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Abstract: When the sample mean, y, is used to estimate the mean of a finite popula-

tion, the usual systematic sampling procedure cannot provide an unbiased estimator

of V (y), the variance of y. In this paper, we propose a new partially systematic

sampling procedure which provides an unbiased estimator of V (y). Moreover, the

population size N is not required to be a multiple of the sample size used. We also

compare the efficiency of this new sampling procedure with simple random sam-

pling, the usual or circular systematic sampling procedures, and systematic sam-

pling with multiple starts for populations exhibiting certain characteristics, such as

“random”, “linear”, or “autocorrelated” trends, or periodic variation.
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1. Introduction

The usual systematic sampling design, in its simplest and most commonly
used form, selects every kth unit from a finite population of N units, assuming
that the sample size n is N/k, for some integer k. This sampling design is attrac-
tive because of its simplicity and operational convenience. Moreover, when the
sample mean is used to estimate the population mean of a characteristic of inter-
est, using a systematic sampling design yields higher efficiency than using a simple
random sampling design or a stratified random sampling design in many situa-
tions. The main disadvantage with the (single-start) systematic sampling design
is that it cannot provide an unbiased estimator of variance of the sample mean.
Some modifications of the usual systematic sampling design have therefore been
proposed to overcome this problem. Gautschi (1957) considered a multiple-start
systematic sampling design; Singh and Padam Singh (1977) suggested another
modified systematic sampling design; Padam Singh and Garg (1979) proposed
a balanced random sampling design; Zinger (1980) and Wu (1984) considered a
partically systematic sampling design which selects a systematic sample of size
n and then selects a supplementary sample using either a simple random sam-
pling design or the usual systematic sampling design from the remaining N − n

units. Agrawel, Singh and Singh (1984) provided a modified systematic sam-
pling scheme combining the concept of random interval with the use of unequal
selection probabilities.
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In this paper, we propose a new partially systematic sampling procedure.
Our procedure maintains simplicity of selection and enables one to obtain an
unbiased variance estimator of the sample mean. We also compare the efficiency
of our proposed procedure to the simple random sampling procedure, the usual
systematic sampling procedure, and in some cases, the systematic sampling pro-
cedure with multiple starts for certain types of finite populations.

2. New Partially Systematic Sampling

Consider a finite population U = (U1, . . . , UN ) of size N from which a sample
of size n is to be drawn. For each i = 1, . . . , N , a real-valued yi is associated with
Ui. The problem of interest is to estimate the population mean Ȳ =

∑N
i=1 yi/N .

Our sampling procedure depends on two parameters, k and a. Define u =
N − (n− a)k. If N is a multiple of n, let k = N/n, a = 2; otherwise, let k be the
integer closest to N/(n− 1), and let a be an integer satisfying 2 ≤ a ≤ [n/2] + 1,
where [w] denotes the integer part of w. To select a sample of size n,
(a) first, select at random an index t from 1, . . . , N ;
(b) using the convention that for any i = 1, . . . , N , the unit with index i + N

stands for the unit with index i , select a simple random sample of a indices from
the set {t, t + 1, . . . , t + u − 1}, and denote by s′t the set of a units of the finite
population with the selected indices;
(c) let s′′t be the systematic sample of the finite population, with indices t + (u−
1) + lk, l = 1, . . . , n − a;
(d) our resulting sample st of size n is the union of s′t and s′′t .

2.1. The choice of size a and interval k

It is desired to choose the parameters a, u and k in our sample selection
procedure in such a way that
(R1) every sample contains n distinct units,
(R2) there is an even spread of sample units over the entire population,
(R3) the inclusion probability for every pair of units is non-zero.

Note that N = u + (n − a)k, there is only one traversal of the points on
the circle, and hence the sample will always contain n distinct units. Theorem 1
below provides conditions ensuring that (R3) is satisfied.

