for the small plots than for the large plots. The range of 
CV% at respective sampling intensities becomes increasingly narrower 
for the small plots as the prevalence of clustering increases from 10% to 
30%, and as the range of spatial correlation increases from 10 m to 40 m, 
suggesting that large plots are more vulnerable to the clustering effect 
and the between-PU variances are smaller for small plots. 

The advantage of SS, which also applies to GSACS, is that it is usually 
more economic to observe a collection of SS units than to observe an 
equal number of units selected at random from a population. The 
effectiveness of SS and GSACS depends on the variance resulting from 
the PUs of a given size and shape as well as the cost of observing them. 
Theoretically, SS is efficient if the between-PU variance is small relative 
to the overall population variance (Thompson, 2012, p. 164); and once 
so, GSACS will be more efficient than SS (Fig. 6). 

The ideal size and shape for the PUs can be determined by a variance 
function or a cost function, which are not necessarily simple in practice. 

Fig. 6. Identical estimates for GSACS and SS, regardless of plot size or spatial patterns; the more prevalent a pattern or the greater the spatial autocorrelation, the 
fewer observations required for GSACS, making it more cost-effective for GSACS than SS. 
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Examples of these functions are available in Cochran (1977) and Jessen 
(1978). However, since the decision regarding plot size (or population 
unit size) is prior to the optimization for PU, it now becomes clear that 
small plots (or population units) outperform large ones in terms of 
inducing a smaller variance, thereby becoming a straightforward way 
for enhancing the effect of optimization. Hence, a sensible choice would 
be using small sample plots or population units for design-based infer
ence, particularly for GSACS and SS. 

4.3. Effects of spatial patterns 

GSACS and SS estimators are design-unbiased, but not necessarily 
ideal for variance reduction. In addition to the plot size, the spatial 
distribution of a forest attribute or ecological indicator in the form of 
random or clustered patterns was found to affect the inferential preci
sion more substantially than the plot size (Fig. 7). 

For spatially random patterns, the effect on the variance in the form 
of CV% is relatively slight for both plot sizes (Fig. 7). This suggests that 
for homogeneous populations, measures such stratification could be 
ineffective for increasing inferential precision. For such a population, 
effective measures include, but are not limited to, increasing the sam
pling intensity by increasing the sample size or intensifying the sample, 
or for a permissible sampling intensity using smaller population units or 
sample plots. However, attention must be paid to a saturation point after 
which the decrease inCV% through increasing the sampling intensity 
becomes slow, which was 4% for this study (Fig. 6, A). 

For spatially clustered patterns, the effect on CV% becomes 
increasingly stronger as the prevalence and autocorrelation increases 
(Fig. 7). The more prevalent a pattern, the larger the variance, and the 
more spatially autocorrelated, the larger the variance, with prevalence 
affecting variance more than autocorrelation (Fig. 6, B-D). Similar 
findings were also reported in Lessard et al. (2002). Measures such as 
stratification, increasing sample size or reducing plot size would be 
necessary for SS, but not necessarily for GSACS, because GSACS is 
relatively more effective for clustered populations as discussed in Sec
tion 4.1. 

The SS variance can alternatively be examined in terms of the within- 
PU correlation coefficient, ρ (Thompson, 2012, p. 166). When ρ = 0, the 
inferential precision is about the same for SS and simple random sam
pling with an equal number of sample plots; when ρ > 0, the simple 
random sample produces greater inferential precision; and conversely 

when ρ < 0. With many natural populations, population units close to 
each other tend to be similar. With SS, the SUs of each PU are spaced 
relatively far apart, so ρ < 0 may well be the case. For this reason, SS is 
inherently efficient with many real populations; and once so, GSACS will 
be more efficient than SS (Fig. 6). 

Last but not the least, the estimators for SS and GSACS can further be 
improved with a procedure derived from the Rao-Blackwell theorem 
(Blackwell, 1947). It will take a conditional expectation for the sampling 
distribution of an estimator given the minimal sufficient statistic 
observed (Cassel et al. 1977). Today, procedures of this kind are cate
gorized as data assimilation (Hou et al., 2019, 2021). 

5. Conclusions 

Five conclusions are relevant. First, we generalized systematic 
adaptive cluster sampling (GSACS) and demonstrated that systematic 
sampling (SS) is a special case of GSACS. Second, in contrast to SACS, 
GSACS explicitly supports inventorying forest attributes and ecological 
indicators that are nonrare or common and resolves SACS problems with 
oversampling, uncertain sample form, and sample imbalance for alter
native attributes or indicators. Third, empowered by networking, even 
with fewer sample plots, GSACS produces estimates identical to those for 
SS. Fourth, GSACS outperforms SS with respect to inventorying clus
tered populations and for making domain-specific estimates. Fifth, the 
precision for design-based inference is negatively correlated with the 
prevalence of a spatial pattern, the strength of spatial autocorrelation, 
and the size of sample plot, in descending order. 

The equivalence between GSACS and SS would benefit forest ecology 
inventory for three aspects. First, with reduced observations, GSACS 
produces point and variance estimates identical to those for SS. The 
reduced observations are those spared from measuring population units 
not satisfying C, which must be measured in SS, anyway. This saving 
suggests reduced sample plots, reduced cost, reduced labor and 
increased cost-efficiency, factors making a difference for field cam
paigns. Second, like SS, GSACS also supports inventorying multiple at
tributes from a common sample. This is unlike SACS for which a sample 
is adapted to one specific attribute, thereby inducing sample imbalance 
for other attributes which, again, reiterates the generalizability of 
GSACS. Third, there is a wide potential for replacing SS with GSACS 
considering the popularity of SS, particularly for national forest in
ventories and international ecological observation networks. A dis
tinguishing feature of GSACS resides in its compatibility with original 
inventory systems by not imposing any modifications to the field pro
tocols, and in its efficiency for analyzing historic data for making 
domain-specific estimates that are crucial for change detection and 
monitoring. 
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