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Figure 1: Motion Compensation Framework. Events in a space-time window are warped according to point trajectories
described by motion parameters θ, resulting in an image of warped events (IWE) I(x;θ). Then, a focus loss function of I
measures how well events are aligned along the point trajectories. This work proposes multiple focus loss functions for event
alignment (last block in the figure and Table 1) for tasks such as rotational motion, depth and optical flow estimation.

Abstract

Event cameras are novel vision sensors that output pixel-
level brightness changes (“events”) instead of traditional
video frames. These asynchronous sensors offer several ad-
vantages over traditional cameras, such as, high temporal
resolution, very high dynamic range, and no motion blur. To
unlock the potential of such sensors, motion compensation
methods have been recently proposed. We present a collec-
tion and taxonomy of twenty two objective functions to an-
alyze event alignment in motion compensation approaches
(Fig. 1). We call them focus loss functions since they have
strong connections with functions used in traditional shape-
from-focus applications. The proposed loss functions allow
bringing mature computer vision tools to the realm of event
cameras. We compare the accuracy and runtime perfor-
mance of all loss functions on a publicly available dataset,
and conclude that the variance, the gradient and the Lapla-
cian magnitudes are among the best loss functions. The ap-
plicability of the loss functions is shown on multiple tasks:
rotational motion, depth and optical flow estimation. The
proposed focus loss functions allow to unlock the outstand-
ing properties of event cameras.

1. Introduction
Event cameras are bio-inspired sensors that work radi-

cally different from traditional cameras. Instead of captur-
ing brightness images at a fixed rate, they measure bright-
† Dept. Informatics, Univ. of Zurich and Dept. Neuroinformatics,

Univ. of Zurich and ETH Zurich

ness changes asynchronously. This results in a stream
of events, which encode the time, location and polarity
(sign) of the brightness changes. Event cameras, such as
the Dynamic Vision Sensor (DVS) [1] posses outstanding
properties compared to traditional cameras: very high dy-
namic range (140 dB vs. 60 dB), high temporal resolu-
tion (in the order of µs), and do not suffer from motion
blur. Hence, event cameras have a large potential to tackle
challenging scenarios for standard cameras (such as high
speed and high dynamic range) in tracking [2–9], depth
estimation [10–19], Simultaneous Localization and Map-
ping [20–27], and recognition [28–32], among other appli-
cations. However, novel methods are required to process
the unconventional output of these sensors in order to un-
lock their potential.

Motion compensation approaches [15, 19, 33–42] have
been recently introduced for processing the visual informa-
tion acquired by event cameras. They have proven suc-
cessful for the estimation of motion (optical flow) [34–
36, 38, 39], camera motion [33, 35], depth (3D reconstruc-
tion) [15, 19, 38, 39] as well as segmentation [36, 40, 41].
The main idea of such methods consists of searching for
point trajectories on the image plane that maximize event
alignment [33, 35] (Fig. 1, right), which is measured us-
ing some loss function of the events warped according to
such trajectories. The best trajectories produce sharp, mo-
tion compensated images that reveal the brightness patterns
causing the events (Fig. 1, middle).

In this work, we build upon the motion compensation
framework [35] and extend it to include twenty more loss
functions for applications such as ego-motion, depth and
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Focus Loss Function Type Spatial? Goal

Variance (4) [33, 35] Statistical No max
Mean Square (9) [33, 36] Statistical No max
Mean Absolute Deviation (10) Statistical No max
Mean Absolute Value (11) Statistical No max
Entropy (12) Statistical No max
Image Area (8) Statistical No min
Image Range (13) Statistical No max
Local Variance (14) Statistical Yes max
Local Mean Square Statistical Yes max
Local Mean Absolute Dev. Statistical Yes max
Local Mean Absolute Value Statistical Yes max
Moran’s Index (17) Statistical Yes min
Geary’s Contiguity Ratio (18) Statistical Yes max
Gradient Magnitude (5) Derivative Yes max
Laplacian Magnitude (6) Derivative Yes max
Hessian Magnitude (7) Derivative Yes max
Difference of Gaussians Derivative Yes max
Laplacian of the Gaussian Derivative Yes max
Variance of Laplacian Stat. & Deriv. Yes max
Variance of Gradient Stat. & Deriv. Yes max
Variance of Squared Gradient Stat. & Deriv. Yes max
Mean Timestamp on Pixel [37] Statistical No min

Table 1: List of objective functions considered.

optical flow estimation. We ask the question: What are
good metrics of event alignment? In answering, we noticed
strong connections between the proposed metrics (Table 1)
and those used for shape-from-focus and autofocus in con-
ventional, frame-based cameras [43, 44], and so, we called
the event alignment metrics “focus loss functions”. The ex-
tended framework allows mature computer vision tools to
be used on event data while taking into account all the infor-
mation of the events (asynchronous timestamps and polar-
ity). Additionally, it sheds light on the event-alignment goal
of functions used in existing motion-compensation works
and provides a taxonomy of loss functions for event data.

Contributions. In summary, our contributions are:
1. The introduction and comparison of twenty two fo-

cus loss functions for event-based processing, many of
which are developed from basic principles, such as the
“area” of the image of warped events.

2. Connecting the topics of shape-from-focus, autofocus
and event-processing by the similar set of functions
used, thus allowing to bring mature analysis tools from
the former topics into the realm of event cameras.

3. A thorough evaluation on a recent dataset [45], com-
paring the accuracy and computational effort of the
proposed focus loss functions, and showing how they
can be used for depth and optical flow estimation.

The rest of the paper is organized as follows. Section 2
reviews the working principle of event cameras. Section 3
summarizes the motion compensation method and extends
it with the proposed focus loss functions. Experiments are
carried out in Section 4 comparing the loss functions, and
conclusions are drawn in Section 5.

2. Event-based Camera Working Principle
Event-based cameras, such as the DVS [1], have inde-

pendent pixels that output “events” in response to bright-
ness changes. Specifically, if L(x, t)

.
= log I(x, t) is the

logarithmic brightness at pixel x
.
= (x, y)> on the im-

age plane, the DVS generates an event ek
.
= (xk, tk, pk)

if the change in logarithmic brightness at pixel xk reaches a
threshold C (e.g., 10-15% relative change):

∆L
.
= L(xk, tk)− L(xk, tk −∆tk) = pk C, (1)

where tk is the timestamp of the event, ∆tk is the time since
the previous event at the same pixel xk and pk ∈ {+1,−1}
is the event polarity (i.e., sign of the brightness change).

Therefore, each pixel has its own sampling rate (which
depends on the visual input) and outputs data proportionally
to the amount of motion in the scene. An event camera does
not produce images at a constant rate, but rather a stream of
asynchronous, sparse events in space-time (Fig. 1, left).

3. Methodology
3.1. Motion Compensation Framework

In short, the method in [35] seeks to find the point-
trajectories on the image plane that maximize the alignment
of corresponding events (i.e., those triggered by the same
scene edge). Event alignment is measured by the strength
of the edges of an image of warped events (IWE), which is
obtained by aggregating events along candidate point trajec-
tories (Fig. 1). In particular, [35] proposes to measure edge
strength (which is directly related to image contrast [46])
using the variance of the IWE.

More specifically, the events in a set E = {ek}Ne

k=1 are
geometrically transformed

ek
.
= (xk, tk, pk) 7→ e′k

.
= (x′k, tref, pk) (2)

according to a point-trajectory model W, resulting in a
set of warped events E ′ = {e′k}

Ne

k=1 “flattened” at a ref-
erence time tref. The warp x′k = W(xk, tk;θ) transports
each event along the point trajectory that passes through
it (Fig. 1, left), until tref is reached, thus, taking into ac-
count the space-time coordinates of the event. The vector θ
parametrizes the point trajectories, and hence contains the
motion or scene parameters.

The image (or histogram) of warped events (IWE) is
given by accumulating events along the point trajectories:

I(x;θ)
.
=

Ne∑
k=1

bk δ(x− x′k(θ)), (3)

where each pixel x sums the values bk of the warped events
x′k that fall within it (bk = pk if polarity is used or bk = 1 if
polarity is not used; see Fig. 2). In practice, the Dirac delta δ
is replaced by a smooth approximation, such as a Gaussian,
δ(x− µ) ≈ N (x;µ, ε2Id), with typically ε = 1 pixel.
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(a) Iteration it = 1 (b) it = 2 (c) it = 3 (d) it = 5
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Figure 2: Evolution of the image of warped events (IWE, (3)) as the focus loss is optimized, showing how the IWE sharpens
as the motion parameters θ are estimated. Motion blur (left) due to event misalignment (in the example, dominantly in
horizontal direction) decreases as warped events become better aligned (right). Top row: without polarity (bk = 1 in (3));
Bottom row: with polarity (bk = pk in (3)). The last column shows the histograms of the images; the peak at zero corresponds
to the pixels with no events (white in the top row, gray in the bottom row).

The contrast [35] of the IWE (3) is given by its variance:

Var
(
I(x;θ)

) .
=

1

|Ω|

∫
Ω

(I(x;θ)− µI)2dx (4)

with mean µI
.
= 1
|Ω|
∫

Ω
I(x;θ)dx. Discretizing into pixels,

it becomes Var(I) = 1
Np

∑
i,j(hij −µI)2, where Np is the

number of pixels of I = (hij) and µI = 1
Np

∑
i,j hi,j .

3.2. Our Proposal: Focus Loss Functions

In (3) a group of events E has been effectively converted,
using the spatio-temporal transformation, into an image rep-
resentation (see Fig. 2), aggregating the little information
from individual events into a larger, more descriptive piece
of information. Here, we propose to exploit the advantages
that such an image representation offers, namely bringing
in tools from image processing (histograms, convolutions,
Fourier transforms, etc.) to analyze event alignment.

We study different image-based event alignment metrics
(i.e., loss functions), such as (4); that is, we study differ-
ent objective functions that can be used in the second block
of the diagram of Fig. 1 (highlighted in red). To the best
of our knowledge we are the first to address the following
three related topics: (i) establishing connections between
event alignment metrics and so-called “focus measures” in
shape-from-focus (SFF) and autofocus (AF) in conventional
frame-based imaging [43, 44], (ii) comparing the perfor-
mance of the different metrics on event-based vision prob-
lems, and (iii) showing that it is possible to design new fo-
cus metrics tailored to edge-like images like the IWE.

Table 1 lists the multiple focus loss functions studied, the
majority of which are newly proposed, and categorizes them

according to their nature. The functions are classified ac-
cording to whether they are based on statistical or derivative
operators (or their combination), according to whether they
depend on the spatial arrangement of the pixel values or not,
and according to whether they are maximized or minimized.

