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Various sampling designs are reviewed within the framework of probability sampling. 
SAS® code to estimate means and proportions, and their standard errors, using different 
sampling designs are illustrated using example data sets. 
 
Keywords: Sampling, SAS 

 

Introduction 

Researchers and statisticians often find it necessary to apply survey-sampling 

methodologies to acquire information about a large population. Sampling can take 

different forms (e.g., simple random sampling, stratified sampling, or clustering 

sampling) and different levels. In order to make appropriate and statistically valid 

inferences about the population based on the selected sample, the sampling design 

needs to be taken into consideration in the data analysis. 

The purpose of this article is to provide step-by-step guidance on how data 

obtained from various sampling designs could be using SAS (ver. 9.2) PROC 

SURVEYMEANS, and to illustrate how to estimate means and proportions, and 

their standard errors, in various finite sampling designs within the framework of 

probability sampling. In situations when it is less straightforward to use PROC 

SURVEYMEANS to obtain the estimates, the use of PROC IML as an alternative 

tool is illustrated. SAS/IML is an interface that provides interactive matrix 

programming. It is a separate component from SAS that may require additional 

installation. 

For each sampling design listed below, a brief summary of the model and 

procedure including formulas for the estimated statistics, their variances, and 

approximate confidence intervals will be presented. The sampling designs 

mailto:ylu@ets.org
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discussed in this paper all belong to the category of sampling without replacement. 

Sampling-with-replacement designs are comparatively easy to analyze and 

therefore are not discussed here. More details and references for the sampling 

models, designs, and proofs for the formulas used in this paper, as well as 

definitions and terms adopted in this paper may be found in Lohr (1999). SAS 

features are demonstrated using example data sets, SAS programs, and output. Data 

sets used in the examples are selected from the CD accompanying the Lohr book 

so that interested readers can have access to them. This paper assumes that 

nonsampling errors such as selection bias and inaccuracy of responses can be 

ignored in the sampling designs. The sampling designs discussed in this paper are 

as follows: 

 

 simple random sampling, 

 stratified sampling with a Simple Random Sample (SRS) selected 

from each stratum, 

 one-stage cluster sampling with an SRS of clusters, 

 two-stage cluster sampling with an SRS at each stage, 

 stratified sampling with one-stage cluster sampling (using SRS) 

within each stratum, 

 one-stage cluster sampling with unequal probabilities, 

 general complex surveys. 

 

The notations used in this paper differ by section and sampling design. In the 

more general setting, consider U to be a finite population, and S to be a selected 

sample. Within the complex sampling framework, subscripts are added to S to 

denote the sample within a specific cluster or stratum. 

Methodology 

Simple Random Sampling 

Estimating population mean and total  Let yi be the value of interest 

associated with the ith unit in the population, and let y  and s2 denote the sample 

mean and sample variance, respectively. The population mean Uy  in an SRS is 

estimated by the sample mean 

 

 
1ˆ

U i

i S

y y y
n 

     (1) 
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with variance reported as 

 

  
2

ˆ ˆV 1
n s

y
N n

 
  
 

  (2) 

 

and the population total is estimated by 

 

 t̂ Ny   (3) 

 

with variance estimated by 

 

  
2

2ˆ ˆV 1
n s

t N
N n

 
  

 
 . (4) 

 

For estimating the mean, PROC SURVEYMEANS can be run using only the 

option of ‘total = N’, which specifies the population size to enable a finite 

population correction. There are two ways of estimating the total. A weight variable 

of N/n can be created, and the sum option can be used. Notice that a common weight 

on all variables will not affect the estimation of the mean. Alternatively, a new 

variable can be created that equals N*y, where y is the original variable and the 

mean can be computed on this variable. 

As an example, ‘counties.dat’ (Lohr, 1999, p. 440) is used to illustrate the 

estimation of the population mean and total. The data set contains information on 

land area, population, numbers of physicians, unemployment, and a number of 

other quantities for an SRS of 100 counties from the 3,141 counties in the United 

States. The mean and number of physicians are estimated, along with their 

associated standard errors and 95% confidence intervals. The SAS code used to 

obtain the estimates is provided below together with the output. 

 

SAS code: 

 

data counties; 
infile 'C:\Sampling\counties.dat' dlm=',' firstobs=2; 
input RN STATE $ COUNTY $ LANDAREA TOTPOP PHYSICIA ENROLL PERCPUB 
CIVLABOR UNEMP FARMPOP NUMFARM FARMACRE FEDGRANT FEDCIV MILIT VETERANS 
PERCVIET; 
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 /* convert missing values */ 
  array numval[*] _numeric_; 
  do i = 1 to dim(numval); 
  if numval[i]=-99 then numval[i]=.; 
  end;       
  drop i; 
  run; 
 
data srs; 
set counties; 
wt=3141/100; 
run; 
 
proc surveymeans data=srs mean clm sum clsum total=3141; 
var PHYSICIA; 
weight wt; 

run; 

 

The first part of the SAS code reads in the data and converts the missing value 

coding of ‘–99’ to the SAS default coding of a period. The second part of the code 

defines the weight variable as N/n. The SURVEYMEANS procedure is in the third 

part of the code with the clm and clsum options added to give confidence intervals 

as well as estimates for the mean and the total. The output of the program is 

displayed below: 

 
The SURVEYMEANS Procedure 

 
Data Summary 

 
Number of Observations      100 
Sum of Weights             3141 

 
 

Statistics 
 

     Std Error    Lower 95%    Upper 95% 
Variable        Mean     of Mean  CL for Mean  CL for Mean     Sum  Std Dev 
PHYSICIA  297.170000  156.632533   -13.622928   607.962928  933411   491983 

 
 

Statistics 
 

           Lower 95%    Upper 95% 
Variable  CL for Sum   CL for Sum 
PHYSICIA      -42790      1909612 
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The SURVEYMEANS procedure produces estimated mean, the standard error (SE) 

of mean, and confidence intervals. The estimated population mean is ˆ 297.17Uy   

with  ˆSE 156.6325y  . The estimated population total is ˆ 933,411t   with 

 ˆSE 491,983t  . 

 

Estimating the proportion  As a special case of mean estimation, 

the population proportion p in an SRS is estimated by the sample proportion 

 

 p̂ y   (5) 

 

and 

 

  
 ˆ ˆ1

ˆSE 1
1

p pn
p

N n

 
  

 
  (6) 

 

For the estimation of the proportion, a variable needs to be created so that it takes 

the value of 1 if the unit has the characteristic of interest and 0 otherwise, and then 

PROC SURVEYMEANS can be run on the new variable. In the example below, 

we are interested in the percentage of children that are overdue for a vaccination in 

a school. Suppose the population consists of 120 children, and the selected sample 

consists of 10 children with 4 of them being overdue. 

