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Multistage sampling is commonly used for household surveys
when there exists no sampling frame, or when the population is
scattered over a wide area. Multistage sampling usually introduces a
complex dependence in the selection of the final units, which makes
asymptotic results quite difficult to prove. In this work, we consider
multistage sampling with simple random without replacement sam-
pling at the first stage, and with an arbitrary sampling design for
further stages. We consider coupling methods to link this sampling
design to sampling designs where the primary sampling units are
selected independently. We first generalize a method introduced by
[Magyar Tud. Akad. Mat. Kutató Int. Közl. 5 (1960) 361–374] to get
a coupling with multistage sampling and Bernoulli sampling at the
first stage, which leads to a central limit theorem for the Horvitz–
Thompson estimator. We then introduce a new coupling method with
multistage sampling and simple random with replacement sampling
at the first stage. When the first-stage sampling fraction tends to zero,
this method is used to prove consistency of a with-replacement boot-
strap for simple random without replacement sampling at the first
stage, and consistency of bootstrap variance estimators for smooth
functions of totals.

1. Introduction. Multistage sampling is widely used for household and
health surveys when there exists no sampling frame, or when the population
is scattered over a wide area. Three or more stages of sampling may be com-
monly used. For example, the third National Health and Nutrition Survey
(NHANES III) conducted in the United States involved four stages of sam-
pling, with the selection of counties as Primary Sampling Units (PSUs), of
segments as Secondary Sampling Units (SSUs) inside the selected counties,
of households as Tertiary Sampling Units (TSUs) inside the selected seg-
ments, and of individuals inside the selected households, for example, [12].
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A detailed treatment of multistage sampling may be found in textbooks like
[9, 36] or [13].

Multistage sampling introduces a complex dependence in the selection of
the final units, which makes asymptotic properties difficult to prove. In this
work, we make use of coupling methods (see [39]) to link multistage sampling
designs to sampling designs where the primary sampling units are selected
independently. The method basically consists in generating a random vec-
tor (Xt,Zt)

⊤ with appropriate marginal laws, and so that E(Xt − Zt)
2 is

smaller than the rate of convergence of Xt. In this case, Xt and Zt share
the same limiting variance and the same limiting distribution. For exam-
ple, the distribution of Zt may be that of the Horvitz–Thompson estimator
(see [20]) under multistage sampling with simple random without replace-
ment sampling (SI) of PSUs, and the distribution of Xt may be that of the
Hansen–Hurwitz estimator (see [19]) under multistage sampling and simple
random with replacement sampling (SIR) of PSUs.

In this paper, we derive asymptotic normality results for without-repla-
cement multistage designs, and we prove the consistency of a with-replace-
ment bootstrap of PSUs for SI sampling at the first stage when the sampling
fraction tends to zero. Our framework and our assumptions are defined in
Section 2. In Section 3, we first give an overview of asymptotic normality
results in survey sampling. We then state a central limit theorem for the
Horvitz–Thompson estimator in case of multistage sampling with Bernoulli
sampling (BE) of PSUs. The theorem follows from standard assumptions
and from the independent selections of PSUs. We generalize to the multi-
stage context a coupling algorithm by [16] for the joint selection of a BE
sample and an SI sample. This is the main tool to extend the central limit
theorem to multistage sampling with SI sampling of PSUs. We also prove the
weak consistency of variance estimators (see [38], page 20), which enables to
compute normality-based confidence intervals with appropriate coverage. In
Section 4, we consider the bootstrap for multistage sampling. We introduce
a new coupling algorithm between SI sampling of PSUs and SIR sampling
of PSUs. This is the main tool to prove a long-standing issue; namely, that
the so-called with-replacement bootstrap of PSUs (see [33]) is consistent in
case of SI sampling of PSUs when the first-stage sampling fraction tends to
zero. This entails that Studentized bootstrap confidence intervals are valid
in such case, and that the bootstrap variance estimators are consistent for
smooth functions of totals. The properties of a simplified variance estimator
and of the bootstrap procedure are evaluated in Section 5 through a simu-
lation study. An application of the studied bootstrap method on the panel
for urban policy survey is presented in Section 6. The proofs of theorems
are given in Section 7. Additional proofs are given in the supplement [7].
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2. Framework. We consider a finite population U consisting of N sam-
pling units that may be represented by their labels, so that we may sim-
ply write U = {1, . . . ,N}. The units are grouped inside NI nonoverlapping
sub-populations u1, . . . , uNI

called primary sampling units (PSUs). We are
interested in estimating the population total

Y =
∑

k∈U

yk =
∑

ui∈UI

Yi

for some variable of interest y, where Yi =
∑

k∈ui
yk is the sub-total of the

variable y on the PSU ui. We note E(·) and V (·) for the expectation and the
variance of some estimator. Also, we note E{X}(·) and V{X}(·) for the expec-
tation and variance conditionally on some random variable X . Throughout
the paper, we denote by Ŷi an unbiased estimator of Yi, and by Vi = V (Ŷi)

its variance. Also, we denote by V̂i an unbiased estimator of Vi. In order to
study the asymptotic properties of the sampling designs and estimators that
we treat below, we consider the asymptotic framework of [21]. We assume
that the population U belongs to a nested sequence {Ut} of finite popu-
lations with increasing sizes Nt, and that the population vector of values
yUt = (y1t, . . . , yNt)

⊤ belongs to a sequence {yUt} of Nt-vectors. For simplic-
ity, the index t will be suppressed in what follows but all limiting processes
will be taken as t→∞.

In the population UI = {u1, . . . , uNI
} of PSUs, a first-stage sample SI is

selected according to some sampling design pI(·). For clarity of exposition,
we consider nonstratified sampling designs for pI(·), but the results may be
easily extended to the case of stratified first-stage sampling designs with
a finite number of strata, as is illustrated in Section 6. If the PSU ui is
selected in SI , a second-stage sample Si is selected in ui by means of some
sampling design pi(·|SI). We assume invariance of the second-stage designs:
that is, the second stage of sampling is independent of SI and we may
simply write pi(·|SI) = pi(·). Also, we assume that the second-stage designs
are independent from one PSU to another, conditionally on SI . This implies
that

Pr

(

⋃

ui∈SI

{Si = si}
∣

∣

∣
SI

)

=
∏

ui∈SI

pi(si|SI) =
∏

ui∈SI

pi(si)(2.1)

for any set of samples si ⊂ ui, i= 1, . . . ,NI (see [36], Chapter 4). The second-
stage sampling designs pi(·) are left arbitrary. For example, they may involve
censuses inside some PSUs (which means cluster sampling), or additional
stages of sampling.

