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Abstract

Snowball sampling, where existing study subjects recruit further subjects from among

their acquaintances, is a popular approach when sampling from hidden populations.

Since people with many in-links are more likely to be selected, there will be a selection

bias in the samples obtained. In order to eliminate this bias, the sample data must be

weighted. However, the exact selection probabilities are unknown for snowball samples

and need to be approximated in an appropriate way. This paper proposes different

ways of approximating the selection probabilities and develops weighting techniques

using the inverse of the selection probabilities. Some numerical examples for small

graphs and simulations on larger networks are provided to compare the efficiency

of the weighting techniques. The simulation results indicate that the suggested re-

weighted estimators should be preferred to traditional estimators with equal sample

weights for the initial snowball sampling waves.

1 Introduction

Standard sampling and estimation techniques require the sample selection to be done

with known probabilities. However, for many populations of interest it is impracti-

cal or impossible to construct a sampling frame needed for the calculation of these

probabilities. This could be due to the difficulty of locating members of the target

population. These populations are referred to as hidden populations and are charac-

terized by their lack of sampling frames and in some cases, also their strong privacy

concerns. Examples of such populations are drug users, commercial prostitutes, il-

legal immigrants and the homeless. Kalton and Anderson (1986) discuss difficulties

in statistical inference for rare or hidden populations and review different sampling

procedures and their limitations.

One approach to sampling members of hard-to-reach populations while still ob-

taining unbiased estimates of population characteristics is through snowball sampling,

where the initially sampled individuals will lead you to the other members of the hid-

den population, which in turn lead to other members and so on. Biernacki & Waldorf

(1981) review problems and techniques of snowball sampling and applications of its
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use can be found in Welch (1975) and Snow et al. (1981). Using this approach to

include elements from the hidden population will lead to a sample selection bias. This

occurs since those with many contacts are more likely to be included in the sample.

Frank (1977, 1979) and Thompson and Frank(2000) consider statistical problems for

snowball sampling and Thompson (2006) treats a special case of snowball sampling

called walk sampling, where only one further vertex is selected at each sampling stage.

Since snowball samples are selected with unequal probabilities, the sample mean

can no longer be used as a basis for making unbiased estimation about population

characteristics. The degrees of the sampled elements will, at each sampling wave,

determine the sample sizes obtained and if these degrees are correlated to the outcome

of the study variable, we may get large biases in our estimations. To obtain an unbiased

estimate, it is necessary to weight the sample data in some way. Typically these weights

are inversely related to probabilities of selection.

In this paper, the probabilities of selection at each sampling wave are approxi-

mated in different ways and weighting techniques are applied to the sample data. The

weighting techniques proposed are all based on the link information in the obtained

sample, and substitute the equal sample weights in traditional estimators. Some sim-

ulations on larger networks are performed. The simulations consider two special cases

and compare the efficiency of the proposed weighting techniques in terms of bias cor-

rection when making estimations using snowball samples of five waves.

2 Snowball Sampling

The snowballing process is as follows. It is done by first identifying a few members

of the population, the initial sample, also referred to as starting seeds. A convenient

way of finding the initial seeds is by site sampling. For instance, homeless could be

initially sampled at a shelter.

The next step is then to ask each of the gathered seeds to identify other members

of the population. Those who are not in the initial sample but mentioned by at least

one individual in the initial sample, are part of the first wave of the snowball sample.

Those who are neither members of the initial sample nor the first wave but mentioned

by at least one member of the first wave, are said to belong to the second wave of the

snowball sample, and so on. A wave is final if no new individuals are mentioned that

have not been mentioned earlier or when a predefined wave number or sample size is

reached.

2.1 Estimations with Snowball Samples

Some notations are introduced. Let U be a population with a known or unknown

number of elements N . If the population is represented by a graph, the elements

are the vertices and the contacts are the edges between the vertices. Each element is

characterized by a real-valued property yi which is unknown but observable if element i

is sampled. Assuming that the population consists of drug-users, yi may be quantities

like the average amount of money spent on drugs per week or an indicator variable

which equals 1 if the subject has a permanent residence. We are interested in the

average quantity

ȳU =
∑

U

yi
N

.
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There exists no list or frame to sample from but the elements are connected by

social relations. We pick an initial sample S0 that we know of and these are questioned

about yi. Thereafter the elements of the initial sample are asked to give names and

addresses of other members of the population whom they know of. We set zij = 1 if

person i mentions person j. These are the edges between the elements of a graph. For

simplicity, we assume that this relation is symmetric, i.e. zij = zji. In other words, if

person i mentions person j, then person j will also mention person i. Thus the graphs

considered are undirected. The adjacency matrix of the graph is defined as A, where

ijth element of A is zij . The degree for each vertex i ∈ U is obtained by summing

across the columns of each row in A, i.e. di =
∑N

j=1
zji. Note that we assume that

the graphs considered are all connected, i.e there are no isolated vertices.