 

data a; 
 input patient status $ @@; 
 cards; 
 1 ok 2 ok 3 ok 4 overdue 5 overdue  
 6 ok 7 overdue 8 ok 9 overdue 10 ok 
 ;; 
run; 
 
data a; 
 set a; 
 if status='overdue' then y=1; 
 else y=0; 
 wt=120/10; 
 run; 
 
proc surveymeans data=a mean clm total=120; 
var y; 
weight wt; 
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run; 

 

The SURVEYMEANS Procedure 

 

Data Summary 

 

Number of Observations      10 

Sum of Weights             120 

 

 

Statistics 

 

                     Std Error     Lower 95%     Upper 95% 

Variable      Mean     of Mean   CL for Mean   CL for Mean 

y         0.400000    0.156347      0.046318      0.753682 

 

Therefore the estimated proportion is 0.4000 with the SE being 0.1563. 

Ratio Estimation 

The use of ratio estimation requires measures of yi and xi on each sampling unit. 

The ratio of the two quantities is defined as 

 

 U

U

y
B

x
  . (7) 

 

It is estimated by 

 

 
ˆ

ˆ
ˆ
y

x

ty
B

x t
    (8) 

 

with estimated variance 
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 



  (9) 

 

where ˆ
i i ie y Bx  . When 

Ux  is not known, we use x , the sample mean, to 

approximate it. 

Ratio estimation may not be run directly using PROC SURVEYMEANS. 

Two procedures are demonstrated here, using PROC SURVEYMEANS after some 

preliminary analyses that feed into it, or via the PROC IML procedure. 

For PROC SURVEYMEANS to obtain the correct standard error for ratio 

estimation, we need to first create a new variable 
ˆ

U

y Bx
d

x


 , and run PROC 

SURVEYMEANS on d as in SRS. As an example, we use ‘counties.dat’ to estimate 

the average farm population per square mile of land area. The y variable is the farm 

population and the x variable is the land area. Here, 
Ux  is assumed to be unknown, 

and therefore is approximated by x . The SAS program applied is as follows: 

 

proc means mean data=counties noway; 
var FARMPOP LANDAREA; 
run; 
 
data ratio; 
set counties; 
d=(FARMPOP-LANDAREA*1.2137218)/944.92;  

/* 944.92 is the sample mean of x obtained from proc means.  
  1.213718 is the ratio estimate computed from proc means 
  output. */ 

run; 
 
proc surveymeans data=ratio total=3141; 
var d; 

run; 
 

The first part of the program uses the MEANS procedure to get the sample means 

of x and y. The ratio estimate would be computed as y x . Next the program creates 

the variable d, which is computed from the output we obtained from running the 

first part of the code. And lastly PROC SURVEYMEANS for SRS is run on the 
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variable d. The resulting SE for the mean of d, 0.1891, is the desired SE for the 

ratio estimate. 

 

The MEANS Procedure 

 

Variable          Mean 

FARMPOP        1146.87 

LANDAREA   944.9200000 

 

The SURVEYMEANS Procedure 

 

Data Summary 

 

Number of Observations      100 

 

Statistics 

 

                               Std Error     Lower 95%     Upper 95% 

Variable     N          Mean     of Mean   CL for Mean   CL for Mean 

d          100  -3.445794E-9    0.189105    -0.375225       0.375225 

 

Alternatively, the IML procedure in SAS can be used to calculate the ratio estimate 

and its SE according to the formulas given. The following SAS program 

accomplishes the same task as the previous one. The program reads in the number 

of physicians and population for each county into vectors y and x, creates a new 

vector, e, defined as 

 

 
y

x
 e y x   

 

gets the variance of e, and calculates the ratio estimate and SE according to the 

formula. 

 

proc iml; 
 use counties; 
   /* define x and y */ 
 read all var{FARMPOP} into y; 
 read all var{LANDAREA} into x; 
 close counties; 
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 bign=3141;  /* designates the population size N (bign) */ 
 n=nrow(x);  /* get sample size  */ 
 xbar=sum(x)/n; 
 ybar=sum(y)/n; 
 bhat=ybar/xbar; /* the ratio estimate*/ 
 e=y-bhat*x; 
 vard=(ssq(e)-(sum(e))**2/n)/(n-1); 
 varbhat=((bign-n)/(bign*n))*vard/(xbar**2); /* estimated variance   
                         for the estimate*/ 
 sebhat=sqrt(varbhat);   /* standard error */ 
 print " Ratio Estimation"; 
 print ybar xbar bhat varbhat sebhat; 
quit; 
run; 

 

The output below gives a ratio estimate B̂  of 1.2137 with the SE being 0.1891, 

which matches the results we obtained earlier using the first approach. 

 

Ratio Estimation 

 

 

   YBAR    XBAR       BHAT    VARBHAT     SEBHAT 

 

1146.87  944.92  1.2137218  0.0357606  0.1891048 

 

Ratio estimation is also used to estimate the total and mean of a single variable 

to increase the precision of the estimates. Ratio estimation gives better performance 

than the regular estimation of the mean of y when y and the auxiliary variable x are 

linearly related, and specifically, when the data are well fit by a straight line through 

the origin. In the discussion of one-stage cluster sampling with an SRS of clusters 

later in the paper, an example is provided where the ratio estimate of the mean gives 

a smaller error variance than the unbiased estimate of the mean. 

Regression Estimation 

Although ratio estimation works best for data that are well fit by a straight line 

through the origin, regression estimation might be more suitable for data that scatter 

around a straight line with an intercept, which is modeled by y = β0 + β1x. 

With Ux  assumed to be known, the regression estimator of Uy  is determined 

by 
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reg 0 1

ˆ ˆˆ
Uy x     (10) 

 

where 
0̂  and 

1̂  are the least squares regression coefficients. 

The regression estimator is biased. Its standard error can be approximated as 

 

  
2

reg
ˆSE 1 esn
y

N n

 
  

 
  (11) 

 

where  0 1
ˆ ˆ

i i ie y x    . 

One way to obtain the standard error is to calculate 2

es  from the residual sum 

of squares in the regression analysis output. Another possibility is to, as in ratio 

estimation, create the variable ei, and run PROC SURVEYMEANS on the new 

variable. Lastly, the estimation can be implemented through the IML environment. 

Using ‘counties.dat’, treat population as the auxiliary variable and estimate the total 

number of physicians in the United States, along with the standard error. The 1993 

United States total population was estimated to be 255,077,536. The regression 

procedure in SAS (PROC REG) is used to obtain the ANOVA table and regression 

coefficients: 

 
proc reg data=counties; 
 model PHYSICIA=TOTPOP; 
run; 

 

The REG Procedure 

Model: MODEL1 

Dependent Variable: PHYSICIA 

 

Analysis of Variance 

 

            Sum of        Mean 

Source              DF      Squares      Square  F Value  Pr > F 

 

Model                1    239521351   239521351  2068.16  <.0001 

Error               98     11349761      115814                  

Corrected Total     99    250871112                              
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Root MSE            340.31440  R-Square   0.9548 

Dependent Mean      297.17000  Adj R-Sq   0.9543 

Coeff Var           114.51842                    

 

 

Parameter Estimates 

 

Parameter    Standard     

Variable   DF     Estimate       Error    t Value  Pr > |t| 

 

Intercept  1     -54.23128    34.89764      -1.55    0.1234 

TOTPOP     1       0.00296  0.00006519      45.48    <.0001 

 

with ˆ 255,077,536xt  , 
1

ˆ 0.00296  , and 
0

ˆ 54.23128   , the total number of 

physicians is estimated by 

 

  yreg 1 0
ˆ ˆˆ ˆ 255,077,536 0.00296 3141 54.23128 584689.0561xt t N           

 

 
11349761 11349761

338.5913
1 99

es
n

  


 , 

 

so 

 

  yreg

100 338.5913
ˆSE 1 3141 1 104644.8691

3141 100

esn
t N

N n
      . 

