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Abstract

This paper studies training set sampling strategies
in the context of statistical learning for text cate-
gorization. It is argued sampling strategies favoring
common categories is superior to uniform coverage
or mistake-driven approaches, if performance is mea-
sured by globally assessed precision and recall. The
hypothesis is empirically validated by examining the
performance of a nearest neighbor classifier on training
samples drawn from a pool of 235,401 training texts
with 29,741 distinct categories. The learning curves of
the classifier are analyzed with respect to the choice
of training resources, the sampling methods, the size,
vocabulary and category coverage of a sample, and
the category distribution over the texts in the sam-
ple. A nearly-optimal categorization performance of
the classifier is achieved using a relatively small train-
ing sample, showing that statistical learning can be
successfully applied to very large text categorization
problems with affordable computation.

Introduction
Assigning predefined categories to free texts, text cate.
gorization, has wide application in practical databases.
For example, insurance codes must be assigned to
diagnoses in patient records at the Mayo Clinic for
billing and research purposes. Documents in MED-
LINE, one of the world’s largest, on-line bibliographi-
cal databases, are indexed using subject categories for
the purposes of retrieval. It costs the National Library
of Medicine about two million dollars each year to man-
ually index MEDLINE documents (about a third of 
million new entries a year), and the Mayo Clinic about
1.4 million dollars annually for manual coding of diag-
noses (over two million diagnoses a year). Automatic
or semi-automatic text categorization tools can help
reduce these costs and may also improve accuracy and
consistency.

Computer-based text categorization technologies in-
clude:

¯ naive word-matching (Chute, Yang, ~ Buntrock
1994) which matches categories to text based on the

shared words between the text and the names of cat-
egories;

¯ thesaurus-based matching (Lindberg ~ Humphreys
1990) which uses lexical links (constructed manually
or automatically in advance) to relate a given text to
the names or descriptive phrases of categories; and

¯ empirical learning of term-category associations
from a training set of texts and their categories as-
signed by humans.

Naive word-matching is the weakest method. It can-
not capture any categories which are conceptually re-
lated to a text but happen not to share "the right
words" or any words with the text. Thesaurus-based
matching suffers from the weakness that the lexical
links are typically static, not sensitive to the con-
text in which a term (word or phrase) is used, and
hence fails when the meaning of a term is context-
dependent. If the thesaurus is hand-built, it also suf-
fers from high cost and low adaptivity across domains.
Empirical learning from categorized texts, on the other
hand, fundamentally differs from word-matching be-
cause it is based on human relevance judgments, sta-
tistically capturing the semantic associations between
terms and categories. Moreover, most empirical learn-
ing formalisms offer a context sensitive mapping from
terms to categories, for example, decision tree meth-
ods (Quinlan 1986) (Lewis 1991), Bayesian belief net-
works (non-naive ones) (Tzeras & Hartman 1993), neu-
ral networks (Schiitze, Hull, & Pedersen 1995), nearest
neighbor classification methods (Creecy et al. 1992),
(Masand, Linoff, & Waltz 1992) (Yang 1994), 
least-squares regression techniques (Fuhr, Hartmanna,
& et al. 1991) (Yang & Chute 1994).

While empirical learning holds great potential for
high accuracy text categorization, few practical sys-
tems have developed due to difficulties in scaling to
large problems. The MEDLINE database, for exam-
ple, uses about 17,000 subject categories (Nat 1993)
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to index its articles. The Mayo Clinic, as another ex-
ample, uses 29,741 categories (Corn 1968) to code di-
agnoses. The largest number of categories ever tried in
a decision tree or a neural network, however, is only a
few hundreds or less (Schiitze, Hull, & Pedersen 1995).
Bayesian belief networks have a similar scaling-up dif-
ficulty, and a "naive" version (Lewis 1991) is often
used for computational tractability. Naive Bayesian
methods assume term independence in category pre-
diction, fundamentally sacrificing the strength of the
original framework in handling the context sensitiv-
ity of term-to-category mapping. In contrast, near-
est neighbor approaches and linear regression meth-
ods require less computation, and have been applied
to relatively large categorization problems (Creecy et
al. 1992), (Masand, Linoff, & Waltz 1992) (Yang 1994)
(Fuhr, Hartmanna, & et al. 1991) (Yang & Chute
1994). Nevertheless, for large problems with tens of
thousands of categories, the learning effectiveness and
the computational tractability of empirical methods re-
mains a largely unexplored area.

