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ABSTRACT

Deploying a classifier to large-scale systems such as the web
requires careful feature design and performance evaluation.
Evaluation is particularly challenging because these large
collections frequently change. In this paper we adapt strat-
ified sampling techniques to evaluate the precision of classi-
fiers deployed in large-scale systems. We investigate differ-
ent types of stratification strategies, and then we derive a
new online sampling algorithm that incrementally approx-
imates the theoretical optimal disproportionate sampling
strategy. In experiments, the proposed algorithm signifi-
cantly outperforms both simple random sampling as well as
other types of stratified sampling, with an average reduction
of about 20% in labeling effort to reach the same confidence
and interval-bounds on precision.

Categories and Subject Descriptors

H.3.4 [Systems and Software]: Performance evaluation
(efficiency and effectiveness)

General Terms

Algorithms, Design, Experimentation

Keywords

Stratified sampling, classification, web scale

1. INTRODUCTION

Evaluating classifiers has long been an important topic of
investigation [2, 15, 10, 3, 5]. Within information retrieval,
classifiers have been useful for a variety of tasks including
routing, web junk & spam identification, accelerated search-
ing, and filtering. However, to deploy classification technol-
ogy within a larger retrieval system, it is important to bound
the performance of the classifier with high confidence.

Furthermore, the underlying collection is changing and
this necessitates ongoing checks to determine that the clas-
sifiers fall within tolerable performance ranges as determined
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by the system designers. Additionally, classifiers might be
trained over data that represent a different distribution than
that of the whole collection. For example, the web directory
ODP [11] has often been used for building text classifiers,
however it is unclear whether the distribution of the URLSs in
ODP is a representative sample of the web. These differences
often lead to questions of how the classifier will perform in
the wild— that is, in a setting similar to its deployment.

Here we demonstrate how to efficiently bound the preci-
sion of a classifier using minimal amounts of labeled data by
adapting the techniques of stratified sampling [13, 9] to the
problem of classifier evaluation. In particular, we demon-
strate that the output score of the classifier serves as a good
basis for stratification by identifying regions of similar clas-
sifier behavior because of the typical monotonic relationship
between classifiers and the true class-conditional posterior
[2]. Given a stratification into regions or strata, there is
an optimal strategy [13, 9] for distributing the number of
samples across these strata. However, this optimal strategy
relies on knowing the variance of the classifier within each
stratum which would preclude the need for evaluation.

We develop a novel algorithm that draws samples accord-
ing to the current allocation estimate, refines variance esti-
mates and consequent allocation estimates based on these
samples, and then iterates until a convergence criterion is
satisfied. This algorithm is “online” in the machine learn-
ing sense that the feedback it has received so far via the
label judgments influences the next set of samples that are
drawn. Our algorithm exploits this feedback to draw a to-
tal number of samples that are near-optimal given a chosen
stratification strategy.

2. RELATED WORK

Stratified sampling has been employed in evaluation in
different areas of science [8, 6, 17, 7, 4]. Most similarly,
stratified sampling has been used in information retrieval to
estimate different ranking algorithms’ performance on the
very large evaluation problem of the Million Query track [14,
1]. Our work differs from theirs in several ways. First, they
focus on ranking algorithms and average precision where
we focus on classification algorithms and precision above
a threshold. Since average precision averages the precision
at each positive example, each identified positive example
contributes in a different way to average precision (1/(num
relevant) * (precision at point)) than it does to precision
(1 / (num predicted positive)). For example, suppose when
sorted by classifier score, the first 5 examples are relevant
(positive), and the remaining are all irrelevant (negative),



but the top 200 are predicted to be relevant. Any stratifica-
tion method that samples the top heavily will quickly con-
verge to the correct estimate of average precision (1.0) but
to estimate precision requires sampling the remaining irrel-
evant examples in the top 200 to know with high confidence
that the precision lies near 0.025. Thus, it is unclear how
gains in estimating either of these translates to the other.
Furthermore, we explore several stratification strategies ap-
plicable to any classifier which produces a score and analyze
the properties that are key to generalizing our methods to
other classification scenarios. Additionally, our approach is
an iterative method that can make use of labeled data as it
is collected to improve the choice of which examples should
be labeled next and allows the user to specify a desired sig-
nificance level and interval width for the estimate.

