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Abstract

In this paper we investigate estimation of a class of semi-parametric models. The part of
the model that is not specified is the marginal distribution of the explanatory variables. The
sampling is stratified on the dependent variables, implying that the explanatory variables
are no longer exogenous or ancillary. We develop a new estimator for this estimation
problem and show that it achieves the semi-parametric efficiency bound for this case. In
addition we show that the estimator applies to a number of sampling schemes that have
previously been treated separately.
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1. Introduction

In econometric analyses one often assumes that observations are drawn ran-
domly from a large population. In reality it might neither be true, nor need it be
desirable to have such a sample. In this paper we will investigate how inference
might proceed for a particular class of nonrandom sampling schemes.

The starting point is a model in which two types of variables are distin-
guished. The first are the dependent variables whose distribution is to be ex-
plained in terms of the variables of the second type. The latter will be re-
ferred to as explanatory, independent, or regressor variables. We will assume
that the researcher has specified a parametric family for the distribution of the
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dependent variable conditional on the explanatory variables. Interest centers on
the parameters of this conditional distribution. We do not make assumptions
about the marginal distribution of the regressors other than assuming that they
do not depend on the parameters of the aforementioned conditional distribu-
tion.

If the sampling were random, the parameters of the conditional distribution
could be estimated consistently and efficiently by maximizing the conditional
likelihood function. Even if the sampling were exogenous, by which we mean
that the probability of a unit of the population being sampled depends on the
values of the explanatory variables, this method would lead to consistent and ef-
ficient estimates. We investigate sampling strategies that imply that the probability
of being sampled depends directly on the value of the dependent or endogenous
variables. The particular sampling schemes that we consider are based on a strat-
ification of the sample space. The sampling is not random because the probability
that a unit is drawn from a particular stratum is not equal to the probability that
an unit randomly drawn from the whole population is from that stratum. Within
the strata however, the sampling and population distribution are identical. This is
referred to in the literature as stratified sampling (Jewell, 1985), endogenous sam-
pling (Hausman and Wise, 1981), or biased sampling (Gill, Vardi, and Wellner,
1988).

Another way of looking at this is in terms of the ancillarity or exogene-
ity of the explanatory variables. If the sample is random or exogenous, the
marginal distribution of the regressors does not depend on the parameters of in-
terest. When the sampling is endogenous, the marginal distribution of the regres-
sors in the sample does depend on the parameters of interest, and consequently
the regressors are no longer ancillary or exogenous. The guiding principle is
that one should not condition the analysis on variables that are not ancillary,
because that might lead to a loss of efficiency, and one should condition on
variables that are ancillary, because a failure to do so can lead to paradoxical
results.

As an example, consider the following standard linear model:

Y=X'B+e  c|X ~ A(0,06%). (1)

If the density of X is A(x), for x € %, the joint density of ¥ and X can be written
as

/
Fo0 =262 o,
a o
where ¢(-) is the standard normal density function. Suppose that instead of a
random sample generated according to the model in (1), we have N; observa-
tions drawn randomly from the truncated sample space (—o0,0] x 2" and N,
observations drawn randomly from the truncated sample space (0,00) x 4. The
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likelihood for the full sample is

No # (25( — "ﬁ) »h(x,,) Ni+No (1705( o "ﬁ) < h(x,)
=1 7p 1
=l e ( )h( )z el fcb( )h(z)dz

where the first N, observations are those with y > 0 and the last N| observations
are those with y < 0. If we only have observations with y > 0, and therefore
No =0, we would have a truncated sample and the standard analysis of truncated
models applies. The same holds if Ny =0 and we have only observations with
v < 0. The complications arise if we have both observations with y > 0 and
observations with y < 0 but in proportions that differ from their proportions in
the population. Just combining efficient estimates from the two truncated samples
does not lead to efficient estimates from the full sample. Maximization of the
likelihood function or its logarithm is complicated by the fact that the marginal
population density of X, A(x), enters in the numerator as well as the denominator
of the joint density of ¥ and X. Efficiently estimation of the parameters of the
conditional distribution using the full sample, without parametrizing the marginal
density of x, is the aim of this paper.

The problem of estimation when the sampling is based on an endogenous strat-
ification of a continuous random variable has been considered before in work by
Hausman and Wise (1981), Jewell (1985), Gill, Vardi, and Wellner (1988), and
Kalbfleisch and Lawless (1988). Hausman and Wise propose a variety of estima-
tors and investigate their properties. One of our contributions is to develop a new
and efficient estimator for the model they consider. The procedure we follow in
deriving this estimator is similar to that used by Imbens (1992) in deriving an
efficient estimator for discrete choice models with choice-based sampling. This
procedure leads to a generalized method of moments estimator with the number
of moments equal to the number of parameters in the conditional density and
twice the number of strata minus one.

In addition we address an issue that has led to unnecessary complications in the
literature on stratified sampling. In this literature a distinction has often been made
between three types of sampling sehemes. The first, which we label multinomial
sampling, assumes that the stratum indicators are drawn independently from a
multinomial distribution. The second type, labelled standard stratified sampling,
is one of the sampling schemes discussed by Hausman and Wise (1981). It as-
sumes that the researcher samples fixed numbers of observations from each of
the strata. A third sampling scheme assumes that observations are drawn ran-
domly from the population but retained or discarded with stratum-specific prob-
abilities. This is referred to as variable probability sampling by Jewell (1985)
and Bernoulli sumpling by Kalbfleisch and Lawless (1988). It is also discussed
by Hausman and Wise. We will show that all three of these sampling schemes
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allow the researcher to use the estimation procedure that will be developed in
this paper.

The plan of the paper is as follows: In the next section the three sampling
schemes will be discussed. It will be argued that they are all in principle amenable
to the same estimation procedures. Section 3 contains the efficient estimation
procedure. It will be derived in two steps. First we analyze the case where the
regressors have a discrete distribution. Then we rewrite the equations character-
izing the maximum likelihood estimates in such a way that they do no longer
require discreteness of the explanatory variables. In Section 4 we analyze two
examples with the normal linear model and discuss the relations to the analysis
of truncated models. In the last section some concluding remarks will be made
and the main findings of the paper will be summarized.

2. Sampling schemes and likelihood functions

The notation in analyses where the sampling is nonrandom is usually cumber-
some. To some extent this cannot be avoided. One has to distinguish between the
population distribution on the one hand and the distribution according to which
the data are distributed on the other hand. If the sampling is random, these two
are equal, and if the sampling is exogenous, they differ but in a way immaterial
for the purposes of inference about the parameters of the conditional distribution.
Only in the case where the sampling is dependent on the endogenous variable
is the difference important. In this paper we try to keep the notation transpar-
ent without making it imprecise. Most of the notation will be introduced in the
first subsection. There we introduce the sampling scheme that we will work with
through most of the paper. In the second subsection we discuss standard strati-
fied sampling. In the third subsection Bernoulli sampling or variable probability
sampling will be discussed.

