
CHAPTER 16

INTRODUCTION TO SAMPLING ERROR OF MEANS

The message of Chapter 14 seemed to be that  unsatisfactory sampling plans can
result in samples that are unrepresentative of the larger population. Recall that it was
stated that the major purpose of using a sample was to provide a practical means of
estimating one or more parameters of the population to which you want to generalize your
results. For example, perhaps it is the mean (F) height of 4th grade youngsters that you
want to estimate and to do that, you measure the heights of a sample of 4th graders in your
state. The statistic X bar (sample mean) will be used as your best estimate of the
corresponding population parameter. But, it is highly unlikely that the mean in any one
particular sample will be identical to the true population mean. Thus, regardless of the
sampling method used, good or bad, there is likely to be some error in the sample statistic
in representing the parameter. Error due to sampling is a fact of life and one can never
eliminate that problem unless you have access to the total population on which to do your
analysis. But, that is an improbable situation. For example, the United States census
attempts to contact everybody (emphasis on body) to make counts of various things such
as the amount of homelessness, number of senior citizens, and the like. However, even
when the government tries to obtain parameter information, they are unable to do it. So,
even they are faced with error due to imperfect data collection. The concept of sampling
error will be explored in more detail in this section using the sample mean as the statistic.
The sample mean is a relatively easy way to introduce the concept of sampling error since
the error of sample means follows rather straightforward rules.  

Sampling from Populations

The first thing you have to understand is that one could draw or take many different
samples from a given population. Assuming that you are using a good sampling plan such
as random sampling, different samples will include different subsets of elements from the
population. Therefore, some samples may have more taller persons in them than others
and others may have a greater number of shorter persons. In any case, if you were looking
for average heights as depicted by the different samples, the means in the various
samples are likely to be different. If the differences are very small from sample to sample,
then sampling error is small and this issue is really not very important. However, if different
samples tell you radically different things about "average heights", then sampling error is
large and must be factored into any inference you make from the sample to the larger
population. 

As a simple illustration of how sample means can vary, consider the population of
intelligence test scores (infamous IQ's) where the mean is supposed to be about 100 and
the standard deviation is about 16. Keep in mind that there is nothing magical about 100
and 16; these figures are based on what the test publishers set as the mean and standard
deviation. Think about having a batch of sampling fanatics who each go out and take their



own "random sample" and calculate their own "sample mean". Consider the following case
where I have 100 of these sampling fanatics and each took their random sample from a
population where the parameter (mean) is 100 and the parameter (standard deviation) is
16. Thus, all 100 are in fact sampling from a population where, by convenience for this
illustration, we know the values of the parameters. Using the random command in Minitab, I
can do this easily generating 100 samples were n = 16 in each case, and each sample
has been drawn from the population where mean = 100 and standard deviation = 16. 

Since the normal distribution is a continuous distribution, decimal values for sample
observations are possible. Some of the data from some of the columns that I generated at
random are printed below.  

SAMPLE DATA GENERATED FROM NORMAL DISTRIBUTION
 
              76.096    91.577    97.295    88.321   104.996   106.773
            107.946    98.359    81.363    92.778   104.944   121.652
              84.814    94.141  108.815    89.404     73.668   103.131
            102.499  116.391    88.792  107.704   123.405     85.467
            101.622    91.068    76.549  108.326   113.167     91.734
              87.056  113.038    95.306  124.745   110.878   111.636
            106.309  114.186    89.441    85.068     98.791     72.707
              99.570  102.709    56.432  106.734     90.769     98.096
              98.109  118.165  109.745    85.402   105.000     89.130
            109.952  122.646    93.605  114.807   123.699   125.285

But, even though I am assuming that IQ scores are normally distributed in the
population, and normal distributions are really continuous distributions (thus allowing for
decimal values), I have taken each of the 16 values collected at random from each of the
100 data gathering fanatics, and rounded it off to the nearest whole number. This is more
realistic when we are talking about IQ scores; ie, scores of 98 or 84 or 121. 