3. MOTIVATION

In this work, we focus on the precision of classifiers al-
though our techniques can be generalized to other measures.
We assume that the number of items to which the clas-
sifier might be applied is quite large (e.g., all web URLs
indexed by a search engine) and while the percentage of
time the classifier predicts positive may be small, the abso-
lute number of predicted positives is still large. Our goal is
to identify a method that is both computationally efficient
(subquadratic) and label-effort efficient (significantly better
than random sampling) in these large-scale conditions.

4. SAMPLING OVERVIEW

In this paper, sampling is used to select elements (web
pages) to be labeled by human judges. While we present
formula for both cases, sampling with replacement is simpler
in both formulation and in edge cases in implementation.
Additionally, in the large scale, there is a vanishingly small
probability the same item will be selected. Thus, we use
sampling with replacement in the empirical study.

In basic random sampling, one uses the mean, p, to esti-
mate the true proportion of elements belonging to a class C
after sampling n elements from a population of N where each
element e; has an associated binary class variable y; defined
as: y;, = 1 if e; € C, and y; = 0, otherwise. The variance
of p can be shown [9] to be var(p) = (1— f)=; et p> where the
finite population correction (fpc) factor, (1 — f) (1-%),
is only used when sampling without replacement.

Stratified sampling is the process of dividing the popula-
tion into different disjoint strata, sampling from each stra-
tum separately, and then combining the different stratum-
based estimates to produce a combined estimate for the en-
tire population [9, 13]. This process often produces more
accurate population estimates when the subpopulation data
are more homogeneous, i.e., less variance within stratum.

Formally, for a class C' and a population of N elements
that can be split into K disjoint subpopulations, each with

Ny elements such that >, Ni = N, one can estimate p

and its variance as a weighted average of the subpopulation
estimates [9]. This approach yields:

K

K
~ Ni N
pI;Wkpk var(p) = > Wk var(pe) (1)

where py and var(py) are the sample proportion mean es-
timator and corresponding variance for subpopulation k —

which can be calculated as in basic random sampling by
selecting ny samples from subpopulation k. The standard
error (s.e.) is s.e.(p) = \/var(p).

To apply stratified sampling, one must choose the total
number, n, of samples to label and the allocation into the ny
for each strata such that > ny = n. This leads to the ques-
tion of whether there is an optimal strategy for allocating
between the strata. There is, in fact, and it depends on the
relative distribution of the population and wvariance across
the strata. When sampling n points, the optimal strategy
is to sample ni o« Ny * o which is commonly referred to
as disproportionate optimal sampling in the literature [13].
However this requires knowing the standard deviation within
a subpopulation, o.

S. ONLINE STRATIFIED SAMPLING

In order to approximate optimal sampling we must de-
sign a way to incorporate the estimation of the standard
deviations (which requires having labeled samples) into the
sampling process where we are obtaining labeled samples — a
chicken and the egg problem. Furthermore, we must identify
a property that can be used to stratify classifiers in general.
Finally, we need a reasonable stopping criterion to indicate
when we have sampled a sufficient number of points. In
this section, we introduce a novel approach that proposes
solutions to each of these research problems.

While the classifier may be calibrated [12, 2, 16] over the
training set, because of the possible divergence in train and
test distributions, it is unreasonable to assume the classifier
is calibrated over the test distribution. However, in the liter-
ature on calibration [12, 2, 16], it is noted that nearly every
classifier produces a score or probability of which the true
posterior tends to be a monotonic function. Assuming this
weaker property holds, stratifying into contiguous classifier
score intervals will break the distribution into segments that
are more homogeneous on average than the overall distribu-
tion. Hence, we obtain a ready-made stratification approach
that is applicable to any classification model. Thusforth, we
use “bin” interchangeably with “stratum”.

We can break the interval between the max and the mini-
mum scores into equal ranges (called equal for “equal score”).
Alternatively, we break the interval so each bin covers an
equal portion of the distribution (e.g., quartiles when using
four bins) which we term the perc method for “percentile”.
The obvious difference between these two conditions is that
while the first has bins that cover an equal range, the bal-
ance of the number of points falling in each bin can be highly
skewed since points are not uniformly distributed over the
score range typically. By studying both, we can observe the
effect of balanced strata to skewed strata in terms of size.

If we are particularly “unlucky” a small sample containing
all positives or negatives might give rise to an estimate of
pi of 0 or 1. To reduce the impact of this, we use a com-
mon Bayesian smoothing technique call m-estimate smooth-
ing. Given hj “positive” outcomes out of nj trials, the m-
estimate is pr = hff# where pi is a prior and m cor-
responds to the weight of “virtual examples” that will be
given to the prior. We use p, = 0.5 and m is 2 if nx = 0 and
1/y/nk otherwise. By using an adaptive m that decreases at
the same rate that the standard error decreases, we find the
effect to be smooth and consistent near the boundaries.