 

The same result can be obtained by creating  0 1
ˆ ˆ

i i ie y x     and applying the 

regular SURVEYMEANS procedure to obtain the sum of ei and associated error. 

Suppose PROC REG was previously conducted, and coefficients 0̂ (-54.2313) and 

1̂ (0.0030) were obtained. The SAS code for obtaining the standard error of the 

regression estimator and its output are shown below: 

 

data reg; 
set counties; 
wt=3141/100; 
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e=PHYSICIA-(-54.23128+TOTPOP*0.00296); 
run; 
 
proc surveymeans total=3141 sum; 
var e; 
weight wt; 
run; 

 

The SURVEYMEANS Procedure 

 

Data Summary 

 

Number of Observations      100 

Sum of Weights             3141 

 

 

Statistics 

 

Variable          Sum     Std Dev 

e         1724.554742      104648 

 

Stratified Sampling with an SRS in Each Stratum 

Stratified sampling means the population is divided into a number of mutually 

exclusive and exhaustive strata, and a probability sample is drawn from each 

stratum independently. The simplest form of stratified sampling where an SRS is 

taken from each stratum is of interest. 

Let H denote the number of strata; Nh denote the number of sampling units in 

stratum h; 
hy  denote the sample mean in stratum h; and 2

hs  denote the sample 

variance in stratum h. The population total and mean are estimated by 

 

 str

1

ˆ
H

h h

h

t N y


  , (12) 

 

 str

1

H
h

h

h

N
y y

N

  . (13) 
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Table 1. The number of plots sampled from each zone in seals.data 

 

Zone Number of Plots Plots Sampled 

1 68 17 

2 84 12 

3 48 11 

Total 200 40 

 
 

The variances of the estimates are 

 

  
2

2

str

1

ˆ ˆV 1
H

h h
h

h h h

n s
t N

N n

 
  

 
  , (14) 

 

  
2 2

str

1

V̂ 1
H

h h h

h h h

n N s
y

N N n

  
   

  
  . (15) 

 

The approximate 100(1 – α)% confidence interval for the mean is 

 str 2 strSEy z y . 

To implement stratified sampling analysis in PROC SURVEYMEANS, 

create a weight of Nh/nh for each observation in stratum h. Other than the data file 

with the weight value in it, a file is needed that specifies stratum name and the 

corresponding Nh. Specifically, Nh should take on the variable name of ‘_total_’ in 

this file. In PROC SURVEYMEANS, a statement specifying the name of the 

stratum variable should be added. 

This example uses ‘seals.dat’ (Lohr, 1999, p. 123), which is on the number of 

breathing holes found in sampled areas of Svalbard fjords. The study was intended 

to estimate ringed seal populations. The study area was divided into three zones 

which define the strata. The total number of plots and the plots sampled in each 

zone are presented in Table 1. 

The number of breathing holes in each sampled plot was recorded. Lohr 

(1999) showed the data as an example of post-stratification, where an SRS was 

taken from the entire population and then the number of units belonging to each 

stratum in the selected sample was recorded. For illustration purposes, these data 

are treated as a regular stratified sampling example because of its simplicity and 

accessibility. To estimate the total number of breathing holes in the study region, 

along with its standard error, we use the following SAS program: 
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data totals; /* This file gives Nh for each stratum */ 
input zone _total_ @@; 
cards; 
1 68 2 84 3 48 
; 
run; 
 
data seals; 
infile 'c:\sampling\seals.dat' dsd firstobs=2; 
input zone holes; 
if zone=1 then wt=68/17; 
if zone=2 then wt=84/12; 
if zone=3 then wt=48/11; 
run; 
 
proc surveymeans data=seals total=totals mean clm sum clsum;  
    /* 'total=' specifies the name of the file containing Nh */ 
strata zone/list;    
    /* the option 'list' gives more detailed information about 
     each stratum */ 
var holes; 
weight wt; 
run; 

 

This program leads to the following SAS output: 

 

The SURVEYMEANS Procedure 

 

Data Summary 

 

Number of Strata             3 

Number of Observations      40 

Sum of Weights             200 

 

Stratum Information 

 

Stratum        Population  Sampling 

Index     zone     Total     Rate   N Obs  Variable        N 

1            1        68    25.0%      17     holes       17 

2            2        84    14.3%      12     holes       12 

3            3        48    22.9%      11     holes       11 

 

Statistics 
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Std Error    Lower 95%    Upper 95%    

Variable       Mean    of Mean  CL for Mean  CL for Mean         Sum     Std Dev 

Holes      4.985909   0.590132     3.790188     6.181631  997.181818  118.026447 

 

           Lower 95%     Upper 95% 

Variable  CL for Sum    CL for Sum 

holes     758.037521   1236.326115 

 

Because the total was being estimated, examine the sum. The number of breathing 

holes in the study region is estimated to be 997.1818 with standard error being 

118.0264. 

One-Stage Cluster Sampling with an SRS of Clusters 

In cluster sampling, the population is divided into blocks, called clusters or primary 

sampling units (psus). Individual elements, which are secondary sampling units 

(ssus), are allowed in the sample only if they belong to a cluster that is included in 

the sample. Consider one-stage cluster sampling, where every element within a 

sampled cluster is included in the sample. Note that this just becomes an SRS with 

the units being the clusters and the variable on the unit being the total for the cluster. 

The notation for cluster sampling is quite different than that for SRS and 

stratified sampling. It is defined as follows: 

 

N = number of clusters or psus in the population 

n = number of clusters or psus included in the sample 

Mi =  number of ssus in the ith cluster 

K = 
1

N

ii
M

  = total number of ssus in the population 

ti = total in the ith cluster 

 

There are two ways to estimate population totals and means: using unbiased 

estimation and using ratio estimation which is biased. Applying unbiased 

estimation, 

 

 unb
ˆ

i

i S

N
t t

n 

   , (16) 
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 unb
unb

ˆ
ˆ t
y

K
   (17) 

 

with variances estimated by 

 

  
2

2

unb
ˆ ˆV 1 tsn

t N
N n

 
  

 
 , (18) 

 

where 

 

 

2

2 unb
ˆ1

ˆ
1

t i

i S

t
s t

n N

 
  

  
  , 

 

and 

 

    unb unb2

1ˆ ˆˆ ˆV Vy t
K

  . (19) 

 

When K is not known, only ratio estimation can be applied, which we will discuss 

later. 

