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Abstract 

                                 In this paper we have considered the problem of estimating the population mean in systematic 

sampling using information on an auxiliary variable in presence of non – response. Some modified ratio, 

product and difference type estimators in systematic sampling have been suggested and their properties 

are studied. The expressions of mean squared error’s (MSE’s) up to the first order of approximation are 

derived. An empirical study is carried out to judge the best estimator out of the suggested estimators. 
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1.  Introduction 

 In survey sampling use of auxiliary information can increase the precision of an estimator when study 

variable y is highly correlated with the auxiliary variable x. Many authors suggested estimators using 

some known population parameters of an auxiliary variable. [1-5] suggested estimators in simple random 

sampling. 

But in several practical situations, instead of existence of auxiliary variable there exists some 

auxiliary attributes which are highly correlated with study variable y. In such situations, taking the 

advantage of point bi-serial correlation between the study variable and the auxiliary attribute, the 

estimators of parameters of interest can be constructed by using prior knowledge of the parameter of 



auxiliary attributes. [3] and [6-10] have considered the problem of estimating population mean using 

point bi-serial correlation between study variable and auxiliary attribute. 

       The importance of systematic sampling cannot be overemphasized, being one of the sampling 

schemes most widely used in practice due to its appealing simplicity. The method of systematic sampling 

first studied by [11] and is widely used in survey of finite populations. Use of auxiliary information in 

construction of estimators is considered by [12-15]. 

Systematic sampling is a method of selecting sample members from a larger population according 

to a random starting point and a fixed, periodic interval. Typically, every “nth” member is selected from 

the total population for inclusion in the sample population. Systematic sampling is still thought of as 

being random, as long as the periodic interval is determined beforehand and the starting point is random. 

The usual ratio, product and regression estimators of the population mean Y based on a systematic 

sample of size n, under the assumption that the population mean X  is known, can be respectively defined 

as 
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And YC , XC are the coefficients of variations of study and auxiliary variables respectively. 

In this paper we have proposed a general class of ratio, product and difference type estimators for 

estimating the population mean in systematic sampling using auxiliary information in the presence of 

non-response. A comparative study is also carried out to compare the optimum estimators with respect to 

usual mean estimator with the help of numerical data. 

 

2. Non Response 

Non-response means failure to obtain a measurement on one or more study variables for one or 

more elements selected for the survey. Let us suppose that a population consists of N units numbered 

from 1 to n in some order and a sample of size n is to be drawn such that N = nk (k is an integer). Thus 

there will be k samples each of n units and we select one sample from the set of k samples. Let Y and X 

be the study and auxiliary variable with respective means  Y  and X . Let us consider yij (xij) be the j
th
 

observation in the i
th
 systematic sample under study (auxiliary) variable (i=1…k : j=1…n). 

We assume that the non-response is observed only on study variable and auxiliary variable is free 

from non-response. Using [16] technique of sub-sampling of non-respondents, the estimator of population 

mean Y , can be defined as 
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Where 
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y are, respectively the means based on n1 respondent units from the systematic sample 

of n units and sub-sample of h2 units selected from n2 non-respondent units in the systematic sample. The 

estimator of population mean X  of auxiliary variable based on the systematic sample of size n units, is 

given by 
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x are unbiased estimators. The variance expression for the estimators 

**
y and 

*
x  are, respectively, given by 

   2

2Y

2

YY KS
n

1L
S1-n1  

**
yV











                                                                                        (2.3) 

   2

xx S1-n1  
*

xV 







                                                                                                                    (2.4) 

Where Y  and x  are the correlation coefficients between a pair of units within the systematic sample 

for the study and auxiliary variables respectively. 
2

YS  and 
2

xS  are respectively, the mean square of the 

entire group for study and auxiliary variable. 
2

2YS
 
be the mean square of non-response group under study 

variable, K is the non-response rate in the population and 
2

2

h

n
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The ratio, product and regression estimators defined in equation (1.1), (1.2) and (1.3) under non-

response can be respectively, written as 
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The MSE expression for these estimators are respectively given by 
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3. Proposed improved estimators 

            In this section we propose some improved estimators. First, we propose an estimator t1 as 
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Where α is a constant. 
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Where a, b and p are constants. 

Adapting [17] estimator in systematic  sampling we propose an estimator t3 as: 
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Where w is a constant. 

We propose a difference type estimator t4 as  
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Where 4241 K ,K and α are constant. 

 

We propose two another improved estimators t5 and t6 as 
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Where constants. are  wand K,K 6261  

Using the usual procedure we get the expressions for the biases of the above estimators as 
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Similarly, the expressions of MSE’s of the above estimators are given by 
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Differentiating expression (3.13) with respect to w, we get the optimum value of α ( α*) as- 
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Differentiating expression (3.14) with respect to w, we get the optimum value of D ( D*) as-
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Differentiating expression (3.15) with respect to w, we get the optimum value of w ( w*) as- 
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4. Empirical Study 

For numerical illustration, we have considered the data given in [18], The data are based on 

length (X) and timber volume (Y) for 176 forest strips. [12] and [18] reported the values of intraclass 

correlation coefficients 
x

 and Y  approximately equal for the systematic sample of size 16 by 

enumerating all possible systematic samples after arranging the data in ascending order of strip length. 