The next sections present the focus loss functions using
two image characteristics related to edge strength: sharp-
ness (Section 3.3) and dispersion (Section 3.4). But first,
let us discuss the variance loss, since it motivates several
focus losses.

Loss Function: Image Variance (Contrast). An event
alignment metric used in [33, 35] is the variance of the
IWE (4), known as the RMS contrast in image process-
ing [46]. The variance is a statistical measure of disper-
sion, in this case, of the pixel values of the IWE, regardless
of their spatial arrangement. Thus, event alignment (i.e.,
edge strength of the IWE) is here assessed using statistical
principles (Table 1). The motion parameters θ that best fit
the events are obtained by maximizing the variance (4). In
the example of Fig. 2, it is clear that as event alignment in-
creases, so does the visual contrast of the IWE.

Fourier Interpretation: Using (i) the formula relating the
variance of a signal to its mean square (MS) and mean,
Var(I) = MS − µ2

I , and (ii) the interpretations of MS and
squared mean as the total “energy” and DC component of
the signal, respectively, yields that the variance represents
the AC component of the signal, i.e., the energy of the oscil-
lating, high frequency, content of the IWE. Hence, the IWE
comes into focus (Fig. 2) by increasing its AC component;
the DC component does not change significantly during the
process. This interpretation is further developed next.
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3.3. Image Sharpness

In the Fourier domain, sharp images (i.e., those with
strong edges, e.g., Fig. 2, right) have a significant amount
of energy concentrated at high frequencies. The high-
frequency content of an image can be assessed by measur-
ing the magnitude of its derivative since derivative opera-
tors act as band-pass or high-pass filters. The magnitude is
given by any norm; however, the L2 norm is preferred since
it admits an inner product interpretation and simple deriva-
tives. The following losses are built upon this idea, using
first and second derivatives, respectively. Similar losses,
based on the DCT or wavelet transforms [44] instead of
the Fourier transform are also possible. The main idea re-
mains the same: measure the high frequency content of the
IWE (i.e., edge strength) and find the motion parameters
that maximize it, therefore maximizing event alignment.

Loss Function: Magnitude of Image Gradient. Event
alignment is achieved by seeking the parameters θ of the
point-trajectories that maximize

‖∇I‖2L2(Ω)
.
=

∫
Ω

‖∇I(x)‖2dx, (5)

where ∇I = (Ix, Iy)> is the gradient of the IWE I (sub-
scripts indicate derivative: Ix ≡ ∂I/∂x), and its magni-
tude is measured by an Lp norm (suppl. material), e.g., the
(squared) L2 norm: ‖∇I‖2L2(Ω) =

∫
Ω

(I2
x(x) + I2

y (x))dx.

Loss Function: Magnitude of Image Hessian. For these
loss functions, event alignment is attained by maximizing
the magnitude of the second derivatives (i.e., Hessian) of the
IWE, Hess(I). We use the (squared) norm of the Laplacian,

‖∆I‖2L2(Ω)
.
= ‖Ixx + Iyy‖2L2(Ω), (6)

or the (squared) Frobenius norm of the Hessian,

‖Hess(I)‖2L2(Ω)
.
= ‖Ixx‖2L2(Ω)+‖Iyy‖

2
L2(Ω)+2‖Ixy‖2L2(Ω).

(7)

Loss Functions: DoG and LoG. The magnitude of the
output of established band-pass filters, such as the Differ-
ence of Gaussians (DoG) and the Laplacian of the Gaussian
(LoG), can also be used to assess the sharpness of the IWE.

Loss Function: Image Area. Intuitively, sharp, motion-
compensated IWEs, have thinner edges than uncompen-
sated ones (Fig. 2). We now provide a definition of the
“thickness” or “support” of edge-like images (see supple-
mentary material) and use it for event alignment. We pro-
pose to minimize the support (i.e., area) of the IWE (3):

supp(I(x;θ)) =

∫
Ω

(F (I(x;θ))− F (0)) dx, (8)

(a) IWE (3) I(x;θ) with bk = 1.
0
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(b) Support map F (I(x;θ))− F (0).

Figure 3: Support map of an IWE. Red regions contribute
more to the support than blue regions. The integral of the
support map in Fig. 3b gives the support (8) of the IWE.
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(a) Weighting functions ρ(λ).
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(b) Primitive functions F (λ).

Figure 4: Weighting functions ρ(λ) and their primitives
F (λ), used to define the support (8) of the IWE.

where F (λ)
.
=
∫
ρ(λ)dλ is the primitive of a decreasing

weighting function ρ(λ) ≥ 0, for λ ≥ 0. Fig. 3 shows an
IWE and its corresponding support map, pseudo-colored as
a heat map: red regions (large IWE values) contribute more
to the support (8) than blue regions (small IWE values).

Our definition of the support of the IWE is very flexible,
since it allows for different choices of the weighting func-
tion (Fig. 4). Specifically, we consider four choices:

1. Exponential: ρ(λ) = e−λ, F (λ) = 1− e−λ.
2. Gaussian: ρ(λ) = 2√

π
e−λ

2

, F (λ) = erf(λ).
3. Lorentzian: ρ(λ) = 2

(1+λ2)π , F (λ) = 2
π arctan(λ).

4. Hyperbolic: ρ(λ) = sech2(λ), F (λ) = tanh(λ).

3.4. Image Dispersion (Statistics)

Besides the variance (4), other ways to measure disper-
sion are possible. These may be categorized according to
their spatial character: global (operating on the IWE pix-
els regardless of their arrangement) or local. Among the
global metrics for dispersion we consider the mean square
(MS), the mean absolute deviation (MAD), the mean abso-
lute value (MAV), the entropy and the range. In the group of
local dispersion losses we have: local versions of the above-
mentioned global losses (variance, MS, MAD, MAV, etc.)
and metrics of spatial autocorrelation, such as Moran’s I in-
dex [47] and Geary’s Contiguity Ratio [48].
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Loss Function: Mean Square. The Mean Square (MS)

MS(I) = ‖I(x;θ)‖2L2(Ω) / |Ω|, (9)

also measures the dispersion of the IWE (with respect to
zero). As anticipated in the Fourier interpretation of the
variance, the MS is the total energy of the image, which
comprises an oscillation (i.e., dispersion) part and a con-
stant part (DC component or squared mean).

Loss Function: Mean Absolute Deviation (MAD) and
Mean Absolute Value (MAV). The analogous of the vari-
ance and the MS using the L1 norm are the MAD,

MAD(I) = ‖I(x;θ)− µI‖L1(Ω) / |Ω|, (10)

and the mean absolute value,

MAV(I) = ‖I(x;θ)‖L1(Ω) / |Ω|, (11)

respectively. The MAV provides a valid loss function to es-
timate θ if polarity is used. However, if polarity is not used,
the MAV coincides with the IWE mean, µI (which counts
the warped events in Ω), and since this value is typically
constant, the MAV does not provide enough information to
estimate θ in this case (as will be noted in Table 2).

Loss Function: Image Entropy. Information entropy
measures the uncertainty or spread (i.e., dispersion) of a
distribution, or, equivalently, the reciprocal of its concen-
tration. This approach consists of maximizing Shannon’s
entropy of the random variable given by the IWE pixels:

H (pI(z)) = −
∫ ∞
−∞

pI(z) log pI(z)dz (12)

The PDF of the IWE is approximated by its histogram
(normalized to unit area). Comparing the PDFs of the
IWEs before and after motion compensation (last column
of Fig. 2), we observe two effects of event alignment: (i)
the peak of the distribution at I = 0 increases since the
image regions with almost no events grow (corresponding
to homogeneous regions of the brightness signal), and (ii)
the distribution spreads out away from zero: larger values
of |I(x)| are achieved. Hence, the PDF of the motion-
compensated IWE is more concentrated around zero and
more spread out away from zero than the uncompensated
one. Concentrating the PDF means decreasing the entropy,
whereas spreading it out means increasing the entropy. To
obtain a high contrast IWE, with sharper edges, the second
approach must dominate. Hence, parameters θ are obtained
by maximizing the entropy of the IWE (12).

Entropy can also be interpreted as a measure of diversity
in information content, and since (i) sharp images contain
more information than blurred ones [49], and (ii) our goal
is to have sharp images for better event alignment, thus our
goal is to maximize the information content of the IWE,
which is done by maximizing its entropy.

Loss Function: Image Range. As is well known, con-
trast is a measure of the oscillation (i.e., dispersion) of a
signal with respect to its background (e.g., Michelson con-
trast), and the range of a signal, range(I) = Imax − Imin,
measures its maximum oscillation. Hence, maximizing the
range of the IWE provides an alternative way to achieve
event alignment. However, the min and max statistics of an
image are brittle, since they can drastically change by mod-
ifying two pixels. Using the tools that lead to (8) (suppl.
material), we propose to measure image range more sensi-
bly by means of the support of the image PDF,

supp(pI) =

∫ ∞
−∞

(F (pI(z))− F (0)) dz, (13)

where F (λ) is a primitive of the weight function ρ(λ) ≥ 0
(as in Fig. 4). Fig. 2 illustrates how the range of the IWE
is related to its sharpness: as the IWE comes into focus, the
image range (support of the histogram) increases.

Next, we present focus loss functions based on local ver-
sions of the above global statistics.

Loss Function: Local Variance, MS, MAD and MAV.
Mimicking (5), which aggregates local measures of image
sharpness to produce a global score, we may aggregate the
local variance, MS, MAD or MAV of the IWE to produce a
global dispersion score that we seek to maximize. For ex-
ample, the aggregated local variance (ALV) of the IWE is

ALV(I)
.
=

∫
Ω

Var(x; I)dx, (14)

where the local variance in a neighborhood B(x) ⊂ Ω cen-
tered about the point x is given by

Var(x; I)
.
=

1

|B(x)|

∫
B(x)

(
I(u;θ)− µ(x; I)

)2
du, (15)

with local mean µ(x; I)
.
=
∫
B(x)

I(v;θ) dv/|B(x)| and
|B(x)| =

∫
B(x)

du. The local variance of an image (15) is
an edge detector similar to the magnitude of the image gra-
dient, ‖∇I‖. It may be estimated using a weighted neigh-
borhood B(x) by means of convolutions with a smoothing
kernel Gσ(x), such as a Gaussian:

Var(x; I) ≈ (I2(x) ∗Gσ(x))− (I(x) ∗Gσ(x))
2
. (16)

Based on the above example, local versions of the MS,
MAD and MAV can be derived (see suppl. material).

Loss Function: Spatial Autocorrelation. Spatial auto-
correlation of the IWE can also be used to assess event
alignment. We present two focus loss functions based on
spatial autocorrelation: Moran’s I and Geary’s C indices.