Sampling strategies are important for both the effec-
tiveness and the efficiency of statistical text categoriza-
tion. That is, we want a training set which contains
sufficient information for example-based learning of
categorization, but is not too large for efficient compu-
tation. The latter is particularly important for solving
large categorization problems in practical databases1.

The amount of available training data is often nearly
infinite. For example, there are roughly seven million
documents accumulated in MEDLINE, and a similarly
large number of diagnoses at Mayo. All of these doc-
uments and diagnoses have manually assigned cate-
gories, and are thus eligible as training data. How-
ever, using all the available data for training is com-
putationally impractical, and may also be unnecessary.
Statistical sampling theories show that one can obtain
a fairly accurate estimate of a population parameter
using a relatively small sample. In this paper, I fo-
cus on the following questions regarding effective and
efficient learning of text categorization:

¯ Which training instances are most useful? Or, what
sampling strategies would globally optimize text cat-
egorization performance?

¯ How many examples are needed to learn a particular
category? How can one balance the local optimality
(for individual categories) versus global optimality?

¯ How can one measure learning efficiency to optimize

1In contrast, traditional inductive machine learning sys-
tems are trained with fewer examples, typically dozens or
hundreds, where most examples in such small training sets
prove necessary, and hence sampling is less important.

the trade-off between categorization accuracy and
learning efficiency?

¯ Given a real-world problem, how large a training
sample is large enough?

Methodology

Training Data and a Learning System

To study sampling strategies, one needs a pool of train-
ing data from which samples can be drawn, and a clas-
sification system against which the effects of different
strategies can be tested and compared. In this pa-
per, the categorization of Mayo diagnoses (DXs) will
be the problem domain, and a nearest neighbor clas-
sifter, named Expert Network or ExpNet, the system.
For convenience, I use text to refer to either a DX or
a category definition phrase. Texts in our system are
represented using the conventional vector space model
(Salton 1989). That is, a text is represented as a vec-
tor whose dimensions are unique words in a diagnosis
collection, and whose elements are word weights in this
text. A word is typically weighted using the product
of the inverse document frequency in a training collec-
tion, and the word frequency in the text.

ExpNet uses a collection of DXs with human as-
signed categories as a training set. It generates a
ranked list of candidate categories for a new diagno-
sis based on the categories of its nearest neighbors in
the training diagnoses. Given a new, unlabelled DX,
the system searches for its k nearest neighbors (k-NN)
among the training DXs. The cosine of the angle be-
tween a training DX (represented as a vector) and the
new DX is used to measure the similarity of the train-
ing DX. The training DXs with the k highest cosine
values are chosen as the nearest neighbors, and their
categories are used to predict the categories of the new
DX. The relevance score of a category with respect
to the new DX is estimated by the weighted sum of
the categories of the k-NN, where the weights are the
cosine-similarity scores of these k-NN. ExpNet does
not require any off-line training, but does require an
on-line search for the k-NN of each new text, which
has a time complexity linear in the size of the training
set (the number of training texts). See (Yang 1994) 
additional details and for a discussion on the choice of
the parameter k.

A nearest neighbor classifier was selected for this
study because of its relatively low computation cost
and the relative ease with which it scales to large prob-
lems. Also, nearest neighbor classification performs at
least as well as least squares fit (Yang 1994) or rule-
based approaches (Creecy et al. 1992). A production
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version of ExpNet was developed at the Mayo Clinic,
and is in daily use as a search engine in computer-
aided human coding of patient records (Chute, Yang,
& Buntrock 1994).