2.1. Multinomial sampling

Let ¥ and X be two, possibly vector-valued, random variables defined on
# x X. The joint probability density function in the population is

Jx)=fy|xp)-hx), (2)

where f(y|x, ) is a known function of y, x and an unknown parameter 8, and
h(x) is an unknown function. We are interested in the parameter f§ of the condi-
tional distribution of ¥ given X. We are not willing to make assumptions about
the marginal distribution of X. In that sense the problem is a semi-parametric
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one. With respect to , X is exogenous or ancillary! and Y is endogenous. If
one had at one’s disposal a random sample of X and Y, one could estimate
by maximizing the logarithm of the conditional likelihood function:

N
L(p)= Z%lnf(yn'xmﬁ)- 3)

Because the marginal distribution of X does not depend on f3, conditioning on
x does not entail a loss of efficiency, and there is no need to specify A(x) more
fully.

However, if the sampling scheme is not random, this easy separation no longer
exists in general. If the sampling is exogenous, i.e., the probability of being
sampled depends only on the exogenous variable X, then maximization of (3)
still leads to a consistent estimator for . We are, however, interested in more
general sampling schemes where the probability of being sampled depends on
Y as well as X. This makes the reluctance to specify #(x) a more complicated
issue.

Let 4, for s = 1,...T, be subsets of # x #. The %, are the strata from
which the observations are to be drawn. The probability of a randomly drawn
observation lying in % is

Oc= [, f(y]xB)h(x)dvdx. @)

The basic sampling scheme that we will in the course of this paper refer to as
multinomial sampling, is as follows: with probability H; we draw an observation
randomly from %. The H; are the sampling probabilities with H7 shorthand for
1 - ZL‘,I H;. With discrete Y this is the sampling scheme discussed by Manski
and McFadden (1981) in their analysis of choice-based sampling.

Examples of sampling strategies that fit in this framework are:

1. T=1, 4, =% x 2. Random sampling.

2. 6, =% x A, where 4, C . Pure exogenous sampling. Maximization of
the random sampling conditional likelihood still gives consistent and efficient
estimates.

3. 6, =%, x ¥ where ¥, C%. Pure endogenous sampling.

4. 61 =% x A, €, C ¥ x Z. In this case we have a random sample augmented
with extra observations drawn from part of the sample space.

5. 6N%, =0 if s # ¢, and UST:]%S =% x 4. This will be labelled a partioned
sample. In this case the population probabilities O, add up to one. This is not
necessarily the case for other sampling schemes.

! See Cox and Hinkley (1974) for a discussion of ancillarity and Engle et al. (1982) for a discussion
of the related concept of exogeneity.
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Let the random variable S be an indicator for the stratum from which an ob
servation was drawn. The sampling density of the triple (S, Y,X), as the density
induced by the sampling scheme will be called, is

g(S, ya-x) = H"g(yax | S)

=H. Sy |x p)
* [ f(z]x, BYh(v)dzdy

=ﬂf(y}x,ﬁ)h(x) for (y,x)€%, se{l,2,...,T}. (5)

Because f§ enters only in the conditional density of ¥ and X given S, S is exoge-
nous with respect to f§, or ancillary, in the analysis. One can therefore condition
on § in the analysis without loss of efficiency. We will come back to this is-
sue in the next section. The likelihood function for N independent observations
is

L (S UCH)
=1 Jg, Sz 0, pHh(v)dzde’

The distinguishing feature of endogenous sampling is that maximization of (6)
over f is in general not possible without parametrizing the density of the ex-
planatory variables, A(-). If the sampling were random, /() would factor out and
maximization would not involve the density of x. Here A(-) enters not only in
the numerator but also in the integral in the denominator, making it impossible
to factor it out.

In the remainder of this section we will introduce some additional notation and
highlight various aspects of endogenous sampling. Define the set %, , by

(6)

Ca={rve¥(yx)e%}.

%,.x is the set of y such that (y,x) is in %, implying that the triple (s, y,x) is
a potential observation. If we have pure endogenous sampling and if the strata
do not overlap, the sets %, would form a partitioning of %. In addition define
R(s,x,8) to be the probability that a randomly drawn observation is in stratum s
given x:

R(s,x,f)=Pr((¥,X) € €, | X =x)
=Pr(Y € €,,|X =x)
= [ flz|x,p)dz.

(6‘.\

So we have %;, =0 and R(s,x,) =0 if there is no y such that (y,x) € %,.
Note the relation between Q; and R(s,x, ). The latter is a known function of s,
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x, and . The former is also a function of s and f but the form of the functional
dependence is not known, because of the dependence on the unknown function
h(x). In fact, O, is the expectation of R(s, X, ), with the expecation taken over
the population distribution of X, A(x),

Qy = Pr ((Y,X) € %) = E[R(s, X, )] = [ R(s,x, B)h(x)dx.

We can calculate a number of conditional and marginal distributions from the
joint distribution of S, Y, and X. They illustrate the difference between random
sampling and endogenous sampling and some of them will be important during
the course of the paper.

1. The marginal sampling density of X:

e L ROP((Y.X)EE, | X =x)
H(X)—;HIQ(XII)—;H P(Y.X) €%,

(N

T H,
= h(x) 2 ~R(t.x. B).
=1 Ql‘
where we use the fact that the conditional density of X in the sample given
the stratum indicator S equals the population density of X within the stratum:

glx|s)=h(x|(Y,X)EE;)
— h(P(Y,X)E%, | X =x)/P((Y.X) € 6)).

The fact that the marginal distribution of X depends on f shows that X is
no longer exogenous with respect to f in the stratified sample. Hence the
estimator based on the conditional likelihood will not necessarily be efficient.
Note that in this case it is the sampling that implies that X is not exogenous,
not the parametrization of the model.

2. The conditional sampling density of S and YV given X:

. > a'R(t,x,ﬂ)

=1 2t

3. The conditional sampling density of ¥ given X now follows directly:

flxpg)y X H/O

H(rX)ES,

glvlx)y= 3  gnilx)= T
st Y 5 R(xf)
i=1 Ql

9)
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If the strata C; are not overlapping, then there is a unique ¢ such that (y,x) €
%, and this density is the same as the conditional density of ¥ and § given
X, given in (7).

4. The conditional sampling density of ¥ given S and X:

S lxB)

R(s,x,B) (10)

g(yls,x)=

The three conditional distributions g(y|x), g(y|s,x), and g(s, y|x) have par-
ticular importance. In each case we can consistently estimate f§ by maximizing
the associated conditional likelihood function. Some of the estimators proposed
by Hausman and Wise (1982) are based on this approach. However, in none
of these cases will the result in general be an efficient estimator, because x
is not exogenous. Another interesting issue in this context is the exogeneity
or ancillarity of the stratum indicator S. Conditioning on S does not in gen-
eral imply a loss of efficiency. However, if one is already conditioning on a
variable that is not ancillary, then conditioning on s is no longer innocuous.
Inference based on g(s, y|x) is in general more efficient than inference based
on g(v|x,s).