To obtain the unbiased estimate of the total in SAS, ignore the individual 

elements, and use the results for the sum in simple random sampling with the cluster 

totals as the observations and with weight being N/n. The unbiased estimate of 

population mean can be obtained in a similar way through scaling the cluster totals 

by 1/K. 

The Green Globules data set (Lohr, 1999, p. 172) is used to demonstrate the 

SAS computation. The data set was originally a two-stage cluster sampling with 

SRS at each stage. Modifications to the data were made so that a one-stage cluster 

sampling scenario could be applied. Suppose the new candy Green Globules is 

being test marketed in an area of upstate New York. The market research firm 

decides to sample 6 of the 45 towns in the area and examine the number of cases of 

Green Globules sold in all supermarkets in the selected towns. The data set consists 

of two variables: town, which refers to the town the examined supermarket belongs 

to; and ncases, which refers to the number of cases sold in the examined 

supermarket. Suppose the total number of supermarkets is 252. The following SAS 

code reads in the data set and calculates unbiased estimates of the population total 

and mean. 
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data casesold; 
 input town ncases @@; 
 datalines; 
 1 146  1 180  1 251  1 152  1 72  1 181  1 171  1 361  
 1 73  1 186 
 2 99  2 101  2 52  2 121  
 3 199  3 179  3 98  3 63  3 126  3 87  3 62 
 4 226  4 129  4 57  4 46  4 86  4 43  4 85  4 165  
 5 12  5 23  
 6 87  6 43  6 59 
 ; 
run; 
 
proc means data=casesold nway; 
 class town; 
 var ncases; 
 output out=tout sum=ts; 
run; 
 
data tvalue; 
 set tout; 
 newy=ts/252; 
 wt=45/6; 
run; 
 
proc surveymeans data=tvalue total=45 sum; 
 weight wt; 
 var ts newy; 
run; 

 

As can be seen from the SAS code, the MEANS procedure was run to save the 

cluster totals into an output file “tout”. The next step determines the weight, and 

defines the new variable “newy” by dividing the cluster totals by the total number 

of supermarkets, which is for the purpose of estimating the population mean. The 

SURVEYMEANS procedure requested the sum and produced the following 

output: 

 

The SURVEYMEANS Procedure 

 

Data Summary 

 

Number of Observations       6 

Sum of Weights              45 
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Statistics 

 

Variable        Sum      Std Dev 

ts            29565        10316 

newy     117.321429    40.934698 

 

The unbiased estimate of the population total (i.e., the total number of cases 

of Green Globules sold in the area) is 29565 with a SE of 10316. The estimate of 

the mean (i.e., the average number of cases of Green Globules sold in a supermarket 

in the area) is 117.3214 with a SE of 40.9347. 

Using ratio estimation, the population mean and total are estimated by 

 

 ˆ ii S

ii S

t
y

M









 , (20) 

 

 ˆ
r̂ rt Ky  , (21) 

 

with variances estimated by 
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  (23) 

 

In SAS, running PROC SURVEYMEANS directly with the cluster statement on 

the variable of interest produces the correct analysis for ratio estimation of the mean. 

Note however that choosing the sum option in the surveymeans procedure does not 

produce an estimate of the total. 

 
proc surveymeans data=casesold total=45 mean; 
 cluster town; 
 var ncases; 

run; 
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The SURVEYMEANS Procedure 

 

Data Summary 

 

Number of Clusters           6 

Number of Observations      33 

 

 

Statistics 

 

                        Std Error 

Variable        Mean      of Mean 

ncases    119.454545    21.384999 

 

Note that the ratio estimate of the mean (i.e., 119.4545) takes a different value 

from the unbiased estimator, and in this example it has a smaller standard error of 

21.3850. 

Two-Stage Cluster Sampling with SRS at Each Stage 

In two-stage cluster sampling, subsample only some of the elements of selected 

clusters. Consider an SRS of ssus is selected from each cluster. The same notations 

used with one-stage cluster sampling will be used, with the addition of mi as the 

number of ssus chosen from the ith cluster. 

The individual psu total is estimated by 

 

 ˆ

i

i
i ij i i

j S i

M
t y M y

m

    (24) 

 

Using unbiased estimation, the population total and mean are estimated by 

 

 unb
ˆ

î

i S

N
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n 

   , (25) 

 

 unb
unb

ˆ
ˆ t
y

K
  . (26) 

 

The variances of the estimates are estimated by 
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  
2 2

2 2

unb
ˆ ˆV 1 1t i i

i

i S i i

s m sn N
t N M

N n n M m

  
     

   
  , (27) 

 

where 
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and 

 

    unb unb2

1ˆ ˆˆ ˆV Vy t
K

  . (28) 

 

The unbiased estimate of the total can be obtained through the SURVEYMEANS 

procedure with the “cluster” option and weight of NMi/nmi. The variance can be 

seen as composed of two pieces, with the first piece being 

2
2 1 isn

N
N n

 
 

 
 and the 

second piece being 
2

21 i i
ii S

i i

m s
M

M m

 
 

 
 : 

 

    unb
ˆ ˆV first piece second piece

N
t

n
    

 

The first piece of the variance is the variance of the sum obtained through 

running the SURVEYMEANS procedure with the “cluster” statement and a weight 

of NMi/nmi. The second piece of the variance is given by the variance of the sum 

through running the SAS surveymeans procedure with the cluster variable specified 

in the “strata” statement and a weight of Mi/mi. The example below demonstrates 

the details. 

The example uses the data set named ‘books.dat’ (Lohr, 1999, p. 170). A 

home owner with a large library needs to estimate the purchase cost and 

replacement value of the book collection for insurance purposes. Twelve shelves 

were randomly selected from a total of 44 shelves, and 5 books were randomly 

selected from each of the selected shelves. This is a two-stage cluster sampling with 
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SRS at each stage. In this example, N = 44, n = 12, Mi is different for each 

bookshelf (Mis are given in Table 5.5 in the book), and mi = 5. Suppose it is desired 

to estimate the total replacement value of the book collection. SAS code for 

manipulating the data set and conducting the analysis is as follows: 

 
option ls=80 nodate; 
data a; 
 infile 'c:\sampling\books.dat' dlm=',' firstobs=2; 
 input shelf number purchase replace; 
 if shelf=2 then bigmi=26; 
 if shelf=4 then bigmi=52; 
 if shelf=11 then bigmi=70; 
 if shelf=14 then bigmi=47;  
 if shelf=20 then bigmi=5; 
 if shelf=22 then bigmi=28; 
 if shelf=23 then bigmi=27; 
 if shelf=31 then bigmi=29; 
 if shelf=37 then bigmi=21; 
 if shelf=38 then bigmi=31; 
 if shelf=40 then bigmi=14; 
 if shelf=43 then bigmi=27; 
 wt=44*bigmi/12/5; 
 wt2=bigmi/5; 
run; 
 
/*to get the first piece of variance of t^ */ 
proc surveymeans data=a total=44 sum; 
 cluster shelf; 
 weight wt; 
 var replace; 
run; 
 