The details of population parameters are:    N   = 176,          n = 16,       Y = 282.6136,            X = 6.9943, 

2

YS  = 24114.6700,            
2

XS  = 8.7600,              = 0.8710, 
2

2YS  = 
2

YS
4

3
  = 18086.0025. 

Table 6.1 shows the percentage relative efficiency (PRE) of **t (optimum) and **y lr  with 

respect to **y for the different choices of K and L . 

 

 

 

 

 

 

 

 

 

 

 



Table 6. 1:   PRE of  estimators with respect to 
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0.1 2.0 703.4864 407.4884 407.4884 419.8535 704.5781 840.4659 
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5. Conclusion                       

In this paper, we have proposed general class of ratio-type, product-type and difference 

estimators for estimating the population mean in systematic sampling using auxiliary information in the 

presence of non-response. From the above empirical study we see the PRE of all estimators are 

decreasing with increasing non-response rate K as well as with increasing L. And here we see that in all 

proposed estimators, t6 gives better result under non-response than other proposed estimators. 

References 

[1] Upadhyaya, L. N. and Singh, H. P., 1999, Use of transformed auxiliary variable in estimating  

the finite population mean. Biom. Jour., 41, 627-636. 

[2] Khoshnevisan,  M., Singh,  R., Chauhan, P., Sawan,  N., and Smarandache, F., 2007,  A 

general family of estimators for estimating population mean using known value of some 

population parameter(s), Far East Journal of Theoretical Statistics 22 181–191. 

[3] Singh, R., Cauhan, P., Sawan, N., and Smarandache, F., 2007,  Auxiliary information and a 

priori values in construction of improved estimators. Renaissance High Press. 

[4] Singh, R., Chauhan, P. and Sawan, N., 2008, On linear combination of Ratio-product type 

exponential estimator for estimating finite population mean. Statistics in Transition,9(1),105-

115. 

[5] Singh, R. and Kumar, M., 2011, A note on transformations on auxiliary variable in survey 

sampling MASA, 6:1,17-19.  

[6] Shabbir J.,Gupta S., 2007, On estimating the finite population mean with known population 

proportion of an auxiliary variable. Pak. J. Statist.,23(1),1-9. 

[7] Singh, R., Kumar, M. and Smarandache, F., 2010, Ratio estimators in simple random  

sampling when study variable is an attribute. World Applied Sciences Journal 11 (5) pp 586-589. 



[8] Abd-Elfattah, A.M., Sherpeny E.A., Mohamed S.M., Abdou O.F.,2010, Improvement 

estimating the population mean in simple random sampling using information on auxiliary 

attribute. Applied mathematics and computation. 

[9] Singh, H.P.  and Solanki, R.  S., 2012, Improved estimation of population mean in simple 

random sampling using information on auxiliary attribute. Appl. Math. Comput.,  218, 7798–

7812. 

[10] Malik, S. and  Singh, R., 2013 , A family of estimators of population mean using 

information on point bi-serial and phi correlation coefficient. IJSE 

 [11]Madow, W.G. and Madow, L.H., (1944), On the theory of systematic sampling, I. Ann. 

Math. Statist., 15, 1-24. 

[12] Kushwaha, K. S. and Singh, H.P., (1989), Class of almost unbiased ratio and  product    

estimators in systematic sampling. Jour. Ind. Soc. Ag. Statistics, 41,  2,193–205.  

[13] Banarasi, Kuhwaha, S.N.S. and Kushwaha, K.S., (1993), A class of ratio, product and 

difference  (RPD) estimators in systematic sampling, Microelectron. Reliab., 33, 4, 455-457. 

[14] Singh, R. and Singh, H.P., (1998), Almost unbiased ratio and product type estimators in  

systematic sampling. Questiio, 22, 3, 403-416. 

[15] Singh, R.,  Malik, S., Singh, V. K.,  (2012),  An improved estimator in  systematic sampling. 

Jour. Of Sci. Res., 56, 177-182. 

[16]  Hansen, M.H. and Hurwitz, W.N., (1946), The problem of non-response in sample surveys, 

Jour. of The Amer. Stat.Assoc., 41, 517-529. 

[17] Ray, S.K. and  Sahai, A., (1980),  Efficient families of ratio and product type estimators. 

Biometrika 67(1), 211–215. 

[18]Murthy, M.N., (1967), Sampling Theory and Methods. Statistical Publishing Society, 

Calcutta. 

 

 