The pool of training data consists of a subset of diag-
noses from patient records at Mayo, and the definition
phrases of the categories in HICDA-2 (Hospital Adap-
tation of ICDA, 2nd Edition)(Com 1968). About 
million diagnoses (DXs) are coded each year using the
HICDA-2 categories. However, it would be impractical
to use all of the accumulated DXs for training. ExpNet
operates as an on-line category searcher. When a coder
types in a new DX, ExpNet provides a ranked list of
potential categories for the user to select. The on-line
response time is proportional to the number of unique
DXs in the training set (Yang 1994). With a quar-
ter million training DXs, the response time is about
1.5 seconds per new DX when running ExpNet on a
SPARCstation 10. Five million training DXs would
increase the response time to 32 seconds per DX; 10
million training DXs would increase the response time
to more than one minute which is too slow for effective
user-machine interaction. Similarly, the memory usage
scales linearly with training set size.

The pool chosen for this study is the same train-
ing set used by our current production system, which
consists of 205,660 DXs from patient records (a few
months accumulation in the period from October 1993
to March 1994) and 29,741 category definition phrases
in HICDA-2. There are a total of 235,401 training texts
in the pool, with 15,994 distinct words and 29,741 dis-
tinct categories. [ will refer to the 205,660 DXs as
the DX superset, or simply the superset. Subsets are
derived from the superset, according to different sam-
pling strategies. A diagnosis is a fragment of free text,
with 1-26 words, or 3 words per DX on average. A
category definition consists of 3 or 4 words. Each cat-
egory definition has a unique identifier, a code. A DX
has 1-7 codes, or an average of 1.14 codes per DX.

Global Strategies

One rule of thumb in instance-based learning is that
at least ten positive examples are required to reliably
learn a category. I will use instance to refer to a
DX/category pair (some DX’s generate multiple pairs).
Among the 29,741 HICDA-2 categories, 66% of them
have no instance in the DX superset, 10% have one
instance only, and 15% has 2-9 instances. Together,
27,078 distinct categories, or 91% of the total, have less
than 10 instances in the superset. Hence, according to
the rule of thumb, we do not have enough training data
to learn the rare 91% of the categories. Does this mean

that ExpNet is doomed to have a poor performance?
Not necessarily. In fact, only a small fraction of the
distinct categories is important for the global perfor-
mance.

The superset contains a total of 234,465 instances
of all categories. Only 20,719 instances belong to the
rare categories which have less than ten instances. If
ExpNet did not learn anything about the 27,078 rare
categories (91% of total), the expected failures on the
instances of these categories is only 20,719/234,465,
or 9% of the cases. In contrast, the ten most common
categories together have 23,850 instances, i.e. more
instances than the 27,078 rare categories. The 1611
most common categories (5% of total) account for 85%
of the 234,465 instances. This means that if ExpNet
only learned for the 5% most common categories, then
the categorization success could be as high as 85%.
Clearly, in terms of categorization success rate, com-
mon categories have more weight in the overall perfor-
mance than rare categories. Hence it is crucial that
common categories are well represented in a training
sample, while missing a large number of rare categories
in the training sample may have no statistically signif-
icant impact. We want to globally optimize the cate-
gorization performance. To achieve this, global control
of sampling over categories is necessary.

Figure 1 illustrates the difference between two ex-
treme sampling strategies on the DX superset: com-
mon category first versus rare category first. The hori-
zontal axis measures the coverage of distinct categories
in a training sample. A sample begins with an empty
set, and is enlarged step-by-step by adding either the
next most common or next most rare category de-
pending on the sampling strategy. The vertical axis
is the expected success rate of an ideal classifier given
a training sample, assuming that categories covered in
the training sample are prefectly learned. The success
rate is just the probability that a particular instance
belongs to a category covered by the training sample.
This probability is estimated by the ratio of the num-
ber of instances of the categories in the training sample,
divided by the number of instances of all categories in
the superset.

