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ABSTRACT  Accurate classification of biological phenotypes is an essential task for medical decision
making. The selection of subjects for classifier training and validation sets is a crucial step within this
task. To evaluate the impact of two approaches for subject selection—randomization and clinical balancing,
we applied six classification algorithms to a highly replicated publicly available breast cancer data set.
Using six performance metrics, we demonstrate that clinical balancing improves both training and validation
performance for all methods on average. We also observed a smaller discrepancy between training and
validation performance. Furthermore, a simple analytical argument is presented which suggests that we need
only two metrics from the class of metrics based on the entries of the confusion matrix. In light of our results,
we recommend: 1) clinical balancing of training and validation data to improve signal-to-noise ratio and
2) the use of multiple classification algorithms and evaluation metrics for a comprehensive evaluation of the
decision making process.

INDEX TERMS Classification, confusion matrix, performance metrics, random sampling, stratified

sampling.

I. INTRODUCTION

DVANCES in high-throughput technologies have

enabled the genome-wide measurement of a diverse set
of molecular species from tissue samples of human subjects.
Data from these measurements are frequently used to perform
supervised classification (SC) for diagnostic applications. SC
involves learning a class-assignment rule given data from
subjects with known classes (‘“‘training set’”). This rule is
then applied to data from an independent set of subjects
whose classes have been withheld (‘““‘testing set’) to evaluate
classifier performance. Broadly speaking, there are three
types of classifier performance metrics [1]: 1) those based on
qualitative measures of error [e.g., accuracy (ACC), true pos-
itive rate (TPR), and false negative (FN) rate]; 2) those based
on probabilistic measures of error (e.g., mean absolute pre-
diction error, logarithmic loss, and mean squared prediction
error); and 3) those based on relative errors in sample ranking
(e.g., area under the receiver operating characteristic (ROC)

curve). Regardless of the metric chosen, many studies have
emphasized the importance of using truly independent data in
the testing set to accurately assess classification performance.
In cases, where this is not possible, proper cross-validation
(CV) procedures (see the following for details) attempt to
minimize the bias in estimated performance [2].

Depending on the disease of interest, some SC studies use
training sets with unequal numbers of subjects in the disease
classes, often referred to as class imbalance [3], [4]. Class
imbalance is known to affect the performance of many clas-
sifiers, as training and evaluation procedures often implicitly
assume that training samples are relatively balanced [3]. In
particular, many classifiers are biased toward the largest class,
i.e., they more accurately classify new subjects from the
majority class. Two approaches are commonly used in SC
to address the issues caused by class imbalance: 1) biased
resampling of subjects from the training data and 2) modi-
fication of the classification algorithm to explicitly account
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for training data class imbalance. Biased resampling involves
randomly oversampling the minority class(es) and/or
randomly undersampling the majority class(es).

Given an imbalanced training data set, factors such as sam-
ple size, class separability (i.e., the degree of data separation
between subjects in different classes), and intraclass stratifi-
cation (i.e., the presence of biological subgroups within each
class) can further affect classifier performance. To minimize
the effects of the latter factor, clinical training and testing sets
are often age and ethnicity matched across disease classes.
This strategy can be extended to facilitate the matching of
additional confounding clinical factors. In particular, many
clinical trials [5], [6] balance treatment groups using variables
that are known to influence the disease prognosis in a process
known as stratified randomization [7]. For the development
of prognostic models, clinical variables have also been used
in conjunction with molecular data (e.g., in Cox regression
models) to improve classifier performance [8]. Finally, clin-
ical variables have been integrated into molecular Bayesian
network results to improve performance. In this letter, we pro-
vide the first real-world demonstration (to the best of our
knowledge) of the importance of clinically informed sam-
pling for creating high-throughput training and testing data
sets for SC. Specifically, we apply six different classification
methods to predict metastasis using publicly available breast
cancer data before and after clinically informed sampling,
evaluating performance with six commonly used metrics.
We also provide an analytical explanation for the minimum
number of metrics based on the qualitative measures of
error, needed to properly evaluate the performance of each
classifier.

Il. METHODS

We used a publicly available breast cancer metastasis
data set [9] to quantify the effects of clinically informed
sampling when creating training and testing sets for SC.
The data set consists of gene expression data for 286
subjects with breast cancer that either did (107) or did
not (179) develop metastasis within five years of surgery.
We split the data set into two cohorts using two strate-
gies. In the first approach, we partitioned data into train-
ing and testing data sets, each comprising of 100 subjects,
by randomly undersampling subjects from the two classes
(avoiding class imbalance). Each subset of data comprises of
50 subjects with metastasis and 50 subjects without metasta-
sis. Second, we partitioned the data set into two cohorts using
stratification randomization. Specifically, all 200 subjects
selected by the random sampling strategy were redistributed
into training and test sets, such that estrogen receptor (ER)
status, tumor stage, age, progesterone receptor (PR) status,
the outcome case status, and menopause status, were bal-
anced. This procedure was performed using SAS 9.4 (SAS
Institute, Cary, NC). Table 1 provides the number of subjects
in different strata, defined by the clinical variables, present
in the training and testing set obtained by the two parti-
tioning approaches considered here. In order to estimate the
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TABLE 1. Number of subjects corresponding to different clinical variable
in partitions obtained by two strategies—block (“random”) and stratified
(“balanced”) randomization.