Moran’s I index is a number between−1 and 1 that eval-
uates whether the variable under study (i.e., the pixels of the
IWE) is clustered, dispersed, or random. Letting zi = I(xi)
be the value of the i-th pixel of the IWE, Moran’s index is

Moran(I)
.
=

∑
i,j wij(zi − z̄)(zj − z̄)/W∑

i(zi − z̄)2/Np
, (17)
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where z̄ ≡ µI is the mean of I , Np is the number of pixels
of I , (wij) is a matrix of spatial weights with zeros on the
diagonal (i.e., wii = 0) and W =

∑
i,j wij . The weights

wij encode the spatial relation between pixels zi and zj : we
use weights that decrease with the distance between pixels,
e.g., wij ∝ exp(−‖xi − xj‖2/2σ2

M ), with σM ≈ 1 pixel.
A positive Moran’s index value indicates tendency to-

ward clustering pixel values while a negative Moran’s in-
dex value indicates tendency toward dispersion (dissimilar
values are next to each other). Edges correspond to dissim-
ilar values close to each other, and so, we seek to minimize
Moran’s index of the IWE.

Geary’s Contiguity Ratio is a generalization of Von Neu-
mann’s ratio [50] of the mean square successive difference
to the variance:

C(I)
.
=

1

2

∑
i,j wij(zi − zj)2/W∑
i(zi − z̄)2/(Np − 1)

. (18)

It is non-negative. Values around 1 indicate lack of spatial
autocorrelation; values near zero are positively correlated,
and values larger than 1 are negatively correlated. Moran’s
I and Geary’s C are inversely related, thus event alignment
is achieved by maximizing Geary’s C of the IWE.

3.5. Dispersion of Image Sharpness Values

We have also combined statistics-based loss functions
with derivative-based ones, yielding more loss functions
(Table 1), such as the variance of the Laplacian of the IWE
Var(∆I(x;θ)), the variance of the magnitude of the IWE
gradient Var(‖∇I(x;θ)‖), and the variance of the squared
magnitude of the IWE gradient Var(‖∇I(x;θ)‖2) ≡
Var(I2

x+I2
y ). They apply statistical principles to local focus

metrics based on neighborhood operations (convolutions).

3.6. Discussion of the Focus Loss Functions

Connection with Shape-from-Focus and Autofocus: Sev-
eral of the proposed loss functions have been proven suc-
cessful in shape-from-focus (SFF) and autofocus (AF) with
conventional cameras [43, 44, 51], showing that there is
a strong connection between these topics and event-based
motion estimation. The principle to solve the frame-based
and event-based problems is the same: maximize a focus
score of the considered image or histogram. In the case of
conventional cameras, SFF and AF maximize edge strength
at each pixel of a focal stack of images (in order to infer
depth). In the case of event cameras, the IWE (an image
representation of the events) plays the role of the images in
the focal stack: varying the parameters θ produces a differ-
ent “slice of the focal stack”, which may be used not only
to estimate depth, but also to estimate other types of param-
eters θ, such as optical flow, camera velocities, etc.

Spatial Dependency: Focus loss functions based on
derivatives or on local statistics imply neighborhood oper-
ations (e.g., convolutions with nearby pixels of the IWE),

thus they depend on the spatial arrangement of the IWE
pixels (Table 1). Instead, global statistics (e.g., variance,
entropy, etc.) do not directly depend on such spatial ar-
rangement1. The image area loss functions (8) are integrals
of point-wise functions of the IWE, and so, they do not de-
pend on the spatial arrangement of the IWE pixels. The
PDF of the IWE also does not have spatial dependency, nor
do related losses, such as entropy (12) or range (13). Com-
posite focus losses (Section 3.5), however, have spatial de-
pendency since they are computed from image derivatives.

Fourier Interpretation: Focus losses based on derivatives
admit an intuitive interpretation in the Fourier domain: they
measure the energy content in the high frequencies (i.e.,
edges) of the IWE (Section 3.3). Some of the statistical
focus losses also admit a frequency interpretation. For ex-
ample, image variance quantifies the energy of the AC por-
tion (i.e., oscillation) of the IWE, and the MS measures the
energy of both, the AC and DC components. Other focus
functions, such as entropy, do not admit such a straightfor-
ward Fourier interpretation related to edge strength.

4. Experiments
In this section we compare the performance of the pro-

posed focus loss functions, which depends on multiple fac-
tors, such as, the task for which it is used, the number of
events processed, the data used, and, certainly, implementa-
tion. These factors produce a test space with an intractable
combinatorial size, and so, we choose the task for best as-
sessing accuracy on real data and then provide qualitative
results on other tasks: depth and optical flow estimation.

4.1. Accuracy and Timing Evaluation

Rotational camera motion estimation provides a good
scenario for assessing accuracy since camera motion can
be reliably obtained with precise motion capture systems.
The acquisition of accurate per-event optical flow or depth
is less reliable, since it depends on additional depth sensors,
such as RGB-D or LiDAR, which are prone to noise.

Table 2 compares the accuracy and timing of the focus
loss functions on the above scenario, using data from [45].
The data consists of sequences of one minute duration, with
increasing camera motion, reaching up to ≈ ±1000 ◦/s,
that is recorded using a motion-capture system with sub-
millimeter precision at 200 Hz. Each entry in Table 2 con-
sists of an experiment with more than 160 million events,
processed in groups of Ne = 30000 events. The focus loss
functions are optimized using non-linear conjugate gradi-
ent, initialized by the estimated angular velocity θ for the
previous group of events. As the table reports, the angu-
lar velocity errors (difference between the estimated angu-

1 The IWE consists of warped events, which depend on the location of
the events; however, by “directly” we mean that the focus loss function, by
itself, does not depend on the spatial arrangement of the IWE values.
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Focus Loss Function Boxes (RMS) Poster (RMS) Time
ωmax ≈ ±670 ◦/s ωmax ≈ ±1000 ◦/s
w/o w/ w/o w/ [µs]

Variance (4) [33, 35] 18.52 18.94 25.96 24.39 16.90
Mean Square (9) [33, 36] 19.93 19.02 34.10 26.31 25.11
Mean Absolute Deviation (10) 19.46 19.58 30.70 29.62 78.11
Mean Absolute Value - 19.77 - 29.90 23.89
Entropy (12) 28.50 26.54 47.54 33.21 271.85
Area (8) (Exp) 31.50 19.54 43.12 26.40 160.56
Area (8) (Gaussian) 25.85 18.85 34.50 25.35 1098.64
Area (8) (Lorentzian) 32.43 20.98 35.86 26.57 777.98
Area (8) (Hyperbolic) 29.13 19.15 32.94 25.88 1438.15
Range (13) (Exp) 28.66 28.72 65.33 32.23 263.11
Local Variance (14) 18.21 18.40 25.44 24.15 78.48
Local Mean Square 24.81 19.86 33.95 26.47 137.20
Local Mean Absolute Dev. 21.37 18.74 61.89 25.29 177.15
Local Mean Absolute Value - 24.10 - 30.37 243.58
Moran’s Index (17) 24.28 23.43 32.40 30.96 116.39
Geary’s Contiguity Ratio (18) 23.87 19.50 26.61 25.23 181.73
Gradient Magnitude (5) 17.83 18.10 23.93 23.58 128.46
Laplacian Magnitude (6) 18.32 17.58 24.91 23.67 293.80
Hessian Magnitude (7) 18.41 17.93 25.47 23.74 569.55
Difference of Gauss. (DoG) 20.85 19.25 24.50 22.15 189.90
Laplacian of the Gauss. (LoG) 20.36 17.77 25.15 24.01 127.65
Variance of Laplacian 18.26 18.01 26.59 23.62 327.60
Variance of Gradient 18.69 19.08 26.60 24.22 872.03
Variance of Squared Gradient 18.72 18.95 26.10 24.43 653.62
Mean Time on Pixel [37] 82.89 - 121.20 - 24.43

Table 2: Accuracy and Timing Comparison of Focus Loss
Functions. RMS angular velocity errors (in ◦/s) of the mo-
tion compensation method [35] (with (w/) or without (w/o)
polarity) with respect to motion-capture system. Processing
Ne = 30 000 events, warped onto an image of 240 × 180
pixels (DAVIS camera [52]), takes 2040.24 µs, the runtime
of the focus loss functions is given in the last column. Se-
quences boxes and poster from dataset [45]. The best
value per column is highlighted in bold.

lar velocity θ that optimizes the focus loss function and
the velocity provided by the motion-capture system) vary
across loss functions. These columns summarize the RMS
errors (with and without using polarity), which are reported
in more detail in the supplementary material. Among the
most accurate focus loss functions are the ones based on the
derivatives of the IWE, high-pass filters and the ones based
on the variance (global or local), with less than 2.6 % error.
The entropy and support-based losses (area and range) are
not as accurate, yet the errors are small compared to the an-
gular velocity excursions (ωmax) in the sequences (less than
7 % error). In general, Table 2 shows that using polarity is
beneficial; the results are slightly more accurate using po-
larity than not using it. The error boxplots of the gradient
magnitude (5), one of the most accurate focus loss functions
on Table 2, are given in Fig. 5.

Computational Cost. The last column of Table 2 com-
pares the losses in terms of computational effort, on a
single-core 2.7 GHz CPU. The variance is the fastest, with
17 µs (possibly due to efficient code in OpenCV), and its
runtime is negligible compared to the time required to warp
the events (≈2 ms). The MS and the MAV are also fast.
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(a) Without event polarity.
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(b) With event polarity.

Figure 5: Box plots of angular velocity error (estimated
vs. ground truth), per axis, for four subintervals of 15 s,
using the gradient magnitude (5) as focus loss function. The
method produces small errors: ≈18 ◦/s RMS (see Table 2),
i.e., 2.7 % with respect to |ωmax| = 670 ◦/s.

Other focus functions take longer, due to effort spent in spa-
tial operations (convolutions), and/or transcendental func-
tions (e.g., exp). The variance is a notable trade-off be-
tween accuracy and speed2. Computing the IWE hasO(Ne)
complexity, but it is, to some extent, parallelizable. Loss
functions act on the IWE (with Np pixels), thus they have
O(Np) complexity.

4.2. Depth Estimation

We also qualitatively compared the loss functions in the
context of depth estimation. Here, the IWE is a slice of the
disparity space image (DSI) computed by back-projecting
events into a volume [15]. The DSI plays the role of the
focal stack in SFF and AF (Section 3.6). Depth at a pixel
of the reference view (θ ≡ Z) is estimated by selecting the
DSI slice with extremal focus along the optical ray of the
pixel. Fig. 6 shows the focus loss functions along an opti-
cal ray for the events in a small space-time window around
the pixel. The values of the focus losses come to an ex-
tremal at a common focal point (at depth≈1.1 m). The
plots show that, in general, the focus functions monotoni-
cally decrease/increase as the distance from the focal plane
increases, forming the basin of attraction of the local ex-
trema. Composite losses (Section 3.5) have a narrow peak,
whereas others, such as the area losses have a wider peak.