The curves in Figure 1 are obtained by applying
the two sampling strategies and interpolating the esti-
mated success rates of selected training samples. The
upper curve corresponds to the best sampling, i.e.,
common category first. The lower curve corresponds to
the worst sampling, i.e., rare category first. Any other
sampling strategies will have a success rate falling in
between the two curves. A uniform sampling strat-
egy over all categories, for example, is intermediate in
performance since categories do not have a uniform
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Figure 1: Learning curves of an ideal classifier on Mayo
diagnoses.

distribution in the domain. Random sampling over
instances, as another example, naturally favors com-
mon categories over rare categories, and hence is bet-
ter than uniform sampling in a global sense. Uncer-
tainty sampling (Lewis 1994) strategies are driven 
the "failure" of a classifier. That is, instances that are
not well classified by the learning system are added to
the training sample. This results in the selection of
instance belonging to rare categories that contribute
little to global categorization performance. Given un-
evenly distributed categories, such an approach is not
optimal in a global sense.

Local Strategies

While a globally optimal strategy exists in theory, it
can only be approached approximately in practice since
we cannot guarantee that the training sample will con-
tain all the instances required for perfect learning. I
use local strategy to refer to the process of selecting
instances for a particular category. The questions are:
how many instances are sufficient, and which instances
are preferable to learn a given category? The rule of
thumb suggests that one needs ten or more instances
per category, but that is not a sufficient answer. Intu-
itively, a common category requires a larger number of
instances than a rare category, because the more often
a concept or category is referred to by humans, the
larger number of distinct words or phrases are likely
to be used. This means that a classifier would need

a large number of instances to statistically learn the
mapping from natural language words to the partic-
ular concept. On the other hand, not every instance
contributes useful information. Duplicates, for exam-
ple, may not contribute as much as unique instances.

It would be reasonable to consider the desirable cat-
egory distribution over instances in a training sample
to be a function of the category distribution in the un-
derlying population. A simple choice is a linear func-
tion; i.e., keep the number of instances of a category
in a training sample proportional to the number of in-
stances of this category in the underlying population.
Such a sample can be obtained using random sampling
if the population is infinite, or by a systematic ap-
proach when the population is finite. More complex
functions are possible, such as square-root, logarith-
mic, or a combination of different functions each ap-
plies to a particular group of categories. Uncertainty
sampling offers an alternative approach. Instead of set-
ting a lower bound on the number of instances needed,
it selects some instances over others based on whether
the classifier needs to learn about them further. In the
next section, a systematic sampling is used to imple-
ment a simple linear strategy. Other local strategies
will not be further discussed due to space limitations.

Two Methods for Comparison

Two alternative sampling methods were included in
this study:

1) Proportion-enforced sampling: a systematic sam-
pling is used to enforce that the category distribution
in a training sample reflects the distribution in the pool
of training data. This is essentially very similar to ran-
dom sampling, except that it avoids random departures
of the samples from the underlying distribution, which
is quite likely for small random samples. This method
globally favors common categories and also has rea-
sonable coverage of rare categories. This strategy is
driven by a splitting parameter k. When k = 2, for
example, only half of the rare categories with one in-
stance in the pool will be included in each of the two
subsets. On the other hand, every category with two
or more instances in the pool will have at least one
instance in each subset; a category with 100 instances
will have 50 instances in each subset. With k = 10,
every category with ten or more instances in the pool
will have at least one instance in each of ten subsets;
a category with 100 instances will have 10 instances in
each subset. By varying the value of k, we can observe
the effects of local strategies while globally favoring
common categories.

2) Completeness-driven sampling: prefer some in-
stances over others if they contribute more new words
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or categories to a training set. An extreme example of
this would be to take the HICDA-2 definition phrases
only as a training set or as the dominating part of a
training set, because they contain all the unique cat-
egories, and more unique words than the DXs in the
pool. Such a method ignores the natural distribution
of categories in the domain, and may consequently de-
crease the over-all categorization effectiveness of Exp-
Net. A potential advantage of such a strategy is that
it has better coverage of rare cases.