5. Another function that plays a special role is the bias function:

N

H —1
b(H, Q. p,x) = [Z —XR(S»x,ﬂ)} : (1)

s=1 s

This function has expectation equal to one if evaluated at the true values of
H, Q, and f. If it is equal to one for all x, the sampling is either random, or ¥
and X are independent. In both cases the sampling and population distribution
of X are identical; g(x) = h(x). For this condition to be fulfilled it is not
sufficient to have H; = Q; for all s, because the strata C; can be overlapping.
The first expression of the probability density function of (S,Y,X) in (5)
was in terms of H, B, and A(-). Subsequently it was written in terms of
H, B, Q, and A(:), with Q, shorthand for fc\. f(z|v, BYh(v)dzdv as in (4).
However, the role Q; plays in these models is much more important than just
as a way of compressing notation. The fact that most of the literature has
focused exclusively on the case where Q; is known a priori is a reflection
of this importance. In this paper we will propose an estimator for the finite-
dimensional parameter y = (H Q f) rather than for the infinite-dimensional
parameter (H f h(-)). Introducing Q allows one to eliminate A(-) from the
analysis and reduce the dimensionality of the problem to a finite number.
Whenever confusion might arise, stars will denote true or population values.
For example, * is the population value of the parameter  and Q= e JelL B
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h(v)dzdue is the true population proportion of people in stratum s. The estimator
that will be derived will allow for incorporation of linear restrictions on f,
Q. and f (with the restriction Q = Q* the most important of these) in a
straightforward manner.

2.2. Standard stratified sampling

It can be argued that the multinomial sampling scheme discussed in the previ-
ous section is not relevant. In practice a researcher would not draw the stratum
indicator from a multinomial distribution. Instead she might fix the number of
observations to be drawn randomly from each of the strata. This sampling scheme
is used by Hausman and Wise (1981) and by Cosslett (1981) in his analysis of
choice-based sampling. In this section we will investigate the consequences of
such a sampling strategy.

Let N; be the number of observations from stratum s, and let N be the S-
dimensional vector with typical element N,. Also, let s be the N-dimensional
vector with typical element s,, and y and x the matrices with rows y, and x,
respectively. The likelihood function for this sampling strategy can be factorized
into the marginal likelihood of s given N,, and the conditional likelihood of y
and x given s and N,

L= 1INy - Loy x|sN,). (12)
The second factor is equal to

N f‘(_.vn I Xns ﬁ )h(x” )
Lr(yx|sN;) = '
st = e e bz

(13)

This is identical to the conditional likelihood of y and x given s under multinomial
sampling. The likelihood of s given Ny is the likelihood of the sequence of
stratum indicators given the total number of observations to be drawn from each
stratum. Since this sequence is fixed by the researcher, it does not depend on
B or h(-), and therefore s is ancillary. In the case of multinomial sampling s
was also shown to be ancillary, and conditioning on it would therefore again not
entail a loss of efficiency. The likelihood principle implies that inference should
be identical for the two sampling schemes. Hence, we will proceed with the
inference as if the sampling were multinomial.

The conclusion of this section can therefore be summarized as follows: 1) s
is ancillary under both standard stratified sampling and multinomial sampling;
2) the conditional likelihood of y and x given s is identical for both sampling
schemes. These two results imply that we can ignore the actual sampling scheme
because efficient inference should be identical for both, according to the likelihood
principle.
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2.3. Bernoulli sampling

A third sampling scheme that has been considered in the literature is
known as Bernoulli sampling (Kalbfleisch and Lawless, 1988) and variable prob-
ability sampling (Jewell, 1985). It is also employed by Hausman and Wise
(1981).

The general sampling scheme is characterized as follows: A unit is drawn
randomly from the population. The researcher determines which stratum the unit
belongs to (for this purpose it is important that the strata are not overlapping). If
the corresponding stratum is s, the unit is retained with probability Ps, set by the
researcher. With probability 1 — P the unit is discarded. This efficiency of such
a sampling scheme clearly depends on the cost of measuring a stratum relative
to measuring x and y for any unit.

If we denote the event that an observation is retained by / =1 and its com-
plement by / =0, we can write the joint probability density of (Z,S,Y,X) as

gli,s, ,x) =Py - (1 = Po)' ™" f(y|x, B) - h(x).

We do not record the values of y and x for discarded observations. We might,
however, know the number of discarded observations. We assume here that this
is not the case. We therefore condition on / = 1. The conditional density of
(S, X)given I =1 is

Pof(y|x B)h(x)

gis, y. x| =1)= Pl =1)

Pof (3| x, BYh(x)
T
P, [ f(z| v, Byh(v)dzdo
C,

=1

_ B [x ()
T .
lel'Qz
(=

To connect this sampling scheme to the multinomial sampling scheme consid-
ered in Section 2.1, consider the following transformation of parameters from

(P.B.h(-)) to (H,B,h(-)):

H, = P,fc'f(z|v,[i)h(v)dzdv _ PO , (14)

T T
3P [ f(z|v, BYh(v)dzdy ZlPs - Os
5 C, s=
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fort=1,2,...,T—1,and Hr=1- {T:_Il H,. The joint density of (S, ¥,X) given
I =1 can then be written as

g(s, y.x [ 1 =1y =H, f(y |x, )h(x)/ [ f(z|v, p)h(v)dzdv

H;
=S (¥ [x BHhtx),

which is the same as (4). This implies that the two sampling schemes are observa-
tionally equivalent. If the data are generated according to the variable probability
sampling scheme, the distribution of the data is such that there is always a multi-
nomial sampling scheme that would lead to exactly the same distribution of the
data. In this paper we will mostly assume multinomial sampling and estimate
the parameters of that model: H, O, and B. If one has prior knowledge of some
of the retention probabilities, which is very likely if the actual sampling scheme
is that described in this section, one can incorporate them as restrictions on ¢
and H or transform back to the (Q,P, ) parametrization once the estimator is
derived.

It is interesting to note that in the parametrization in terms of P, rather than
H; the stratum indicator s is no longer ancillary. In fact, the probability of an
observation having stratum indicator s is under this sampling scheme and param-
etrization:

Py [ f(z|v, )h(v)dzdv

g(s) = — ’
Py fc, f(z|v, B)h(v)dzde
1

~3

t

which does depend on f3. In the parametrization in terms of H it is equal to H,.
This loss of ancillarity will have no consequences for the estimation as we will
derive an estimator for the multinomial sampling scheme that is identical whether
one conditions on s or not. It implies that the link between standard stratified
sampling and Bernoulli sampling is indirect, via the equivalence, in terms of
inference, of both standard stratified and Bernoulli sampling to multinomial sam-
pling.

In the parametrization in terms of f§, O, and P, the marginal distribution of X
is

> PR )
g(x) = h(x)=—
;PtQt

This clearly shows that x is not ancillary or exogenous and that conditioning on
it therefore might entail a loss of efficiency.
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We have shown in this section that the Bernoulli sampling model is just a
reparametrization of the multinomial sampling model, and that inference should
therefore be identical for both models.