/*to create a new file with _total_ being the cluster size Mi */ 
proc means data=a nway; 
 class shelf; 
 var bigmi; 
 output out=ssize mean=_total_; 
run; 
 
/*to get the second piece of variance of t^ */ 
proc surveymeans data=a total=ssize sum; 
 strata shelf/list; 
 var replace; 
 weight wt2; 

run; 
 



YING LU 

935 

SAS output: 

 

The SURVEYMEANS Procedure 

 

Data Summary 

 

Number of Clusters              12 

Number of Observations          60 

Sum of Weights          1382.33333 

 

 

Statistics 

 

Variable       Sum       Std Dev 

replace      32638   5613.166224 

 

 

 

The SURVEYMEANS Procedure 

 

Data Summary 

 

Number of Strata            12 

Number of Observations      60 

Sum of Weights             377 

 

 

Statistics 

 

Variable          Sum      Std Dev 

replace   8901.200000   610.297665 

 

The first piece of the variance is 5613.1662242 and the second piece of the variance 

is 610.2976652. Therefore, 
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  
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Again, ratio estimation could also be used with the population mean and total 

estimated by 

 

 
ˆ

ˆ ii S
r

ii S

t
y

M









 , (29) 

 

 ˆ
r̂ rt Ky  , (30) 

 

with 

 

  
22

2

2

1 1ˆ ˆV 1 1 i ir
r i

i S i i

m ssn
y M

M N n nN M m

   
      

    
  , (31) 

 

where 
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and 

 

    2ˆ ˆ ˆˆV Vr rt K y  . (32) 

 

As with the variance of the unbiased estimator, the variance of the ratio estimator 

can also be seen as the linear combination of two variance components. For the 

variance of the mean, for example, the first piece is 
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    2

1ˆ ˆV first piece second piecery
M nN

   . 

 

Note that the second piece takes exactly the same form as the second piece of 

the estimated variance of the unbiased total, which is given by the variance of the 

sum through running the SAS surveymeans procedure with the cluster variable 

specified in the strata statement and weight of Mi/mi. The first piece can be seen as 

the sample variance of 
ˆˆ

ˆ i i r
i

t M y
e

M


 . Therefore, the first piece can be obtained by 

creating this variable 
îe  and running the surveymeans procedure for SRS on the 

new variable in order to get the first component of the desired variance for the ratio 

estimator. 

Use the previous ‘books’ for unbiased estimation in two-stage cluster 

sampling. To estimate the average replacement cost per book use ratio estimation: 

 

/*Although the data are at ssu level, this will give Mbar as m is equal 
across clusters*/ 
proc means mean data=a nway; 
 var bigmi; 
run; 

 
Analysis Variable : bigmi 

 
      Mean 
31.4166667 

 

The above SAS code gives the estimate of average cluster size 31.4167M  . 

Using M , the ratio estimate of the mean is 

 

 unb
ˆ 32637.73ˆ 23.6106
ˆ 31.416667*44

r

t
y

K
    . 

 

The following SAS code and result lead to the variance of the ratio estimate of the 

mean: 

 
/*The new variable gettihat is created here to facilitate getting ti’s 
in the next step */ 
data a; 
 set a; 
 gettihat=replace*bigmi/5; 
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run; 
 
proc means data=a nway sum mean; 
 class shelf; 
 var gettihat bigmi; 
 output out=ratio1 sum=tihat temp1 mean=temp2 bigmi; 
run; 
 
data ratio2; 
 set ratio1; 
 ei=(tihat-23.61061*bigmi)/31.4166667; 
 keep shelf tihat bigmi ei; 
run; 
 
proc surveymeans data=ratio2 total=44 mean; 
 var ei; 

run; 
 

The SURVEYMEANS Procedure 
 

Data Summary 
 

Number of Observations      12 
 
 

Statistics 
 

                         Std Error 
Variable          Mean     of Mean 
ei        7.9575595E-8    5.410291 

 

Therefore 

 

 
 

 

2 2

2

1ˆ ˆV 5.410291 610.297665 29.9860
12*44*31.416667

ˆSE 5.4760

ry
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

  

Stratified Sampling with One-Stage Cluster Sampling 
(Using SRS) within Each Stratum 

Consider stratified sampling with one-stage cluster sampling within each stratum. 

Let H denote the number of strata; Nh denote the total number of psus (i.e., clusters) 

within stratum h, and nh denote the selected number of psus (or clusters) within 
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stratum h; thi denote the total for psu (cluster) i in stratum h, and th denote the total 

for stratum h; Mhi denote the number of individual observations (ssus) for cluster i 

within stratum h; 2

ths  denote the sample variance of thi in stratum h; K denote the 

total number of individual observations. 

 

Horvitz-Thompson estimation 

 

Using the Horvitz-Thompson procedure (Horvitz & Thompson, 1952), the 

population total and mean are estimated by: 
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When K is known, 
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    2

1ˆ ˆˆ ˆV VU HTy t
K

  . (36) 

 

The implementation of cluster sampling under stratified sampling is 

straightforward in SAS. PROC SURVEYMEANS can be run with the stratum and 

cluster statements specified and the weight being Nh/nh. 
 
 
Table 2. Sampling design information for the ice cream spending data set 

 

Grade Number of Study Groups Number of Students 

7 608 1,824 

8 252 1,025 

9 403 1,151 

Total 1,263 4,000 
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The data set used for illustration purpose comes from Example 96.1 of the 

SAS/STAT® 13.1 User’s Guide (SAS Institute Inc., 2013). The study population 

is a junior high school with a total of 4,000 students in grades 7, 8, and 9. The 

variable of interest is how much these students spend weekly for ice cream. The 

clusters are study groups within grades. In each grade, a single stage cluster 

sampling is applied. Suppose the objective is to estimate t = the total amount spent 

by students (over all grades) and 
Uy  = the mean spending per student, assuming 

that there are 4,000 total students. Table 2 shows the number of study groups and 

number of students in each grade. 

Below is the SAS code that reads in the data set and conducts the analysis. 

Note that the variable StudyGroup identifies a student’s study group. It is possible 

for students from different grades to have the same study group number because 

study groups are sequentially numbered within each grade. 