4.3. Optical Flow Estimation

The profile of the loss function can also be visualized
for 2D problems such as patch-based optical flow [35].
Events in a small space-time window (e.g., 15 × 15 pix-
els) are warped according to a feature flow vector θ ≡ v:
x′k = xk − (tk − tref)v. Fig. 7 shows the profiles of several

2Implementation plays a major role in runtime; thus the above figures
are illustrative. We built on top of the C++ Standard Library and OpenCV,
but did not optimize the code or used function approximation [53, 54].
[37,40] suggest considerable speed-up factors if warping is done on a GPU.
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Figure 6: Depth estimation for a patch. Plots of several
focus losses as a function of depth. Each focus loss curve is
normalized (e.g., by its maximum), to stay in [0, 1].

(a) Patch and three can-
didate flow vectors
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(b) Variance (4).
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(c) Gradient Magni-
tude (5).
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(d) Laplacian Magni-
tude (6).
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(e) Variance of Gradi-
ent Magnitude.
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(f) Variance of Lapla-
cian.

Figure 7: Optical flow of a patch (feature). Plots of several
focus losses as a function of the two optical flow parameters
of the feature. Each focus loss surface is normalized by its
maximum. At the correct optical flow vector, some surfaces
show a narrow peak, whereas others present a broader peak.

competitive focus losses. They all have a clear extremal at
the location of the visually correct ground truth flow (point
0, green arrow in Fig. 7a). The Laplacian magnitude and
its variance show the narrowest peaks. Plots of more loss
functions are provided in the supplementary material.

4.4. Unsupervised Learning of Optical Flow

The last row of Table 2 evaluates the accuracy and timing
of a loss function inspired in the time-based IWE of [37]:
the variance of the per-pixel average timestamp of warped
events. This loss function has been used in [39] for unsuper-
vised training of a neural network (NN) that predicts dense
optical flow from events [55]. However, this loss function
is considerably less accurate than all other functions (Ta-
ble 2). This suggests that (i) loss functions based on times-
tamps of warped events are not as accurate as those based
on event count (the event timestamp is already taken into
account during warping), (ii) there is considerable room for

Figure 8: IWE before (Left) and after (Right) motion com-
pensation by a neural network similar to [39], trained using
the gradient magnitude loss (5).

improvement in unsupervised learning of optical flow if bet-
ter loss function is used.

To probe the applicability of the loss functions to es-
timate dense optical flow, we trained a network inspired
in [55] using (5) and a Charbonier prior on the flow deriva-
tive. The flow produced by the NN increases event align-
ment (Fig. 8). A deeper evaluation is left for future work.

5. Conclusion
We have extended motion compensation methods for

event cameras with a library of twenty more loss functions
that measure event alignment. Moreover, we have estab-
lished a fundamental connection between the proposed loss
functions and metrics commonly used in shape from focus
with conventional cameras. This connection allows us to
bring well-established analysis tools and concepts from im-
age processing into the realm of event-based vision. The
proposed functions act as focusing operators on the events,
enabling us to estimate the point trajectories on the image
plane followed by the objects causing the events. We have
categorized the loss functions according to their capability
to measure edge strength and dispersion, metrics of infor-
mation content. Additionally, we have shown how to design
new focus metrics tailored to edge-like images like the im-
age of warped events. We have compared the performance
of all focus metrics in terms of accuracy and time. Simi-
larly to comparative studies in autofocus for digital photog-
raphy applications [51], we conclude that the variance, the
gradient magnitude and the Laplacian are among the best
functions. Finally, we have shown the broad applicability
of the functions to tackle essential problems in computer
vision: ego-motion, depth, and optical flow estimation. We
believe the proposed focus loss functions are key to taking
advantage of the outstanding properties of event cameras,
specially in unsupervised learning of structure and motion.
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A. Notation
A.1. Lp norm of a vector-valued function

We define the Lp norm of a vector-valued function f :
Ω ⊂ Rd → Rn with components {fi}ni=1 (i.e., f =
(f1, . . . , fn)>) by

‖f‖Lp(Ω)
.
=

(∫
Ω

‖f(x)‖pdx
)1/p

, (19)

where ‖f(x)‖ = (
∑n
i=1 |fi(x)|p)1/p is the p-norm in Rn.

With this convention,

‖f‖pLp(Ω) =

n∑
i=1

∫
Ω

|fi(x)|pdx =

n∑
i=1

‖fi‖pLp(Ω), (20)

that is, the p-th power of the norm of f is the sum of the p-th
power of the norms of its components.

The two most common cases are p = 1 and p = 2,
which, for the gradient of an image, ∇I = (Ix, Iy)>, yield
simple expressions:

‖∇I‖L1(Ω) =

∫
Ω

(
|Ix(x)|+ |Iy(x)|

)
dx (21)

and
‖∇I‖2L2(Ω) =

∫
Ω

(
I2
x(x) + I2

y (x)
)
dx. (22)

A.2. Hessian Matrix

The Hessian matrix of a function, such as the IWE (used
in (7)), is denoted by

Hess(I) =

(
Ixx Ixy
Ixy Iyy

)
, (23)

where the subscripts indicate derivatives.
The trace of the Hessian matrix is the Laplacian, which

is used to define loss function (6).

B. Area of the Image of Warped Events
To measure the “thickness” of the edges of the IWE (e.g.,

Fig. 3a), one could count the number of pixels with count of

warped events above a threshold, e.g., one event. However,
this is brittle since it depends on this arbitrary threshold.
We propose to define the above-mentioned edge thickness
or “area” of an edge-like image like the IWE (3) in a more
sensible way as a weighted sum of the interior of the level
sets of the image, as we show next.

B.1. Definition of the Area of an Image

Using a Gaussian function (kernel) as a smooth approx-
imation to the Dirac delta, δ(x− µ) ≈ N (x;µ, σ2Id), the
image of warped events (3) has, strictly speaking, an un-
bounded support (area of pixels with non-zero value). To
have a meaningful support measure, we instead count the
number of pixels with value greater than1 λ,

supp(I;λ)
.
=

∫
Ω

H(I(x) > λ) dx, (24)

where H(·) is the Heaviside function. Fig. 9 shows sev-
eral examples of it. This figure also illustrates the princi-
ple of area minimization, for a 1-D signal (3) with just two
warped events. As observed, the area or thickness of I is
minimized if the events are warped to the same location
(∆x′ = 0 ⇐⇒ x′i = x′j), which is the desired event
alignment condition of corresponding events.

To have a support metric that does not depend on the
particular value of the threshold λ used (for fixed kernel
width σ), we sum (24) over all threshold values,

supp(I)
.
=

∫ ∞
0

ρ(λ) supp(I;λ) dλ, (25)

using a decreasing weighting function ρ, such as e−λ, thus
emphasizing the areas corresponding to λ ≈ 0 over those
associated to λ � 0. In this way, an algorithm mini-
mizing (25) will focus its attention on decreasing the area
contribution of small thresholds, which are more important
since the areas of larger thresholds are smaller due to the
λ-support sets {x ∈ R2 | I(x) > λ} forming a family of
nested subsets.

1We assume that I(x) ≥ 0 either because event polarity is not used
(bk = 1 in (3)) or because the support here defined is applied to images of
positive and negative events separately, and the results are added.
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Figure 9: Illustration of the “area” or support of a 1-D im-
age (3) with two events. The sum of the Gaussian kernels
centered on each warped event (in blue) produces I(x) (in
black), whose support (i.e., the set {x ∈ R | I(x) > λ =
0.2}) is displayed in solid red. The more aligned the events
(smaller ∆x = x′2 − x′1), the smaller the support of I(x).

Notice that it is not possible to use ρ = const since this
leads to supp(I) = Ne, which does not depend on the mo-
tion parameters θ we wish to optimize for. Using weighting
functions with unit area (i.e.,

∫∞
0
ρ(λ)dλ = 1) allows us

to interpret (25) as a convex combination of supports (24),
thus setting the correct scale so that (25) has the same units
as (24).
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Figure 10: Illustration of the area (26) of a patch/image
of warped events. Warped events I(x;θ) (left column)
and corresponding per-pixel support maps F (I(x;θ)/10)−
F (0) in (26) (right column), for two different motion pa-
rameters θ (top: θ1 ≡ suboptimal; bottom: θ2 ≡ θ∗ op-
timal). Support scores (26): supp(I) = 0.72 |Ω| (top) and
supp(I) = 0.65 |Ω| (bottom), with |Ω| = 312 = 961 pix-
els. The bottom patch has a smaller area (i.e., thinner edges)
than the top patch, thus showing a better event alignment.

B.2. Simplification of the Area of an Image

Substituting (24) in (25) and swapping the order of inte-
gration gives

supp(I) =

∫
Ω

∫ ∞
0

ρ(λ)H(I(x) > λ) dλ dx

=

∫
Ω

∫ I(x)

0

ρ(λ) dλ dx

=

∫
Ω

[F (λ)]
I(x)
0 dx

=

∫
Ω

(
F (I(x))− F (0)

)
dx, (26)

where F (λ)
.
=
∫
ρ(λ)dλ is a primitive of ρ, and F (0)

is constant. This is an advantageous expression compared
to (25), since it states that supp(I) can be computed using
the values of I(x) directly, without having to compute (24)
for every threshold λ and then sum up the results. By us-
ing a continuous image formulation, we have analytically
integrated the partial sums (24).

Fig. 10 illustrates (26). It shows the warped events
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I(x;θ) on a 31 × 31 image patch for two different pa-
rameters θ1,θ2 (depth values, in this example [35]). It
also shows the corresponding integrands of (26), or “per-
pixel support maps” F (I(x;θ)/λ0) − F (0) ≡ 1 −
exp(−(I(x;θ)/λ0)), with λ0 = 10 warped events. Pixels
with I(x) & λ0 events contribute more to the support (26)
than pixels with I(x) . λ0 events, as shown in the support
maps (right column of Fig. 10), which are color-coded from
blue (low contribution) to red (high contribution).

Basically, the red regions of the support maps approxi-
mately indicate the area of the IWE, whereas the blue re-
gions indicate the pixels where few warped events accumu-
late and therefore do not effectively contribute to the area
of the IWE. Clearly, the bottom patch has a smaller area
(i.e., thinner edges) than the top patch, as indicated by the
smaller area of the red regions. The image area (26) is used
to define the focus loss function (8).

C. Loss Function: Image Entropy
As anticipated in (12), event alignment may be achieved

by maximizing the entropy of the IWE, where

H (p(z))
.
= −

∫ ∞
−∞

p(z) log p(z)dz (27)

is Shannon’s (differential) entropy for a continuous random
variable whose density function (PDF) is p(z).

