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Chapter 9 

Cluster Sampling 

 

It is one of the basic assumptions in any sampling procedure that the population can be divided into a finite 

number of distinct and identifiable units, called sampling units. The smallest units into which the 

population can be divided are called elements of the population. The groups of such elements are called 

clusters. 

 

In many practical situations and many types of populations, a list of elements is not available and so the use 

of an element as a sampling unit is not feasible. The method of cluster sampling or area sampling can be 

used in such situations. 

  

In cluster sampling 

- divide the whole population into clusters according to some well-defined rule. 

- Treat the clusters as sampling units. 

- Choose a sample of clusters according to some procedure. 

- Carry out a complete enumeration of the selected clusters, i.e., collect information on all the 

sampling units available in selected clusters. 

 

Area sampling 

In case, the entire area containing the populations is subdivided into smaller area segments and each 

element in the population is associated with one and only one such area segment, the procedure is called as 

area sampling. 

 

Examples: 

 In a city, the list of all the individual persons staying in the houses may be difficult to obtain or even 

maybe not available but a list of all the houses in the city may be available. So every individual 

person will be treated as sampling unit and every house will be a cluster. 

 The list of all the agricultural farms in a village or a district may not be easily available but the list 

of village or districts are generally available. In this case, every farm in sampling unit and every 

village or district is the cluster. 
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Moreover, it is easier, faster, cheaper and convenient to collect information on clusters rather than on 

sampling units. 

 

In both the examples, draw a sample of clusters from houses/villages and then collect the observations on 

all the sampling units available in the selected clusters. 

 

Conditions under which the cluster sampling is used: 

Cluster sampling is preferred when  

(i) No reliable listing of elements is available, and it is expensive to prepare it. 

(ii) Even if the list of elements is available, the location or identification of the units may be 

difficult. 

(iii) A necessary condition for the validity of this procedure is that every unit of the population under 

study must correspond to one and only one unit of the cluster so that the total number of 

sampling units in the frame may cover all the units of the population under study without any 

omission or duplication. When this condition is not satisfied, bias is introduced. 

 

Open segment and closed segment: 

It is not necessary that all the elements associated with an area segment need be located physically within 

its boundaries. For example, in the study of farms, the different fields of the same farm need not lie within 

the same area segment. Such a segment is called an open segment. 

 

In a closed segment, the sum of the characteristic under study, i.e., area, livestock etc. for all the elements 

associated with the segment will account for all the area, livestock etc. within the segment. 

 

Construction of clusters: 

The clusters are constructed such that the sampling units are heterogeneous within the clusters and 

homogeneous among the clusters. The reason for this will become clear later. This is opposite to the 

construction of the strata in the stratified sampling. 

 

There are two options to construct the clusters – equal size and unequal size. We discuss the estimation of 

population means and its variance in both the cases. 
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Case of equal clusters 

 Suppose the population is divided into N  clusters and each cluster is of size M . 

 Select a sample of n  clusters from N  clusters by the method of SRS, generally WOR. 

So  

 total population size = NM  

 total sample size = nM . 

 

Let 

:ijy  Value of the characteristic under study for the value of thj  element ( 1, 2,..., )j M  in the thi  cluster 

( 1, 2,..., ).i N  

1

1 M

i ij
j

y y
M 

   mean per element of thi  cluster . 
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Estimation of population mean: 

First select n  clusters from N  clusters by SRSWOR. 

Based on n  clusters, find the mean of each cluster separately based on all the units in every cluster. So we 

have the cluster means as 1 2, ,..., ny y y . Consider the mean of all such cluster means as an estimator of 

population mean as 

 
1

1 n

cl i
i

y y
n 

  . 

Bias: 

 

1

1

1
( ) ( )

1
(since SRS is used)

.

n

cl i
i

n

i

E y E y
n

Y
n

Y













  

Thus cly  is an unbiased estimator of .Y  

Variance: 

The variance of cly  can be derived on the same lines as deriving the variance of sample mean in SRSWOR. 

The only difference is that in SRSWOR, the sampling units are 1 2, ,..., ny y y  whereas in case of cly , the 

sampling units are 1 2, ,..., .ny y y  

2 2Note that is case of SRSWOR, ( ) and ( )
N n N n

Var y S Var y s
Nn Nn

     
,  

 

2

2

( ) ( )cl cl

b

Var y E y Y

N n
S

Nn

 



 

where 2 2

1

1
( )

1

N

b i
i

S y Y
N 

 
   which is the mean sum of square between the cluster means in the 

population. 