We will make use of the following assumptions:

H1: NI−→
t→∞

∞ and nI−→
t→∞

∞. Also, fI = nI/NI −→
t→∞

f ∈ [0,1[ .
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H2: There exists δ > 0 and some constant C1 such that

N−1
I

∑

ui∈UI

E|Ŷi|
2+δ <C1.

H3: There exists some constant C2 such that N−1
I

∑

ui∈UI
E(V̂ 2

i )<C2.
H4: There exists some constant C3 > 0 such that

N−1
I

∑

ui∈UI

(Yi − µY )
2 >C3 where µY =N−1

I Y.

It is assumed in (H1) that a large number nI of PSUs is selected. The
assumption (H2) implies that the sequence of {Yi}ui∈UI

has bounded mo-

ments of order 2 + δ and that the sequence of {V (Ŷi)}ui∈UI
has a bounded

first moment. This assumption requires in particular that the numbers of
SSUs within PSUs remain bounded. When we establish the mean square
consistency of variance estimators, assumption (H2) is strengthened by con-
sidering δ = 2, which implies that the sequence of {Yi}ui∈UI

has bounded
moments of order 4. Assumptions (H2) and (H3) are sufficient to have a
weakly consistent variance estimator for further stages of sampling. In this
regard, assumption (H3) can be relaxed when fI−→

t→∞
0 (see Section 3.3). As-

sumption (H4) requires that the dispersion between PSUs does not vanish.
This is a sufficient condition for the first-stage sampling variance of the
Horvitz–Thompson estimator to have the usual order O(N2

I n
−1
I ), for the

sampling designs that we consider in this article.

3. Asymptotic normality for multistage sampling. Unbiased estimators
for population totals such as the Horvitz–Thompson estimator are well
known; see [20] and [26]. Several results of asymptotic normality have been
proved for specific one-stage sampling designs; see, for example, [16, 17] for
simple random sampling without replacement, [18] for rejective sampling,
[34, 37] and [15] for successive sampling, and [28] for the Rao–Hartley–
Cochran procedure proposed by [32]. Brändén and Jonasson [5] state a cen-
tral limit theorem for the class of sampling algorithms satisfying the strongly
Rayleigh property, which includes Sampford sampling, Pareto sampling and
ordered pivotal sampling (see [6]). Chen and Rao [8] prove asymptotic nor-
mality for a class of estimators under two-phase sampling designs; see also
[35]. However, asymptotic normality of estimators resulting from multistage
samples has not been much considered in the literature; two notable excep-
tions are [22] for stratified multistage designs and with-replacement sampling
at the first-stage, and [29] who states a martingale central limit theorem for
a general two-stage sampling design.

In this section, we confine our attention to Horvitz–Thompson estimators
for multistage sampling with BE sampling or SI sampling of PSUs. The
central limit Theorems 3.1 and 3.2 are easily extended to cover smooth
functions of totals by using the delta method (see [38], Appendix A2).
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3.1. Bernoulli sampling of PSUs. We first consider the case when a first-
stage sample SB

I is selected in UI by means of Bernoulli sampling (BE)
with expected size nI , which we note as SB

I ∼ BE(UI ;nI). The PSUs are
independently selected in SB

I with inclusion probabilities fI = nI/NI , and
the size nB

I of SB
I is random. The Horvitz–Thompson estimator

ŶB =
NI

nI

∑

ui∈UI

IBi Ŷi =
NI

nI

∑

ui∈SB
I

Ŷi(3.1)

is unbiased for Y , with IBi the sample membership indicator for the PSU ui
in the sample SB

I . The variance of ŶB is

V (ŶB) =
N2

I

nI

{

(1− fI)
1

NI

∑

ui∈UI

Y 2
i +

1

NI

∑

ui∈UI

Vi

}

,(3.2)

where Vi = V (Ŷi). We consider the variance estimator

vB(ŶB) =
N2

I

nI

(

1− fI

nB
I

∑

ui∈SB
I

Ŷ 2
i +

fI

nB
I

∑

ui∈SB
I

V̂i

)

(3.3)

if nB
I > 0 and vB(ŶB) = 0 if nB

I = 0, with V̂i an unbiased estimator of Vi.
Conditionally on nB

I , S
B
I may be seen as an SI sample of size nB

I selected in
UI . It follows that

E{nB
I
}

(

1

nB
I

∑

ui∈SB
I

Ŷ 2
i

)

=
1

NI

∑

ui∈UI

(Y 2
i + Vi),

(3.4)

E{nB
I
}

(

1

nB
I

∑

ui∈SB
I

V̂i

)

=
1

NI

∑

ui∈UI

Vi,

and vB(ŶB) is unbiased for V (ŶB) conditionally on nB
I = k > 0.

Theorem 3.1. Assume that (H1) and (H2) hold. Then the Horvitz–

Thompson estimator ŶB =NIn
−1
I

∑

ui∈SB
I

Ŷi is asymptotically normally dis-

tributed, that is,

{V (ŶB)}
−0.5(ŶB − Y )−→

L
N (0,1),(3.5)

where −→
L

stands for the convergence in distribution. Assume further that

(H2) holds with δ = 2 and that (H3) holds. Then vB(ŶB) is mean-square

consistent for V (ŶB) conditionally on nB
I > 0, that is,

E{nB
I
>0}|N

−2
I nI{vB(ŶB)− V (ŶB)}|

2 −→
t→∞

0.(3.6)
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Also, vB(ŶB) is mean-square consistent unconditionally:

E|N−2
I nI{vB(ŶB)− V (ŶB)}|

2−→
t→∞

0.(3.7)

If nB
I > 0, we define TB ≡ {vB(ŶB)}

−0.5(ŶB − Y ). It follows by the mean-

square consistency of vB(ŶB) in (3.6) that under assumption (H4), vB(ŶB)

is weakly consistent for V (ŶB), namely

{V (ŶB)}
−1vB(ŶB) −→

Pr
{nB

I
>0}

1,(3.8)

where −→
Pr

{nB
I

>0}

stands for the convergence in probability, conditionally on

nB
I > 0. It follows by (3.8) and by the central limit theorem in (3.5) that

the pivotal quantity TB has a limiting standard normal distribution. An
approximate two-sided 100(1− 2α)% confidence interval for Y is thus given

by [ŶB ± u1−α{vB(ŶB)}
0.5], with u1−α the quantile of order 1 − α of the

standard normal distribution.