The PDF of an image is approximated by its histogram,
normalized to have unitary area. In a continuous formula-
tion, this is written as (see [56])

pI(z)
.
=

1

|Ω|

∫
Ω

δ (z − I(x;θ)) dx, (28)

using the Dirac delta. This equation intuitively says that
pI(z) is computed as a ratio of areas: the “number of pixels”
of the IWE with value z, divided by the total “number of
pixels”, |Ω| =

∫
Ω
dx = Np.

Substituting (28) into (27), the entropy of the IWE be-
comes

H (pI(z)) = −
∫ ∞
−∞

pI(z) log pI(z)dz

= −
∫ ∞
−∞

1

|Ω|

∫
Ω

δ(z − I(x))dx log pI(z)dz

= − 1

|Ω|

∫
Ω

(∫ ∞
−∞

δ(z − I(x)) log pI(z)dz

)
dx

= − 1

|Ω|

∫
Ω

log pI (I(x)) dx. (29)

Observe that the entropy is maximized by favoring large
values of log(1/pI(I(x))) over smaller ones. Since log is
concave, it means that large values of 1/pI(I(x)) are fa-
vored, i.e., small values of pI(I(x)) are favored. For a PDF

that is concentrated around I = 0 (large pI(0), as shown
on the last column of Fig. 2), favoring small density values
implies that they must be achieved away from I = 0, i.e.,
for large |I| values (which are caused by the aggregation
of aligned events). Thus, maximizing the entropy increases
the range of I(x), producing a higher contrast image.

D. Loss Function: Image Range
We measure the image range by means of the support of

its PDF (28),

supp(pI)
.
=

∫ ∞
0

ρ(λ) supp(pI(z);λ) dλ, (30)

where the weight function ρ(λ) ≥ 0 emphasizes the contri-
butions of small |λ| over those of large |λ|, according to the
typical shape of the PDF of the event image (concentrated
around λ = 0).

Mimicking the steps in Section B, Eq. (30) can be rewrit-
ten as

supp(pI) =

∫ ∞
−∞

∫ ∞
0

ρ(λ)H(pI(z) > λ) dλ dz

=

∫ ∞
−∞

∫ pI(z)

0

ρ(λ) dλ dz

=

∫ ∞
−∞

[F (λ)]
pI(z)
0 dz

=

∫ ∞
−∞

(
F (pI(z))− F (0)

)
dz, (31)

where F (λ) is a primitive of ρ(λ), and F (0) is constant.
The motion parameters are found by maximizing (31),

i.e., (13). The same weighting functions and primitives as
for the image area (Section 3.3) may be used (with even
symmetry if event polarity is used in the IWE (3)). This
approach is inspired by the maximization of the entropy of
the PDF of the image of warped events, as explained in Sec-
tion C.

E. Loss Function: Spatial Autocorrelation
E.1. Moran’s I Index

Moran’s I index (17) (or “serial correlation coeffi-
cient” [47]) is a measure of spatial autocorrelation, i.e., it
measures how similar is one object with respect to its neigh-
bors. It is a concept that applies to variables whose values
are known in unstructured grids (spatial units), in general
(see Fig. 11).

If the variable of interest z consists of the intensity val-
ues of an image, zi = I(xi), which is defined on a regular
(pixel) lattice {xi}, and the weights wij are shift-invariant
(they do not depend on the particular location of pixels i and
j, only on their relative spatial arrangement) and symmetric
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Figure 11: Illustration of spatial autocorrelation by Moran’s
index. A negative index indicates dispersion, whereas a pos-
itive index indicates clustering. The IWE differs from the
figure above in the sense that its pixel values vary continu-
ously with respect to the warping parameters, i.e., they are
not fixed values that move around as in the figure. Image
courtesy of ArcGIS.com https://pro.arcgis.com/en/pro-app/
tool-reference/spatial-statistics/spatial-autocorrelation.htm

wij = wji, then it is possible to write Moran’s I index using
a convolution. In the formalism of continuous images z(x)
over a domain Ω, Moran’s I index becomes

Moran(z)
.
=

1

|Ω|

∫
Ω

zs(x) (zs(x) ∗ w̃(x)) dx, (32)

where the standardized image zs(x)
.
= (z(x) − z̄)/σz is

obtained by normalizing z with its mean z̄ and variance σ2
z

over Ω. The weights w̃(x) should produce, in the convolu-
tion zs(x)∗ w̃(x), a sum of the neighboring values of zs(x)
(excluding the central value at x). Thus, it is natural to con-
sider the weights from a Gaussian kernelGσ(x) with a zero
at the origin:

w̃(x) =
Gσ(x)−Gσ(0)δ(x)

1−Gσ(0)
. (33)

The integrand of (32) is the local Moran’s I index, and
it is the element-wise product of the standardized variable
zs with a low-pass filtered version of itself. It is positive
if both zs and neighboring values zs(x) ∗ w̃(x) are higher
or lower than the mean; and it is negative if the value and
neighboring values are on opposite sides of the mean (one
higher, the other lower). Increasing event alignment corre-
sponds to favoring negative local Moran indices (dissimilar
IWE pixels next to each other), and therefore, a negative
(global) Moran’s I index.

E.2. Geary’s Contiguity Ratio

Geary’s contiguity ratio is a generalization of Von Neu-
mann’s ratio [50] of the mean square successive difference
(numerator of (18)) to the variance (denominator of (18)).
Geary’s contiguity ratio is non-negative, and its mean is 1
for random images. Values of C significantly lower than
1 demonstrate positive spatial autocorrelation (the variable
of interest is regarded as contiguous), while values signifi-
cantly higher than 1 illustrate negative autocorrelation.

In the formalism of continuous images, Geary’s contigu-
ity ratio can be written as

C(z) =
1

2

1

|Ω|

∫
Ω

c(x)dx, (34)

with local score efficiently computed using convolutions:

c(x)
.
= (zs(x))2 + (zs(x))2 ∗ w̃(x)− 2zs(x) (zs ∗ w̃)(x).

(35)
Notice that the last term in (35) also appears in Moran’s I
index (32). Thus, Geary’s C is inversely related to Moran’s
I, but they are not identical.

Homogeneous regions of an image z(x) have a positive
spatial autocorrelation, indicated by c(x) < 1. The re-
gions with large values of (35), i.e., negative spatial auto-
correlation, are those corresponding to the edges of the ob-
jects (dissimilar intensity values on each side of the edge).
Thus, Geary’s local statistic (35) acts as an edge detector
(see Figs. 13 or 15).

F. Loss Function: Aggregation of Local Statis-
tics

Similarly to (14), aggregating other local statistics of the
IWE also yield focus measures. For example, the aggrega-
tion of the local mean absolute deviation (ALMAD),

ALMAD(I)
.
=

∫
Ω

MAD(x; I)dx, (36)

with

MAD(x; I)
.
=

1

|B(x)|

∫
B(x)

|I(u;θ)− µ(x; I)|du, (37)

is closely related to (14) since both aggregate local mea-
sures that are edge-detectors of I ((15) uses the theL2 norm,
whereas (37) uses the L1 norm). Using a weighted neigh-
borhood (e.g., Gaussian kernel Gσ), (37) can be efficiently
approximated by the formula with two convolutions:

MAD(x; I) ≈
∣∣I(x)−

(
I(x) ∗Gσ(x)

)∣∣ ∗Gσ(x), (38)

where the inner convolution approximates the local mean,
µ(x; I) ≈ I(x)∗Gσ(x), and the outer convolution averages
the magnitude of the local, centered IWE (integrand of (37))
over the neighborhood around x.

Omitting the local mean in (15) and (37) leads to local
versions of the MS and the MAV, respectively. These op-
erators, however, are not edge detectors; nevertheless, they
also work as focus loss functions since the images on which
they are applied, the IWEs, are edge-like images (the events
are brightness changes, i.e., they are related to the temporal
derivative of the brightness signal). Similarly to the (global)
MAV, the local MAV does not provide enough information
to estimate the warp parameters θ if polarity is not used (as
indicated in Table 2).
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G. Plots of the Local Loss Maps

Most of the loss functions considered can be written as
integrals over the IWE domain. Figs. 12, 13, 14 and 15 vi-
sualize the integrands (i.e., “local loss”) of most focus loss
functions, for two scenes: dynamic and boxes from the
dataset [45]. Images are given in pairs (with a common
caption below the images): local loss before optimization
(without motion compensation, on the left), and after opti-
mization of the corresponding focus loss function (motion-
compensated, on the right). Each image pair shares the
same color scale for proper visualization of how the local
loss changes before and after optimization. For reference,
since the local loss are transformations of the IWE, Figs. 12
and 14 also provide, on the top right, the IWE before and
after optimization with one of the loss functions (the vari-
ance).

The local loss of area-based loss functions is the support
map, as in Figs. 3b and 10. The focus loss given by the
IWE range (13) is not expressed as an integral over the im-
age domain, therefore, no image integrand is visualized in
the above-mentioned figures. MAV and local MAV are not
displayed either since they cannot be optimized with respect
to the parameters.

Notice that all local loss maps are represented using the
same color scheme, from blue (small) to large (yellow). For
objective functions formulated as maximization problems
(variance, gradient magnitude, etc.), visually good maps
are those that are almost “blue” for IWEs with bad event-
alignment parameters, and that clearly show “yellow” re-
gions where events align (due to good parameters θ). For
objective functions formulated as minimization problems
(e.g., area-based, loss based on the mean timestamp per
pixel), the situation is the opposite: good local loss maps
become less yellowish and more blueish as event alignment
improves due to good parameters θ.

H. Additional Experiments on Accuracy Eval-
uation

Tables 3 and 4 provide further quantitative evaluations of
the considered focus loss functions. Results correspond to
the boxes and poster sequences in [45], undergoing a ro-
tational motion with velocities close to 1000 ◦/s. Looking
at the RMS errors, these are small compared to the excur-
sion of the signal. The RMS columns of these tables are
summarized in Table 2.

I. Additional Plots of Focus Loss Functions in
Optical Flow Space

Figs. 16 and 17 present experiments with events in
a small space-time window (31 × 31 pixels and ∆t =
200 ms), yielding approximately 2000 events, from a se-

quence of the dataset [45]. The goal of these figures is to
visualize the “shape” or “signature” of the focus loss func-
tions (as heat maps, pseudo-colored from blue to red).

The top-left image shows the patch on the intensity
frame (not used) corresponding to the space-time window
of events, highlighted in yellow, and three candidate flow
vectors {θi}2i=0 (marked with red, blue and green arrows,
respectively). The ground truth flow is close to θ2 =
(−40, 0)pixel/s. The top row also shows the warped events
(IWE patch) using the three flow vectors, without polarity in
the IWE (Fig. 16) or with polarity (Fig. 17). The remaining
rows show the focus loss functions in optical flow space,
with ±60 pixel/second around θ2. Some focus functions
are designed to be maximized (and therefore should present
a local maximum at θ2), while others are designed to be
minimized (and should present a local minimum at θ2).