Estimate of variance: 

Using the philosophy of estimate of variance in case of SRSWOR again, we can find  

 2( )cl b

N n
Var y s

Nn


  

where 2 2

1

1
( )

1

n

b i cl
i

s y y
n 

 
  is the mean sum of squares between cluster means in the sample . 
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Comparison with SRS : 

If an equivalent sample of nM  units were to be selected from the population of NM  units by SRSWOR, 

the variance of the mean per element would be 

2

2

2 2

1 1

2

2

              ( ) .

                .

- 1
where   and ( ) .

1

Also         ( )

                .
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N M

ij
i j
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where 

 2 2

1

1 N

w i
i

S S
N 

   is the mean sum of squares within clusters in the population 

 2 2

1

1
( )

1

M

i ij i
j

S y y
M 

 
   is the mean sum of squares for the thi  cluster. 

The efficiency of cluster sampling over SRSWOR is 

 
2

2

2
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


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Thus the relative efficiency increases when 2
wS  is large and 2

bS  is small. So cluster sampling will be 

efficient if clusters are so formed that the variation the between cluster means is as small as possible while 

variation within the clusters is as large as possible. 
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Efficiency in terms of intra class correlation  

The intra class correlation between the elements within a cluster is given by 
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or 

2 2 2 2( 1)( 1) ( 1) ( 1)bMN M S M N S NM S        

or  2 2
2
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The variance of cly  now becomes 
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   
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The variance of the sample mean under SRSWOR for large N  is 

 
2

( ) nM

S
Var y

nM
. 

The relative efficiency for large N  is now given by 

 

2

2

( )

( )

1 ( 1)

1 1
; 1.

1 ( 1) 1

nM

cl

Var y
E

Var y

S
nM

S
M
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M M









 
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  

 

 If 1M   then 1,E   i.e., SRS and cluster sampling are equally efficient. Each cluster will consist 

of one unit, i.e., SRS. 

 If 1,M   then cluster sampling is more efficient when 

1E   

or ( 1) 0M    

or 0.   

 If 0, then  1E  , i.e., there is no error which means that the units in each cluster are arranged 

randomly. So sample is heterogeneous. 

 In practice,   is usually positive and   decreases as M  increases but the rate of decrease in   is 

much lower in comparison to the rate of increase in .M  The situation that 0   is possible when 

the nearby units are grouped together to form cluster and which are completely enumerated. 

 There are situations when 0.   

 

Estimation of relative efficiency:  

The relative efficiency of cluster sampling relative to an equivalent SRSWOR is obtained as 

 
2

2
b

S
E

MS
 . 

An estimator of E  can be obtained by substituting the estimates of 2 andS 2.bS  

Since 
1

1 n

cl i
i

y y
n 

   is the mean of n  means iy  from a population of N  means , 1, 2,...,iy i N  which are 

drawn by SRSWOR, so from the theory of SRSWOR, 
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Thus 2
bs  is an unbiased estimator of 2

bS . 

Since 2 2

1
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w i
i

s S
n 

   is the mean of n  mean sum of squares 2
iS  drawn from the population of N  mean sums 

of squares 2 , 1, 2,..., ,iS i N so it follows from the theory of SRSWOR that  
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Thus 2
ws  is an unbiased estimator of 2

wS . 
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 

 
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An unbiased estimator of 2S  can be obtained as  

 2 2 21ˆ ( 1) ( 1)
1 w bS N M s M N s

MN
     
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
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An estimate of efficiency 
2

2
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If N  is large so that ( 1)M N MN   and 1 ,MN MN   then 
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2

2

1 1ˆ w

b

sM
E

M M Ms

    
 

. 

 

Estimation of a proportion in case of equal cluster 

Now, we consider the problem of estimation of the proportion of units in the population having a specified 

attribute on the basis of a sample of clusters. Let this proportion be P . 