3.2. Without replacement simple random sampling of PSUs. We consider
the case when a first-stage sample SI is selected in UI by means of simple
random sampling without replacement (SI) of size nI , which we note as
SI ∼ SI(UI ;nI). The Horvitz–Thompson estimator is

Ŷ =
NI

nI

∑

ui∈UI

IiŶi =
NI

nI

∑

ui∈SI

Ŷi,(3.9)

with Ii the sample membership indicator for the PSU ui in the sample SI .
We may alternatively rewrite the Horvitz–Thompson estimator as

Ŷ =NI Z̄ with Z̄ =
1

nI

nI
∑

j=1

Zj,(3.10)

where the sample SI of PSUs is obtained by drawing nI times without
replacement one PSU in UI , and where Zj stands for the estimator of the

total for the PSU selected at the jth draw. The variance of Ŷ is

V (Ŷ ) =
N2

I

nI

{

(1− fI)S
2
Y,UI

+
1

NI

∑

ui∈UI

Vi

}

,(3.11)

with S2
Y,UI

= (NI − 1)−1
∑

ui∈UI
(Yi − µY )

2 the population dispersion of the

sub-totals Yi. Under (H1) and (H2), Ŷ is mean-square consistent for Y in
the sense that

E{N−1
I (Ŷ − Y )}2 −→

t→∞
0.(3.12)
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Algorithm 3.1 A coupling procedure for Bernoulli sampling of PSUs and
simple random sampling without replacement of PSUs

1. Draw the sample SB
I ∼ BE(UI ;nI). Denote by nB

I the (random) size of
SB
I .

2. Draw the sample SI as follows:

• if nB
I = nI , take SI = SB

I ;

• if nB
I <nI , draw S+

I ∼ SI(UI \ S
B
I ;nI − nB

I ) and take SI = SB
I ∪ S+

I ;

• if nB
I >nI , draw S+

I ∼ SI(SB
I ;nB

I − nI) and take SI = SB
I \ S+

I .

3. For any PSU ui:

• if ui ∈ SB
I ∩SI , select the same second-stage sample Si for both ŶB and

Ŷ ;
• if ui ∈ SB

I \ SI , select a second-stage sample Si for ŶB ;

• if ui ∈ SI \ S
B
I , select a second-stage sample Si for Ŷ .

This implies that N−1
I (Ŷ − Y )−→

Pr
0 where −→

Pr
stands for the convergence

in probability.
Hajek (1960) proposed a coupling procedure to draw simultaneously a BE

sample and an SI sample. This procedure is adapted in Algorithm 3.1 to the
context of multistage sampling, and Proposition 3.1 below generalizes the
Lemma 2.1 in [16].

Proposition 3.1. Assume that the samples SB
I and SI are selected

according to Algorithm 3.1. We note ∆2 ≡
∑

ui∈SI
(Ŷi −µY )−

∑

ui∈SB
I

(Ŷi −

µY ). Then

E{∆2}
2

V {
∑

ui∈SB
I

(Ŷi − µY )}
≤

{

1

nI
+

1

NI − nI

}0.5

.(3.13)

The result in Proposition 3.1 can be easily generalized to the multivariate
case: if yk = (y1k, . . . , yqk)

⊤ denotes the value taken for unit k by some q-
vector of interest y, we have

V {∆2} ≤

{

1

nI
+

1

NI − nI

}0.5

V

{

∑

ui∈SB
I

(Ŷi − µY )

}

,

where for symmetric matrices A and B of size q, A≤B means that B −A
is nonnegative definite.
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Theorem 3.2. Assume that (H1) and (H2) hold. Then the Horvitz–

Thompson estimator Ŷ =NIn
−1
I

∑

ui∈SI

Ŷi is asymptotically normally distributed,

that is,

{V (Ŷ )}−0.5(Ŷ − Y )−→
L

N (0,1).(3.14)

3.3. Variance estimation for SI sampling of PSUs. We first consider the
usual, unbiased variance estimator for Ŷ :

v(Ŷ ) =
N2

I

nI

{

(1− fI)s
2
Z +

1

NI

∑

ui∈SI

V̂i

}

(3.15)

with s2Z =
1

nI − 1

nI
∑

j=1

(Zj − Z̄)2.

Proposition 3.2. Assume that (H1) and (H3) hold, and that (H2)

holds with δ = 2. Then v(Ŷ ) is mean-square consistent for V (Ŷ ):

E|N−2
I nI{v(Ŷ )− V (Ŷ )}|2 −→

t→∞
0.(3.16)

It follows by Proposition 3.2 that under the assumption (H4), v(Ŷ ) is

weakly consistent for V (Ŷ ), namely

{V (Ŷ )}−1v(Ŷ )−→
Pr

1.(3.17)

From the central limit theorem in (3.14), T ≡ {v(Ŷ )}−0.5(Ŷ − Y ) has a
limiting standard normal distribution. Therefore, an approximate two-sided
100(1− 2α)% confidence interval for Y is given by

[Ŷ ± u1−α{v(Ŷ )}0.5].(3.18)

In proving Proposition 3.2, assumption (H3) is needed, requiring that

an unbiased variance estimator V̂i can be computed inside PSUs. This as-
sumption may be cumbersome, particularly if the sampling design implies
additional stages of sampling inside PSUs. It is thus desirable to provide
simplified variance estimators which do not require assumption (H3) while
remaining consistent. We are able to do so in the particular important case
when the first-stage sampling rate tends to zero. A simplified variance esti-
mator (see [36], equation (4.6.1)) is obtained by simply dropping the term

involving the variance estimators inside PSUs V̂i. This leads to

vSIMP(Ŷ ) =
N2

I

nI
(1− fI)s

2
Z .(3.19)
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Proposition 3.3. Assume that (H1) holds, and that (H2) holds with

δ = 2. Assume that fI −→
t→∞

0. Then vSIMP(Ŷ ) is mean-square consistent for

V (Ŷ ):

E|N−2
I nI{vSIMP(Ŷ )− V (Ŷ )}|2 −→

t→∞
0.(3.20)

The proof (omitted) follows from the fact that when fI −→
t→∞

0, V (Ŷ ) is

asymptotically equivalent to

Vapp(Ŷ ) =
N2

I

nI
(1− fI)

{

S2
Y,UI

+
1

NI

∑

ui∈UI

Vi

}

(3.21)

under assumption (H2). It is easily seen from equation (3.15) that vSIMP(Ŷ )
tends to underestimate the true variance, with a bias equal to −

∑

ui∈UI
Vi.