Theorem 1. Under our proposed sampling procedure, the inclusion probability
for every pair of units is non-zero if

(a) a ≥ 2 and (b) u ≥ k. (2.1)

Proof. Without loss of generality, we can consider the pair {U1, Uj} only, where
j > 1 is an arbitrary index. Suppose a ≥ 2. When the starting index t = 1
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and Uj ∈ s′t, the possible differences of j − 1 are covered in {1, . . . , u − 1}.
Recall that a unit with index N + v for some v, 1 ≤ v ≤ N , is identified as
the unit with index v. When Uj ∈ s′′t and the starting index t is such that
t+u− 1 = i is in {1, . . . , u− 1}, the possible differences of j − 1 are then covered
in {k + (i − 1), 2k + (i − 1), . . . , (n − a)k + (i − 1)} where i = 1, . . . , u − 1. Now
as u ≥ k, all possible differences from 1 up to (n − a)k + (u − 1) = N − 1 occur
at least once. Consequently, the inclusion probability for every pair of units is
non-zero.

For circular systematic sampling, Sengupta and Chattopadhyay (1987) and
Bellhouse (1984) addressed the problem of the choosing k so that the sample
satisfies the requirements (R1) and (R2). For a given size n, they suggested
setting the sampling interval k equal to the integer nearest to N/n when N �= jk
for some integer j ≤ (n − 1). Otherwise, set k equal to the greatest integer
[N/n] in N/n. Combining these suggestions and the conditions in Theorem 1,
and letting k1 = [N/(n − 1)] and k2 = [N/n] + 1, we arrive at the following
recommendations for the choice of parameters a and k (a detailed discussion is
given in the Appendix):
(i) If k1 = 1, choose a = [n/2] and k = 1.
(ii) If N = nk, choose k = N/n and a = 2. Otherwise, choose k as follows:
(iii) When k1 ≥ 2 and k1 ≥ k2, choose k = k1 and a = 2.
(iv) When k1 ≥ 2 and k1 < k2, let a be the smallest integer which satisfies
(a − 1)k2 ≥ n; if a ≥ k2, choose k = k1; if a < k2, then choose k = k1 or k = k2,
depending on which one is close to u/a.

Note that our sampling procedure is the same as the modified systematic
sampling procedure considered by Singh and Padam Singh (1977) when a =
u. However, under their sampling design, the sample size n must satisfy n ≥√

(2N + 4) − 1. In contrast, with our sampling scheme and appropriate choices
of a and k, this restriction becomes unnecessary.

2.2. Calculation of inclusion probabilities and estimation procedure

In this section, we derive the inclusion probabilities for individual as well
as for pairwise units. For a given starting index t, and for i = 1, . . . , N , the
indicator variables cti are defined as

cti =

{
1, if Ui ∈ st;
0, otherwise.

Note that
∑t+u−1

i=t cti = a and
∑N

i=1 cti = n by the construction of the sample
st. The inclusion probabilities for individual units and pairwise units are given
by

πi =
1
N

N∑
t=1

E[cti], πij =
1
N

N∑
t=1

E[ctictj ].
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Theorem 2. Under our proposed sampling procedure, πi = n/N , i = 1, . . . , N .

Proof. For every sample st, there are a units in s′t with indices in the set
It = {t, t + 1, . . . , t + u − 1} and (n − a) units in s′′t . For a fixed i, there are u

possible values of t such that i is in It and (n − a) values of t such that Ui ∈ s′′t .
It follows that

πi =
1
N

[
u · a

u
+ (n − a) · 1

]
= n/N, for all i = 1, . . . , N. (2.2)

To determine the inclusion probabilities for a pair of units (Ui, Uj), i �= j,
under our sampling procedure, we note that there are four possible cases:
(A) (Ui, Uj) ∈ s′t,
(B) (Ui, Uj) ∈ s′′t ,
(C) Ui ∈ s′t and Uj ∈ s′′t ,
(D) Uj ∈ s′t and Ui ∈ s′′t .

Now for k and a chosen according to the recommendations in Section 2.1
above, there exists one positive integer m satisfying

(m − 1)k + 1 ≤ u ≤ mk.

The units Ui and Uj are said to be at distance v if |j − i| = v. Lemma 1
below counts the number of pairs of units at various distances.