Now, for each of the 100 samples, I calculated the sample mean. Thus, over this
data gathering experiment, we have 100 sample means where each mean is based on a
sample size of n = 16. To see what these means look like, I have simply made a graph or
dotplot of the 100 values. See the top of the next page for this graph. I have also calculated
some descriptive statistics on that set of 100 sample means and that information is also
included below the graph.  
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 DESCRIPTIVE STATISTICS ON 100 SAMPLE MEANS
 
                                   # Means     MEAN   MEDIAN    STDEV  MIN    MAX
           SampMeans         100       100.13     100.50        3.91      91     109

Thus, if you had been the one who obtained the sample where the mean was 91
and you used that as your best estimate of the population mean, you would have made an
error of about 91 - 100 or - 9; ie, 9 IQ points too low compared to the truth. On the other
hand, a person who obtained the "high" sample mean of about 109 would have made the
same sized error but would have overestimated the truth about 9  points. Conceptually, any
difference between the parameter and the statistic is an error and since different samples
have larger or smaller errors, these errors are called SAMPLING ERRORS (makes
sense!). By definition, sampling error in this case is as follows.

SampErr = (Statistic - Parameter)

Anything we can do, by implementing a better sampling plan, to make the gap
smaller (on the average) between the statistic and the parameter, the better off we will be. 

Sampling Distribution of Means

To explore the concept of sampling error further, consider that the population of
typists tends to type at a rate somewhere between about 45 wpm to 75 wpm, which means
that the overall mean would be about (halfway between) 60 words per minute. Note: I am
not saying this is the true picture of typists! I am just using it as an illustration. What would
happen if we took many samples (our sampling fanatics are at it again!) from this
population of thousands and thousands of typists and examined the means of these
samples?

The data below are based on randomly generating 1000 samples of n = 9 , using
Minitab,  where we are sampling from a population where wpm values range from 45 to 75.
For reference purposes, 10 of the samples, and their values and sample means, are
shown below. 



         SAMPLE                                                                             MEAN
 
               1          54    57    60    68    66    54    70    64    60       61.44
               2          46    68    66    66    63    45    67    70    47       59.78
               3          53    54    64    52    67    45    68    50    70       58.11
               4          47    46    72    45    57    60    60    52    57       55.11
               5          50    59    74    49    67    56    73    48    69       60.56
               6          46    62    72    64    65    45    45    53    54       56.22
               7          58    71    52    45    58    69    49    46    73       57.89
               8          66    45    59    51    50    53    57    60    61       55.78
               9          49    68    51    54    46    73    54    74    72       60.11
             10          53    61    51    59    47    58    70    52    54       56.11

The dotplot and descriptive statistics of the 1000 means are as follows. 
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 DESCRIPTIVE STATISTICS ON 1000 SAMPLES

                      # Samps     MEAN    STDEV      MIN        MAX
           Samp Means             1000       59.963      3.101    50.222     68.778
 

Notice, in this case, that the sample means vary from about 50 to about 69. Thus,
even though the population mean or parameter is about 60, sample means will vary around
the parameter. About half of the 1000 means seem to be lower than 60 and the other half
seem to be higher than 60. Also note that the shape of the distribution of sample means
appears to resemble the normal distribution. That is, most of the sample means are close
to the middle or the parameter of 60 and fewer and fewer of the sample means deviate
larger distances from the central or middle point. 

A distribution of sample means (assuming there are hundreds and hundreds of
samples included) is called a SAMPLING DISTRIBUTION since the data in it came about
due to taking many, many random samples from the population and making a distribution
of the statistics (sample means) from those samples. In this case, since the distribution is



based on sample means, it is more technically called a SAMPLING DISTRIBUTION OF
MEANS. Please keep in mind that this sampling distribution is based on chance which,
stated differently, is simply the luck of the draw of random sampling in action. Sampling
distributions of means tend to be normal shaped. Also notice that the standard deviatiion
of this sampling distribution, 3.101 in this case, is an index number of how much the
distribution spreads out, or is a measure of sampling error. Remember, in a normal
distribution, one can mark off approximately 3 standard deviation units on either side of the
mean. In this case, 3 units of about 3 would mean that sample means (when n = 9 from this
population) would not be expected to vary by more than approximately 9 or 10 points on
either side of the population parameter mean, or 60 in this situation. How much spread
would you see in this sampling distribution if we had used either larger or smaller sized
samples? That is, what would the standard deviation of the sampling distribution (3.101 in
this case) be if samples had been a different size? We now turn to that question. 