The usual procedure is to stop the sampling after a fixed number of waves or when

a sample of a sufficient size is reached. When sampling is done in snowball waves the

chosen initial seed and its out-going edges will determine the obtained sample size.

Traditionally, this is considered a sample and the population average, ȳU , is estimated

by an unweighted sample average
∑

S yi
∑

S 1
=

∑n

i=1
yi

n
,

where S is the obtained sample and n its size.

It is obvious that persons with many contacts, di =
∑

U
zij , will have larger

tendency to be included in the sample. If yi is related to the number of social relations

there may occur a large sample selection bias. However, since we observe the number

of relations we may try to use a weighted estimator,

y∗

ω =
∑

U

ωiyi, (1)

ωi are weights which can be computed from the sample, where ωi = 0 for all i /∈ n, and

satisfy
∑

ωi = 1. Note that we assumed symmetry, i.e. zij = zji. If this assumption

does not hold one has to ask about how many people person i believes would mention

him/her.

It is obvious that the estimate y∗

ω is unbiased if and only if E(ωi) = 1/N for all i,

that is

E(y∗

ω) = E(
∑

U

ωiyi) =
∑

U

E(ωi)yi =
∑

U

yi
N

= ȳN . (2)

3 Probability Related Weighting Techniques

Using equal sample weights when making estimations about population characteristics

was shown to lead to biased results when snowball sampling. To adjust for this, sam-

pled elements ought to be weighted by the reciprocal of their selection probabilities. In

order to do this, the inclusion probabilities of the vertices in the population are approx-

imated as shown below, and the weights are modified according to the approximations

made. These modified weights will then be used in the estimator formulas (such as

the average given in equation 1) and are referred to as design-based estimators.

3.1 Re-Weighting (RW)

Different re-weighting procedures (RW) are proposed here to evaluate whether or not

the weights can be adjusted to approach E(ωi) = 1/N . These weighting techniques are
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based on approximations of the sample selection probabilities by using the observed

information about the relations between the elements in the sample. Using this infor-

mation is rational since the probability of vertices in the population being included

in the sample are correlated with their corresponding degrees. In other words, all

weighting techniques presented here are based on the observed degrees in the sample.

Practically, these re-weightings can quite easily be implemented on social networks

by asking each sampled unit to name their outgoing relations, even if we stop the

sampling after that specific unit. By doing this we will obtain the degree of each

sample element and approximating the sample selection probabilities needed for re-

weighting.

In order to obtain
∑

ωi = 1,

all proposed weights are normalized according to

ωi =
ϑi

∑

S ϑi

,

where ϑi is defined for each of the four RW’s in the following subsections.

3.1.1 RW1

The first proposed technique is performed by assuming that the inverse of the degrees

are approximations of the inclusion probabilities for each vertex i in the population,

i.e.

P (i ∈ S) ∝ di for i = 1, . . . , N.

Thus, the selected sample elements are weighted proportional to these probabilities

and we have that

ϑi =
1

di
for i = 1, . . . , n.

Intuitively, these weights seem like a good and straightforward option. However,

the degrees of the vertices in the intitial sample will not affect their probabilities of

selection. Taking this into consideration, RW2-RW4 are developed.

3.1.2 RW2

The second re-weighting technique, RW2, is similar to RW1 but with the difference

that we change the weights of the starting elements for the reason mentioned above.