3. Efficient estimation

In this section an efficient solution to the estimation problem presented in
Section 2 will be derived. Its derivation and eventual form closely match those
proposed for the choice-based sampling problem by Imbens (1992). The under-
lying idea is very simple and goes back to work by Chamberlain (1987). He
uses it to prove efficiency for method of moments estimators, while here it will
primarily be used to find an estimator. We initially assume that x has a dis-
crete distribution with known points of support. In that case the model is fully
parametric instead of semi-parametric and standard maximum likelihood theory
can be applied to obtain a consistent and efficient estimator. The next step is to
rewrite the maximum likelihood estimator for the discrete case in such a way
that its validity no longer depends on x being a discrete random variable. Then
we have an estimator that is consistent and efficient for a much wider class of
distributions of the explanatory variables.

The first subsection will use the full likelihood function under multinomial
sampling and calculate the maximum likelihood estimator for the case where
the regressors are discrete random variables. In the second subsection we show
that the maximand of the full likelihood equals the maximand of the conditional
likelihood. This implies that the estimator also applies to the standard stratified
sampling scheme. We also show how the estimator would be applied to the
Bernoulli sampling scheme. In the third subsection we show that the estimator
derived for the discrete regressor case is valid even if the regressors have a
continuous distribution. Finally we prove that the estimator is efficient in this
general case.

3.1. Discrete regressors

The first step, as mentioned above, is to analyze the case where x has a discrete
distribution.

Assumption 3.1. X is a discrete random variable with known points of support
%!, for 1 =1,2,...,L. In the population Pr(X = x') = n,.

Now we have a fully parametric model with an (L + K + T — 1)-dimensional
parameter vector (H' ' n'), as opposed to the semi-parametric model in (5)
where A(-) is an unknown nuisance function. The probability density function
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for an observation (s, y,/) where /, is equal to j if x, = ¥/,

: !
o5, v.1y = H L LOP (15)

> TwR(s,x™, B)
m=1

Note that the integral involving A(x) that created the problems in applying stan-
dard likelihood theory, has been replaced by a sum. The log-likelihood function
corresponding to this density function is

L(H,b’n)*ZlnH +1Inn, +1In f(y|x" ﬁ)fannmR(s,,,x 3. (16)

n=1

If we maximize this with respect to H, S, and 7, subject to the restriction
'L"=l n,, = 1, we obtain the following first-order conditions:

0
0:8%(11,/3,7%)
_ o Moo= =y 17
ﬁnz::l 1:[[ HT ' ( )
o= Liapa)
CTfj
al 1{17/} L
=2 R B [ 2 R B (18)
oL . A
Oia—ﬁ-(H,ﬁ,T()
N
N n m " mR nsX s 5
".S:zl/(vn‘x, B) (y |x", B) Zn (s ) Z:n (502", B)
(19)
L
0= . (20)
m=1

In (18) u is the Lagrange multiplier corresponding on the adding-up restriction
> 7w = 1. This Lagrange multiplier x is equal to zero. This can be seen by
multiplying (18) by n; and adding up over j=1,...,L

The first-order conditions, and especially the one corresponding to S, (19),
depend on the parameters n of the marginal distribution of X. In order to
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remove dependence on these parameters it is convenient to introduce the maxi-
mum likelihood estimates of the population probabilities Q:

- L A
0.= X fnis.x". ). @1)

This enables us to obtain an explicit solution for 7; in terms of the data and the
other parameter estimates:

N N A A
ﬁ] = Z—:l l{ln—f}/ |i X_%R(Sn’xj,ﬂ)/gs"}

1 N s 1_}'3 i
= N"Z::l 1{1"7]}/|:Z Q.—R(s,x ,,B):| . (22)

s=1 ¢

Using (22), we can characterize the estimates Q; by the T equations

% R(tx,,,,B)/[ R(sxn,ﬂ)} t=1,2,....,T—1, (23)

{50/ ]}

The last equality follows from the fact that } 7, = L.

Note that we need (24) and cannot use (23) for s = 1,2,...,T because mul-
tiplying (23) by H,/Q, and adding up over s shows that the Tth equation is
automatically set equal to zero if the other T — 1 are equal to zero.

Eq. (22) will also be used to rewrite the second part of the first-order condition
for B, (19):

- SIERT s A,
=y m:l[h, (@ ”‘}]aﬁ“””‘ ’”VL_ZIQ }
1 N 1 N S H, -

Bb> @{aRm,x",B)]/{i

s=1

*R(s, xh ﬂ)}

5] [ o]
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This allows us to rewrite the equations characterizing A, ,3, and Q in a way that
does not involve 7 directly. Define:

wll(H’ﬂagvs’yax):Hl’l{s:r}v t=1,....,T -1, (25)
and
Va(H. B, 0.5, y.x) = 1)
) f(J’l .B) f’ﬁ
T H, 0R
[Bagessl/[Egremn]. @
I H,
l//_?,,(H, ﬁa Q’S’ ,V,x) - Ql‘ - R(t’x5 /3)/|i§~:1 'Q;R(S,X,ﬂ):l, (27)
for r=1,2,..., T — 1, and finally,
T H, -t
¢’4(H’[}: st’ y,X) =1- [Z _Q_R(s*x’ﬁ):l . (28)
=19

The part of the solution to the first-order conditions corresponding to f, ¢, and
H can be written as

1 X P
]v ; l[/(H’ﬁ>Qasn,yn’xn) =0, (29)

where = (¥ Y4 W4 Y ). This characterization of B, H, and O is crucial. Firstly,
it allows us to compute [;’, H, and Q without having to solve a [dim(f)+dim(//)
+dim(n)]-dimensional system (17)—(20). Instead, we only have to solve a [dim(f)
+ dim(H ) + dim(Q) — 1]-dimensional system with the solution for A trivial. As
dim(Q) s likely to be much smaller than dim(x), this is a major computational
advantage. Secondly, this approach can be extended in two ways. In the next sec-
tion we show that the estimator also applies if the other sampling schemes that
we discussed in Section 2 are employed. In the section following that we will
prove that the estimator still retains its properties of consistency and efficiency
even if the distribution of the regressors is not discrete.

A final point is that if there is a linear restriction on the Q’s, some of the
moments ¥ may be perfectly correlated. For example, if the strata %, are mutually
exclusive and cover the sample space, a linear combination of the ys, is equal
to yu: S/ (1 4+ Qr - H/(Hr - Q1)) - Y, = Y. One of the moments s, or Yy will
have to be dropped in that case.

3.2. Standard stratified and Bernoulli sampling

In the previous section the maximum likelihood estimator was derived for the
case with discrete regressors and given multinomial sampling. In this section we
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will show that if the regressors are discrete, but one of the other sampling schemes
is employed, the estimator still has the same properties. In Section 2.2 it was
shown that, conditional on s, the likelihood for the multinomial and the standard
stratified sampling schemes were identical. Because the vector s is ancillary in
both cases, the likelihood principle and the principle of conditionality imply that
inference should be identical for both cases and be based on the conditional
likelihood. In the previous section, however, we have been working with the full
likelihood based on the multinomial sampling scheme. Here we shall show that
this does not matter.