Sampling Error and Sample Size

To expand our discussion of sampling error of means, it would be helpful to explore
the factors that impact on whether sampling error tends to be relatively large or relatively
small. Consider the following. Continuing with our "typing speed" example, assume that out
there in the larger population of typists, that  the average wpm is about 60 (F = 60) and the

standard deviation of the wpm values is about 3 (ó  = 3). Assume that we randomly
selected 200 samples of n=9 each and examined what the means looked like across all
200 samples. I have used Minitab to do these simulations. This would be similar to what
was just presented in the section above; ie, samples have n = 9. However, after looking at
those results, you could do the simulations but, in the process, change the sample size
from n = 9 to n = 36; ie, make the size of the sample 4 times greater. In fact, in this
example, I have done just that. I have generated a second set of 200 samples where the
parameters have been kept the same (mean = 60, standard deviation = 3) but the size of
the sample has been increased to n = 36. Thus, we have a real experiment here in that only
one condition has been manipulated and that factor is the size of the sample. All other
things have been held constant. The dotplots at the top of the next page show a graph of
the 200 means that resulted in each of the 2 different simulation cases: top dotplot is when
there are 200 samples where n = 9 in each case, and the second dotplot represents where
there are 200 samples where n = 36 in each case. Keep in mind, size of samples is either
9 or 36, not 200. The value of 200 is how many samples have been generated. 
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DESCRIPTIVE STATISTICS ON n = 9 AND n = 36 SAMPLES
 
                                         # Samps      MEAN     STDEV 
            n = 9 Samples           200         60.095      0.983   
            n = 36 Samples         200         59.990      0.508 

Notice, of course, that the two sampling distributions tend to fit the normal pattern. In
addition, when examining the descriptive statistics, note that the means of all 200 samples
when n = 9 and also when n = 36 tend to be close to 60, which is the parameter or
population mean in this case. But, just as obvious as that is the fact that when n = 9, the
means disperse more and are more variable around the center value of 60. Thus, when
random samples are smaller, the sample means vary more and that means there is more
sampling error. This is evident not only by the dotplots but also by the standard deviation of 
the sampling distribution of means.  When n = 9, the sampling distribution had a standard
deviation of about .98 whereas the standard deviation of the sampling distribution when n
= 36 was only about a value of .51(about half the size) . Note: in this case, even though the
sample size was 4 times larger, the sampling error was only about 1/2  the amount. The
rule here is simple: AS THE SIZE OF THE RANDOM SAMPLE INCREASES, THE
AMOUNT OF SAMPLING ERROR (as measured by the standard deviation of the
sampling distribution) DECREASES. Therefore, there is an inverse or negative
relationship between sampling error and the size of the random sample: as one goes up,
the other goes down. Look at it this way.
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Sampling Error and Population Variability

The comparison between sampling distributions when sample size is smaller (n=9)
and when sample size is larger (n=36), only examined sample size and sampling error. I
would like to be able to report to you that sample size is the only factor that impacts on
sampling error of means but, alas, it is not.  Another factor that has an impact on sampling
error of means is the variability that exists in the population. As a very simple example,
what if we had a population of students from a statistics course who, because they were
very smart, scored on exams scores of 90% or higher. If you were to take samples from
that population, with your different samples, you might get sample means around 93 or 97;
such values would be possible. However, what if the class actually was more variable in its
ability and, scores on exams ranged from about 65 to 100. If you were to take random
samples from that population, you might still find sample means around 97 but, on the low
side, you could possibly see sample means down in the low 70 area. Chance would allow
both of these sample means (97 or say 73) to occur because the scores or elements in the
population actually occur. The rule is simple: you can't get a sample mean unless there are
elements in the population that have that value. Thus, in the first case where the elements
were all high in the population, sample measn could not vary very much, but in the second
case, the sample means could vary much more because there is a much larger range of
scores in the population. The variability in the population issue is what we now explore in a
little more detail. 

Recall in the previous simulations, I defined the parameters as being a mean of 60
and a standard deviation of 3. With a population standard deviation of 3, that means that
the actual score numbers or typing wpm values in the population (since I assumed that the
population was normally distributed) could have ranged from about 60 down 3 units of 3,
up to 60 plus 3 units of 3 or from about 50 to 70. What might happen to sampling error of
means if the original population had been wider for example? To test this out, I will need to
keep my sample size or n constant, so as not to confound our new experiment, while
allowing the population variability to vary. So, here is what I did.