Empirical Validation

Performance Measures and Test Data

Classifier effectiveness is measured by the conventional
ten-point average precision (AVGP) (Salton 1989) 
ranked categories per test instance. This is a global
performance measure similar to correct classification
rate. Given a test DX, a ranked list of candidate cate-
gories is generated by ExpNet, and the precision values
at recall thresholds of 10%, 20%, ... 100% are com-
puted and averaged to obtain a single-number mea-
sure. The AVGP values of all DXs in a test set are
further averaged to achieve a global measure, referred
to as the categorization accuracy.

Training samples are judged in terms of usefulness
(i.e. categorization performance) and in terms of com-
pleteness (i.e. vocabulary and category coverage).
Computational efficiency is also measured. These mea-
sures are analyzed with respect to sample size and sam-
pling strategy. Similarly, an analysis of the correlation
between accuracy improvement and computation cost
helps evaluate the trade-off between categorization ac-
curacy and learning efficiency.

A test set was selected to evaluate sampling strate-
gies. Five test sets were collected in our previous
evaluation of different categorization methods (Chute,
Yang, & Buntrock 1994); none of them were from the
training pool. Each set consists of about 1000 DXs ar-
bitrarily chosen from the patient records at the time of
that evaluation. By checking the common words and
categories of each of these test sets and the training su-
perset mentioned before, we found that these testing
sets are similar in the sense that they all have about 97-
98% of the words and 96-97% of the categories covered
by the training DXs. Hence, one of the five testing sets
was arbitrarily chosen for this study, containing 1071
DXs, 1249 unique words and 726 unique categories.

Preprocessing was applied to training and test data
for the removal of punctuation and numbers, and for
changing uppercase letters to lowercase; no stemming
or removal of "noise words" was applied.
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Figure 2: Learning curve of ExpNet using sort-and-
split sampling.

The Results

Figure 2 shows the learning curve of ExpNet given the
proportion-enforced sampling method. Training sam-
ples were derived from the superset of 205,660 DXs by
selecting the first of every k instances. By setting the
split parameter k to 1024, 512, ..., 4, 2, I, samples in-
cluding 200, 401,803, ..., 205,660 DXs were obtained.
These samples were used as training sets for ExpNet,
and evaluated using the test set. The entire pool, i.e.,
the 205,660 DXs plus the 29,741 category definition
phrases, were also tested as an additional larger train-
ing set. The AVGP values were computed for these
training sets respectively, and plotted corresponding
to the size (the number of texts) of the training sets.
Interpolating these plots, the learning curve (the star-
line) of ExpNet is obtained. The dashed vertical lines
correspond to the the superset and the superset plus
category definition phrases, respectively. The triangle-
line shows the vocabulary coverage, i.e., the ratio of
the number of unique words in a training set divided
by the total number of unique words in the pool. The
diamond-curve shows the category coverage, i.e. ratio
of the number of unique categories in a training set di-
vided by the total number of unique categories in the
pool.

The interesting results are:
1) The learning curve rises rapidly when the train-

ing sets are small, and becomes relatively flat when the
training set size achieves 100,000 texts or larger. This
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Figure 4: Learning curves of ExpNet using different
sampling strategies.

suggests that high-frequency DXs are included even
when the training sets are small, and that these DXs
are highly influential in over-all performance. When
the training sets get large, more and more rare DXs
or duplicates of common DXs are included, which con-
tribute less to global performance. Beyond the 200,000
level, further increase in the size of a training seems
unlikely to have any significant improvement.

2) The slope of the unique-word curve and the
unique-category curve is much larger than the learn-
ing curve, except at the very left end of this graph.
This means that the improvement in word coverage
and category coverage of a training set does not lin-
early transfer into an improvement in categorization
effectiveness. In other words, a large number of words
and categories are not crucial to the global categoriza-
tion performance because they are rare.

3) Adding the HICDA-2 phrases to the training DXs
did not improve the AVGP by much, although it sig-
nificantly increased the vocabulary and category cov-
erage of the training set. This means that most of
the words and categories which are needed for classi-
fication are already included in the training DXs, and
that the category definition phrases contribute little
useful information to the training.