To determine a stopping criterion, we allow a user to re-
quest a significance level, a, and interval radius, ¢, such that



they want to bound the true precision within £6 of the esti-
mate with (1-«) confidence. Given these parameters and the
standard error (s.e.) of an estimator, it is straightforward to
use the normal approximation for confidence intervals to de-
rive a significance threshold for stopping.

To avoid a single spurious false positive, we require this
criterion be met for 7' = 2 rounds in a row.

Finally, to estimate the optimal allocation, we run an it-
erative or “online” algorithm starting with no labeled data.
At each iteration, more labeled data becomes available after
the identified samples have been labeled, and that data is
used to determine the next samples that will be labeled. At
any given iteration, we use all the labeled data we have sam-
pled thus far to compute smoothed subpopulation estimates
and use these terms to estimate the optimal allocation. We
then draw a small number of samples according to this al-
location distribution, observe their labels, and iterate until
convergence. The full algorithm is given in Figure 1.

given
K bins
Dy (number of samples for initial draw)
D (total number of samples at each step)
a (Desired significance level, 0.05 for 95% confidence)
§ (With 1 — o confidence estimate within +6 of truth)
T must satisfy confidence criteria in T' sequential rounds
Calculate smoothed pg and oy
Draw ny where > ny = Do from Mult(Nio1,...,Nkok)
Vk Sample ny points uniformly from stratum k
t:=0
do
Calculate smoothed pi and o
Draw ny where > ng = D from Mult(Nio1,...,Nxok)
Vk Sample nj points uniformly from stratum k
Calculate overall precision p and var(p)
if (MeetsConfidenceCriterion(y/var(p),d,x))
t++
else
t:=0
while (t < T)
Return p and var(p)

Figure 1: Incremental Sampling Algorithm.

We call the approach that draws the ny in each round as
specified in Figure 1 the opt style of stratified sampling. In
order to isolate the effects of binning on the estimate versus
the allocation of samples among bins, we also consider other
allocation approaches. For example, if we allocate ny pro-
portional to Ni then we get a method that allocates solely
based on the proportion of instances falling in a stratum.
This allows us to isolate any gain achieved through estima-
tion of the variance. We term this style of sampling pps for
“proportional sampling” (as it is commonly referred to in the
literature [13]). Likewise we can also allocate nj uniformly
over all of the strata. This allows us to isolate any gain
solely achieved due to the binning versus the allocation pro-
cedure. We term this style of sampling uni. Finally, we can
implement a simple random sampler as analogously as pos-
sible by simply having a single bin. We term this Random
and consider this the default baseline. All approaches with
more than one bin we refer to as Strat below for stratified.

6. EXPERIMENTS

We trained classifiers over a subset of the top-level cate-
gories of ODP. A classifier for each topic was trained using

a binary logistic regression model with regularization and
standard tfidf settings over a crawl of ODP from early 2008.
The data consist of approximately 1.7M documents. We
split the data into a 70%/15%/15% train/validation/test
split. We estimate the precision of each binary classifier
over the test set and report averages.

Our primary goal is the “Savings” of labeled examples at-
tained with respect to the baseline of random sampling. We
run each experiment 1K times and record the average num-
ber of examples needed to converge as well as the standard
error of the number of examples to judge significance. We
also examine: (1) the percent change “%Change” in number
of examples relative to the baseline where an increasingly
negative change is good; (2) the proportion of time the true
precision falls within the requested +9 of the true precision,
InConf — this number is expected to be close to 1 - a.

We can also use the standard normal confidence interval
approach to estimate the number of samples needed if we
had full knowledge of the true precision overall and in each
bin beforehand. This serves as a reasonable approximate
lower bound that is conditioned on the method’s binning.
We present the percent change with respect to this oracle as
“%O0racle” where a lower number is desired.

Here, « is 0.05. To keep the number of samples per bin
constant, we allow each method a “budget” of two samples
per bin. This favors the baseline since a method can only
halt between iterations. We set the number of bins to K = 4.