Lemma 1.
(i) In case (C), for each fixed l = 1, . . . , (m − 1), there are l pairs of units at
distance |j−i| = v, where v = lk, . . . , (l+1)k−1 or v = N−lk, . . . ,N−(l−1)k−1.
Furthermore, for each fixed l′ = 0, 1, . . . , (n−a−m), there are m pairs of units at
distance |j−i| = v′, where v′ = (m+ l′)k, . . . , (l′+1)k+u−1, and there are m−1
pairs of units at distance |j−i| = v′′, where v′′ = (l′+1)k+u, . . . , (m+l′+1)k−1.
(ii) In case (D), for each fixed l = 1, . . . , (m − 1), there are l pairs of units at
distance |j−i| = v, where v = (l−1)k+1, . . . , lk or v = N−(l+1)k+1, . . . , N−lk.
Moreover, for each fixed l′ = 0, 1, . . . , (n − a − m), there are m pairs of units at
distance |j− i| = v′, where v′ = (m+ l′−1)k +1, . . . , l′k +u; and there are m−1
pairs of units at distance |j − i| = v′′, where v′′ = l′k + u + 1, . . . , (m + l′)k.

Proof. Without loss of generality, let j be greater than i. The possible differ-
ences of j − i in case (C) are

k 2k 3k · · · (n − a)k
k + 1 2k + 1 3k + 1 · · · (n − a)k + 1

...
...

...
...

k + u − 1 2k + u − 1 3k + u − 1 · · · (n − a)k + u − 1.
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Since (m−1)k+1 ≤ u ≤ mk, the number of pairs of units at distance |j− i| = v,
for v = k, . . . ,N−1, reduces to the result (i). Note that (n−a− l)k+u = N − lk.
On the other hand, the possible differences of j − i in case (D) are

1 k + 1 2k + 1 3k + 1 · · · (n − a − 1)k + 1
2 k + 2 2k + 2 3k + 2 · · · (n − a − 1)k + 2
...

...
...

...
...

u k + u 2k + u 3k + u · · · (n − a − 1)k + u.

Since (m − 1)k + 1 ≤ u ≤ mk, the number of pairs of units at distance |j − i|
runs from 1, . . . , to N − k, which is result (ii).

Theorem 3. The inclusion probabilities for a pair of units (Ui, Uj), i �= j,
under our sampling procedure is given by
(i) Nπij = a(a−1)

u(u−1) max(0, (u−dk))+[(n−a)−d]+ a
u [min(2d, 2m−1)], if |i−j| = dk

or N − dk, d = 1, . . . , (n − a),

(ii) Nπij = a(a−1)
u(u−1)(u−|i−j|)+

{
a
u(2l − 1), for (l − 1)k + 1 ≤ j − i ≤ lk − 1;
a
u(2m − 1), for (m − 1)k + 1 ≤ j − i ≤ u − 1,

where l = 1, . . . ,m − 1, if |i − j| ≤ u − 1, excluding the cases already covered in
(i).
(iii) Nπij = a(a−1)

u(u−1) [|i − j| − (N − u)]

+

{
a
u(2l − 1), for N − (l − 1)k − 1 ≥ j − i ≥ N − lk + 1;
a
u(2m − 1), for N − (m − 1)k − 1 ≥ j − i ≥ N − u + 1,

where l = 1, . . . ,m− 1, if |i− j| ≥ N −u+ 1, excluding the cases already covered
in (i).
(iv) Nπij = 2(m − 1) a

u , if l′k + u + 1 ≤ |i − j| ≤ (l′ + m)k − 1, where l′ =
1, . . . , (n − a − m), excluding the cases already covered in (i).
(v) Nπij = 2m a

u , if (l′ + m)k + 1 ≤ |i − j| ≤ (l′ + 1)k + u − 1, where l′ =
1, . . . , (n − a − m − 1), excluding the cases already covered in (i).