Clinical Variables Random Balanced
“train.” | “test” | diff. | “train” | “test” | diff.

ER ER+ 79 73 6 75 72 3
status ER- 21 27 6 25 28 3
Tumor 1 49 52 3 50 48 2
stage 1T 48 47 1 49 48 1
11, v 3 1 2 1 4 3
Age 20-50 41 51 10 43 44 1
51-85 59 49 10 57 56 1
PR PR+ 58 54 4 58 57 1
status PR- 40 39 1 39 40 1
Relapse “0” 50 50 0 50 50 0
“17 50 50 0 50 50 0
Meno- “pre” 50 62 12 55 55 0
pause “post” 50 38 12 45 45 0

classification performance in an unbiased manner, we
applied nested CV (NCV) [10] to the training data
for each classifier. NCV performs two levels of CV—
internal and external—where the former is used to select
features/classification parameters and the latter is used
to evaluate performance. In the external (internal) CV
loop, the complete (external) training data set is ran-
domly split Ng (Ny) times into Kg (Kj) subsets. Each
external (internal) training set is composed of Kgp — 1
(K7 — 1) subsets and the remaining subset is used as an
external (internal) test set. We computed actual performance
metrics by training each classifier on the entire training data
set using ordinary CV, followed by evaluating the correspond-
ing classifiers on the entire testing data set. In the remainder
of this section, we briefly describe the six classifiers used to
assess the effects of clinically informed data sampling.

A. NEAREST SHRUNKEN CENTROIDS

We applied the nearest shrunken centroids (NSCs) classi-
fier as implemented in the PAMR R package [11]. NSC
efficiently performs both feature selection and classification
while requiring the specification of only a single parameter.
For the NCV procedure, we used Ng = 10, Kg = 5, Ny = 1,
and K; = 50.

B. SUPPORT VECTOR MACHINE

Using NCV with Ng = 20 and K = 2, the inter-
nal training data was processed according to the following
three steps. Firstly, differential analysis using the R LIMMA
package [12], we performed a moderated t-test to obtain
informative genes (p-value < 0.01; intensity > = average
value for each gene). Secondly, feature selection applying
the MATLAB ReliefF algorithm [13] with N; = 1 and
K; = 10, we ranked all genes in order of informativeness.
For ReliefF parameters, we set number of nearest neighbors
= 20, sigma = 5, and default values for all others. For
each internal training and testing data set, we selected the
minimum set of genes from the top-ranked 200 that achieved
the highest classification performance values [area under
the curve (AUC) and ACC] for subsequent analysis. Lastly,
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performance evaluation—we implemented the support vector
machine (SVM) model [14] in MATLAB to evaluate the top-
selected features. For SVM parameters, we chose the nu-
SVC classification type and a linear kernel, using default
values for all others. This linear SVM diagnostic model with
the top-selected features from step 2) was trained on the
internal training data and tested on the internal testing data to
evaluate classification performance. We fixed the soft margin
constant (marginal parameter) at 1. Upon the completion of
the internal step of NCV, the optimized biomarker panel was
determined by selecting genes with the highest frequency of
appearance in all sets of top-selected features. A classifier
based on this panel was then trained using the samples in
the external training set and evaluated on samples from the
external testing set.

C. RANDOM FOREST

The “training data set”” was first divided into 500 pairs of
external training and validation sets. Then, within the external
training sets, we further divided it into ten pairs of internal
training and validation sets (the nested loop). We ranked the
genes by the ascending moderated t-test p-values using the
LIMMA R package on the internal training set, then trained
random forest classifiers using CMA R package [15] and
validated on top 10, 20,..., 100 genes, and finally, reported
a local optimal feature length with maximum AUC using the
ROCR R package. We then ranked the genes in the whole
external training set, picked the top genes using the average
of the ten local optimal feature lengths, and trained classi-
fiers and validated on the corresponding external validation
set. Multiple metrics, including AUC and error rate, were
reported for each of the 500 external loops, and average
scores were achieved as predicted performance.

D. GAUSSIAN PROCESSES CLASSIFICATION

Gaussian processes classification [16] treats the sample
values in the training data set as samples from a multi-
variate Gaussian distribution, defining a Gaussian process
operating on these values. More specifically, we define the
second-order statistics of the Gaussian process as a kernel
function of the data values and learn the process parameters
by maximizing the posterior distribution of the data. When
applying Gaussian processes to classification problems, we
use a logistic function to convert the unbounded Gaussian
output to a probability value within [0, 1]. In order to train
the classifier, we use a Laplace approximation implemented
in the R KERNLAB package [17]. For NCV, used Ng = 10,
KE = 10, N] = 1, and K[ = 10.