An alternative simplified estimator is obtained by estimating the variance as
if the PSUs were selected with replacement [see equation (4.5)]. This leads
to the second simplified variance estimator

vWR(Ŷ ) =
N2

I

nI
s2Z .(3.22)

It is easily shown that vWR(Ŷ ) tends to overestimate the true variance, with

a bias equal to NIS
2
Y,UI

. Under the conditions of Proposition 3.3, vWR(Ŷ )
is also mean-square consistent for the true variance since it only differs
from vSIMP(Ŷ ) with the factor (1 − fI). Under the additional assumption

(H4), the variance estimators vSIMP(Ŷ ) and vWR(Ŷ ) are therefore weakly

consistent for V (Ŷ ). When fI −→
t→∞

0, an approximate two-sided 100(1−2α)%

confidence interval for Y is therefore obtained from (3.18) by replacing v(Ŷ )

with vSIMP(Ŷ ) or vWR(Ŷ ).

4. With-replacement bootstrap for multistage sampling. The use of boot-
strap techniques in survey sampling has been widely studied in the literature.
Most of them may be thought as particular cases of the weighted bootstrap
[1–3]; see also [10, 23, 38] and [11] for detailed reviews.

Bootstrap for multistage sampling under without-replacement sampling
of PSUs has been considered, for example, in [14, 24, 27, 30, 31, 33], among
others. In this section, we consider the so-called with-replacement bootstrap
of PSUs (see [33]). This method is suitable for with-replacement sampling of
PSUs, and basic results for such sampling designs are therefore reminded in
Section 4.1. A new coupling algorithm between SI sampling of PSUs and SIR
sampling of PSUs is given in Section 4.2. This is the main tool to study the
bootstrap of PSUs for multistage sampling with SI sampling of PSUs when
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the first-stage sampling fraction tends to zero. In Section 4.3, we prove that
Studentized bootstrap confidence intervals are valid. In Section 4.4, we prove
that the bootstrap variance estimator is consistent for smooth functions of
means whenever it is consistent in case of SIR sampling of PSUs.

4.1. With replacement sampling of PSUs. We consider the case when
a first-stage sample SWR

I is selected in UI according to simple random
sample with replacement (SIR) of size nI inside UI , which we note as
SWR
I ∼ SIR(UI ;nI). Denote by Wi the number of selections of the PSU ui in

SWR
I , and by Sd

I of size nd
I the set of distinct PSUs associated to SWR

I . Each
time j = 1, . . . ,Wi that unit ui is drawn in SWR

I , a second-stage sample Si[j]

is selected in ui. The total Y is unbiasedly estimated by the Hansen–Hurwitz
estimator

ŶWR =
∑

ui∈Sd
I

1

E(Wi)

Wi
∑

j=1

Ŷi[j] =
NI

nI

∑

ui∈Sd
I

Wi
∑

j=1

Ŷi[j],(4.1)

where Ŷi[j] stands for an unbiased estimator of Yi computed on Si[j]. We
may alternatively rewrite the Hansen–Hurwitz estimator as

ŶWR =NIX̄ with X̄ =
1

nI

nI
∑

j=1

Xj ,(4.2)

where the sample SWR
I of PSUs is obtained by drawing nI times with re-

placement one PSU in UI and where Xj stands for the estimator of the total
for the PSU selected at the jth draw.

The variance of ŶWR is

V (ŶWR) =
N2

I

nI

{

NI − 1

NI
S2
Y,UI

+
1

NI

∑

ui∈UI

Vi

}

.(4.3)

Under (H1) and (H2), ŶWR is mean-square consistent for Y in the sense that

E{N−1
I (ŶWR − Y )}2 −→

t→∞
0.(4.4)

This implies that N−1
I (ŶWR − Y )−→

Pr
0.

An unbiased variance estimator for V (ŶWR) is

vWR(ŶWR) =
N2

I

nI
s2X with s2X =

1

nI − 1

nI
∑

j=1

(Xj − X̄)2.(4.5)

The simple form of the variance estimator in (4.5) is primarily due to (4.2),

where ŶWR is written as a sum of independent and identically distributed
random variables (see also [36], page 151).
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Theorem 4.1. Assume that (H1) and (H2) hold. Then the Hansen–

Hurwitz estimator ŶWR = NIn
−1
I

∑

ui∈Sd
I

∑Wi

j=1 Ŷi[j] is asymptotically nor-

mally distributed, that is,

{V (ŶWR)}
−0.5(ŶWR − Y )−→

L
N (0,1).(4.6)

Assume further that (H2) holds with δ = 2. Then vWR(ŶWR) is mean-square

consistent for V (ŶWR):

E|N−2
I nI{vWR(ŶWR)− V (ŶWR)}|

2 −→
t→∞

0.(4.7)

In proving the consistency of vWR(ŶWR), assumption (H3) is not needed.

In particular, unbiased variance estimators V̂i inside PSUs are not manda-
tory. This appealing property leads to consider vWR(·) as a possible sim-
plified variance estimator when the PSUs are selected without replacement
with a first-stage sampling fraction tending to zero; see equation (3.22).

4.2. A coupling procedure between SIR sampling of PSUs and SI sampling
of PSUs. The procedure is described in Algorithm 4.1. Conditionally on nd

I ,
the sample Sd

I obtained in step 1 is by symmetry an SI sample of size nd
I

from UI , which implies that Sd
I ∪ Sc

I is an SI sample of size nI from UI .
Consequently, this procedure leads to a sample SI drawn by means of SI
sampling of PSUs.

Algorithm 4.1 A coupling procedure for simple random sampling with-
replacement of PSUs and simple random sampling without replacement of
PSUs for multistage sampling

1. Draw the sample SWR
I ∼ SIR(UI ;nI). Denote by Sd

I of (random) size nd
I

the set of distinct PSUs in SWR
I .

2. Draw a complementary sample Sc
I ∼ SI(UI \ S

d
I ;nI − nd

I) and take SI =
Sd
I ∪ Sc

I .
3. For any ui ∈ Sd

I :

• Each time j = 1, . . . ,Wi that unit ui is drawn in SWR
I , select a second-

stage sample Si[j] with associated estimator Ŷi[j] for ŶWR.

• Take Si = Si[1] and Ŷi = Ŷi[1] for Ŷ .

4. For any ui ∈ Sc
I , select a second-stage sample Si with associated estimator

Ŷi for Ŷ .
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Proposition 4.1. Assume that the samples SWR
I and SI are selected

according to Algorithm 4.1. Then

E(ŶWR − Ŷ )2

V (ŶWR)
≤

nI − 1

NI − 1
.(4.8)

The right bound in (4.8) is mainly of interest when fI −→
t→∞

0. In this case,

from the trivial inequality nI−1
NI−1 ≤

nI

NI
, Algorithm 4.1 may be used to select

the samples SWR
I and SI so that the difference between ŶWR and Ŷ is

asymptotically negligible. A similar result holds for the dispersions between
the estimated totals inside PSUs, as stated in Proposition 4.2 below.