InConf | %Change | %Oracle | Savings
Random 0.94 0.0 -0.6 0
strat, equal, uni 0.95 133.1 145.3 -92249
strat, equal, pps 0.95 -4.2 0.8 2921
strat, equal, opt 0.94 -13.2 -8.6 9148
strat, perc, uni 0.95 -7.6 10.1 5274
strat, perc, pps 0.95 -7.6 10.1 5273
strat, perc, opt 0.93 -17.3 -1.4 11973

Table 1: Average over 15 top-level ODP categories.

Results & Discussion

Table 1 presents the results over the ODP data set when
using a bound on the estimate of 6 = 0.01. This was chosen
for the tightness of bound often needed for classifiers in a
production environment. We have only indicated statistical
significance (underline) for the best method relative to the
baseline to focus on the key research question.

First, note that equal score stratification with uniform
sampling has extremely poor performance. Equal score
stratification creates vastly skewed strata subpopulation
sizes — typically with the most populous bin near the clas-
sifier threshold and the least populous bin at the most
confident end. Sampling uniformly among these bins means
that far too many samples are wasted on the small bins
where estimates converge more rapidly.

Correcting for skewed bin size by either stratifying by per-
centile or sampling proportionally achieves moderate gains.
However, because the bins are created by using the classifier
score, the variance in the subpopulations can range widely.
Thus, stratification using proportional sampling is not able
to perform as well as the optimal sampling that weights by
both estimated variance and subpopulation size.
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Figure 2:

Finally, when comparing each method using equal score
stratification to its percentile counterpart, we see that the
percentile method typically works better. This is for two
reasons. First, as mentioned above, the percentile binning
creates equal subpopulation sizes which is a simpler case,
but second, even though ODP is large, the small size of
some particular bins means that those bins have a relatively
small number of examples in them (hundreds or thousands).
This number is small enough that the fpc factor (see Section
4) comes into play in these cases and sampling within these
bins should be done by sampling without replacement to
be most efficient. Understanding this point is important if
one wishes to apply the same technique to other non-uniform
strata such as stratifying the output of a decision tree where
the subpopulation sizes may be very non-uniform.

With respect to InConf, we note that nearly all of the
methods are close to the expected value of 0.95. Overall,
the best performing sampling method regardless of strat-
ification choice is optimal disproportionate sampling, and
within those, the percentile stratification with optimal dis-
proportionate sampling performs the best for the reasons
noted above. Additionally noteworthy is that fact that the
optimal methods allocate quite closely to the total number of
examples that would be allocated by the oracle method while
staying in the expected range of InConf. Recall that the or-
acle depends on properties of the strata. Thus, both optimal
methods can be near their respective oracles while the per-
centile binning outperforms equal in the absolute sense.

Next, we seek to understand how much reduction in label-
ing cost can be expected based on classifier properties. Since
it is the best performing method, we focus on the percentile
stratified disproportionate optimal sampling. By examining
the correlation between precision and the decrease in rela-
tive labeling cost on a per class basis, we see that the more
precise the classifier the larger the decrease. This relation-
ship is very strong (0.88 negative correlation). Indicating
classifier precision is an important property for reduction
in labeling cost using stratification. From Figure 2(a) we
see that in terms of absolute reduction in labeling cost, the
peak actually starts declining after a point. Considering
the relationship of the normal confidence interval estimate
to standard error, the absolute number of labeled examples
needed declines as the precision approaches 1. Thus, even
though our relative reduction is high, the absolute savings
starts declining. Likewise, since the absolute number of la-
beled examples needed increases as precision goes to 0.5, the
absolute savings remain reasonable even though our relative

(a) Average savings binned by per-class precision. (b) Impact of varying +§ bound on efficiency.

gains are shrinking because of the decrease in signal from
the classifier for stratification.

Additionally, Figure 2(b) demonstrates the impact of dif-
ferent choices in the bound on the estimate, §, in the ODP
data set. In particular, as the user requires a looser bound
(increasing 0), simple random sampling becomes increas-
ingly competitive although the opt methods retain an edge.

7. CONCLUSIONS

In this paper we demonstrated how to adapt stratified
sampling techniques to evaluate the precision of classifiers
deployed in large-scale systems. The version of this method
that bins by equal percentiles demonstrated strong and sig-
nificant reductions in the number of labeled examples re-
quired across a variety of parameter settings and classifica-
tion problems. In addition, in comparison with the expected
number of examples required to achieve similar bounds even
given an oracle like knowledge of how to sample, the method
comes within a few percentage points of optimal allocation.
Overall, the method provides a scalable and efficient ap-
proach to evaluating classifiers over large-scale data.
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