The last simulation from the previous section was the case of taking 200 samples
where each sample was n = 36, and the population had mean = 60 and standard deviation
= 3. So, now, I went through a new random generation of 200 new samples where n is still
36 but, I sampled from a widened population; ie, I made the standard deviation in the new
population a value of 6. So, if the mean is 60 in the population and the standard deviation
is 6, that would mean that individual wpm values could range from about 3 units of 6 on
either side of 60, or roughly between about 40 and 80. Thus, this second sampling
situation has held sample size constant but, nearly doubled the range or width of the parent
population. Here is what the data looked liked when I used Minitab to do this new
simulation. Again, the comparison dotplots are shown below. 
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DESCRIPTIVE STATISTICS FOR MEAN WHEN SD = 3 AND SD = 6
 
                                                   # Samps     MEAN     STDEV  
                   Means SD = 3              200        59.990      0.508   
                   Means SD = 6              200        59.897      0.996   

Note: the top dotplot is the same as the bottom one from the previous graph. Again,
both sampling distributions are approximately normal with the center values being near the
population parameter of 60. Notice in this case however that there is less variation in the
sample means (and hence less sampling error) when the population has less variability.
When the population was wider to start with (in this case, with a standard deviation of 6),
the sample means could also vary more widely which means more sampling error. This is
also reflected in the standard deviations of the sampling distributions: for the population
standard deviation of 3, the standard deviation of the sampling distribution was about .51 
whereas when the population standard deviation was 6, the standard deviation of the
sampling distribution distribution was about 1. Please note that you must make a
distinction between the standard deviation of the larger population (from which you
sample) and the standard deviation of the sampling distribution: that is the measure of
error. Here we have a direct or positive relationship in that sampling error gets larger as
the variability in the population increases. All this means is that if the population is
homogeneous (for example, if values go from 9 to 11), sample means can only range (at a
maximum) from 9 to 11 but if population variability is larger (for example, if values go from
5 to 15), then sample means have a greater range over which to vary. As a generic
equation, look at the following.
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As population variability increases, so does sampling error. 

Combining the two findings above, we have the following general rules related to
sampling errror of means.

1. As the size of the random sample increases, the amount of sampling error
of means decreases.

2. As the variability in the population increases, the amount of sampling error
of means increases. 

Or, to come to the point, the overall amount of sampling error is influenced by 2
factors and is determined by the following generic formula.

                                                                   Population variability
                                   Sampling error  =    ))))))))))))))))))))))
                                        of means                     Sample size

So far, we have examined the impact of population variability and sample size on
the relative amount of sampling error, which can be quantified by the standard deviation of
the sampling distribution of means. Greater amounts of sampling error are reflected in a
larger standard deviation of the sampling distribution and smaller amounts of sampling
error are associated with sampling distributions with smaller standard deviations.
However, in practical situations, one will never be able to do an experiment 200 or 300
times, or repeat the sampling plan (i.e., do a survey) hundreds of times. In most
circumstances, the typical operating procedure is to do one experiment or one survey.
Thus, if this is so, how can we estimate how much sampling error there is likely to be if only
one sample is selected? Good question!

Standard Error of the Mean

From the generic formula above that indicates that sampling error is directly related
to population variability and inversely related to sample size, we should be able to
estimate how much sampling error there is or there is likely to be if we know what the
sample size is and can also estimate how much variability there is in the population. When
doing a study, you obviously will know how large the n or sample size value is so finding the
denominator in the "sampling error" formula is a snap. So, the problem here is to be able
to estimate what value seems reasonable to place in the numerator. Recall from
descriptive statistics that one can estimate the population standard deviation by using the
regular standard deviation formula and using n - 1 in the denominator (see page 27). The
estimate of the population standard deviation, S, is used to provide us with a good
estimate of the variability in the population. Combining the fact that you will know what the
random sample size is with using S to estimate the population standard deviation, we have
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the following formula specific way to estimate sampling error of means, given 1 sample.