Proposition 4.2. Assume that the samples SWR
I and SI are selected

according to Algorithm 4.1. Assume that (H1) and (H2) hold, and that
fI −→

t→∞
0. Then

E(Z̄ − X̄)2 = o(n−1
I ),(4.9)

E|s2Z − s2X | −→
t→∞

0,(4.10)

where X̄ and s2X are defined in equations (4.2) and (4.5), and Z̄ and s2Z are
defined in equations (3.10) and (3.15),

4.3. With replacement bootstrap of PSUs. We consider the with-replace-
ment bootstrap of PSUs described in [33]. Using the notation introduced in
equation (3.10), let (Z1, . . . ,ZnI

)⊤ denote the sample of estimators under SI
sampling of PSUs. Also, let (Z∗

1 , . . . ,Z
∗
m)⊤ be obtained by sampling m times

independently in (Z1, . . . ,ZnI
)⊤. Similarly, using the notation introduced in

equation (4.2), let (X1, . . . ,XnI
)⊤ denote the sample of estimators under

SIR sampling of PSUs. Also, let (X∗
1 , . . . ,X

∗
m)⊤ be obtained by sampling m

times independently in (X1, . . . ,XnI
)⊤.

We first demonstrate the bootstrap consistency. We note

Z̄∗
m =

1

m

m
∑

j=1

Z∗
j and s∗2Z =

1

m− 1

m
∑

j=1

(Z∗
j − Z̄∗

m)2,

X̄∗
m =

1

m

m
∑

j=1

X∗
j and s∗2X =

1

m− 1

m
∑

j=1

(X∗
j − X̄∗

m)2.

We proceed by showing that, using Algorithm 4.1, the samples SI and
SWR
I can be drawn so that the pivotal statistics

m0.5(s∗Z)
−1(Z̄∗

m − Z̄) and m0.5(s∗X)−1(X̄∗
m − X̄)(4.11)
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are close. More precisely, we make use of the Mallows metric (see [25] and
[4]), also known as the Wasserstein metric. Let 1≤ q <∞, and let α and β
denote two distributions on R

s with finite moments of order q. Then

dq(α,β) = inf{E‖X −Z‖q}1/q,(4.12)

where the infimum is taken over all couples (X,Z) with marginal distri-
butions α and β. For two random vectors X and Z, we note dq(α,β) for
the dq-distance between the distributions of X and Z. In what follows, we
consider q = 1 or q = 2.

Let D = (D1, . . . ,DnI
)⊤ be generated according to a multinomial distri-

bution with parameters (m;n−1
I , . . . , n−1

I ). The same multinomial weights D
are used in the selection of (Z∗

1 , . . . ,Z
∗
m)⊤ and (X∗

1 , . . . ,X
∗
m)⊤, so that we

may write

Z̄∗
m =

1

m

nI
∑

j=1

DjZj and X̄∗
m =

1

m

nI
∑

j=1

DjXj .(4.13)

Proposition 4.3. Assume that (H1) and (H2) hold. Assume that fI −→
t→∞

0

and that m −→
t→∞

∞. Then

E(Z̄∗
m − X̄∗

m)2 = o(m−1) + o(n−1
I ).(4.14)

Proposition 4.4. Assume that (H1) and (H2) hold. Assume that fI −→
t→∞

0

and that m −→
t→∞

∞. Then

d2[m
0.5(Z̄∗

m − Z̄),m0.5(X̄∗
m − X̄)] −→

t→∞
0,(4.15)

d1[s
∗2
Z , s∗2X ] −→

t→∞
0,(4.16)

where the distance dq(·, ·) is defined in (4.12).

From Proposition 4.4, the pivotal statistics in (4.11) share the same lim-
iting distribution. Theorem 4.2 below follows from Theorem 2.1 of [4].

Theorem 4.2. Assume that (H1) and (H2) hold. Assume that fI −→
t→∞

0

and that m −→
t→∞

∞. Then

m0.5(s∗Z)
−1(Z̄∗

m − Z̄)−→
L

N (0,1).(4.17)

Theorem 4.2 implies that the normality-based confidence interval for Y
given in (3.18) may be replaced by the Studentized bootstrap confidence
interval (see [10], page 194)

[Ŷ − u∗1−α{v(Ŷ )}0.5, Ŷ − u∗α{v(Ŷ )}0.5],(4.18)
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where the quantiles u1−α and uα of the normal distribution are replaced by
the corresponding quantiles u∗1−α and u∗α of the bootstrap pivotal quantity

in (4.17). The simplified variance estimators vSIMP(Ŷ ) and vWR(Ŷ ) can also
be used in (4.18).

4.4. Bootstrap variance estimation for functions of totals. We now con-
sider the case when yk = (y1k, . . . , yqk)

⊤ is multivariate, and denotes the value
taken for unit k by some q-vector of interest y. We are interested in a param-
eter θ = f(Y ) for some function f : Rq −→ R. Under SI sampling of PSUs,

the plug-in estimator of θ is θ̂ ≡ f(NIZ̄). Under SIR sampling of PSUs,

the plug-in estimator of θ is θ̂WR ≡ f(NIX̄). Also, we note θ̂∗ ≡ f(Z̄∗
m) and

θ̂∗WR ≡ f(X̄∗
m) for the bootstrap estimators, where Z̄∗

m and X̄∗
m are defined

in (4.13). We consider the additional regularity assumptions:

H5: f(·) is homogeneous of degree β ≥ 0, in that f(ry) = rβf(y) for any
real r > 0 and q-vector y. Also, f is a differentiable function on R

q with
bounded partial derivatives.

H6: There exists some constant C4 > 0 such that V (θ̂WR)>C4N
2β
I n−1

I .

Assumption (H6) is similar to (H4), and requires the variance of the plug-

in estimator θ̂WR to have the usual order O(N2β
I n−1

I ).