This initial seed value is arbitrarily chosen and set proportional to 2. For the first

wave we have the selection probability for the initial vertex proportional to 1/2, and

the selection probabilities for the remaining (n− 1) draws proportional to 1/di. Thus

we have that

P (i ∈ S) ∝

{

2 if vertex i is a seed

di if vertex i is not a seed,

and

ϑi =

{

1/2 if vertex i is a seed

1/di if vertex i is not a seed.
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3.1.3 RW3

The third re-weighting method approximates the sample selection probabilities with

the inverse of degrees but with an unknown constant, c, added to the inclusion prob-

abilities of the vertices in the sample. Thus we have that

P (i ∈ S) ∝ di + c for i = 1, . . . , N,

and

ϑi =
1

di + c
for i = 1, . . . , n.

Throughout this paper, we will use the constant value c = 0.5. Note also that when

c = 0, RW3 coincides with RW1.

3.1.4 RW4

The last re-weighting technique presented here is somewhat different than the previous

ones. Here, we will use the observed mean degrees of the sample to approximate the

inclusion probabilities.

Assume the inclusion probability of the initial vertex is (1/N) and the inclusion

probabilities for the remaining (n − 1) draws is equal to di/
∑N

i di, where di is the

degree of vertex i. Thus, the sample selection probabilities for each possible sample is

approximately inversely proportional to
[

1

N
+ (n− 1)

di
∑N

i di

]

.

After multiplying with
∑

di/(n − 1), and estimating the population mean degree

(
∑N

i di/N) by the sample mean degree (
∑n

i di/n), we have that

1

ϑi

=

[

d̄

(n− 1)
+ di

]

, for i = 1, . . . , n.

In this expression all terms can be calculated from the sample implying that no infor-

mation about the population is needed.

4 Simulations

In this section, simulations are performed to evaluate how the different re-weightings

(RW1-RW4) work for larger networks.

When the degrees di of all vertices i ∈ U are determined, the networks can be

generated by the algorithm presented in Shafie (2009), where the creation of a simple

graph with only one type of undirected edges is described. It is only possible to

construct such networks when a number of conditions are satisfied, one which is that

no degree may be larger than half of the sum of degrees, or larger than (N − 1).

In addition to earlier assumptions in this paper, we here assume that the vertices

consist of two separate groups, denoted A and B. The degrees of the vertices in the

two groups, dA and dB , are kept fixed and the snowballing from this network starts

with one initial seed chosen randomly from the graph population. This initial seed is

denoted by S0.

We consider the case when sampling is done in waves, that is, the sample sizes

obtained at each wave depend on the degrees of the vertices selected at the previ-

ous wave. Thus, as our sampling procedure proceeds to the subsequent waves, the
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probability of the elements in group A selecting those in group B (and vice versa) is

proportional to the degrees of the vertices in the graph. The parameter of interest to

estimate is the proportion of group A in the graph population, πA., i.e. the population

average of the study variable which is a dichotomous variable taking on the value 1 if

the sampled element posses a specific property.

Further in this section, another simulation is run to illustrate the stopping rule

bias mentioned in section 3.5. A two group network of N = 100 is generated in the

same way as already mentioned. The proportion estimates of πA are compared and it

is shown that the biases differ depending on if we choose to sample in waves, or stop

the snowballing after a fixed sample size n has been reached.

4.1 Case 1: Proportion Estimates when the two popula-

tion groups are Equally Sized

We will consider two different simulation cases here and for both of these cases, snow-

ball sampling will be performed in five waves. For the first case, networks of size

N = 100 were simulated where the vertices in group A have degrees dA = 6 and the

degrees for the elements in group B is three times smaller, dB = 2. Both groups

are assumed to be equally sized implying that the parameter is equal to πA = 0.5.

From this network, snowball sampling was applied in 5 waves and the proportion of

group A was estimated using the traditional estimator with equal sample weights and

estimators with proposed RW weights.

Sample sizes obtained at each snowballing wave and the proportion estimates were

averaged over 1000 repeated runs. The simulation results are plotted in Figure 4, where

all four re-weighted proportion estimates are plotted with the traditional estimator,

against both wave number and expected sample sizes. As seen from Figure 4, using

the traditional estimator with equal sample weights will over-estimate πA.

All the re-weighted estimators perform better than PA,T at the initial waves of

the snowballing. For the first wave PA,RW4 result in the best estimations. For wave

two and three, PA,RW3 give the best estimation results. After these waves, all of the

re-weighted estimators fail in producing good estimation results and the traditional

estimator should be preferred.