Proof. Without loss of generality, let j be greater than i. For a given starting
index t, and given that i, j are in {t, t+1, . . . , t+u−1}, the conditional probability
that (Ui, Uj) ∈ s′t is a(a−1)/[u(u−1)] and the conditional probability that Ui ∈ s′t
is a/u. The conditional probability that Uj ∈ s′′t is 0 or 1 depends on whether
j = lk + t + u − 1 or not, where l = 1, 2, . . . , or (n − a). When j − i = dk,
there are four possible cases (A),(B),(C),(D) as described preceding Lemma 1.
In case (A), if u ≥ dk, there will be u − dk units at distance dk. Also, there are
(n − a) − 1 units at distance k, (n − a) − 2 units at distance 2k, . . . , (n − a) − d

units at distance dk, . . . , and 1 unit at distance (n − a − 1)k in case (B). Using
Lemma 1 for the cases (C) and (D) and the fact that the selection is circular
yields the result (i).
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When j − i ≤ u− 1, excluding the case j − i = dk, there are three cases (A)
(C) and (D) only. In case (A), there are u − 1 units at distance 1, u − 2 units
at distance 2, . . . , and 1 units at distance u− 1. Together with Lemma 1, result
(ii) follows. The proof for result (iii) follows from result (ii) directly, because of
the circular nature of the selection.

In the remaining cases, we need only consider (C) and (D). Using Lemma 1
again completes the proof of the theorem.

To estimate the population mean Ȳ =
∑N

i=1 yi/N , we use the Horvitz-
Thompson estimator, which is the usual sample mean by Theorem 2:

ˆ̄Y =
1
n

n∑
i=1

yi = ȳ. (2.3)

The variance of the Horvitz-Thompson estimator, and the corresponding variance
estimator are given by Yates-Grundy (1953), respectively:

V (ȳn) =
1

N2

N∑
i=1

N∑
j>i

(
1 − N2

n2
πij

)
(yi − yj)

2 (2.4)

V̂ (ȳn) =
1

N2

N∑
i=1

N∑
j>i

ctictj

( 1
πij

− N2

n2

)
(yi − yj)

2, (2.5)

where the cti’s are indicator variables defined in the beginning of Section 2.2.

3. Efficiency of New Partially Systematic Sampling Procedure

Given starting index t, the following notation is used:
ȳat = the mean of the yi’s associated with the simple random sample of size a

from the subpopulation of units with indices {t, t + 1, . . . , t + u − 1} of
size u,

ȳst = the sample mean of the yi’s associated with the units in s′′t ,
ȳ.t =

∑u−1
i=0 yit/u, where yit = yt+i,

ȳnps = [aȳat + (n − a)ȳst]/n = new partially systematic (nps) sample mean.
The variance of the new partially systematic sample mean can be written as

V (ȳnps) =
1
N

a

n2

(
1 − a

u

) N∑
t=1

∑u−1
i=0 (yit − ȳ·t)2

u − 1
+

1
N

N∑
t=1

(aȳ·t + (n − a)ȳst

n
− Ȳ

)2
.

(3.1)
The performance of the new partially systematic sampling in relation to that of
systematic or simple random sampling depends on the properties of the finite
population. Thus the relative efficiencies of these sampling procedures are com-
pared in this section for various types of superpopulations. We regard the values
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of superpopulation yi’s as drawn from an infinite superpopulation in which the
expectation is denoted by symbol E .

3.1. Population in random order

If the variates yi (i = 1, . . . , N) are drawn at random from a superpopulation
in which

E(yi) = µ, E(yi − µ)2 = σ2
i

E(yi − µ)(yj − µ) = 0 (i �= j),

it is known as a population in random order (Cochran (1977)). Since

V (ȳnps) =
1
N

( 1
n
− 1

N

) N∑
i=1

(yi−µ)2 +
2

Nn2

{
a(a − 1)
u(u − 1)

N∑
t=1

[
u−1∑
i=0

u−1∑
j>i

(yit − µ)(yjt − µ)]

+
a

u

N∑
t=1

[
u−1∑
i=0

n−a∑
j=1

(yit − µ)(yjk+t+u−1 − µ)]

+
N∑

t=1

[
n−a∑
i=1

n−a∑
j>i

(yik+t+u−1 − µ)(yjk+t+u−1 − µ)]

}

− 2
N2

N∑
i=1

N∑
j>i

(yi − µ)(yj − µ). (3.2)

Taking expectation over the superpopulation model, we get the expected variance

σ2
nps =

1
N

( 1
n
− 1

N

) N∑
i=1

σ2
i . (3.3)

The expected variance for the usual or circular systematic sample mean and
simple random sample mean are also known to be equal to (3.3). Hence, the three
sampling procedures under consideration are equally efficient for populations with
yi’s in random order. In general, under the superpopulation model considered in
this section, Equation (3.3) holds for any sampling design with fixed sample size
n and inclusion probability n/N for all units.