E. COMBINER-BASED LINEAR DISCRIMINANT ANALYSIS
Yang et al. [18] developed COMBINER, a robust pathway
based biomarker discovery tool. This algorithm takes multi-
ple cohorts of high-throughput data as input and produces a
panel of candidate biomarkers as output. The COMBINER
algorithm performs two steps—inference (identify ‘‘driver
genes”” from a given pathway, using data from cohort 1) and
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FIGURE 1. Breast cancer data set with partition. (a) Random block
partitioning and (b) stratified random sampling based on clinical
variables or balanced partition. Predicted performance metrics for six
different SC algorithm shown as bars, and actual performance metrics on
the test data set shown by stem plots overlapping their corresponding
bars. Metrics used: AUC = area under the curve, ACC = accuracy, PPV =
positive predictive value, NPV= negative predictive value, TPR = true
positive rate, and TNR = true negative rate. Classifier used: NSC = nearest
shrunken centroid, Gauss. Proc = Gaussian process regression,
COMBINER = COre module biomarker identification with network
exploration, RF = random forest, SVM = Support vector machine, and
Path. LR = Pathifier-based logistic regression.

recursive feature elimination (identify candidate biomarker
pathways, using data from cohort 2). We extended the above-
mentioned algorithm to also obtain a decision boundary for
diagnostics. The breast cancer data set is divided into three
subsets (cohorts). As before, inference is done on the first
subset (cohort 1) and candidate biomarker pathways are iden-
tified on the second subset (cohort 2). Restricting ourselves
only to candidate biomarker pathways, various classification
performance metrics are estimated on the third subset by
employing LDA and CV. The above-mentioned threefold
partition is repeated ten times and the mean performance
metrics are computed. Next, LDA coefficients on the sub-
space spanned by the most frequent biomarker pathways are
computed for every threefold partitioning. The final decision
boundary is obtained by taking the median of the above
coefficients. The actual performance metrics are computed
using the boundary obtained earlier on the testing data.

F. PATHIFIER-BASED LOGISTIC REGRESSION

As a second method for incorporating known gene network
information, we used the pathifier method of Drier et al. [19]
to project all expression data (training and testing) onto
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KEGG pathway curves to compute “pathway deregulation
scores.” These scores indicate each sample’s distance along
the pathway principal curve, providing a dimensional reduc-
tion to 1320 features for each sample. All sample class
labels (training and testing) were randomized during pathifier
projection to ensure that no over-fitting occurs during this
dimensional reduction stage. Next, we computed pathway
scores and used them to train and test a logistic regression
classifier using the CMA Bioconductor package. For NCV,
we used Ng = 100, K = 5, N; = 1, and K; = 3, perform-
ing both feature selection and tuning of the L2 penalization
parameter within each CV step.

IIl. RESULTS AND DISCUSSION

We employed six commonly used metrics to assess the per-
formance of six different classifiers in this letter (see Fig. 1).
The two main trends we observed in our results were: 1) the
disagreement in the values of various predicted (bar plots)
and actual (stem plots) classifier performance metrics is, on
average, less pronounced in the case of the clinically balanced
data set when compared with the unbalanced data set and
2) on average, the classification performance is improved
when using the balanced data set. Using the Wilcoxon signed
rank test, we compared the differences in the average per-
formance for a given metric value, over all algorithms on
the testing data. We obtained p-value of 0.0313 for AUC,
ACC, negative predictive value (NPV), and TPR, 0.0625
for positive predictive value (PPV), and of 0.4375 for true
negative rate (TNR).

Various studies have attempted to investigate the under-
lining relationship between different classification metrics
using techniques, including correlation analysis [1] and factor
analysis [20]. Ferri et al. [1] suggest that the AUC metric
correlates well with others in the same class, i.e., those based
on relative errors in sample ranking. However, the optimal
number of representative metrics from other classes is not
well established. In this letter, we have used metrics belong-
ing to the sample ranking (AUC) and the qualitative error
measure (ACC, PPV, NPV, TPR, and TNR) classes. Metrics
belonging to the latter class represent different functions of
the confusion matrix, which contains entries counting the
numbers of TPs, false positives (FPs), TNs, and FNs. If we
let A1 and A; be the actual numbers of subjects in Class I and
Class II (given the labels of the test data set) and Py and P>
be the predicted numbers of subjects in the two classes (given
the classifier predictions), we see that a total of four variables
(TP, FP, TN, and FN) and four equations (TP+FN = A, FP+
TN = A, TP+FP = P,and FN+TN = P,) are operating in
this system. This well-posed problem has only two degrees of
freedom, suggesting that only two independent performance
metrics from the qualitative error measures class are required.

IV. CONCLUSION

In this letter, we quantitatively evaluated the impact of strat-
ified random partitioning (based on clinical variables) of
the data into training and test data sets. In comparison with
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randomized partitioning, the former approach improved the
overall performance of the six classifiers considered in this
letter. It also reduced the discrepancy between predicted
and actual performance, thus improving confidence in train-
ing set-based evaluations of classifier performance. Finally,
using a simple analytical argument, we showed that two
performance metrics from the qualitative error measures class
are sufficient to capture all of the available performance
information.
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