 

option ls=80 nodate; 
 data IceCreamStudy; 
   input Grade StudyGroup Spending @@;  
   datalines;  
  7 34 7   7 34 7  7 412 4   9 27 14   
  7 34 2   9 230 15  9 27 15   7 501 2  
  9 230 8   9 230 7  7 501 3   8 59 20  
  7 403 4   7 403 11  8 59 13   8 59 17  
  8 143 12   8 143 16  8 59 18   9 235 9  
  8 143 10   9 312 8  9 235 6   9 235 11 
  9 312 10   7 321 6  8 156 19   8 156 14  
  7 321 3   7 321 12  7 489 2   7 489 9  
  7 78 1   7 78 10  7 489 2   7 156 1 
  7 78 6   7 412 6  7 156 2   9 301 8 
 ; 
run; 
 
data StudyGroups; 
 input Grade _total_; datalines; 
 7 608 
 8 252 
 9 403 
 ; 
 
data withweight; 
 set IceCreamStudy; 
 if grade=7 then wt=608/8; 
 if grade=8 then wt=252/3; 
 if grade=9 then wt=403/5; 
run; 
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proc surveymeans sum data=withweight total=StudyGroups; 
 strata Grade /list; 
 cluster StudyGroup; 
 var spending; 
 weight wt; 

run; 
 

SAS output is presented below: 

 
The SURVEYMEANS Procedure 

 
Data Summary 

 
Number of Strata             3 
Number of Clusters          16 
Number of Observations      40 
Sum of Weights          3162.6 

 
 

Stratum Information 
 

Stratum        Population    Sampling                                   
Index   Grade       Total        Rate   N Obs  Variable     N  Clusters 
1           7         608       1.32%      20  Spending    20         8 
2           8         252       1.19%       9  Spending     9         3 
3           9         403       1.24%      11  Spending    11         5 

 
Statistics 

 
Variable        Sum       Std Dev 
Spending      28223   3456.556840 

 

Therefore, ˆ 28223HTt   and    ˆˆ ˆSE V 3456.5568HT HTt t  . Further, K = 4000, 

1
ˆ 7.0557U HTy t

K
   and    

1ˆ ˆSE SE 0.8641U HTy t
K

  . 

 

Ratio estimation  As before, ratio estimation can also be carried out. 

The ratio estimator of the mean is determined by 
ˆ

ˆ
ˆr

t
y

K
 . Although t̂  is available 

from the demonstration of Horvitz-Thompson estimation in the early part of this 

section, K̂  needs to be obtained to be able to compute the ratio estimate. K̂  can be 

obtained in a similar way as t̂  is obtained. 
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data withweight; 
 set IceCreamStudy; 
 size=1; 
 if grade=7 then wt=608/8;  
 if grade=8 then wt=252/3; 
 if grade=9 then wt=403/5; 
run; 
 
data StudyGroups; 
 input Grade _total_; datalines; 
 7 608 
 8 252 
 9 403 
 ; 
 
proc surveymeans sum data=withweight total=StudyGroups; 
 strata Grade /list; 
 cluster StudyGroup; 
 var size; 
 weight wt; 

run; 
 

SAS output: 

 
The SURVEYMEANS Procedure 

 
Data Summary 

 
Number of Strata             3 
Number of Clusters          16 
Number of Observations      40 
Sum of Weights          3162.6 

 
 

Stratum Information 
 

Stratum         Population  Sampling                                  
Index   Grade        Total      Rate   N Obs Variable     N  Clusters 
1           7          608     1.32%      20     size    20         8 
2           8          252     1.19%       9     size     9         3 
3           9          403     1.24%      11     size    11         5 

 
 

Statistics 
 

Variable          Sum      Std Dev 
size      3162.600000   237.486276 
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From the SAS output, ˆ 3162.6000K   [and  ˆSE 237.4863K  ], which leads to 

the ratio estimate of 
ˆ 28223ˆ 8.9239
ˆ 3162.6

r

t
y

K
   . 

There are several approaches to obtain the variance. One approach defines the 

variance of ˆ
ry  as 
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where 
ˆ

ˆ
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i

t M y
e

K


 . 

The following SAS code creates the variable ei and computes its sample 

variance, and hence the variance of ˆ
ry . 

 

proc means sum n nway data=IceCreamStudy; 
 class grade studygroup; 
 var spending; 
 output out=output1 sum=thi n=mhi; 
run; 
 
data ratio; 
 set output1; 
 if grade=7 then wt=608/8; 
 if grade=8 then wt=252/3; 
 if grade=9 then wt=403/5;  
 ei=(thi-mhi*8.923860115)/3162.6; 
run; 
 
proc surveymeans sum varsum data=ratio total=StudyGroups; 
 strata Grade /list; 
 var ei; 
 weight wt; 

run; 
 

 

SAS output: 

 
The SURVEYMEANS Procedure 

 
Data Summary 
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Number of Strata          3 

Number of Observations      16 
Sum of Weights         1263 

 
 

Stratum Information 
 

Stratum         Population  Sampling                         
Index    Grade       Total      Rate   N Obs  Variable     N 
1            7         608     1.32%       8  ei           8 
2            8         252     1.19%       3  ei           3 
3            9         403     1.24%       5  ei           5 

 
 

Statistics 
 

Variable           Sum     Std Dev   Var of Sum 
ei        9.517492E-11    0.650859     0.423618 

 

Therefore  ˆ ˆV 0.4236ry  . 

The second approach to obtain the variance of the ratio estimator makes use 

of Taylor’s theorem (Woodruff, 1971) and specifies 

 

        2

2
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ˆr U Uy t y K y t K

K
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  (38) 

 

K̂ ,  ˆ ˆV t , and  ˆ ˆV K  were previously determined, and  ˆˆCov ,t K  must be 

estimated. This can be obtained through 
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Again using the Ice Cream data set, the following SAS code leads to 

 ˆˆCov ,t K : 

 
/*the second approach to get the variance for ratio estimator*/ 
proc corr cov data=output1; 
 var thi mhi; 
 by grade; 
run; 
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data covar1; 
 input Grade covar nh bignh; datalines; 
 7 2.42857143 8 608 
 8 17.5 3 252 
 9 6.45 5 403 
 ; 
 
data covar2; 
 set covar1; 
 cov=bignh**2*(1-nh/bignh)*covar/nh; 
run; 
 
proc means sum data=covar2 nway; 
 var cov; 

run; 
 

SAS output: 

 
Grade = 7 

The CORR Procedure 
 

2 Variables:  thi   mhi 
 
 

Covariance Matrix, DF = 7 
 

               thi           mhi 
 

thi    37.71428571    2.42857143 
mhi     2.42857143    0.28571429 

 
 

Grade = 8 
The CORR Procedure 

 
2 Variables:  thi   mhi 

 
 

Covariance Matrix, DF = 2 
 

               thi           mhi 
 

thi    358.3333333    17.5000000 
mhi     17.5000000     1.0000000 

 
Grade = 9 
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The CORR Procedure 
 

2 Variables:  thi   mhi 
 
 

Covariance Matrix, DF = 4 
 

               thi           mhi 
 

thi    85.20000000    6.45000000 
mhi     6.45000000    0.70000000 

 
 

The MEANS Procedure 
 

Analysis Variable : cov 
 

Sum 
683681.12 

 

From the previous SAS output, 

 

    ˆ ˆ ˆ ˆˆV 11947785.19, 3162.6, V 56400t K K     

 

and 

 

  
 2

Cov ,ˆˆCov , 1 683681.12
hi hih

h

h h h

t Mn
t K N

N n

 
   

 
  . 