Proposition 4.5. Assume that the samples SWR
I and SI are selected

according to Algorithm 4.1. Assume that assumptions (H1), (H2) and (H5)
hold. Assume that fI −→

t→∞
0. Then

E(‖Z̄ − X̄‖2) = o(n−1
I ),(4.19)

E(θ̂− θ̂WR)
2 = o(N2β

I n−1
I ),(4.20)

with ‖ · ‖ the Euclidean norm. Assume further that m −→
t→∞

∞. Then

E(‖Z̄∗ − X̄∗‖2) = o(m−1) + o(n−1
I ),(4.21)

E(θ̂∗ − θ̂∗WR)
2 = o(N2β

I m−1) + o(N2β
I n−1

I ).(4.22)

Proposition 4.6. Assume that the samples SWR
I and SI are selected

according to Algorithm 4.1. Assume that assumptions (H1), (H2), (H5) and
(H6) hold. Assume that fI −→

t→∞
0 and m=O(nI). Then

V{X}(θ̂
∗
WR)

V (θ̂WR)
−→
Pr

1 implies
V{Z}(θ̂

∗)

V (θ̂)
−→
Pr

1,(4.23)

with V{X} the variance conditionally on X1, . . . ,XnI
, and similarly for V{Z}.
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The proof or Proposition 4.5 follows from the regularity assumptions on
f(·) and from Propositions 4.2 and 4.3. Proposition 4.6 implies that the with-
replacement bootstrap of PSUs provides consistent variance estimation for
θ̂ whenever it does so for θ̂WR. The regularity assumption (H5) is somewhat
strong, and may be weakened to differentiability of f(·) on a compact set,
under additional assumptions on the vector of interest y and on the second-
stage sampling weights.

5. A simulation study. We conducted a limited simulation study to in-
vestigate on the performance of the variance estimators. We first generated
3 finite populations, each with NI = 2000 PSUs. The number of SSUs inside
PSUs was generated so that the average number of SSUs per PSU was ap-
proximately equal to N̄ = 40, and so that the coefficient of variation for the
sizes Ni of PSUs was equal to 0 for population 1 (so that the PSUs are of
equal size), approximately equal to 0.03 for population 2, and approximately
equal to 0.06 for population 3.

In each population, we generated for any PSU ui the value λi = λ+ σ vi
with λ = 20 and σ = 2 for each population, and the vi’s were generated
according to a normal distribution with mean 0 and variance 1. For each
SSU k ∈ ui, we generated three couples of values (y1,k, y2,k), (y3,k, y4,k) and
(y5,k, y6,k) according to the model

y2h−1,k = λi + {ρ−1
h (1− ρh)}

0.5σ(αεk + ηk),(5.1)

y2h,k = λi + {ρ−1
h (1− ρh)}

0.5σ(αεk + νk),(5.2)

for h = 1, . . . ,3, where the values εk, ηk and νk were generated according
to a normal distribution with mean 0 and variance 1. In each population,
the parameter ρh was chosen so that the intra-cluster correlation coefficient
was approximately equal to 0.1 for both variables y1 and y2, 0.2 for both
variables y3 and y4, and 0.3 for both variables y5 and y6. Also, the parameter
α was chosen so that the coefficient of correlation between variables y2h−1

and y2h, h= 1, . . . ,3, was approximately equal to 0.60.
From each population, we selected B = 1000 two-stage samples. The sam-

ple SI of PSUs was selected by means of SI sampling of size nI = 20,40,100
or 200. Inside each ui ∈ SI , the sample Si of SSUs was selected by means of
systematic sampling of size n0 = 5 or 10. Note that, due to the systematic
sampling at the second stage, the variance may not be unbiasedly estimated.
Our objective is to estimate the variance of the Horvitz–Thompson estimator
of the totals of the variables y1, y3 and y5, by using the simplified variance
estimator vSIMP(Ŷ ) in (3.19) or the with-replacement bootstrap of PSUs.
Also, our objective is to estimate the variance of the substitution estimator
for the ratios

Rh = (µy,2h)
−1µy,2h−1(5.3)
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with µy,2h−1 =N−1
∑

k∈U y2h−1,k and µy,2h =N−1
∑

k∈U y2h,k, and the vari-
ance for the substitution estimator for the coefficient of correlations

rh =

∑

k∈U(y2h−1,k − µy,2h−1)(y2h,k − µy,2h)

{
∑

k∈U (y2h−1,k − µy,2h−1)2
∑

k∈U(y2h,k − µy,2h)2}0.5
,(5.4)

for h= 1, . . . ,3 by using the with-replacement bootstrap of PSUs. The true
variance was approximated from a separate simulation run of C = 20,000
samples.

As a measure of bias of a point estimator θ̂ of a parameter θ, we used the
Monte Carlo percent relative bias (RB) given by

RBMC(θ̂) = 100
B−1

∑B
b=1 θ̂(b) − θ

θ
,

where θ̂(b) gives the value of the estimator for the bth sample. As a measure

of variance of an estimator θ̂, we used the Monte Carlo percent relative
stability (RS) given by

RSMC(θ̂) = 100
{B−1

∑B
b=1(θ̂(b) − θ)2}0.5

θ
.

When the simplified variance estimator in (3.19) is used, we also assess
the coverage of confidence intervals based on asymptotic normality. When
the with-replacement bootstrap of PSUs is used, we assess the coverage of
confidence intervals obtained by means of the percentile method. We used
a nominal one-tailed error rate of 2.5% in each tail.

The results obtained for population 3 are presented in Tables 1 and 2.
We observed no qualitative difference on populations 1 and 2, and the re-
sults for these two populations are therefore presented in the supplement [7]
for brevity. We first consider the results of variance estimation for a total
with the simplified variance estimator vSIMP(Ŷ ) and with the bootstrap of
PSUs, which are presented in Table 1. We note that both variance estimators
are approximately unbiased, with absolute relative biases no greater than
10%. As expected, vSIMP(Ŷ ) is slightly negatively biased while the bootstrap
variance estimator is slightly positively biased. The absolute bias tends to
increase with nI , that is, when the sampling fraction becomes nonnegligi-
ble. The simplified variance estimator is slightly more stable in all scenarios,
while the bootstrap performs slightly better in terms of coverage rates. We
now consider the results obtained for the bootstrap of PSUs when estimat-
ing a ratio and a correlation coefficient, which are presented in Table 2.
The bootstrap variance estimator is almost unbiased, with absolute relative
biases no greater than 4%. The coverage rates are well respected in all cases.
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Table 1

Relative bias, relative stability and nominal one-tailed error rates for the simplified
variance estimator of the Horvitz–Thompson estimator, and for the bootstrap for the

estimation of a total for population 3

Simplified variance estimator vSIMP(Ŷ ) for Y2h−1

n0 5 10

nI 20 40 100 200 20 40 100 200

ρ= 0.1 RB −0.02 0.01 −0.03 −0.04 0.00 0.01 −0.01 −0.03
RS 0.31 0.23 0.14 0.10 0.31 0.22 0.14 0.10
L 2.9 3.0 2.0 2.3 2.4 2.5 2.4 2.3
U 3.7 3.0 2.3 2.1 3.0 2.9 2.8 3.9

L+U 6.6 6.0 4.3 4.4 5.4 5.4 5.2 6.2

ρ= 0.2 RB −0.04 0.00 −0.01 −0.04 −0.01 0.01 −0.01 −0.01
RS 0.31 0.21 0.14 0.10 0.32 0.23 0.14 0.09
L 3.6 3.3 2.4 2.1 3.2 3.7 1.9 3.0
U 3.6 3.3 2.0 1.9 2.7 3.1 2.1 2.6