Rao (1975) and Rao and Bellhouse (1978) gave a random permutation model
to represent populations in random order. They assume that the finite population
consists of N fixed numbers z1, . . . , zN and that the measurements y1, . . . , yN are
obtained as a random permutation of z1, . . . , zN . Hence, P (yu = z1) = 1/N
and P (yu = zi, yv = zj) = 1/[N(N − 1)]. The random permutation model is
formalized as the linear model in which

yi = Ȳ + ei (3.4)
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Em(ei) = 0, Em(e2
i ) = σ2, Em(eiej) = −σ2/(N − 1), (i �= j),

where the operator Em denotes expectation with respect to the model,

Ȳ =
N∑

i=1

yi/N =
N∑

i=1

zi/N,

and

σ2 =
N∑

i=1

(yi − Ȳ )2/N =
N∑

i=1

(zi − Z̄)2/N.

Then it is shown that the variances for the usual systematic sample mean and sim-
ple random sample mean averaged over model (3.4) are equal to (k− 1)σ2/(N −
1) = (k−1)S2/(nk), where (N −1)S2 =

∑N
i=1(yi − Ȳ )2 and N = nk. This result

also follows under our proposed sampling procedure. Note that V (ȳnps) can be
written as in (3.2) except that Ȳ replaces µ there. Straightforward algebra then
shows that V (ȳnps) averaged over (3.4) is (k − 1)σ2/(N − 1). We conclude that
the three sampling procedures under consideration are also equally efficient under
the random permutation model. More generally, with this random permutation
model, it may be shown that the variance of the sample mean, averaged over the
model, is the same for all fixed-size designs with inclusion probability n/N for
all units.

3.2. Autocorrelated population

We assume that the observations yi (i = 1, . . . , N) are drawn from a super-
population in which

E(yi) = µ, E(yi − µ)2 = σ2

and
E(yi − µ)(yj − µ) = ρ|j−i|σ2 (i �= j).

For the case N = nk, Cochran (1946) obtained the expected variance for the
usual systematic sample mean and the simple random sample mean as, respec-
tively,

σ2
sys =

N − 1
N

σ2
[
1 − 2

N(N − 1)

N−1∑
d=1

(N − d)ρd

]

−n − 1
n

σ2
[
1 − 2

n(n − 1)

n−1∑
d=1

(n − d)ρdk

]
, (3.5)

and

σ2
srs =

(
1 − n

N

)σ2

n

[
1 − 2

N(N − 1)

N−1∑
d=1

(N − d)ρd

]
.
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When circular systematic sampling is used, the expected variance of the
sample mean is shown to be

σ2
css =

( 1
n
− 1

N

)
σ2 +

2
Nn2

σ2 +
N∑

t=1

[n−1∑
i=0

n−1∑
j>i

ρ|(ik+t)−(jk+t)|
]

− 2
N2

σ2
N−1∑
d=1

(N − d)ρd. (3.6)

The expected variance of the sample mean using the new partially systematic
sampling procedure in this case is

σ2
nps =

( 1
n
− 1

N

)
σ2 +

2
Nn2

σ2
{a(a − 1)

u(u − 1)

N∑
t=1

[
u−1∑
i=0

u−1∑
j>i

ρ|(t+j)−(t+i)|]

+
a

u

N∑
t=1

[
u−1∑
i=0

n−a∑
j=1

ρ|(t+i)−(jk+t+u−1)|]+
N∑

t=1

[
n−a∑
i=0

n−a∑
j>i

ρ|(ik+t+u−1)−(jk+t+u−1)|]
}

− 2
N2

σ2
N−1∑
d=1

(N − d)ρd. (3.7)

When N = nk and n = ml, instead of choosing only one random start,
we can select a simple random sample of size l (without replacement) from the
first kl elements and then every klth element following those selected. We call
the resulting sample a systematic sample with multiple (l) random starts (msy).
Gautschi (1957) showed that the expected variance of the sample mean for such
a sample is