How well each of the estimator performs is dependent on the obtained sample

sizes at each wave. When the sampling fractions increases, the traditional estimator

becomes the better option, implying that re-weightings should be considered when

snowballing less than 3 waves. Also, the standard errors decrease as the wave number

increases. This is due to the larger variation in sample sizes and sample group compo-

sitions at the initial waves, where there are more relation options to new individuals

not sampled in the previous waves.

For an estimation strategy (i.e. the combination of a sampling plan and an esti-

mator), when the sample comprises the population, an estimator is said to be Cochran

consistent if the value of the estimator is the same as the parameters of interest. As

seen, none of the proposed estimators PA,RW1 − PA,RW4 are Cochran consistent. In

fact, the bias of these estimator increase as n → N .
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Figure 1: Case 1 proportion estimates of πA averaged of 1000 repeated runs and

plotted against wave number and expected sample sizes at each wave.

4.2 Case 2: Proportion Estimates when the two popula-

tion groups are Un-Equally Sized

For the second simulation case, the network size remains the same (N = 100), but

we drop the assumption about equally sized groups and instead assume that group A

elements consist of only 20% of the population. Further, we assume a larger divergence

between the degrees of those in group A and those in group B. The degrees are set to

dA = 10 and dB = 2. As for the first simulation case, we use the traditional and the

re-weighted estimators for estimating πA. The results plotted in Figure 5. The results

are consistent with those for Case 1. PA,RW4 gives the smallest biases for the three

first snowballing waves and for the subsequent waves, the traditional estimator with

equal sample weights should be preferred.

Assume that we are interested in the estimation of another population proportion

denoted Q. For instance, assume that the population consists of drug-users grouped

after gender (A or B) and let Q be another binary study variable of heroin-users in the

population of drug-users. The distribution of this variable over the graph could for

instance be such that the majority of heroine-users are in group B, consistent with the

second simulation case given here. The expected value of Q̂ is then a linear function

of the estimated PA;

E(Q̂) = PAQA + (1− PA)QB .

As seen, if the selection bias is ignored in the estimations of PA, they will reflect on

other estimates made on population characteristics.
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Figure 2: Case 2 proportion estimates of πA averaged of 1000 repeated runs and

plotted against wave number and expected sample sizes at each wave.

5 Conclusions

In this paper, four different ways of approximating the selection probabilities of snow-

ball samples are presented using information about the degree of vertices in the ob-

tained sample. These probabilities are then used to weight the sample data to eliminate

the selection bias evident in the sampling procedure, i.e. the fact that people with

many ingoing links are more likely to be sampled. These weights are inversely related

to the probabilities of selection.

The weighting techniques are applied on snowball samples (performed in waves)

from small graphs of only six vertices with varying degrees, but also on larger simulated

two-group population networks with fixed degrees in each respective group. The results

show that all re-weightings are to be preferred to equal sample weights, but only for

the initial waves, where the selection bias is most visible. As the sampling fraction

increase, the bias of the traditional estimator with equal weights decrease while the

opposite occurs for the proposed estimators.

General conclusions about the re-weighting techniques can not be made since their

performance is highly dependent on the graph size and structure. For the simulations

made in this paper (N = 100), the fourth re-weighting, RW4, using the observed mean

degrees of the samples obtained to estimate the inclusion probabilities, was shown to

be preferable when estimating the group proportion of two group populations. In

this paper, the mean degree of the graph was estimated using a straight mean of the

observed degrees of the sampled elements.

To further evaluate the proposed weighting techniques and in order to get some-

what general results, larger simulations need to be performed. Also, one should con-
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sider the MSE and variance. For small samples the traditional estimator may be the

most preferable since the variance is smaller with equal sample weights.

We suggest a couple of topics for future research. One topic is how to estimate

N by using information of how many already sampled elements are mentioned in the

subsequent waves. Another topic is how to improve the estimates RW1-RW4 when

N is known (e.g. with the use of finite population correction factors). And finally, a

third topic is to combine these two topics.

In this paper, the approximations of the inclusion probabilities were all, as men-

tioned, based on the degrees of the sampled elements of the hidden population. These

degree-orders are self-reported by the sampled subjects and may be inaccurate in real-

life situations introducing bias in prevalence estimates. This emphasizes the need for

more research on methods to measure the degree of each respondent more accurately

and to study the robustness of these methods.
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