L+U 7.2 6.6 4.4 4.0 5.9 6.8 4.0 5.6

ρ= 0.3 RB −0.03 0.01 −0.01 −0.02 0.00 0.02 0.00 −0.02
RS 0.31 0.22 0.13 0.09 0.33 0.22 0.14 0.09
L 3.0 2.9 2.0 3.1 4.3 3.0 2.5 2.6
U 3.1 2.6 2.1 1.9 3.1 3.5 2.2 3.7

L+U 6.1 5.5 4.1 5.0 7.4 6.5 4.7 6.3

Bootstrap of PSUs for Y2h−1

ρ= 0.1 RB −0.01 0.03 0.02 0.06 0.02 0.03 0.04 0.08
RS 0.31 0.24 0.15 0.13 0.32 0.23 0.16 0.14
L 3.3 2.7 2.4 1.7 2.7 2.4 2.2 1.8
U 3.8 2.9 2.3 1.6 3.1 2.9 2.4 2.6

L+U 7.1 5.6 4.7 3.3 5.8 5.3 4.6 4.4

ρ= 0.2 RB −0.03 0.02 0.04 0.07 0.01 0.03 0.04 0.10
RS 0.32 0.22 0.16 0.13 0.33 0.24 0.16 0.15
L 3.6 3.5 2.1 1.8 3.1 3.3 2.1 2.4
U 3.5 3.3 1.9 1.4 2.8 3.0 1.8 1.8

L+U 7.1 6.8 4.0 3.2 5.9 6.3 3.9 4.2

ρ= 0.3 RB −0.02 0.02 0.04 0.09 0.02 0.04 0.06 0.09
RS 0.32 0.23 0.15 0.14 0.34 0.24 0.16 0.15
L 2.9 3.1 1.8 2.2 4.3 2.9 2.4 2.3
U 3.3 2.9 1.8 1.8 3.4 3.5 2.4 2.4

L+U 6.2 6.0 3.6 4.0 7.7 6.4 4.8 4.7

6. Application on the panel for urban policy. We illustrate the proposed

methods in the context of the Panel for Urban Policy (PUP), which was con-

ducted by the French General Secretariat of the Inter-ministerial Committee



18 G. CHAUVET

Table 2

Relative bias, relative stability and nominal one-tailed error rates for the bootstrap for the
estimation of a ratio and a coefficient of correlation for population 3

Bootstrap of PSUs for Rh

n0 5 10

nI 20 40 100 200 20 40 100 200

ρ= 0.1 RB 0.03 0.01 0.03 0.01 0.01 0.00 0.02 0.03
RS 0.33 0.24 0.16 0.11 0.34 0.24 0.16 0.12
L 2.6 3.5 2.5 2.6 3.8 2.9 3.0 4.0
U 3.3 3.7 3.3 3.1 2.6 3.1 2.5 2.5

L+U 5.9 7.2 5.8 5.7 6.4 6.0 5.5 6.5

ρ= 0.1 RB 0.01 0.01 0.00 0.02 0.01 0.01 0.01 0.03
RS 0.34 0.23 0.15 0.12 0.34 0.23 0.14 0.12
L 3.2 2.4 2.7 2.3 2.6 2.4 2.2 2.9
U 3.0 2.4 2.2 2.2 4.4 4.0 1.8 2.5

L+U 6.2 4.8 4.9 4.5 7.0 6.4 4.0 5.4

ρ= 0.1 RB −0.02 0.02 0.02 0.03 0.01 0.02 0.02 0.02
RS 0.32 0.24 0.15 0.12 0.35 0.24 0.15 0.12
L 3.5 2.8 2.7 3.6 2.2 2.4 2.9 3.2
U 3.8 3.5 1.9 2.4 3.3 2.2 2.4 2.4

L+U 7.3 6.3 4.6 6.0 5.5 4.6 5.3 5.6

Bootstrap of PSUs for rh

ρ= 0.1 RB 0.02 0.00 −0.03 0.01 0.02 0.00 0.02 0.03
RS 0.44 0.30 0.19 0.14 0.38 0.27 0.18 0.13
L 3.6 2.7 2.8 2.3 3.5 3.0 1.7 1.9
U 2.3 3.1 2.5 2.6 3.4 3.7 1.7 2.7

L+U 5.9 5.8 5.3 4.9 6.9 6.7 3.4 4.6

ρ= 0.2 RB −0.01 0.00 0.00 −0.01 0.00 0.01 0.03 0.04
RS 0.41 0.32 0.20 0.14 0.37 0.28 0.18 0.14
L 2.6 3.5 2.7 3.4 2.0 2.7 1.2 2.9
U 3.0 2.5 2.7 2.5 3.6 3.5 2.8 3.2

L+U 5.6 6.0 5.4 5.9 5.6 6.2 4.0 6.1

ρ= 0.3 RB −0.01 0.01 0.02 0.01 −0.01 0.00 0.00 0.03
RS 0.43 0.32 0.20 0.15 0.38 0.28 0.18 0.14
L 3.7 3.8 2.0 3.1 2.8 2.8 2.6 2.0
U 4.0 3.2 2.8 3.0 5.0 5.0 2.9 2.6

L+U 7.7 7.0 4.8 6.1 7.8 7.8 5.5 4.6

for Cities (SGCIV). The PUP is a panel survey in four waves conducted be-
tween 2011 and 2014, which focuses on individuals in the Sensitive Urban
Zones (ZUS), and which collects information on various aspects including
security, employment, precariousness, schooling and health. In this paper,
we focus on the 2011 edition. It involved two stages of sampling, with the
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selection of districts as PSUs, and of households as SSUs. All the individuals
within the selected households were surveyed.

For the purpose of illustration, we consider a subset of districts as our
population UI of interest. At the first stage, the population UI is parti-
tioned into L= 11 strata UIl according to the district. In each stratum UIl

of size NIl, a SI sample SIl of nIl households is selected and all the individ-
uals within the households ui ∈ SIh are surveyed. In summary, our data set
consists in a sample of 576 individuals obtained by stratified SI cluster sam-
pling of households. The first-stage sampling rates fIl =N−1

Il nIl inside the
L strata range from 0.002 to 0.017, which can be considered as negligible.