Without Polarity. Rows 2 and 3 of the figures show the
variance, MS, MAD, MAV and their aggregation of local
versions. They are all visualized in the range [0, 1], by di-
viding by the maximum value of the focus function. With-
out using polarity (Fig. 16), the variance presents a nice
peak at the correct optical flow θ2, the peaks of the MS
and MAD functions are not as pronounced, and the MAV
function does not have the maximum at the ground truth
location (we explained that, without polarity, the MAV can-
not be used to estimate θ). The local versions (third row of
Fig. 16) are slightly narrower than the global versions. The
fourth row presents the four area-based focus losses (Sec-
tion B), whose goal is to be minimized, and indeed, they
present a local minimum at θ2. There are not big differ-
ences in these four area-based losses. The fifth row shows
more statistics-based losses. The range and Geary’s C show
a local maximum at the correct flow. Moran’s index shows
a local minimum, as expected, at the correct flow. The en-
tropy, without using polarity, does not have a local maxi-
mum at the correct flow. Instead, using polarity (Fig. 17),
it does have a local maximum at θ2. The last two rows of
Figs. 16 and 17 show focus loss functions based on the IWE
derivatives and their variances (composite losses). They all
present a clear peak at the correct depth (as the case of the
variance and local variance); some of them are more narrow
than others (all are visualized in the range [0, 1], for ease of
comparison). The gradient magnitude (based on Sobel op-
erator), the DoG magnitude and the LoG magnitude seem
to be the smoothest of these two rows.

With Polarity. Fig. 17 shows the results on the same ex-
periment as Fig. 16, but using event polarity in the IWE.
In a scene with approximately equal number of dark-to-
bright and bright-to-dark transitions, the number of posi-
tive and negative events is approximately balanced, and so,
the mean of the IWE is approximately zero. Thus, in this

13



Focus Loss Function Without polarity With polarity
ωx ωy ωz µ σ RMS ωx ωy ωz µ σ RMS

Variance (4) [33, 35] 15.69 19.53 20.34 -0.31 18.42 18.52 16.03 19.67 21.12 -0.64 18.78 18.94
Mean Square (9) [33, 36] 16.05 20.03 23.70 -0.49 19.83 19.93 16.04 19.67 21.36 -0.57 18.86 19.02
Mean Absolute Deviation (10) 15.40 18.99 23.99 -0.49 19.40 19.46 15.93 19.15 23.67 -0.57 19.40 19.58
Mean Absolute Value (11) - - - - - - 15.95 19.16 24.22 -0.61 19.60 19.77
Entropy (12) 19.29 21.73 44.48 0.03 28.14 28.50 18.03 20.50 41.10 -0.20 26.19 26.54
Area (8) (Exp) 19.70 21.57 53.23 0.10 31.41 31.50 15.89 19.12 23.60 -0.27 19.39 19.54
Area (8) (Gaussian) 18.12 20.20 39.22 0.10 25.78 25.85 15.67 18.77 22.11 -0.33 18.69 18.85
Area (8) (Lorentzian) 20.56 21.69 55.04 0.42 32.30 32.43 15.48 19.36 28.11 -0.02 20.85 20.98
Area (8) (Hyperbolic) 18.71 20.67 47.99 0.07 29.05 29.13 15.69 18.90 22.86 -0.27 18.99 19.15
Range (13) (Exp) 18.68 22.72 44.59 0.39 28.16 28.66 17.29 19.38 49.50 -0.48 28.23 28.72
Local Variance (14) 16.17 19.55 18.90 -0.41 17.94 18.21 16.04 19.55 19.61 -0.21 18.15 18.40
Local Mean Square 18.37 21.42 34.65 0.59 24.31 24.81 16.68 20.21 22.67 -0.05 19.53 19.86
Local Mean Absolute Deviation 16.36 19.39 28.35 -0.35 21.10 21.37 15.78 19.06 21.37 -0.20 18.47 18.74
Local Mean Absolute Value - - - - - - 18.13 20.17 34.00 -0.42 23.61 24.10
Moran’s Index (17) 17.87 20.74 34.24 -0.99 23.87 24.28 16.97 20.01 33.31 -0.08 23.18 23.43
Geary’s Contiguity Ratio (18) 17.48 20.21 33.93 -0.58 23.50 23.87 16.00 19.42 23.07 0.04 19.25 19.50
Gradient Magnitude (5) 16.12 19.53 17.84 -0.71 17.58 17.83 15.90 19.46 18.93 -0.79 17.91 18.10
Laplacian Magnitude (6) 15.63 20.92 18.42 -0.01 18.09 18.32 14.52 19.93 18.28 0.03 17.36 17.58
Hessian Magnitude (7) 16.26 19.69 19.29 -0.22 18.14 18.41 15.89 19.43 18.46 -0.30 17.70 17.93
Difference of Gaussians (DoG) 14.79 20.22 27.54 0.66 20.50 20.85 14.99 20.52 22.25 0.43 18.92 19.25
Laplacian of the Gaussian (LoG) 14.64 20.45 26.00 0.50 20.09 20.36 14.42 20.09 18.80 0.47 17.49 17.77
Variance of Laplacian 16.30 19.70 18.78 -0.45 18.02 18.26 15.95 19.45 18.71 -0.32 17.81 18.01
Variance of Gradient 16.26 19.71 20.11 -0.00 18.49 18.69 16.10 19.75 21.39 0.31 18.84 19.08
Variance of Squared Gradient 16.50 20.02 19.64 -0.10 18.46 18.72 16.22 20.08 20.56 0.06 18.72 18.95
Mean Timestamp on Pixel [37] 42.48 39.40 166.81 0.54 82.87 82.89 - - - - - -

Table 3: Accuracy and Timing Comparison of Focus Loss Functions. Angular velocity errors (in deg /s) of the motion
compensation method [35] (with or without polarity) with respect to motion-capture system. The six columns per case
are the errors in each component of the angular velocity and their mean, standard deviation and RMS values. Processing
Ne = 30 000 events, warped onto an image of 240 × 180 pixels (DAVIS camera [52]). Sequence: boxes rotation from
the Event Camera Dataset [45]. Best value per column is in bold.

case, the MS is approximately equal to the variance, and
the MAV approximates the MAD. This is noticeable in the
second row of Fig. 17. A similar trend is observe in the
local versions of the four above statistics, albeit the local
variance and MAD present narrower peaks than the local
MS and MAV, respectively. The area-based focus functions
are computed by splitting the events according to polarity,
computing the areas of the two resulting IWEs and adding
their area values. The corresponding plots, in the fourth
row of Fig. 17 are similar to those without polarity (Fig. 16,
except for the vertical scale). The entropy and range im-
prove if event polarity is used, basically because the PDF
becomes double-sided and it allows us to distinguish pos-
itive and negative IWE edges/values. Moran’s index and
Geary’s C ratio are not good focus losses if polarity is used,
since they present brittle local minimum/maximum, respec-
tively. The derivative-based losses present a clear peak at
the correct flow, and slightly more pronounced than their
counterparts in Fig. 16.

J. Additional Plots on Depth Estimation

Fig. 18 shows in more detail Fig. 6: depth estimation
for a patch from a sequence of the dataset [45]. The se-
quence was recorded with a DAVIS camera [52], camera
poses were recorded by a motion-capture system, and the
camera was calibrated, so the only unknown is the scene
structure (i.e., depth). Fig. 18b shows how the values of
the focus functions vary with respect to the depth parame-
ter θ ≡ Z, for the events corresponding to the patch high-
lighted in Fig. 18a. Remarkably, the focus curves have a
smooth variation, with a clear extrema around the correct
depth value. Fig. 18a shows the warped events (IWE) for a
depth Z = 1.11 m, close to the peaks of the focus curves.
The IWE is pseudo-colored, from few event count (blue) to
large event count (red). It shows that the events produce
a sharp image at the patch location, whereas other parts of
the image are “out of focus” since events do not align at that
depth [15,35]. Clearly, some focus curves are narrower than
others (Fig. 18b), showing better properties for determining
the optimal depth location. We observe that the entropy and
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Focus Loss Function Without polarity With polarity
ωx ωy ωz µ σ RMS ωx ωy ωz µ σ RMS

Variance (4) [33, 35] 26.67 20.24 30.95 0.45 25.93 25.96 26.50 19.86 26.80 -0.20 24.36 24.39
Mean Square (9) [33, 36] 28.44 25.89 47.97 3.70 33.43 34.10 26.90 21.23 30.79 1.19 26.14 26.31
Mean Absolute Deviation (10) 27.25 22.16 42.66 1.25 30.43 30.70 27.11 21.73 40.03 1.71 29.40 29.62
Mean Absolute Value (11) - - - - - - 27.18 22.19 40.33 2.18 29.65 29.90
Entropy (12) 32.81 41.12 68.70 3.63 46.98 47.54 27.65 22.73 49.27 2.36 32.98 33.21
Area (8) (Exp) 33.12 22.50 73.75 -0.73 42.94 43.12 26.31 19.53 33.36 -0.42 26.36 26.40
Area (8) (Gaussian) 28.40 21.07 54.02 -0.59 34.36 34.50 26.15 19.20 30.70 -0.41 25.31 25.35
Area (8) (Lorentzian) 28.51 21.69 57.41 -0.92 35.71 35.86 26.30 19.63 33.77 -0.59 26.52 26.57
Area (8) (Hyperbolic) 27.39 20.65 50.78 -0.84 32.82 32.94 26.27 19.35 32.01 -0.41 25.84 25.88
Range (13) (Exp) 32.18 37.73 61.70 3.44 43.32 43.87 24.48 19.53 45.99 1.56 29.86 30.00
Local Variance (14) 26.95 20.49 28.87 1.11 25.34 25.44 26.48 20.32 25.66 0.88 24.06 24.15
Local Mean Square 28.47 25.58 47.79 3.79 33.28 33.95 26.74 21.25 31.41 1.26 26.30 26.47
Local Mean Absolute Deviation 47.61 53.19 84.85 4.55 61.67 61.89 26.42 20.03 29.41 0.95 25.22 25.29
Local Mean Absolute Value - - - - - - 27.19 22.34 41.57 2.22 30.10 30.37
Moran’s Index (17) 28.32 21.57 47.31 1.39 32.32 32.40 27.70 20.99 44.18 1.32 30.90 30.96
Geary’s Contiguity Ratio (18) 27.63 20.78 31.44 0.89 26.56 26.61 26.52 20.25 28.90 1.19 25.15 25.23
Gradient Magnitude (5) 26.61 20.50 24.69 0.61 23.85 23.93 26.34 20.01 24.40 -0.20 23.54 23.58
Laplacian Magnitude (6) 27.24 20.74 26.76 0.64 24.85 24.91 26.29 20.25 24.46 0.61 23.60 23.67
Hessian Magnitude (7) 27.20 22.40 26.81 0.95 25.39 25.47 26.36 20.24 24.61 0.80 23.66 23.74
Difference of Gaussians (DoG) 24.51 18.01 30.97 1.45 24.41 24.50 24.29 17.85 24.30 0.75 22.10 22.15
Laplacian of the Gaussian (LoG) 24.66 17.96 32.85 1.27 25.10 25.15 24.20 17.78 30.04 1.30 23.94 24.01
Variance of Laplacian 26.85 27.84 25.10 0.77 26.52 26.59 26.26 20.23 24.38 0.53 23.56 23.62
Variance of Gradient 26.85 27.84 25.10 0.77 26.52 26.60 26.63 20.29 25.44 0.96 24.12 24.22
Variance of Squared Gradient 26.80 21.14 30.36 1.29 25.97 26.10 26.72 20.94 25.63 1.13 24.32 24.43
Mean Timestamp on Pixel [37] 64.94 87.19 211.4 0.94 121.1 121.2 - - - - - -