S sub X bar, or the left side term, is the symbol for sampling error and gives us an
estimate of the standard deviation of the sampling distribution of means, which is our
quantitative measure of sampling error. In the literature, the standard deviation of the
sampling distribution of means, our error factor, is called the STANDARD ERROR OF
THE MEAN. Sampling error is estimated by using the standard deviation using  the
sample data (divisor = n - 1) divided by the square root of the sample size. You will just
have to trust me that the denominator is the square root of n, and not simply n. Thus, from
one random sample, we can estimate how much sampling error there is likely to be (how
much the means will vary across repeated samples) by knowing the sample size and
having an estimate of the variability in the population.               
            

To see that data from one sample can, in fact, estimate the amount of sampling
error for repeated samples, we would need to take a "typical" sample, look at the sample
size, and see if we could estimate the population standard deviation from the sample.
Recall that I have gone through 3 different simulations above in route to showing the
relationship between sampling error,  and each of factors of sample size and population
variability. In each of these simulations, recall that I had 200 samples: 200 samples when n
= 9 and population SD = 3, 200 samples when n = 36 and population SD = 3, and 200
samples when n = 36 and population SD = 6. For each of these 3 cases, our sampling
distribution dotplot contained 200 mean values. But, for each of those samples, I could
have calculated a standard deviation value (using n - 1 as the divisor) as an estimate of the
population standard deviation. From each of those simulation situations, I could take an
average of the 200 standard deviation estimates as my "ballpark" estimate of the
population standard deviatioin. This is what I found when I did just that.  

          Simulation Condition       # SD Estimates          Average Value

             n =  9,   Pop SD = 3                200                           2.89
             n = 36,  Pop SD = 3                200                           2.97
             n = 36,  Pop SD = 6                200                           5.92
 

Note that in all cases, where the actual population SD's are 3, 3, and 6 respectively,
a "typical" standard deviation estimate from the batch of 200 samples (2.89, 2.97, and
5.92) was fairly close to the real SD value in the population. Therefore, when taking a
random sample of some size, our estimate of the population SD is probably reasonably
close to the actual parameter SD value. 



Given our typical estimates of the corresponding population SD's, the value that is
needed in the numerator of the standard error of the mean formula, what would a "typical"
standard error of the mean, or S sub X bar, be? To get a typical estimate, we could divide
each of the typical SD estimates by the square root of the sample size. See each
calculation below. 

             Sim Condition             Typical SD   Exp StanErr of Mean       SD of Means

        n =   9,   Pop SD = 3               2.89          2.89/ Sqrt  9 = .96                 .983
        n = 36,   Pop SD = 3               2.97          2.97/Sqrt 36 = .50                 .508
        n = 36,   Pop SD = 6               5.92          5.92/Sqrt 36 = .99                 .996 

In the first simulation, using our typical estimate of the SD in the population, a typical
S sub X bar or standard error of the mean estimate would be about .96. Compare that to
the actual SD of the means from the relevant sampling distribution and you will see that our
typical value was very close. In the second simulation, our typical standard error estimate
was .50 when the actual sampling distribution SD was .508. Again, pretty close. Finally, in
the last simulation, our typical standard error estimate was .99 when the actual SD of the
sampling distribution was .996. Again, very close. Thus,  the bottom line is that when you
take a random sample of fixed size from the population, we are in a fairly good position to
estimate how much sampling error there might be in the long run, even though you have
taken only 1 sample. The next Chapter will go into more detail as to how this estimate of
sampling error of the mean is used. 

As one last example in this extended discussion of sampling error of means, it may
be helpful to look at a "typical" one sample case that resembles what a data gatherer may
really do. Look at the following. Assume that most golf scores for 18 holes range from
about 80 to 110 strokes (honestly reported let's assume!) with a mean of about 95. Also
assume for a moment that this represents population data. What if you took a random
sample of 100 golfers from that population and examined this set of their typical golf
scores. The data and descriptive statistics might look like as follows.