σ2
msy =

k − 1
N

σ2
[
1− 2

N(kl − 1)

N−1∑
d=1

(N − d)ρd− 2kl

m(kl − 1)

m−1∑
d=1

(m − d)ρkld

]
. (3.8)

From expressions (3.5) through (3.8), it is difficult to provide general result about
the relative efficiency of the sampling procedures under consideration. However,
comparisons can be made for some types of correlograms considered by Cochran
(1946), such as
(i) linear correlogram : ρd = 1 − d/L, L ≥ N − 1,
(ii) exponential correlogram : ρd = e−λd,

(iii) hyperbolic correlogram : ρd = tanh(d−3/5).

The results are presented in Table 1 and Table 2.
From Tables 1 and 2, we see that our partially systematic sampling proce-

dure is more efficient than the simple random sampling procedure for these special
types of finite population but is less efficient than the usual or circular systematic



626 CHING-HO LEU AND KAM-WAH TSUI

sampling procedures. This can be viewed as a tradeoff for being able to obtain
an unbiased estimator of the variance of the sample mean in using our partially
systematic sampling procedure instead of using the usual or circular systematic
sampling procedure. Compared with the multiple-starts systematic sampling,
we see that σ2

msy > σ2
nps under exponential correlogram. For the case of hyper-

bolic correlogram, σ2
msy > σ2

nps except when n = 4, and for linear correlogram
σ2

msy > σ2
nps except when l = 2 and n = 4 or 6. Hence the performance of our

proposed sampling procedure is better than the systematic sampling procedure
with multiple starts in most of the cases.

When N = nk and ρd = ρd, let a = 2 and u = 2k, as suggested in the Section
2.1. Then Equation (3.5) reduces to

σ2
sys =

( 1
n
− 1

N

)
σ2 − 2σ2

n2

[ nρk

1 − ρk
− ρk(1 − ρnk)

(1 − ρk)2
]
− 2σ2

N2

[ Nρ

1 − ρ
− ρ(1 − ρN )

(1 − ρ)2
]

and (3.7) reduces to

σ2
nps = σ2

sys + O(n−2).

That is, the difference of the expected variances corresponding to the usual sys-
tematic sampling and our proposed sampling procedure is of small order O(n−2)
in this case.

Table 1. Variances of the sample mean corresponding to three sampling pro-
cedures for various correlograms where css, srs, and nps denote respectively,
circular systematic sampling, simple random sampling and our new partially
systematic sampling.

Linear Exponential Hyperbolic

N n u, a σ2
css σ2

srs σ2
nps σ2

css σ2
srs σ2

nps σ2
css σ2

srs σ2
nps

10 4 4, 2 0.0300 0.0550 0.0392 0.1096 0.0337 0.1169 0.0496 0.0763 0.0586

10 5 4, 2 0.0100 0.0367 0.0191 0.0501 0.0891 0.0655 0.0158 0.0508 0.0288

15 5 6, 2 0.0119 0.0474 0.0247 0.0805 0.1234 0.0990 0.0295 0.0770 0.0483

15 7 9, 4 0.0068 0.0271 0.0177 0.0406 0.0705 0.0577 0.0141 0.0440 0.0307

25 5 10, 2 0.0128 0.0555 0.0288 0.1186 0.1527 0.1344 0.0506 0.1052 0.0734

25 8 10, 3 0.0052 0.0295 0.0123 0.0518 0.0811 0.0626 0.0192 0.0559 0.0314

25 12 11, 5 0.0023 0.0150 0.0063 0.0219 0.0413 0.0296 0.0071 0.0285 0.0148

35 5 14, 2 0.0131 0.0588 0.0306 0.1400 0.1658 0.1522 0.0658 0.1207 0.0893

35 8 5, 2 0.0073 0.0331 0.0120 0.0683 0.0933 0.0786 0.0298 0.0679 0.0407

35 12 5, 2 0.0023 0.0187 0.0032 0.0322 0.0530 0.0352 0.0114 0.0386 0.0142

35 17 15, 7 0.0012 0.0104 0.0039 0.0150 0.0293 0.0206 0.0046 0.0213 0.0106
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Table 2. Variances of the sample mean corresponding to three sampling pro-
cedures for various correlograms with a = 2, where msy, srs, and nps denote
respectively, systematic sampling with multiple (l) random starts, simple ran-
dom sampling and our new partially systematic sampling.