Table 4: Accuracy Comparison of Focus Loss Functions on the poster rotation sequence from dataset [45]. Angular
velocity errors (in deg /s) of the motion compensation method [35] (with or without polarity) with respect to motion-capture
system. The six columns per case are the errors in each component of the angular velocity and their mean, standard deviation
and RMS values. Processing Ne = 30 000 events, warped onto an image of 240× 180 pixels (DAVIS camera [52]). On each
column, the best value is highlighted in bold.

the range curves have wide peaks, and therefore do not de-
termine depth very precisely.

Semi-dense 3D Reconstruction. Fig. 19 shows depth es-
timation for every pixel of a reference view along the tra-
jectory of the event camera. For every pixel, we compute
focus curves, as those in Fig. 18b, and select the depth at
the peak. To capture fine spatial details, the focus functions
are computed on patches of 3 × 3 pixels in the reference
view, weighted by a Gaussian kernel to emphasize the con-
tribution of the center pixel. We also record the value of the
focus function at the peak for every pixel of the reference
view. These values are displayed as a “focus confidence
map” in Fig. 19. For better visualization, the focus values
are represented in negative form, from bright (low focus
value) to dark (high focus value). The confidence map is
used to select the pixels in the reference view with largest
focus, i.e., the pixels for which depth is most reliably esti-
mated. The above selection yields a semi-dense depth map,
which is displayed color coded, overlaid on the intensity
frame from the DAVIS camera [52] at the reference view.

We used adaptive thresholding [46, p.780] on the focus con-
fidence map, and a median filter to remove spike noise from
the depth map. As it is seen, depth is most reliably esti-
mated at strong brightness edges of the scene. Finally, the
depth map is also visualized as a point cloud, color-coded
according to depth (Fig. 19).

The figure compares some representative focus func-
tions. In general, we obtain good depth 3D reconstructions
with the methods tested. Some methods produce slightly
noisier 3D reconstructions than others, and some recover
more edges than others. This is due to both the shape of
the focus confidence maps and the adaptive thresholding
parameters. We observe that focus functions as simple as
the local mean square (MS) or the local mean absolute de-
viation (MAD) produce good results. These semi-dense 3D
reconstruction methods may be used as the mapping mod-
ule of an event-based visual odometry system, such as [23],
to enable camera pose estimation from the 3D reconstructed
scene.
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Scene IWE before optimization IWE after optimizing (4)

Zero parameters Best parameters θ∗ Zero parameters Best parameters θ∗

Variance (4): |I(x)− µI |2 MS (9): |I(x)|2

MAD (10): |I(x)− µI | Entropy (12) (29): − log pI(I(x))

Area (8) (Exponential): F (I(x)) Area (8) (Gaussian): F (I(x))

Area (8) (Lorentzian): F (I(x)) Area (8) (Hyperbolic): F (I(x))

Local Variance (16) Local MS: I2(x) ∗Gσ(x)

Figure 12: Visualization of the local loss (i.e., integrands of the Focus Loss Functions), pseudo-colored from blue (small)
to yellow (large). Same scene as in the top row of Fig. 2 (i.e., without using polarity). Images are given in pairs: local
loss before optimization (no motion compensation, Left), and after optimization of the corresponding focus loss function
(motion-compensated, Right). The local loss of area-based loss functions is the “support map”, as in Figs. 3b and 10.
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Zero parameters Best parameters θ∗ Zero parameters Best parameters θ∗

Local MAD (38): |I(x)− (I(x) ∗Gσ(x))| ∗Gσ(x) (Local) Moran’s Index (17),(32): Is(x) (Is ∗ w̃)(x)

(Local) Geary’s C Contiguity Ratio (35) Gradient Magnitude (5): ‖∇I(x)‖2

Laplacian Magnitude (6) ‖∆I(x)‖2 Hessian Magnitude (7): ‖Hess(I(x))‖2

DoG: |(I ∗Gσ1)(x)− (I ∗Gσ2)(x)|2 LoG: |(I ∗Gσ)(x)− (I ∗G1.6σ)(x)|2

Variance of Laplacian: |∆I(x)− µ∆I |2 Variance of Gradient Magnitude: |‖∇I(x)‖ − µ‖∇I‖|2

Variance of Squared Gradient Magnitude Variance of Mean Timestamp on Pixel [37]

Figure 13: Visualization of local scores (i.e., integrands) of the Focus Loss Functions (continuation).
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Scene IWE before optimization IWE after optimizing (4)

Zero parameters Best parameters θ∗ Zero parameters Best parameters θ∗

Variance (4): |I(x)− µI |2 MS (9): |I(x)|2

MAD (10): |I(x)− µI | Entropy (12) (29): − log pI(I(x))

Area (8) (Exponential): F (I(x)) Area (8) (Gaussian): F (I(x))

Area (8) (Lorentzian): F (I(x)) Area (8) (Hyperbolic): F (I(x))

Local Variance (16) Local MS: I2(x) ∗Gσ(x)

Figure 14: Visualization of the local loss (i.e., integrands of the Focus Loss Functions). Scene boxes, IWE not without using
polarity. Same notation as Fig. 12.
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Zero parameters Best parameters θ∗ Zero parameters Best parameters θ∗

Local MAD (38): |I(x)− (I(x) ∗Gσ(x))| ∗Gσ(x) (Local) Moran’s Index (17), (32): Is(x) (Is ∗ w̃)(x)

(Local) Geary’s C Contiguity Ratio (35) Gradient Magnitude (5): ‖∇I(x)‖2

Laplacian Magnitude (6) ‖∆I(x)‖2 Hessian Magnitude (7): ‖Hess(I(x))‖2

DoG: |(I ∗Gσ1)(x)− (I ∗Gσ2)(x)|2 LoG: |(I ∗Gσ)(x)− (I ∗G1.6σ)(x)|2

Variance of Laplacian: |∆I(x)− µ∆I |2 Variance of Gradient Magnitude: |‖∇I(x)‖ − µ‖∇I‖|2

Variance of Squared Gradient Magnitude Variance of Mean Timestamp on Pixel [37]

Figure 15: Visualization of local scores (i.e., integrands) of the Focus Loss Functions (continuation).
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Figure 16: Visualization of the Focus Loss Functions (as heat maps, pseudo-colored from blue to red). The top-left image
shows a selected patch (highlighted in yellow) and three candidate flow vectors {θi}2i=0. The ground truth flow is close to
θ2 = (−40, 0)pixel/s. The top row also shows the warped events (IWE patch) using the three flow vectors, without using
polarity in the IWE. The remaining rows show the focus loss functions in optical flow (i.e., image velocity) space.
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Figure 17: Visualization of the Focus Loss Functions (as heat maps, pseudo-colored from blue to red). Same notation as in
Fig. 16, but using polarity in the IWE.
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(a) Image of Warped Events IWE (i.e., slice of the Disparity Space Im-
age (DSI) [15]) corresponding to depth θ ≡ Z = 1.11 m. Color scale
represents the event count, from blue (few events) to red (many events).
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(b) Focus functions vs depth for the events corresponding to the patch highlighted in Fig. 18a.

Figure 18: Depth Estimation. Focus functions in Fig. 18b are shown normalized to the range [0, 1] for easier visualization.
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Figure 19: 3-D reconstruction of a scene using several focus loss functions. Semi-dense depth maps (overlaid on grayscale
frames) and point clouds are pseudo-colored according to depth, from red (close) to blue (far), in the range 0.45 m to 2.4 m.
Sequence slider depth from [45], with Ne = 1 000 000 events over a time span of 2.93 s and a camera baseline of 85 cm.
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K. Analytical Derivatives of Focus Loss Functions

In this section, we provide the analytical derivatives of some of the focus loss functions used. A significant advantage of
the proposed focus loss functions is that they are defined in terms of well-known analytical operations, and so, we can use
powerful tools from Calculus to compute and simplify their derivatives. This becomes useful in the optimization framework
of Fig. 1, both, for speed-up and increased accuracy over numerical derivatives.

Let the vector of parameters defining the space-time warping of events be θ = (θ1, . . . , θM )> ∈ RM .

Derivative of the IWE. The derivative of the IWE (3) with respect to the warp parameters θ is, replacing the Dirac delta
with an approximation, such as a Gaussian, δ(x) ≈ N (x;0, ε2Id), and using the chain rule,

∂I

∂θ
= −

Ne∑
k=1

bk∇N
(
x− x′k(θ);0, ε2Id

) ∂x′k(θ)

∂θ
, (39)

where ∇N is the gradient of the 2D Gaussian PDF, and the derivative of the warp is a purely geometric term: ∂x′
k(θ)
∂θ =

W′(x′k, tk;θ).

Loss Function: Mean Square (MS). The derivative of the MS, (9), is, by the chain rule,

∂

∂θ
MS(I) =

1

|Ω|

∫
Ω

2I(x)
∂I(x)

∂θ
dx. (40)

Loss Function: Variance. The derivative of the variance of the IWE (4) is given in [33]. Letting

Ic(x)
.
= I(x)− µ(I) (41)

be the centered IWE, the derivative of the variance is, by the chain rule,

∂

∂θ
Var(I) =

1

|Ω|

∫
Ω

2Ic(x)
∂Ic(x)

∂θ
dx, (42)

(formally, the same formula as (40), but with the centered IWE playing the role of the IWE in (40)) with

∂Ic

∂θ
=
∂I

∂θ
− µ

(
∂I

∂θ

)
(43)

since the mean µ(·) and the derivative are linear operators, and therefore, commute. The previous result (39) may be substi-
tuted in (43).