 

Suppose that a sample of n  clusters is drawn from N  clusters by SRSWOR. Defining 1ijy   if the thj  unit 

in the thi  cluster belongs to the specified category (i.e. possessing the given attribute) and 0ijy   otherwise, 

we find that  
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where iP  is the proportion of elements in the thi  cluster, belonging to the specified category and 

1 , 1, 2,...,i iQ P i N    and 1 .Q P   Then, using the result that cly  is an unbiased estimator of Y , we 

find that 
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This variance of ĉlP  can be expressed as 
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The variance of ĉlP  can be estimated unbiasedly by 
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where ˆ ˆ .cl clQ I P   The efficiency of cluster sampling relative to SRSWOR is given by 
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If N  is large, then 
1

.E
M

  

An estimator of the total number of elements belonging to a specified category is obtained by multiplying 

ĉlP  by NM , i.e. by ĉlNMP . The expressions of variance and its estimator are obtained by multiplying the 

corresponding expressions for ĉlP  by 2 2.N M  

 

Case of unequal clusters:  

In practice, the equal size of clusters are available only when planned. For example, in a screw 

manufacturing company, the packets of screws can be prepared such that every packet contains same 

number of screws. In real applications, it is hard to get clusters of equal size. For example, the villages with 

equal areas are difficult to find, the districts with same number of persons are difficult to find, the number 

of members in a household may not be same in each household in a given area. 

 

Let there be N  clusters and iM  be the size of thi  cluster, let 
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Suppose that n  clusters are selected with SRSWOR and all the elements in these selected clusters are 

surveyed. Assume that iM ’s ( 1, 2,..., )i N  are known. 
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Based on this scheme, several estimators can be obtained to estimate the population mean. We consider 

four type of such estimators. 

 

1. Mean of cluster means: 

Consider the simple arithmetic mean of the cluster means as 
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The bias of cy  is  
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The mean squared error is 
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2. Weighted mean of cluster means 

Consider the arithmetic mean based on cluster total as 
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Thus *
cy  is an unbiased estimator of .Y  The variance of *

cy  and its estimate are given by 
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Note that the expressions of variance of *
cy  and its estimate can be derived using directly the theory of 

SRSWOR as follows: 
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Since SRSWOR is followed, so 
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So an unbiased estimator of variance can be easily derived. 

 

3. Estimator based on ratio method of estimation 

Consider the weighted mean of the cluster means as 
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It is easy to see that this estimator is a biased estimator of the population mean. Before deriving its bias and 

mean squared error, we note that this estimator can be derived using the philosophy of ratio method of 

estimation. To see this, consider the study variable iU  and auxiliary variable iV  as 
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The ratio estimator based on U  and V  is 
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Since the ratio estimator is biased, so **
cy  is also a biased estimator. The approximate bias and mean 

squared errors of **
cy  can be derived directly by using the bias and MSE of ratio estimator. So using the 

results from the ratio method of estimation, the bias up to second order of approximation is given as 

follows 
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The MSE of **
cy  up to second order of approximation can be obtained as follows: 
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An estimator of MSE can be obtained as 
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4. Estimator based on unbiased ratio type estimation 
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This estimator is based on unbiased ratio type estimator. This can be obtained by replacing the study 
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A consistent estimate of this variance is 
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Comparison between SRS and cluster sampling: 

In case of unequal clusters, 
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This variance can be compared with any of the four proposed estimators. 
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The relative efficiency of **
cy  relative to SRS based sample mean 
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For *( ) ( ),c SRSVar y Var y  the variance between the clusters *2( )bS  should be less. So the clusters should be 

formed in such a way that the variation between them is as small as possible. 
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Sampling with replacement and unequal probabilities (PPSWR)  

In many practical situations, the cluster total for the study variable is likely to be positively correlated with 

the number of units in the cluster. In this situation, it is advantageous to select the clusters with probability 

proportional to the number of units in the cluster instead of with equal probability, or to stratify the clusters 

according to their sizes and then to draw a SRSWOR of clusters from each of the stratum. We consider 

here the case where clusters are selected with probability proportional to the number of units in the cluster 

and with replacement. 

 
Suppose that n  clusters are selected with ppswr, the size being the number of units in the cluster. Here 

isiP  the probability of selection assigned to the thi  cluster which is given by 
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Thus ˆ
cY  is an unbiased estimator of .Y  
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We now derive the variance of ˆ .cY  
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An unbiased estimator of the variance of ˆ
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which can be seen to satisfy the unbiasedness property as follows: 
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