Consider the log-likelihood function conditional on s for the discrete regressor
case:

N L
LBm)y=> Inm, +1In f(y,|x1,. ) = In 3 TuR(Sn, Xm, B) 30)

n=1 m=1

Maximizing this over f§ and 7 leads to first-order conditions identical to
(18) and (19). Because the solution for f to (18) and (19) is the same as
the solution for B found by solving (29), the latter must equal the conditional
maximum likelihood estimator for . H is in that case not to be interpreted
as an estimator for H*, but as a ancillary statistic that simplifies calculation.
The consequence of this is that no matter whether the sampling scheme
is multinomial or standard stratified, the solution to (29) gives the correct
estimator.

If the data are gathered with multinomial sampling, the asymptotic variance
of the estimator for * can be calculated in a number of different ways. Firstly,
one can interpret the estimator as maximizing the full likelihood function as
given in (16). In that case one would calculate the asymptotic variance using the
average outer product of the scores or the second derivatives of the log-likelihood
function. Exactly the same estimates would be obtained using the conditional (on
s) likelihood interpretation because the scores are identical for the two likelihood
functions. Secondly, an estimate can be obtained by using the characterization in
(29) and interpreting the estimator as a generalized method of moments estimator.
There may be a difference between the two variance estimates in small samples
but asymptotically they are identical. The GMM interpretation is convenient for
computational reasons.

If we have standard stratified sampling, we can only use the conditional like-
lihood interpretation to get the asymptotic variance. But, as argued above, all
asymptotic variance estimates must asymptotically be the same, and therefore the
one obtained via the method of moments interpretation must also be valid for
the fixed stratum size sampling scheme.

In Section 2.3 the Bernoulli sampling scheme was discussed. Now we have
derived an efficient procedure for estimating H, O, and f for the multinomial
sampling scheme, it is straightforward to derive an efficient estimator for that
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sampling scheme. Define:

Yy

l&u(P-Qv[)’»S,}”»X)— 1{3 (}+ s t:I....,T*l,
lelQ./’
J=
VaPQ s yd) = s ,Muxm
R 2
ZP'A (J:x. B) > PiR(jx.B)|.
J=1 /j j=1

. T
V3 (P, Q. B,s, v,x) =0 — R(t,x. ) - [Z P,Q,} /
j=1

T
Zl PiR(j,x.p )} ,
=

Because for this sampling scheme it is necessary that the strata are mutually
exclusive we can leave out the equivalent of 4, which would have been

. T 7
l//4(P, Q’ /},S, yﬂx): 1 —_ |z:] P/Q/\|/[X:l P,R(].X,/f)}
Jj= Jj=

I

=1
2
=1

1 +~} U3 (P.O s, v.x).

and which is therefore perfectly correlated with |[/3. These moments are a direct
transformation of the moments (25)-(28), using the relation between H and P
given in (14). We can estimate P, Q, and f§ by solving

x -~ ~ ~
Z w (P, Q S,,._V,,,Xn) =0

with z/; = (lf;/l l/;/z l/;;),. P, Q and /3 are again the exact maximum likelihood
estimators if X is a discrete random variable.

3.3. The general case

In the preceding two sections it was shown that if x has a discrete distribution,
both the conditional and the full likelihood estimator can be characterized by the
system (25)—(28). In this section we will look at a different interpretation of the
estimator characterized by that system of equations. The new interpretation will
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validate the estimator for a much larger class of distributions for the explanatory
variables than just discrete ones.

To reinterpret Eqgs. (25)—(28), we go back to the multinomial sampling scheme
with sampling density given by g(s, y,x) in (4). We no longer assume a dis-
crete distribution for X. Straightforward calculation shows that the expectation of
V(H,B,0,8,Y,X), evaluated at H*, Q*, and * equals zero (with the expectation
taken over the distribution induced by the sampling scheme). This implies that
¥ is in general a valid moment in a generalized method of moments procedure.
To ensure that solving (29) does indeed lead to a consistent and asymptotically
normal estimator, we will make the following assumptions:

Assumption 3.2. For all s=1,....T, QF€(d,1 - 98), Hr €(5,1 — 8) for some
0 >0, f* €int#, a compact subset of X, and x € ¥, a compact subset of R".

Assumption 3.3. f(y|x,B) is a twice continuously differentiable function of f
Jfor all BB, and [ and its first two derivatives are continuous on % x X.

Assumption 3.4. The solution (H* Q* f*) to Ey(H, f.Q,s, y,x) =0 is unigue.

Assumption 3.5. The expected outer product of the moments, Ay = EY(H*, B*,
O*. s, vx) - WH*, B, 0%, s, y,x), is nonsingular.

Assumption 3.6. The matrix of first derivatives of the moments, I'o = E[0y/
O(H' B OQNOI(H*, B*, 0%, s, y,x), has full rank.

Most of the assumptions are standard and require little discussion. Assumption
3.4 implies the parameters are identified. For this assumption to be satisfied, it
is sufficient, but not necessary, that the parameters are identified given a random
sample from any one of the strata. For example, often it is possible to estimate the
parameters consistently given only a random sample from a truncated distribution.
If the model is a standard normal linear model, all that would be required is
that the covariance matrix of the regressors has full rank in at least one of the
strata.

Before stating the formal results we will look at the case where exact prior
information on H, 8, and or O is available. Since most of the literature con-
centrated almost exclusively on the estimation problem with Q and H known,
this is clearly an important case to consider. An obvious way to deal with re-
strictions of this type is to go back to the discrete case and impose the restric-
tions at the level of the log-likelihood function (16). Maximizing (16) subject
to the constraints would lead to a consistent and efficient estimator for the free
parameters. That would be a very cumbersome way to derive restricted estima-
tors. It would in particular be difficult to rewrite the equations characterizing
the estimates in a way similar to (25)-(28). However, there is another way
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of estimating the parameters subject to the restrictions with the same efficiency
as the constrained maximum likelihood estimator. The key is the generalized
method of moments interpretation of (25)—(28). We have to modify the objec-

tive function to allow for estimation with more moments than free parameters.
Define:

1 N
lPN([—]: ﬂs Q) = N z_:l l//(Ha B» Qasm YnsXn )a

TC\',N(H’ ﬁ’ Q) = lPN(HsB9 Q)l : CN * lPN(Hvﬁv Q)a

for Cy converging almost surely to a positive definite Cp. Minimizing T¢, v
over H, O, and f is equivalent to solving (29). If there is a linear restriction on
H, O, and B we estimate the remaining, free parameters simply by minimizing
T subject to the restriction. If the limiting weight matrix Cy is chosen opti-
mally (i.e., equal to A, "), Lemma 3.1 in Imbens (1992) proves that the resulting
estimator is asymptotically as efficient as the constrained maximum likelihood
estimator.

For ease of notation define y=(H' ' Q') and y* similarly. Let (7] ;) be a
partition of (possibly a re-ordered version of) 7 and partition I’y similarly.

Theorem 3.1. Suppose that Assumptions 3.2-3.5 hold. Then the estimator 7 for
v* converges almost surely to y* and satisfies

VNG =37y =5 070, T5 AT,

We can estimate 7t in the case that 5 is known with the minimand 7,
of T(y1,73). 7, converges almost surely to y} and satisfies

VNG — 1) < N0, (5, Colo1) ' T CodoColo1(Ig Colo1) ™).