 

Therefore 

 

 

       2

2

2

2

1ˆ ˆ ˆ ˆ ˆˆ ˆ ˆˆ ˆV V V 2 Cov ,
ˆ

1
11947785.19 8.92386 *56400 2*8.92386*683681.12

3162.6

0.4236

r u uy t y K y t K
K

   
 

    



  

 

which is similar to what is obtained from the first approach. 
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One-Stage Cluster Sampling with Unequal Probabilities 

Sometimes sampling using unequal probabilities can prove to be more efficient and 

provide more accurate estimates. Two new notations are added: πi is the inclusion 

probability, the probability that the ith cluster is in the sample; πij is the probability 

that clusters i and j are both in the sample. Because this is one-stage cluster 

sampling, whenever a cluster is selected, all units with a cluster are selected. The 

Horvitz-Thompson estimator of the population total is 

 

 ˆ i
HT

i S i

t
t



  . (40) 

 

The variance can be estimated by 

 

    
2

2
ˆ ˆV 1 i ik i k i k

HT i

i S i S k Si ik i k
k i

t t t
t

  


     



     . (41) 

 

SAS does not provide any built-in procedures to analyze sampling with 

unequal probabilities. The calculation of the variance of the Horvitz-Thompson 

estimator needs to be programmed using the IML procedure. On the other hand, the 

point estimate can be obtained directly by using the SURVEYMEANS procedure 

with the appropriate weight specified. 

The analysis of sampling with probability proportional to size (pps) is 

illustrated for a one-stage sample using ‘agpop.dat’ (Lohr, 1999, p. 437). The data 

are from the U.S. 1992 Census of Agriculture. Only data from the state of Alabama 

are used for the purpose of illustration. The relevant variables are county, acres92 

(i.e., the number of acres devoted to farms in 1992), and farms92 (i.e., the number 

of farms in 1992). The objective is to estimate the total acres in 1992 in the state of 

Alabama. Although data is available for all counties, first select 6 counties with 

probability proportional to size. Assume there is only acreage information on the 6 

sampled counties, and the number of farms is assumed to be known previously for 

all counties. Below is the SAS code to select a pps sample and conduct the analysis 

based on the pps sample. 

 

option ls=80 nodate; 
data a; 
infile 'C:\yingl\Sampling\agpop.dat' dlm=',' firstobs=2; 
input COUNTY :$25. STATE $ ACRES92  ACRES87  ACRES82  FARMS92 
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FARMS87  FARMS82  LARGEF92  LARGEF87  LARGEF82  SMALLF92  
SMALLF87  SMALLF82  REGION $; 
if state='AL'; 
 /* convert missing values */ 
  array numval[*] _numeric_; 
  do i = 1 to dim(numval); 
  if numval[i]=-99 then numval[i]=.; 
  end;       
keep county state farms92 acres92; 
run;   
 
/* the sum of acres92 based on the original data set gives the true 
population total */            
proc means mean sum n; 
var farms92 acres92; 
run; 
/* pps option in surveyselect procedure indicates sampling with 
probability proportional to size, and jtprobs gives the joint 
probabilities of selection */ 
proc surveyselect data=a out=cout method=pps sampsize=6 jtprobs; 
size farms92; 
run; 
proc print data=cout; 
run; 
proc surveymeans data=cout mean sum; 
var acres92; 
weight SamplingWeight; 
run; 
 
proc iml; 
use cout; 
read all var{acres92} into t; 
read all var{SelectionProb} into pi; 
read all var{JtProb_1  JtProb_2  JtProb_3  JtProb_4  JtProb_5  
JtProb_6}into jprob; 
close cout; 
n=nrow(t); 
tht=t(t)*(1/pi); 
var1=0; 
var2=0; 
do i =1 to n-1; 
var1 = var1 + (t[i]**2)*(1 - pi[i])/(pi[i]**2); 
do k =i+1 to n; 
var2=var2+(2*t[i]*t[k]*(jprob[i,k]-
pi[i]*pi[k])/(pi[i]*pi[k]*jprob[i,k])); 
end; 
end; 
var1 = var1 + (t[n]**2)*(1 - pi[n])/(pi[n]**2); 
var=var1+var2; 
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se1=sqrt(var1); 
se=sqrt(var); 
print tht sel se var1 var2 var; 

run; 

 

SAS output: 

 
The MEANS Procedure 

 
Variable         Mean          Sum   N 
FARMS92   565.7462687     37905.00  67 
ACRES92     126131.69   8450823.00  67 

 
 

The SURVEYSELECT Procedure 
 

Selection Method  PPS, Without Replacement 
Size Measure      FARMS92 

 
Input Data Set             A 
Random Number Seed     45721 
Sample Size                6 
Output Data Set         COUT 

 
 
 

Selection Sampling 
Obs  COUNTY             STATE  ACRES92 FARMS92     Prob   Weight  Unit 

 
1    LOWNDES COUNTY     AL      199714     315  0.04986  20.0556     1 
2    WASHINGTON COUNTY  AL       85086     361  0.05714  17.5000     2 
3    ETOWAH COUNTY      AL       85821     774  0.12252   8.1621     3 
4    LIMESTONE COUNTY   AL      207226     910  0.14404   6.9423     4 
5    BALDWIN COUNTY     AL      167832     941  0.14895   6.7136     5 
6    LAUDERDALE COUNTY  AL      201892    1143  0.18093   5.5271     6 

 
 

Obs  JtProb_1  JtProb_2  JtProb_3  JtProb_4  JtProb_5  JtProb_6 
 

1    0.000000  0.002414  0.005175  0.006085  0.006292  0.007579 
2    0.002414  0.000000  0.005940  0.006984  0.007222  0.008699 
3    0.005175  0.005940  0.000000  0.015307  0.015829  0.019066 
4    0.006085  0.006984  0.015307  0.000000  0.018849  0.022702 
5    0.006292  0.007222  0.015829  0.018849  0.000000  0.023569 
6    0.007579  0.008700  0.019066  0.022702  0.023569  0.000000 
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The SURVEYMEANS Procedure 
 

Data Summary 
 

Number of Observations           6 
Sum of Weights          64.9007321 

 
 

Statistics 
 

Std Error   
Variable       Mean     of Mean         Sum     Std Dev 
ACRES92      152173       28311     9876129     2914572 

 
 
 

      THT        SE1         SE       VAR1       VAR2        VAR 
 

9876129.3  4651452.5  2934751.8  2.1636E13  -1.302E13  8.6128E12 

 

Therefore 

 

  ˆ ˆ9876129.3, SE 2934751.8HT HTt t   . 

General Complex Surveys 

General complex surveys can usually be analyzed using Horvitz-Thompson 

estimation or ratio estimation given that the probability and joint probability of 

selection are obtainable. Given the extensive analyses needed for complex survey 

designs, SAS implementation is not given here. In general, when a survey involves 

several stages of cluster and stratified sampling, methodologies illustrated above 

can be applied stage-by-stage to conduct analyses from the bottom stage to the top 

stage. 

For general illustration, consider a data set (Lohr, 1999) that relates to a 1991 

nationwide survey conducted in the Gambia designed to estimate the prevalence of 

bed net use in rural areas. 