                               RANDOM SAMPLE OF 100 GOLF SCORES

                 81   101     91    105    103    103    110     95    101    110     82 
                 83     89     98    101      99    101      96     85    107      95   100 
                 85     91     91      93    107    101      94     92      87    109     98 
                 91     88     98      80      81      85      81     96      96    104     84 
               102   107     80    105    102      84      80     99      83      92     82 
               105   100     84      80    101      92      82   106    105    101     93 
               107     87   100      91      91      97      84     87    101    110     81 
                 92   101     85      85      89    109    109   108      97      84   102 
                 98   104     85    107    103    107    100     96      91      89     86 
                 94 



MEAN OF SAMPLE = 94.90 
SD OF SAMPLE      =   9.04

In this case, the sample size is 100 and the estimate of the population standard
deviation is about 9.04. To find our estimate of sampling error or the standard error of the
mean, we need to divide the estimate of the population standard deviation value of 9.04 by
the square root of the sample size which would be square root of 100 or 10. In this case,
since we are dividing by 10, all we have to do is to move the decimal place one spot to the
left. Thus, our estimate of the standard error of the mean, based on this one random
sample, is: 

                        Estimate of Standard Error of Mean = 9.04/10 = .904

If in fact, the sampling distribution of means was centered around 95 as a score,
with a standard deviation (standard error of the mean) of about .9, then that distribution of
the potential variation in means would be similar to the following. 
 
                               .
                                :  :
                            . :::::: .:..
                       .  :.:.:::::: :::::..
             .   ....: :::::::::::::::::::::..:.. .
          +---------+---------+---------+---------+-----
         91.5      93.0     94.5       96.0      97.5
                                                          Golf Score Means

Although the "typical" sample mean should be close to 95, which is the parameter, 
any individual mean could vary from about 92 up to about 98 (approximately 3 units of .9 on
either side of the parameter of 95). So, even though the true mean is 95, sample means
will not always show that. Of course, if we had taken larger samples, the sample means
would be closer to 95 since there is less sampling error. However, if samples had been
smaller, then the means would have varied more around the true value of 95. 

Statistics as Estimators of Parameters

In this Chapter, we have used the mean (statistic) of a sample to estimate the mean
(parameter) of the population. Without too much thought, this seems to make sense: use
the statistic that is the same thing as the parameter we are trying to estimate. However, in
the case of trying to estimate the population mean, one may opt for (either deliberately or
because there is no other way) using a different statistic to estimate the population mean.
In the case of central tendency, recall that in some distributions, the measures of central
tendency may all have the same value . Thus, if you wanted to know the mean of this set of
data, you may - as an alternative - use the median or the mode as your best estimate of the
mean of the distribution. In some cases, using the median and/or mode may not be much
different than using the mean.



In the context of estimating population parameters, the same principle may apply.
What if you are interested in estimating the mean of a population that happens to be
normally distributed? In this case, the population median and mode are the same values
as  the population mean. Also, using the medians or modes from random samples
selected from that population may provide you with just as good an estimate of the
population mean, as would be found when using the means of the samples themselves.
Thus, in certain situations, statistics from samples that are not the same concept (the
median and mode do not have the same "definitions" as the mean) as the population
parameter of interest may serve to provide good estimates of that parameter. 

Consider the following situation. Assume that we are interested in estimating the
mean of a population where the real population mean happens to be 50 and the standard
deviation is 5. Normally, you would take one or more random samples from that population
and then use the means from the samples as your best estimates of the true population
mean. Look at the following simulation. What I have let Minitab do is to generate 500
samples at random from a normal population where the mean is 50 and the standard
deviation is 5. Then, calculations for both the means and medians of the samples were
found. At the top of the next page, I have made dotplots of both distributions: the one with
500 means in it, and the one with the 500 corresponding medians in it. Below, I have listed
some descriptive data on the two distributions. 

DESCRIPTIVE STATISTICS ON DISTRIBUTIONS OF MEANS AND MEDIANS

                                              N     MEAN   MEDIAN    STDEV
  
                         Mean          500   49.818    49.907       1.582  
                      Median          500   49.873    49.901       2.021
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         42.0      45.5      49.0      52.5      56.0
                                   Distributions of Sample Means and Medians
 