If Co=A4,", then the distribution of §, simplifies to

VNG, =31 =5 0,(T), 45 ' Tor) ™).
Proof. See Appendix.

We have derived and motivated the estimator using maximum likelihood theory
for the discrete regressor case. Now we will try to give some intuition for it
directly in terms of the moments (25)—(28), and relate it to some of the estimators
discussed before. (26) is the easiest to give intuition for. It is equal to the score
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for the conditional likelihood of ¥ and S given X.? The second set of moments
extracts information from the marginal distribution of X. The restriction on Q in
the population is

QS = EpR(S’xa ﬁ) = fc\ R(S,x,[})f(x)dx,

which translates into

QS = ESR(S’xv .B) : b(H’ Q? ﬂ’x) = fC:\\' R(S’x,ﬂ) : b(Ha Qs ﬁ,x)g(x)dx7

where the subscripts p and s denote expectations taken over the population and
sample distributions, respectively, and b(-) is the bias function given in (11).
(27) is the moment corresponding to this expectation,

More difficult to explain is the role of (25). If H is unknown, this moment
corresponds to the score for A, and its role is clear. Even if H is known, the
presence of this moment is important despite the fact that in that case the mo-
ment does not contain any unknown parameters. Its influence works through its
effect on the weight matrix in the method of moments procedure. In other words,
it depends on the correlation between (25) and the other moments. An ana-
logy is Seemingly Unrelated Regression where the same phenomenon can occur.
Lancaster (1990) gives some intuition by showing that the presence of this mo-
ment ensures that the estimator is conditional on the ancillary statistic N;. A
different derivation of these moments for the discrete choice case, providing ad-
ditional intuition, is given in Lancaster and Imbens (1991).

The derivation of the estimator, using maximum likelihood estimation for a
particular parametrization and then generalizing the applicability to a larger class
of problems, suggests that the estimator is efficient. Chamberlain (1987) extends a
definition of efficiency, local asymptotic minimax, to this type of semiparametric
problem. An alternative semiparametric efficiency concept developed by Begun
et al. (1984) and discussed in Newey (1990) is applied to estimators for choice-
based sampling by Imbens (1992). In that framework we look at the supremum of
all Cramér-Rao lower bounds for parametric models that include the true model.
In this case we already have a candidate for the supremum and an estimator
that attains the candidate bound. We therefore only have to show that there is a
sequence of Cramér—Rao bounds that does converge to this proposed bound. We
do so by constructing a partition of the 2 space into L nonoverlapping subsets,
A, with the unknown parameters §; = Pr(x € #;) = fy./ h(z)dz. We then let

2 The conditional likelihood, based on the conditional density given in (7), is equal to

A T
LBy=3 InHy, —InQs, +In f(vy|xs py —In > gk(t,xn,ﬁ).

n=l t=1 !
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the partition become finer and look at the sequence of Cramér-Rao bounds. The
formal result is:

Theorem 3.2. The asymptotic covariance matrix V for any regular estimator
for B, H, and Q satisfies

V- Iy A~ 20,

in a positive semi-definite matrix sense. In other words, no regular estimator is
more efficient than the estimator in Theorem |.

Proof. See Appendix.

4. The normal linear model: A Monte Carlo investigation

In this section we carry out a Monte Carlo analysis of a number of examples
of stratified sampling in the normal linear model. So, as in the example in the
introduction, we have the following model:

y=xB+¢, glx ~ A0, o?),

with the joint density of (V,X),

. 1 ) — x' .
f(_v,x):~6~~q$(}—x~ﬁ) - h(x), —x<y<no, xeX.
a
There are two strata;
%o=(—0,x)x 4 and % =(C,00)x 4.

We will denote H, by H and Q) by Q, with Ho=1—H and Qo =1 - Q.
This type of stratified sampling is common in large survey data sets such as
the Panel Study of Income Dynamics (PSID) which contains a sample of poor
households in addition to a random sample, or the National Longitudinal Survey
(NLS) which deliberately oversamples specific subpopulations.

The joint density of (S,Y,X) induced by this sampling scheme is

1 by — ¥ H 4 1 - H l—s
ool (8] ()

The first moment in the efficient moment vector is again the difference between
H and the stratum indicator s:

Wi(H, b, a2, 0,s, vx)=H —s.
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The second moment is equal to the derivative of the logarithm of the conditional
density. The conditional density is

gts.v 10 = Lo (2P (g) (1=H)'~ ‘/(Q o(* /B)+<1—H)>

The derivative of its logarithm with respect to f8 is

le(H» ﬁa 0.2’ sta yax)

_ Clng(s, y|x)

cp

e (8o (5 o))

The derivative with respect to o is

l//zz(H, B’ 0.2: Qasa ,V,X)

_Clng(s,y|x)

Co?

I v —x'BY (H\ y—x'B\B) x'p
=t | = = tD 1—H)).
202 + ot 0 4)( o ) 207 0 ( >+( )
The third moment is equal to the difference between Q and R(1,x, ) = &(x'B/a)
divided by the bias function:

bt b 050 =0~ o(*F) /(T 0(*F) w1 m)

The last moment Y is equal to
-1
H l
Ya(H, B, 6%, 0,5, y,x) =1 — (E < ﬁ) + (1 —H)) .

Because Yy = —s - H/((Q - (1 — H)), we leave out the last moment .

We compare seven estimators. Four estimators assume no knowledge of Q.
The first is the GMM estimator developed in this paper (GMM1). The second is
the parametric maximum likelihood estimator based on a normal distribution for
X (ML). The third and fourth are OLS estimators, one (OLS1) using only the
observations from stratum %, and the other (OLS2) using all observations. The
second OLS estimator and the parametric maximum likelihood estimator are not
consistent under some of the experiments we carry out. When the distribution
of the regressor in the population is indeed normal, ML is the most efficient
estimator in this set of four estimators. GMM]1 is more efficient than OLSI.
OLS2 cannot be ranked because it will be inconsistent in all experiments.
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The three estimators that do require knowledge of Q are the optimal GMM
estimator (GMM2), the conditional maximum likelihood estimator (CML), and
the weighted maximum likelihood estimator (WML). The CML estimator is based
on solving

N
p(ﬁa 62) = ; l/’Z(H’ ﬁ? 62» Q’Ss y’-x) =0.

Because without stratified sampling the maximum likelihood estimator would be
least squares, the WML estimator is weighted least squares with weights

Hrn<c} {20}
(LN (0 e
(1—H) <H+(1—H)-Q)

where d(-) is the indicator function. WML and CML are both more efficient than
OLSI, but less than GMM2. They cannot in general be ranked relative to GMMI
or ML. GMM?2 is more efficient than GMM]1, but cannot be ranked relative to
ML.

Example 1. The first Monte Carlo experiment sets the distribution of X equal
to a normal distribution with zero mean and unit variance. The parameter
values are « =0, B =1, and o* = 1. The cutoff point for the second stratum is
C =0.954. This implies that the probability that a randomly chosen observation
is in the second stratum is Q=0.25. There is a total of 200 observations, equally
distributed over the two strata.