 

“The sampling frame consisted of all rural villages of fewer than 3000 

people in The Gambia. The villages were stratified by three geographic 

regions (eastern, central, and western) and by whether the village had a 

public health clinic (PHC) or not. In each region five districts were chosen 

with probability proportional to the district population as estimated in the 
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1983 national census. In each district four villages were chosen, again with 

probability proportional to census population: two PHC villages and two 

non-PHC villages. Finally, six compounds were chosen more or less 

randomly from each village, and a researcher recorded the number of beds 

and nets, along with other information, for each compound.” (p. 223) 

 

The two variables of interest are Y = the number of beds with nets and X = the 

number of beds, and the sampling scheme used is 

 

1. stratified sampling (region)  

2. cluster sampling (district) 

3. stratified sampling (PHC/non-PHC) 

4. cluster sampling (village) 

5. SRS (compound) 

 

Let t̂y  denote the estimated total for number of beds with nets, t̂x  denote the 

estimated total for number of beds, M denote the total number of clusters, and m 

denote the number of clusters selected. Notations for subscripts are as follows: Let 

r denote region (r = 1, 2, 3), rd denote district d in region r, rdp denote PHC 

situation p (with 1 indicating PHC and 2 indicating non-PHC) in district d in region 

r, rdpv denotes village v with PHC situation p in district d and in region r, and rdpvc 

denotes compound c in village v with PHC situation p in district d and in region r. 

 

Horvitz-Thompson estimation of the total   Let πi be the inclusion 

probability, the probability that the ith unit is in the sample; and πij is the probability 

that units i and j are both in the sample. The Horvitz-Thompson procedure specifies 

that the calculation of the estimates or standard errors should start from the bottom 

stage up. During each stage of sampling, 

 

 
ˆ

ˆ i
HT

i S i

t
t



   (42) 

 

with variance of 

 

    
 2

2

ˆ ˆVˆ
ˆ ˆV 1

ii ik i k i k
HT i

i S i S k S i Si ik i k i
k i

tt t t
t

  


       



       , (43) 
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where 
ît  and  ˆ ˆV it  are obtained from the sampling analysis at the lower stage. 

The steps below give t̂y  and  ˆ ˆV ty , and the same procedure would be 

followed to get t̂x  and  ˆ ˆV tx . At the 5th stage, which is the lowest stage, 

 

 
6

1

ˆ
6

rdpv

rdpv rdpvc

c

M
ty y



   , (44) 

 

 2 2
6

ˆ ˆV
6

rdpv

rdpv rdpv rdpvc

rdpv

M
ty M sy

M


     . (45) 

 

At the 4th stage, 

 

 
2

1

ˆ
ˆ rdpv

rdp

v v

ty
ty



  , (46) 

 

where 2
rdpv

v

rdp

POP

POP
  , which is the inclusion probability for village v, and which 

is proportional to census population. 

 

  
22 2 2

2
1 1 1

ˆ ˆˆ ˆ ˆ V
ˆ ˆV 1

rdpvrdpv rdpv rdpkvk v k
rdp v

v v k v vv vk v k v

tyty ty ty
ty

  


       

              , (47) 

 

where πvk is the inclusion probability for both village v and village k. 

At the 3rd stage: 

 

 
2

1

ˆ ˆ
rd rdp

p

ty ty


  , (48) 

 

 
2

1

ˆ ˆˆ ˆV Vrd rdp

p

ty ty


        . (49) 

 

At the 2nd stage: 
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5

1

ˆ
ˆ rd

r

d d

ty
ty



  , (50) 

 

where 5rd
d

r

POP

POP
  , which is the inclusion probability for district d, and which is 

proportional to census population. 

 

  
25 5 5

2
1 1 1

ˆ ˆVˆ ˆ ˆ
ˆ ˆV 1

rdrd dk d k rd rk
r d

d d k d dd dk d k d

tyty ty ty
ty

  


       

              , (51) 

 

where πdk is the inclusion probability for both village v and village k. 

At the top stage: 

 

 
3

1

ˆ ˆ
r

r

ty ty


  , (52) 

 

 
3

1

ˆ ˆˆ ˆV V r

r

ty ty


        . (53) 

 

Ratio estimation of the mean   To estimate the population mean, 

ratio estimation can usually be used at the top/first level of the sampling design. 

The general formula for ratio estimation is as follows: 

 

 
ˆ

ˆ
ˆ

ty
B

tx
  , (54) 

 

  
 

 
3

2 2
1

ˆ ˆˆ ˆV 1ˆ ˆ ˆ ˆˆ ˆV V
ˆ ˆ r r

r

ty Btx
B ty Btx

tx tx 


    . (55) 

 

To compute  ˆ ˆV B , create a new variable ˆ
i i ie y Bx  ; then the estimation of 

 ˆ ˆV B  reduces to the estimation of   2

1ˆ ˆ ˆ ˆV V
ˆ

B te
tx

    . The estimation of ˆ ˆV te    

follows a similar procedure as the estimation of ˆ ˆV ty    as illustrated above. 
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Specifically, using the same example, obtain ˆ ˆV te    by conducting stage-by-stage 

analysis. 

At the 5th stage, which is the lowest stage, 

 

 
6

1

ˆˆ ˆ ˆ
6

rdpv

rdpv rdpvc rdpv rdpv

c

M
te e ty Btx



    , (56) 

 

 2 2
6

ˆ ˆV
6

rdpv

rdpv rdpv rdpvc

rdpv

M
te M se

M


     . (57) 

 

At the 4th stage: 

 

 
2

1

ˆ
ˆˆ ˆ ˆrdpv

rdp rdp rdp

v v

te
te ty Btx



    , (58) 

 

where 2
rdpv

v

rdp

POP

POP
  , which is the inclusion probability for village v, and which 

is proportional to census population. 

 

  
22 2 2

2
1 1 1

ˆ ˆˆ ˆ ˆ V
ˆ ˆV 1

rdpvrdpv rdpv rdpkvk v k
rdp v

v v k v vv vk v k v

tety te te
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  


       

              , (59) 

 

where πvk is the inclusion probability for both village v and village k. 

At the 3rd stage: 
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1

ˆˆ ˆ ˆ ˆ
rd rdp rd rd

p

te te ty Btx
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p
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

        . (61) 

 

At the 2nd stage: 
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
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where 5rd
d

r

POP

POP
  , which is the inclusion probability for district d, and which is 

proportional to census population. 
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r d

d d k d dd dk d k d
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where πdk is the inclusion probability for both village v and village k. 

At the top stage: 
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ˆ ˆ
r
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te te


  , (64) 

 

 
3

1

ˆ ˆˆ ˆV V r

r

te te


        . (65) 

Conclusion 

Although complex sampling schemes could effectively reduce the time and 

financial resources required to estimate population characteristics in education, 

such sampling might also introduce error and bias if the data resulting from the 

sample designs were analyzed in an inappropriate way. With very few established 

software systems available to conduct analyses for complex sampling designs in a 

“point-and-click” way, it would be helpful to have reference documentation that 

gives instructions on how to use SAS to conduct sampling analyses by utilizing the 

current features associated with the SURVEYMEANS procedure as well as the 

SAS IML programming environment. This paper reviewed various sampling 

designs within the framework of probability sampling and provided documentation 

on how to use SAS to estimate means and proportions in different sampling designs. 
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