Linear Exponential Hyperbolic

N n u, l σ2
msy σ2

srs σ2
nps σ2

msy σ2
srs σ2

nps σ2
msy σ2

srs σ2
nps

16 4 8, 2 0.0352 0.0664 0.0449 0.1595 0.1744 0.1561 0.0818 0.1103 0.0852

16 8 4, 2 0.0065 0.0221 0.0065 0.0430 0.0581 0.0365 0.0175 0.0368 0.0142

24 4 12, 2 0.0376 0.0723 0.0492 0.1877 0.1985 0.1854 0.1068 0.1357 0.1103

24 6 8, 2 0.0156 0.0434 0.0179 0.1056 0.1191 0.0972 0.0529 0.0814 0.0486

24 6 8, 3 0.0226 0.0434 0.0179 0.1126 0.1191 0.0972 0.0641 0.0814 0.0486

24 8 6, 2 0.0081 0.0289 0.0083 0.0656 0.0794 0.0568 0.0298 0.0543 0.0249

24 8 6, 4 0.0151 0.0289 0.0083 0.0751 0.0794 0.0568 0.0427 0.0543 0.0249

24 12 4, 2 0.0029 0.0145 0.0026 0.0283 0.0397 0.0227 0.0112 0.0271 0.0080

36 4 18, 2 0.0391 0.0761 0.0519 0.2077 0.2152 0.2065 0.1299 0.1574 0.1332

36 6 12, 2 0.0167 0.0496 0.0196 0.1284 0.1345 0.1184 0.0696 0.0984 0.0648

36 6 12, 3 0.0244 0.0496 0.0196 0.1298 0.1345 0.1184 0.0812 0.0984 0.0648

36 9 8, 3 0.0100 0.0285 0.0069 0.0749 0.0807 0.0617 0.0418 0.0590 0.0284

36 12 6, 2 0.0036 0.0190 0.0032 0.0435 0.0538 0.0359 0.0194 0.0393 0.0145

36 12 6, 3 0.0051 0.0190 0.0032 0.0478 0.0538 0.0359 0.0244 0.0393 0.0145

36 12 6, 4 0.0067 0.0190 0.0032 0.0499 0.0538 0.0359 0.0278 0.0393 0.0145

36 18 4, 2 0.0013 0.0095 0.0010 0.0187 0.0269 0.0144 0.0072 0.0197 0.0046

3.3. Population in linear trend

Suppose the finite population is such that the yi’s satisfy the relationship
yi = α + βi for some constant α and β. The variance of the sample mean under
the usual systematic sampling and simple random sampling procedure in this
case can be reduced to a simple form (Cochran (1977)). When N = nk,

V (ȳsrs) = β2 (k − 1)(N + 1)
12

,

V (ȳsys) = β2 (k2 − 1)
12

,

and the variance of our partially systematic sampling procedure is

V (ȳnps) = β2 (k2 − 1)
12

+
β2

3n2
(k − 1)[(n − 2)(3k − 1) + k]. (3.9)

Thus the variance under the systematic sampling is smaller than that un-
der our proposed sampling procedure and the difference of the two variances



628 CHING-HO LEU AND KAM-WAH TSUI

is O(n−1). Note that V (ȳsrs) = V (ȳnps) when n = 2, and if n > 2 then
V (ȳsrs) > V (ȳnps) in this case.

When N = nk and n = ml, Gautschi (1957) showed that the variance of the
systematic sampling with multiple (l) random starts under this population is

V (ȳmsy) = β2 (k − 1)(kl − 1)
12

. (3.10)

From (3.10) and (3.9), replacing n by ml, we have V (ȳmsy) = V (ȳnps) if l = 2
and m = 1. Moreover, V (ȳmsy) > V (ȳnps) if (1) l = 2 and m ≥ 5 or (2) l ≥ 3
and m ≥ 2. Since l ≥ 2, our proposed sampling procedure is better than the
systematic sampling with multiple random starts for most of the cases in the
population with linear trend.