In Table 1 we report means, mean squared errors, medians, and median absolute
errors for o and B for the seven estimators. Without knowledge of O the ML and
GMMI1 estimators perform almost identical. Knowledge of the functional form
of the marginal density of X does not seem to add any information. The OLSI
estimator using only the fifty observations from the first stratum performs notice-
ably worse. The inconsistent OLS2 estimator does remarkably well for the slope

Table 1
N=200,=12=00=1, C=0954, Q=025 H =05, X ~.+(0,1), 500 replications
] x
Estimator mean  rmse median  mae mean rmse median  mae

GMM1 unknown  0.999  0.069  1.000 0.048 0.000  0.090 —0.005 0.057

ML unknown  0.997  0.070  0.996 0.050 0.002  0.091 —0.004 0.06l
OLS1 unknown  0.995  0.094 0.989 0.059 —0.002 0.102 -0.004 0.067
OLS2 unknown  1.011  0.072  1.009 0.053 0.446 0452 0.447  0.447
GMM2 known 0.999  0.070 1.000 0.048 —0.001 0.067 —0.002 0.042
CML known 1.000  0.069 1.000 0.048 0.001 0075 —0.004 0048

WML known 0997 0.081 0999 0.058 —0.002 0.095 —0.005 0.062
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coefficient. The bias of the intercept is large, but the increase in precision leads
to a lower root mean squared error for the slope coefficient compared to OLSI.

Knowledge of Q leads to sizable gains in the precision of the estimator for the
intercept (c¢f. GMM2 and GMM1) but no perceptible gain in precision for the
slope coefficient. This is reminiscent of results in choice-based sampling where
in logit models it can be shown that knowledge of marginal shares affects only
precision in intercepts but not precision of slope coefficients. In this experiment
the maximum conditional likelihood estimator performs marginally better than
the weighted estimator.

It is also interesting to compare OLS1 and WLS. WLS is more efficient because
it uses the second subsample, even if not in a fully efficient way. In this setup
there is only a modest gain from using the observations from the stratum %
relative to not using them at all.

From the results presented in Table 1 we can also compare the efficiency of
the estimators relative to a completely random sample of size 200 by dividing
the rmse and mae for OLS1 by v/2 to get 0.066 and 0.042, respectively. This
shows that we would have been better off with a completely random sample of
size 200 than with a augmented sample with 100 observations randomly drawn
and 100 observations from the stratum %.

Example 2. The second Monte Carlo experiment changes the cutoff point from
C =0.954 t0 C =0. This implies that the probability that a randomly chosen
observation is in the second stratum is now higher at Q0 =0.5.

In Table 2 we report means, mean squared errors, medians, and median absolute
errors for « and p for the seven estimators. With the second stratum closer to
the population, and therefore the stratification less important, the bias of the
inconsistent OLS estimator goes down. The relative merits of the other estimators
is barely affected. Again the rmse (0.071) and mae (0.043) for a random sample
of size 200, obtained by dividing those reported in Table 2 for OLS1 by V2
suggest there is no gain from the particular stratification.

Table 2
N=200,f=1,2=0,0=1C=0,Q=05 H=05 X~ .4(0,1), 500 replications

B %
Estimator @ mean  rmse median  mae mean rmse median mae
GMMI unknown  1.001  0.071 1.003 0.047 —0.057 0.080 0.003  0.058
ML unknown 0999  0.069  1.002 0.047 0.005  0.084 0.006  0.060
OLSI unknown  0.996  0.100 0.997 0.061 —0.003 0098 —0.003 0.067
OLS2 unknown 0914  0.112 0915 0.087 0.310 0317 0311 0311
GMM2 known 1.004 0.069 1.004 0.046  —0.006 0042 —0.002 0.034
CML known 1.003  0.070 1.001 0.045  —0.003 0.065 0.002  0.048

WML known 1.000  0.070  1.004 0.053 0.004  0.086 0.002  0.062
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Table 3
N=200,f=1x=0,0=1,C=0.802, Q=025 H =05, X ~ &) — 1, 500 replications
B o
Estimator Q@ mean  rmse median  mae mean rmse median  mae

GMM1 unknown  1.006  0.056 1.006 0.037  —0.006 0087 —0.004 0.060

ML unknown  0.927  0.100  0.923 0.075 0.103  0.143 0.101  0.112
OLSI unknown  0.992  0.104  0.993 0.076 —0.012 0103 —0.012 0.070
OLS2 unknown 0916 0.101 0919 0.081 0.467 0473 0.466  0.466
GMM2 known 1.006  0.055 1.006 0.035 —0.007 0.062 —0.004 0.042
CML known 1.007  0.055 1.005 0.036 —0.005 0.071 —0.002 0.045
WML known 1.001  0.070 1.003 0.044 —0.004 0.093 0.002  0.058
Table 4
N =200, =05 2=0,06=1C=0954, 2=0.194, H=0.5, X ~ .47(0,1), 500 replications

B «
Estimator Q mean  rmse median  mae mean rmse median ~ mae

GMM1 unknown  0.498  0.132  0.501 0048 —0.010 0.188 0.008  0.062

ML unknown  0.503  0.069  0.50t 0.047 0.004  0.095 0.009 0.061
OLS1 unknown  0.504  0.103  0.506 0073  —0.002 0.102 —0.001 0.066
OLS2 unknown  0.544  0.085 0.545 0.058 0.617  0.621 0.622 0622
GMM2 known 0.503 0.070  0.501 0047 —0.010 0051 —0.010 0.033
CML known 0.504  0.069 0.503 0.047 —0.001 0.067 0.000  0.040
WML known 0.506 0.082 0.512 0.053 0.002  0.098 0.007 0.062

Example 3. The third Monte Carlo experiment sets the distribution of X equal
to a unit exponential distribution minus one, implying the regressor has mean
zero and unit variance as before. The parameter values are o =0, =1, and
o’ = 1. Given the cutoff point for the second stratum, C =0.802, the probability
that a randomly chosen observation is in the second stratum is Q = 0.25.

In Table 3 we report means, mean squared errors, medians, and median absolute
errors for o and f for the seven estimators in this case. In this example the
parametric likelihood estimator ML is inconsistent which shows up clearly in
both the slope coefficient and in the intercept. The relative ranking of the other
estimators is not affected. With the thick-tailed distribution for the regressor, there
are some advantages from the stratification. Given a random sample of size 200
the rmse and mae should be approximately 0.071 and 0.054, respectively, higher
than the rmse and mae for GMMI.

Example 4. The last Monte Carlo experiment keeps the distribution of X
normal as in the first two examples but decreases the slope coefficient to
B =0.5. This implies that the probability for the second stratum changes to
Q0 =0.194.
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In Table 4 we report means, mean squared errors, medians, and median absolute
errors for o and B for the seven estimators for this scenario. With the slope
coefficient smaller, the stratum %, has smaller probability in the population. This
makes the stratified sample more information than a random sample of the same
size. The gain of actually using the second stratum by weighting (WLS) relative
to only using the random subsample (OLS1) is now much larger than in the
previous setups.