Loss Function: Mean Absolute Value (MAV). Derivative of the MAV is

∂

∂θ
MAV(I) =

1

|Ω|

∫
Ω

sign(I(x))
∂I(x)

∂θ
dx. (44)

From a numerical point of view, it is sensible to replace sign(x) by a smooth approximation, e.g., sign(x) ≈ tanh(kx), with
parameter k � 1 controlling the width of the transition around x = 0 (see [53]).

Loss Function: Mean Absolute Deviation (MAD). The derivative of the MAD, (10), is, by the chain rule and using (43),

∂

∂θ
MAD(I) =

1

|Ω|

∫
Ω

sign(Ic(x))
∂Ic(x)

∂θ
dx. (45)
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Loss Function: Entropy. The derivative of entropy (12) is, stemming from (29),

∂

∂θ
H (pI(z)) =

∫
Ω

− 1

|Ω|
p′I(I(x))

pI(I(x))

∂I(x)

∂θ
dx, (46)

where p′I(z) = dpI/dz. This formula can be obtained by differentiating (29) and applying the chain rule,

∂

∂θ
log pI (I(x)) =

p′I (I(x))

pI (I(x))

∂

∂θ
I(x). (47)

Implementation Details: We approximate the density function pI(z) by a smooth histogram of the IWE (3). First, a
high-resolution histogram (e.g., 200 bins) is computed and normalized to unit area (like a PDF), and then it is smoothed by a
Gaussian filter, e.g., of standard deviation σ = 5 bins. The smoothed PDF is the convolution

pσI (z)
.
= pI(z) ∗ N (z; 0, σ2), (48)

and it is straightforward to show, using the convolution properties and interchanging the order of integration, that it is equiv-
alent to the function obtained by replacing the Dirac delta in (28) with a smooth approximation (such as the Gaussian:
δ ← N ):

pσI (z) =
1

|Ω|

∫
Ω

N (z − I(x); 0, σ2)dx. (49)

Smoothing (i.e., filtering) mitigates the noise due to bin discretization and improves robustness (size of the basin of attraction)
of the entropy-based focus function (12). Thus, the term in the integrand of (46) is approximated by

p′I(z)

pI(z)
≈ (pσI )′(z)

pσI (z)
, (50)

where the derivative (pσI )′ is computed using central, finite-differences on the samples of pσI (z). Linear interpolation is used
to interpolate the samples of pσI and (pσI )′.

Loss Function: Image Area. The derivative of the area (8) is

∂

∂θ
supp(I) =

∫
Ω

ρ(I(x))
∂I(x)

∂θ
dx, (51)

with weighting functions ρ(λ). See Section 3.3 for different choices (exponential, Gaussian, Lorentzian and Hyperbolic).

Loss Function: Image Range. The derivative of the support of the PDF of the IWE (13) is

∂

∂θ
supp(pI) =

1

|Ω|

∫
Ω

ρ′ (pI(I(x)))
∂I(x)

∂θ
dx, (52)

where ρ′(λ) = dρ/dλ is the derivative of the weighting function. This can be shown using the chain rule and the derivative
of the PDF of the IWE (28), expressed in terms of the derivative of the Dirac delta.

Result: Derivative of a Convolution. The derivative of a convolution of the IWE with a kernel K(x) is computed
component-wise:

∂

∂θ
(I ∗K)(x)︸ ︷︷ ︸

1×1︸ ︷︷ ︸
1×M

=

(
. . . ,

∂

∂θi
(I ∗K)(x), . . .

)
=

(
. . . ,

∂I(x)

∂θi
∗K(x), . . .

)
.
=
∂I(x)

∂θ︸ ︷︷ ︸
1×M

∗K(x)︸ ︷︷ ︸
1×1

. (53)

Loss Function: Local MS. The derivative of the aggregated local MS of the IWE is, by the chain rule and (53),

∂

∂θ

∫
Ω

I2(x) ∗Gσ(x) dx =

∫
Ω

(
2I(x)

∂I(x)

∂θ

)
∗Gσ(x) dx. (54)
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Loss Function: Local Variance. The derivative of the aggregated local variance of the IWE is, by the chain rule on (14),

∂

∂θ

∫
Ω

Var(x; I) dx =

∫
Ω

∂

∂θ
Var(x; I) dx, (55)

where, using (16) and result (53), the integrand becomes

∂

∂θ
Var(x; I)

(16)
≈
(

2I(x)
∂I(x)

∂θ

)
∗Gσ(x)− 2(I(x) ∗Gσ(x))

(
∂I(x)

∂θ
∗Gσ(x)

)
. (56)

Loss Function: Local MAV. The derivative of the aggregated local MAV of the IWE is, using the chain rule and the
compact notation (53),

∂

∂θ

∫
Ω

|I(x)| ∗Gσ(x) dx =

∫
Ω

(
sign(I(x))

∂I(x)

∂θ

)
∗Gσ(x) dx. (57)

Loss Function: Local MAD. Letting Ic(x)
.
= I(x) − µ(I)(x) be the locally-centered IWE, with local mean µ(I)(x)

.
=

I(x) ∗Gσ(x), the derivative of the aggregated local MAD of the IWE is, using the chain rule and the compact notation (53),

∂

∂θ

∫
Ω

|Ic(x)| ∗Gσ(x) dx =

∫
Ω

(
sign(Ic(x))

∂Ic(x)

∂θ

)
∗Gσ(x) dx, (58)

with derivative of the locally-centered IWE

∂Ic(x)

∂θ
=
∂I(x)

∂θ
− µ

(
∂I

∂θ

)
(x) (59)

since the local mean and the derivative are linear operators, and hence, commute.

Loss Function: Gradient Magnitude. The derivative of the squared magnitude of the gradient of the IWE (5) is

∂

∂θ
‖∇I‖2L2(Ω) =

∫
Ω

2(∇I(x))>
∂∇I(x)

∂θ
dx, (60)

with 2×M matrix (assuming equality of mixed derivatives by Schwarz’s theorem),

∂∇I(x)

∂θ
=

(
∂
∂θ Ix
∂
∂θ Iy

)
=

(
∂
∂x

∂I
∂θ

∂
∂y

∂I
∂θ

)
. (61)

Hence, (60) becomes

(60) =

∫
Ω

2

(
Ix(x)

∂

∂x

(
∂I(x)

∂θ

)
+ Ix(x)

∂

∂y

(
∂I(x)

∂θ

))
dx. (62)

Loss Function: Laplacian Magnitude. Following similar steps as for the gradient magnitude, the derivative of the mag-
nitude of the Laplacian of the IWE (6) is

∂

∂θ
‖∆I‖2L2(Ω) =

∫
Ω

2∆I(x) ∆

(
∂I(x)

∂θ

)
dx. (63)

where we defined

∆

(
∂I(x)

∂θ

)
.
=

∂2

∂x2

(
∂I(x)

∂θ

)
+

∂2

∂y2

(
∂I(x)

∂θ

)
. (64)
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Loss Function: Hessian Magnitude. The derivative of Hessian magnitude (7) is

∂

∂θ
‖Hess(I)‖2L2(Ω) =

∑
i,j

∂

∂θ
‖Ixixj

‖2L2(Ω), (65)

where xi, xj are variables x, y of the image plane. Using once more Schwarz’s theorem to swap the differentiation order,
each of the four terms in the sum (65) is

∂

∂θ
‖Ixixj

‖2L2(Ω) =

∫
Ω

2Ixixj
(x)

(
∂I(x)

∂θ

)
xixj

dx, (66)

where subscripts xi, xj indicate differentiation with respect to those variables.

Loss Function: Difference of Gaussians (DoG). The derivative of the squared difference of Gaussians applied to the IWE
can be written in a compact way, using (53) on the DoG(x)

.
= (Gσ1 −Gσ2)(x) filter, with σ1 > σ2, as

∂

∂θ

∫
Ω

(I(x) ∗ DoG(x))
2
dx =

∫
Ω

2 (I(x) ∗ DoG(x))

(
∂I(x)

∂θ
∗ DoG(x)

)
dx, (67)

In expanded form,

∂

∂θ

∫
Ω

(I(x) ∗ DoG(x))
2
dx =

∫
Ω

2 ((I ∗Gσ1
)(x)− (I ∗Gσ2

)(x))

(
∂I(x)

∂θ
∗Gσ1

(x)− ∂I(x)

∂θ
∗Gσ2

(x)

)
dx (68)

In the experiments, we used σ1 = 1 pixel and σ2 = 3σ1.

Loss Function: Laplacian of the Gaussian (LoG). The derivative of the squared difference of the Laplacian of the
Gaussian of the IWE can be computed from the formula for the DoG, using the fact that the DoG approximates the LoG
if σ2 ≈ 1.6σ1.

Loss Function: Variance of the Laplacian. Derivative of the variance of the Laplacian:

Var(∆I)
.
=

1

|Ω|

∫
Ω

(∆I(x)− µ∆I)
2dx, (69)

where the mean is µ∆I
.
= 1
|Ω|
∫

Ω
∆I(x)dx. The derivative of (69) with respect to the parameters θ is, using (64),

∂

∂θ
Var(∆I) =

1

|Ω|

∫
Ω

2(∆I − µ∆I)

(
∆

(
∂I

∂θ

)
− µ

(
∆

(
∂I

∂θ

)))
dx. (70)

Loss Function: Variance of the Squared Gradient Magnitude. The derivative of the variance of the squared gradient
magnitude

Var(‖∇I‖2)
.
=

1

|Ω|

∫
Ω

(‖∇I(x)‖2 − µ‖∇I‖2)2dx, (71)

with mean µ‖∇I‖2
.
= 1
|Ω|
∫

Ω
‖∇I(x)‖2dx, is, using (61),

∂

∂θ
Var(‖∇I‖2) =

1

|Ω|

∫
Ω

2(‖∇I‖2 − µ‖∇I‖2)

(
2(∇I)>

∂∇I
∂θ
− µ

(
2(∇I)>

∂∇I
∂θ

))
dx (72)

Loss Function: Variance of the Gradient Magnitude. Derivative of the variance of the gradient magnitude

Var(‖∇I‖) .
=

1

|Ω|

∫
Ω

(‖∇I(x)‖ − µ‖∇I‖)2dx, (73)

with mean µ‖∇I‖
.
= 1
|Ω|
∫

Ω
‖∇I(x)‖dx, is, also using (61),

∂

∂θ
Var(‖∇I‖) =

1

|Ω|

∫
Ω

2(‖∇I‖ − µ‖∇I‖)
(

(∇I)>

‖∇I‖
∂∇I
∂θ
− µ

(
(∇I)>

‖∇I‖
∂∇I
∂θ

))
dx. (74)
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