Figure 3 shows the trade-off between AVGP and
the on-line response time of ExpNet. The average
CPU seconds for category ranking per DX was mea-
sured. A significant time increase was observed when

the HICDA-2 definition phrases are added to the train-
ing set, because most of these definition phrases are
unique to the entire collection, and the response time
of ExpNet is proportional to the number of unique
training texts. Clearly, using HICDA-2 in addition to
Mayo DXs for training doubled the computation time
for only an insignificant improvement in categorization
effectiveness.

Figure 4 compares the learning curve in Figure 2
with the learning curve (dot-curve) when the training
sets were constructed in a different way. That is, the
ttICDA-2 phrases were used as the basic training set,
and each of the DX subsets was added to the basic set
respectively. When using the ttICDA-2 phrases alone
for training, the AVGP was only 42% which is sim-
ilar to the performance obtained using 400-800 DXs
for training, and also similar to applying word-based
matching between DXs and HICDA-2 phrases (which
had an AVGP value of 44% in our experiment). On the
other hand, when using a similar number (25,707) 
DXs instead of the 29,741 HICDA-2 phrases for train-
ing, the AVGP was 77%, or an 83% relative improve-
ment. Clearly, given a training sample size, using the
instances from the application itself is a much better
choice than using category names or definition phrases.
It is also clear in Figure 2 that using the category def-
initions in combination with DXs for training had no
significant improvement over using DXs alone, if any.
However, the on-line computation cost (both time and
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space) is much higher when including the category def-
initions, because these definitions have more unique
words, phrases and codes than DXs do.

In all the above experiments, we did not apply re-
moval of "noise words" because this is not the focus of
this paper. When applying word removal using a stan-
dard "stoplist" which consists of articles, prepositions,
conjunctions and some common words, the AVGP on
the 205,660 DX training set was improved from 84%
to 86%; the on-line response of ExpNet was reduced
from 1.5 to 0.7 seconds per DX.

Conclusions

This paper studied the sampling strategies for statis-
tical learning of text categorization, using the ExpNet
system on a large collection of diagnoses in Mayo pa-
tient records. The major findings include:

1) In practical databases, categories often have 
non-uniform distribution over texts, which makes the
"usefulness", or the global performance of a statisti-
cal classifier heavily dependent on the distribution of
categories in a training sample.

2) A theoretical analysis backed by experimental ev-
idence indicates that a global sampling strategy which
favors common categories over rare categories is cru-
cial for the success of a statistical learning system.
Without such a global control, pursuing more com-
plete coverage of words, categories or instances of a
particular category could be damaging to global opti-
mal performance, and can substantially decrease learn-
ing efficiency.

3) Using ExpNet, a globally high text categorization
accuracy can be achieved by using a relatively small
and "incomplete" training sample. The 86% average
precision in a space of 29,741 distinct categories, with
an on-line response of 0.7 second per diagnosis on a
SPARCstation 10 is highly satisfactory for the current
needs in our computer-assisted categorization applica-
tions.

4) The ExpNet learning curve indicates that the sys-
tem achieved close to its highest accuracy on average
using about 200,000 training DXs, and that significant
improvement beyond this point would be difficult.

No claim is made that the particular size of an opti-
mal or nearly-optimal training set for one application
is generalizable for all applications. The optimal train-
ing set size for Mayo diagnosis categorization may not
be the optimal size for MEDLINE document catego-
rization, for example. Given that a diagnosis phrase
has three words on average, and that a MEDLINE ar-
ticle has typically 150-200 words in its title and ab-
stract, the necessary amounts of training data may be

larger for the latter than for the former. Nevertheless,
the analysis method presented here is generalizable to
other domains/applications and alternative statistical
classification methods.

Future research topics include:

¯ investigation of local sampling strategies which have
not been explored in this paper, such as more com-
plex functions of an underlying distribution in set-
ting a lower bound on the number of needed in-
stances, and using uncertainty sampling under the
control of a globally optimal strategy;

¯ a sampling strategy analysis for ExpNet on different
domains, such as MEDLINE documents, the Reuters
newswire collection, etc.; and

¯ similar analyses for other statistical learning
methods, e.g., the Linear Least Squares Fit mapping
(Yang & Chute 1994).
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