Overall the simulations lead to a number of tentative conclusions. First, the
GMM estimators perform well relative to the full likelihood estimator. If the
marginal distribution of the regressors is correctly specified, there is little loss
of precision from not using it and instead using the GMM estimators. If on
the other hand the distribution of the regressors is misspecified, there can be a
considerable bias for the ML estimator. There is therefore no reason to use the
parametric likelihood estimator. Its potential gains when correctly specified are
small compared to the potential losses when misspecified.

Second, the gain in precision from knowledge of the stratum probabilities is
largely confined to the intercept, similar to conclusions in choice-based sampling.

Third, the conditional maximum likelihood estimator seems to be slightly better
than the weighted least squares estimator. However, the weighted least squares
estimator is clearly better than the other ‘simple’ estimators, i.e., estimators that
require little additional programming beyond implementing programs for random
samples, OLSI] and OLS2.

Fourth, the smaller the marginal probability of the strata, the more informative
a stratified sample is relative to a random sample of the same size. In other
words, given fixed strata, the smaller in absolute value the slope coefficients, the
more informative a stratified sample.

These simulations suggest that in practice the choice should be between the
efficient GMM estimators or the inefficient, but computationally simpler WLS
estimator. On the one hand is the computational ease of the WLS estimator, which
only requires introducing weights into the same estimation procedure that would
be used if the researcher had a random sample from the population, compared
to the efficient GMM estimator, which requires programming of the modified
moment functions and even in simple examples numerical optimization. On the
other hand is the efficiency loss of the WLS estimator, which in these examples
is between 20 and 40% of the variance of the efficient estimator.

5. Conclusion

In this paper we study the problem of estimating parameters of the conditional
distribution if the sampling is stratified. Stratified sampling schemes can be im-
plemented in a number of ways. We discuss three common types and show that
they can be analyzed in a unified manner. We then derive an estimator for the
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general case. The procedure used to derive the estimator is similar to that pro-
posed by Imbens (1992) for choice-based sampling. The estimator we propose is
a computationally simple, generalized method of moments estimator. We show
that the estimator is efficient using semi-parametric efficiency bounds proposed
by Begun et al. (1983).

A Monte Carlo experiment shows that the estimator has good properties in
moderately sized samples. This experiment also indicates that the gains of using
fully parametric models are small relative to the losses due to potential misspec-
ification. Finally, knowledge of stratum probabilities seems relevant mainly for
estimating intercepts rather than the typically more interesting slope coefficients.

Appendix: Proofs of Theorems 3.1 and 3.2

Proof of Theorem 3.1
The assumptions made, (2.1)—(2.2) and (3.2)—(3.3), guarantee the conditions
needed for standard theorems on generalized method of moments estimation to

hold. See for an extensive discussion and reference Hansen (1982) and Newey
and McFadden (1994). 2&%

Proof of Theorem 3.2

For ease of notation we will assume that X has density 4(x) on Z.°> For any
¢ > 0 partition Z into L, subsets 27 in such a way that if / £m, Z,N%, =0,
and if x,z € %, then |x — z| < ¢. Define ¢ to be equal to 1 if x€Z,; and 0
otherwise, and

hy(x)= h(x)/ [ Z i f h(z)d2:| .
=1 7
The density of x, A(x), is now parametrized as
L,
h(x;0) = hy(x) - Z 31 Pixs
=

with A, a known function. The sequence of parametrizations we will employ is
indexed by ¢:

L,
HSf(y lX, ﬁ)hf(\') ; 5I¢1.x‘

!]1:(5, i,X) = B
& [ R(s,z, B)h(z)dz

7

M:\

\
I

1

3 As it has been shown in Section 3.1 that the estimator is exactly maximum likelihood if the
regressors have a discrete distribution, it is clear that we only have to look at the continuous case.
The mixed case can be dealt with at the expense of additional notation.
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with H, f, and J the unknown parameters. For fixed ¢ we now have a fully
parametric estimation problem with unknown parameter vector (H f 0) of
dimension 7 — 1+ K + L, — 1. The unknown function A(x) in the semi-parametric
model has been replaced by a known function depending on an unknown finite-
dimensional vector 6. We show that for small ¢ the efficiency bound for the
fully parametric model is arbitrarily close to the variance of the semi-parametric
estimator developed in this paper, implying that the latter is efficient.

The intuition is that the difference between the semiparametric and the fully
parametric problem is in the knowledge of A.(x). The proof amounts to showing
that knowledge of A.(x) does not matter for small . Hence the semi-parametric
estimator is efficient in the absence of knowledge of the marginal distribution of
the regressors.

Let B, 6, and H be the maximum likelihood estimators for f, 8, and H. If we
are not interested in the estimator for J, we can eliminate it following exactly
the same procedure used in Section 3.1 to eliminate n. Defining the maximum
likelihood estimator of @ as

M ~

f s, z, h (2)dz,
e

1

il

we can characterize the maximum likelihood estimators for (H, S,Q) as GMM
estimators with moments

w“lf(H’ ﬁ* Q’ ,V’Sa«\’) = Hf - l{.\':I}s

w,ztﬂ.ﬁ,Q,.m,x%ﬁ(" Ty (v,x,ﬁ)

T H{ L, -CR
- ~ X “o\bhZ, h:: dz
HZ, o 5 o | Gpenph) }
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a//54(H,[3,Q,y,s,x): 1 — 1/[ Z Z¢Ix fR(t Z, ,B)h (Z)dZ

t'=1 ¥t 1=l

In order to study the difference between the asymptotic covariance matrix V, for
this estimator and that for the estimator in Theorem 3.2 [(V =1 1Ao(f 6)“' )] it
is convenient to define:

L,
gﬂR(Soxa ﬁ) = [Z ¢1X ‘f R(S, Z’ ﬁ)héf(z )dzs
=] A

éea_ﬂ'(j’x’ﬁ) E::qbl\rjl[ aﬂ

and &,(C*R/POP ), x, B) accordingly. The difference between the moments v,
and t in (29)—(31) is that the the former depend on &.R(s,x, ), . @R/Cp)6, X, ),
and &,(8°R/0BCH)(s,x, ), while the latter depend on R(s,x, B), (OR/2B)(s,x, B),
and (C2R/cpCp (s, x, ), respectively, with the functional dependence being the
same.

Define now:

(s z, )k (z)dz,

4, = EI//{I(H’ 0, ,B, V.8,x)- l//l:(H’ 0, ,B, Y. S,X)/,

- g0, 5. y.0)
3 a(H/ Q/ ﬂ’) )

The fact that R and its first two derivatives with respect to f are continuously
differentiable with respect to x on the compact set Z implies that R and its first
two derivatives with respect to  have bounded derivatives with respect to x. This
implies uniform convergence in x for all s of &R, &,(CR/0f) and &,(3*R/3BLS’)
to R, (CR/CB) and (C*R/CBp’). This in turn implies that the limits of 4, and
I'. equal 4, and Iy, respectively. This in turn implies that V, = I, ' A(I"))™"
converges to V. Since no regular estimator can have an asymptotic variance lower
than the Cramér-Rao bound, it cannot improve on the limit of this sequence
and therefore it cannot improve on the asymptotic variance of the estimator in
Theorem 3.2. 28%
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