We are interested in four variables related to health. The variable y1 gives
the perceived health status (very good, good, fair, poor). The variable y2 is
an indicator of chronic disease (with, without). The variable y3 indicates if
the individual is limited by his health status in his usual activities (very lim-
ited, limited, not limited). The variable y4 indicates if the individual benefits
from a free universal health care (yes, no). For any possible characteristic c
of some variable y, we are interested in the proportion

pc =

∑L
l=1

∑

ui∈UIl
Yic

∑L
l=1

∑

ui∈UIl
Ni

with Yic =
∑

k∈ui

1(yk = c),(6.1)

which is estimated by its substitution estimator

p̂c =

∑L
l=1NIln

−1
Il

∑

ui∈SIl
Yic

N̂
with N̂ ≡

L
∑

l=1

NIl

nIl

∑

ui∈SIl

Ni.(6.2)

For each proportion, we give the normality-based confidence interval. For
that purpose, we adapt the simplified variance estimator in (3.22) to the
stratified context and make use of the linearized variable of pc. This leads
to the variance estimator

vSTWR(p̂c) =
L
∑

l=1

N2
Il

nIl
s2El with s2El =

1

nIl − 1

∑

ui∈SIl

(Ei − Ēl)
2(6.3)

for p̂c, with

Ei =
1

N̂
(Yic − p̂c) and

Ēl =
1

nIl

∑

ui∈SIl

Ei.

For each proportion, we also give the percentile bootstrap and the Studen-
tized bootstrap confidence intervals, using the with-replacement bootstrap
of PSUs with D = 1000 resamples. The results with a nominal one-tailed
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Table 3

Substitution estimator of the marginal proportions, normality-based confidence interval
(CI), Percentile bootstrap confidence interval and Studentized bootstrap confidence

interval for four variables

Perceived health status

Very good Good Fair Poor
Estimator p̂c 0.19 0.43 0.23 0.15
Normality-based CI [0.15,0.24] [0.38,0.49] [0.18,0.28] [0.10,0.19]
Percentile bootstrap CI [0.15,0.23] [0.39,0.48] [0.19,0.27] [0.10,0.20]
Studentized bootstrap CI [0.16,0.24] [0.39,0.48] [0.19,0.28] [0.11,0.21]

Indicator of chronic disease

With Without
Estimator p̂c 0.28 0.72
Normality-based CI [0.23,0.33] [0.65,0.79]
Percentile bootstrap CI [0.24,0.33] [0.67,0.76]
Studentized bootstrap CI [0.24,0.33] [0.68,0.77]

Limitation in usual activities

Very limited Limited Not limited
Estimator p̂c 0.09 0.14 0.77
Normality-based CI [0.05,0.13] [0.11,0.18] [0.70,0.84]
Percentile bootstrap CI [0.06,0.14] [0.11,0.18] [0.71,0.81]
Studentized bootstrap CI [0.06,0.15] [0.11,0.18] [0.72,0.82]

Recipient from a free universal health care

Yes No
Estimator p̂c 0.13 0.87
Normality-based CI [0.08,0.18] [0.80,0.94]
Percentile bootstrap CI [0.08,0.18] [0.82,0.92]
Studentized bootstrap CI [0.09,0.19] [0.83,0.92]

error rate of 2.5% are presented in Table 3. The three confidence intervals
are very similar in any case, though the normality-based confidence intervals
tend to be slightly larger.

7. Proofs of results.

7.1. Proof of Theorem 3.1. We note ŶiB ≡NIn
−1
I IBi Ŷi. Under (H2), we

have
∑

ui∈Ui
E|ŶiB − Yi|

2+δ =O(N2+δ
I n−1−δ

I ). We obtain

∑

ui∈Ui
E|ŶiB − Yi|

2+δ

V (ŶB)1+δ/2
=O(n

−δ/2
I )(7.1)
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so that the Lyapunov condition is satisfied and (3.5) follows from the central

limit theorem for triangular arrays. Noting ∆ =N−2
I nI{vB(ŶB)− V (ŶB)},

we have

E{nB
I
>0}(∆

2) =
1

1− (1− fI)NI

nI
∑

k=1

Pr(nB
I = k)E{nB

I
=k}(∆

2),(7.2)

where Pr(nB
I = k) = Ck

NI
fk
I (1 − fI)

NI−k. Using the fact that conditionally

on nB
I , S

B
I may be seen as a simple random sample of size nB

I from UI ,
we have after some algebra that there exists some constant C5 such that
E{nB

I
=k}(∆

2)≤C5/k for any k > 0. This leads to

E{nB
I
>0}(∆

2)≤
C5

1− (1− fI)NI

NI
∑

k=1

Ck
NI

fk
I (1− fI)

NI−k

k
.(7.3)

The term in the right-hand side of (7.3) tends to 0 (see Lemma 1.1 in the
supplement [7]), which leads to (3.6). To prove (3.7), it suffices to notice
that under (H2) there exists some constant C6 such that E{nB

I
=0}(∆

2) =

{N−2
I nIV (ŶB)}

2 ≤C6, and that Pr(nB
I = 0) = (1− fI)

NI tends to 0.

7.2. Proof of Theorem 3.2.

Lemma 7.1. Let Xt and Zt denote two random variables such that
E(Xt) =E(Zt). Assume that E(Xt−Zt)

2 = o{V (Xt)} and that V (Xt) −→
t→∞

∞.

Then

{V (Xt)}
−1V (Zt) −→

t→∞
1.(7.4)

Also, if for some distribution L0

{V (Xt)}
−0.5{Xt −E(Xt)} −→

L
L0,(7.5)

then {V (Zt)}
−0.5{Zt −E(Zt)}−→

L
L0.

The proof of Lemma 7.1 is omitted. We take Xt =
∑

ui∈SB
I

(Ŷi − µY ) and

Zt =
∑

ui∈SI
(Ŷi − µY ). Under assumptions (H1) and (H2), Proposition 3.1

implies that the assumptions of Lemma 7.1 are satisfied. Using the same
proof as for (3.5) in Theorem 3.1, it is easily shown that (7.5) holds with L0

replaced with the standard normal distribution. This completes the proof.
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7.3. Proof of Theorem 4.1. Since ŶWR is a sum of independent and iden-
tically distributed random variables, (4.6) follows from the classical central
limit theorem for triangular arrays in the i.i.d. case. After some algebra, we
have

V (s2X) =
1

nI

[

E(Xj − µY )
4 −

nI − 3

nI − 1
{E(Xj − µY )

2}2
]

.

From (H2), there exists C10 such that V (s2X)≤C10n
−1
I , so that (4.7) follows.
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SUPPLEMENTARY MATERIAL

Supplement to “Coupling methods for multistage sampling”

(DOI: 10.1214/15-AOS1348SUPP; .pdf). The supplement [7] contains addi-
tional proofs of Propositions in Section 1, and additional simulation results
in Section 2.
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