As you can see from the dotplot of the medians (compared to the one for the
means) and the descriptive data, the sample medians on average would also have
provided a good estimate of the population mean. In this case, it appears that if you want
to estimate the population mean, you could use either the sample mean or the sample
median to make that estimate. So, if either one could be used, how do you decide which
one? Well, remember that the concept of sampling error referred to the width of the
sampling distributions. Wider sampling distributions means more sampling error.
Certainly, it would seem to make sense to use the statistic from the sample that tends to
produce less sampling error when estimating the population parameter. Look at the
standard deviations from the two sampling distributions above. For the means, the
standard deviation of the sampling distribution or our standard error of the mean is about
1.58 whereas that same value for the sampling distribution of the medians is about 2.02.
As a rough guide, the sampling distribution in this case is only about 1.58/2.02 = 78% of
the width of the one for the median. Thus, sample means will tend not to vary as much
around the population mean as will medians. While the dotplots don't show this too well,
the standard deviation of the sampling distribution of medians is larger indicating more
sampling error. Thus, while in the long run we could use the sample median as an estimate
of the population mean, the sizes of the sampling errors would tend to be larger in these
cases. In the literature, this  ratio of the smaller standard error distribution to the larger
standard error distribution is referred to as the RELATIVE EFFICIENCY of the statistic
when estimating the parameter. In this case, we would opt for the sample mean as a better
estimator of the population mean since it more efficiently (tends to be closer to) estimates
the parameter of interest. 

  Another issue of concern here is called BIAS in the estimator. In the example
above, our expectation is that the long run average of the sample median values will be
equal to the true population mean value, just as will be the long run average of the sample
mean values. In this case, neither statistic - sample mean nor sample median - would be
expected to exhibit bias when estimating the population mean. However, recall that when
the simulations were done, I sampled from a population that was normally distributed. In
this case, both the parameter mean and the parameter median were the same values. But,
what if the population happened to have different values for the mean and median? For
example, what if the population were actually positively skewed? See below.  



Mean = 7Median = 6.3

Recall that when there is skewness present, the mean and mean will be offset from
one another. In the case of a positive skew (say the population mean = 7 and the
population median = 6.3), where the trailing off side is to the right, the mean is more pulled
to the right compared to the median. Thus, in this case, the median will tend to be a lower
value than the mean. What would happen in this case if we decided to use the medians
from random samples as our best estimates of the population mean? If the population is
positively skewed, then samples will also tend to be positively skewed. Thus, medians in
samples will also tend to be less than the mean values in these same samples, and on
average, would tend to center around 6.3. If we use the median values from these samples
to estimate the population mean, we will systematically tend to underestimate the
population mean. This is when we would say that the statistic (median in this instance) is
negatively biased since it would tend to underestimate the parameter. If the population had
been negatively skewed to start, medians would then tend to be positively biased. In either
case, the median would not provide us with as accurate estimations as would the sample
means. Certainly, in this instance, we would prefer to use the sample mean as our
estimator of the parameter because the sample mean will be unbiased. Therefore, the
bias (if any) of an estimator of a parameter should be considered when making a decision
about which specific statistic to use as your estimator.

Finally, while we have only examined the issue of estimating the mean in a
population (using either the sample mean or sample median), there are many other
parameters that we may want to estimate. For example, if you were interested in the
correlation between IQ and school performance in the population, you may use the sample
correlation as the estimator. Or, what if you were interested in the variance of IQ scores in
the population? In this case, you may use the variance of your sample as your estimator. In



either case, one needs to ask about relative efficiency or bias if there are competitor
estimators available.     

Practice Problems

1. If your stat package allows it, put 100 values generated at random in each  of
9 columns where the population is normal with mean = 50 and standard
deviation = 10.  Print some of the values to see what random sampling
brings. Then, using rows as samples, find the means of each of the 100
samples and put the mean in another column. What does the distribution of
100 means look like? What are the descriptive characteristics of that
mini-sampling distribution? What would have happened to that distribution if
n had been larger than 9 and the standard deviation had been smaller than
10?

2. Assume that you took a random sample of 30 cars as they passed by stop
signs and measured the speed (MPH) with which they went through the sign.
The data are as follows.

                      4, 5, 1, 0, 5, 8, 3, 0, 0, 3, 4, 8, 2, 10, 3, 4, 5, 8, 
  
                      1, 0, 0, 3, 4, 7, 2, 3, 5, 7, 0, 3

Based on these data, find the standard error of the mean. How widely are
the means of other random samples of 30 cars likely to vary around the true
stop mean?  

3. Assume that the correlation between X and Y, out in the larger population, is
approximately .8. You take random samples from that population and then
calculate the sample correlation between X and Y in each of these samples.
In this situation, would you expect there to be any bias in the sample
correlations, and if so, what type? 