3.4. Population with periodic variation

It is well known that the effectiveness of systematic sampling depends on
the value of k when the population is periodic. The worst case is when k is
equal to the period of the population, or is an integral multiple of the period; the
systematic sample is no more precise than a single observation taken from the
population. The best case occurs when k is an odd multiple of the half-period
resulting in a zero sampling variance of the sample mean.

In our new sampling procedure, we select a simple random sample of size
a ≥ 2 from the set {t, t + 1, . . . , t+ u− 1}, which is more effective than the worst
case of systematic sampling. If k is an odd multiple of the half-period and the
observations of the simple random sample of size a are the same as that of the
systematic sample then the sampling variance of the mean is zero also. Thus,
for periodic populations the range of the variance of the sample mean under
our partially systematic sampling is smaller than that under usual systematic
sampling, while the lower limit of the variance is the same in the two sampling
procedures. Therefore, our proposed sampling procedure can be considered as
more efficient than systematic sampling for populations with periodic variation.
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Appendix

If k1 = [N/(n − 1)], there exists an integer b such that

(n − 1)k1 ≤ N = k1(n − 1) + b < (n − 1)(k1 + 1), (A.1)
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where 0 ≤ b < n − 1. This implies

(a − 1)k1 ≤ N − (n − a)k1 < (a − 1)k1 + n − 1. (A.2)

If k2 = [N/n] + 1, there exists an integer c such that

n(k2 − 1) ≤ N = n(k2 − 1) + c < nk2, (A.3)

where 0 ≤ c < n. This implies

ak2 − n ≤ N − (n − a)k2 < ak2. (A.4)

Case I. If k1 ≥ k2, let k = k1 ≥ 2. Then, from (A.2) and (A.3),

(a−1)k ≤ N−(n−a)k = u < nk2−(n−a)k ≤ nk2−(n−a)k2 = ak2 ≤ ak. (A.5)

We, therefore, choose a sample of size a from u units to satisfy the require-
ment (R2). As a ≥ 2, we have

(a − 1)k ≥ 2(a − 1) = a + (a − 2) ≥ a

(a − 1)k ≥ k. (A.6)

This implies u ≥ a and u ≥ k which satisfies condition (2.1) in Theorem 1. For
simplicity, we recommend to choose a = 2.

Case II. If k2 > k1, there exists a positive integer d such that k2 = k1 + d.
Thus, from (A.1) and (A.3), N = k1(n − 1) + b = n(k1 + d − 1) + c, which
implies −k1 + b = n(d − 1) + c ≥ 0. Hence n − 1 > b ≥ k1 > 0. Moreover,
nd = n − k1 + b − c ≤ n + (n − 1) < 2n. Therefore, d = 1. If we choose k = k2,
then ak − n ≤ u = N − (n − a)k < (a − 1)k. The length of this interval is
n − k2. From Theorem 1, we need ak − n ≥ k, i.e. (a − 1)k ≥ n and a < k2,
as these conditions imply u ≥ k and u > a which satisfy Equation (2.1). Hence,
we may choose a1 to be the smallest integer so that (a1 − 1)k2 ≥ n. If we choose
k = k1, then ak ≤ u < (a − 1)k + (n − 1). The length of this interval is, again,
n− k − 1 = n− k2. Since [N/(n − 1)] = [N/n] implies that n is large and that k

is small relative to N , the range of the value of u varies as N or n vary. In this
case, we offer the following guidance for the choice of a and k. When k = k1, let
the upper bound of u be not greater than 2(a−1)k, and choose a2 as the smallest
integer which satisfies (a2 − 1)k2 ≥ n − 1. However, a2 may be greater than a1,
and we desire the value of a to be as small as possible. Hence, a = a1. If a ≥ k2,
we choose k = k1 because condition (A.6) and condition (2.1) still hold in this
situation. If a < k2, we choose k = k1 or k = k2, depending on which one is
closer to u/a in order to satisfy requirement (R2). Note that, when k2 > k1 ≥ 2,
the upper bound of a is [n/2] + 1 because ([n/2] + 1 − 1) · k2 ≥ n for all n ≥ 2.
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